10

15

20

Evaluating the Arabian Sea as a regional source of atmospheric
COs: seasonal variability and drivers

Alain de Verneil', Zouhair Lachkar!, Shafer Smith?, and Marina Lévy?>

! Center for Protoype Climate Modeling, New York University Abu Dhabi, Abu Dhabi, UAE
2Courant Institute of Mathematical Sciences, New York University, New York, USA
3Sorbonne Université (CNRS/IRD/MNHN), LOCEAN-IPSL, Paris, France

Correspondence: Alain de Verneil, (ajd11@nyu.edu)

Abstract. The Arabian Sea (AS) was confirmed to be a net emitter of CO, to the atmosphere during the international Joint
Global Ocean Flux Study program of the 1990s, but since then little in sifu data has been collected, leaving data-based methods
to calculate air-sea exchange with fewer data and potentially out-of-date. Additionally, coarse-resolution models under-estimate
CO, flux compared to other approaches. To address these shortcomings, we employ a high-resolution (1/24°) regional model
to quantify the seasonal cycle of air-sea CO2 exchange in the AS by focusing on two main contributing factors, pCO5 and
winds. We compare the model to available in situ pCO- data and find that uncertainties in dissolved inorganic carbon (DIC)
and total alkalinity (TA) lead to the greatest discrepancies. Nevertheless, the model is more successful than neural network
approaches in replicating the large variability in summertime pCO- because it captures the AS’s intense monsoon dynamics.
In the seasonal pCO; cycle, temperature plays the major role in determining surface pCOs, except where DIC delivery is
important in summer upwelling areas. Since seasonal temperature forcing is relatively uniform, pCO, differences between the
AS’s sub-regions are mostly caused by geographic DIC gradients. We find that primary productivity during both summer and
winter monsoon blooms, but also generally, is insufficient to off-set the physical delivery of DIC to the surface, resulting in
limited biological control of CO4 release. The most intense air-sea CO- exchange occurs during the summer monsoon where

outgassing rates reach ~6 molCm~2yr—!

in the upwelling regions of Oman and Somalia, but the entire AS contributes CO; to
the atmosphere. Despite a regional spring maximum of pCO5 driven by surface heating, CO, exchange rates peak in summer
due to winds, which account for ~90% of the summer CO; flux variability versus 6% for pCOs. In comparison with other
estimates, we find that the AS emits ~160TgCyr !, slightly higher than previously reported. Altogether, there is 2x variability
in annual flux magnitude across methodologies considered. Future attempts to reduce the variability in estimates will likely
require more in situ carbon data. Since summer monsoon winds are critical in determining flux both directly and indirectly

through temperature, DIC, TA, mixing, and primary production effects on pCOs, studies looking to predict CO5 emissions in

the AS with ongoing climate change will need to correctly resolve their timing, strength, and upwelling dynamics.

1 Introduction

The global ocean represents a major reservoir of inorganic carbon on the planet’s surface (40x atmosphere), and up to the

present has on average acted to uptake ~23% of the 11Gt excess anthropogenic carbon (Friedlingstein et al., 2020; Ciais et al.,
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2013; Khatiwala et al., 2009). The Arabian Sea (AS) is a region of the ocean that has been found to naturally release CO; to
the atmosphere (~90MtCyr—! Sarma et al., 1998), mitigating the ocean’s role in moderating atmospheric CO, accumulation.
While the AS as a regional basin is considered too small to greatly impact global budgets of air-sea CO4 exchange (Naqvi et al.,
2005), it attracts attention because high rates of air-sea CO5 flux 7-33 molCm~2yr~! and values >700 patm of partial pressure
of COg, or pCO4, have been observed there, in addition to unique features such as the world’s thickest oxygen minimum zone
(OMZ) (Morrison et al., 1999; Acharya and Panigrahi, 2016; Lachkar et al., 2016) and corresponding Carbon Maximum Zone
(CMZ) (Paulmier et al., 2011).

The role of the AS as a region of net CO5 emission, while suspected for decades (Keeling, 1968; Naqvi et al., 1993), was
more firmly established with observations conducted under the international collaborative efforts of the Joint Global Ocean
Flux Study (JGOFS) program during the 1990s (Sarma et al., 1998; Millero et al., 1998a; Goyet et al., 1998b; Naqvi et al.,
2005); see Smith (2005) and the accompanying Progress in Oceanography special issue for greater context. Conducted over
several years, a major focus was to sample over the particularly strong seasonal monsoon cycle present in the AS, complete with
surface current reversals, coastal upwelling, and intense phytoplankton blooms (Schott and McCreary Jr, 2001; Kumar et al.,
2001; Lévy et al., 2007). JGOFS carbon data were first used to create linear statistical models, which were then extrapolated
over a greater region of the AS to produce larger-scale estimates of seasonal CO2 flux showing emission to the atmosphere
(Sabine et al., 2000; Sarma, 2003; Bates et al., 2006). JGOFS data still represent the greatest source of data for current de facto
standard global products, such as Takahashi et al. (2009) (hereafter TK(09), who produced a global climatology of pCO2 and
COs flux gridded onto a 4° x 5° grid using a horizontal advection-diffusion scheme. In recent years, neural networks have
been applied instead of simpler statistical models to likewise produce global climatologies, such as Landschiitzer et al. (2015)
(hereafter L15) on an increased-resolution 1° x 1° grid. All these different methodologies, although of differing sophistication,
still rely on the availability of in situ data.

The wealth of information provided by the JGOFS expeditions has been invaluable for understanding the AS, but there has
been little subsequent in situ sampling in the region, as has been previously remarked (Hood et al., 2016). For example, in the
Global Ocean Data Analysis Project v2 (GLODAP; Olsen et al., 2019) database, there are no reported observations in the AS
of two important carbon variables, dissolved inorganic carbon (DIC) and total alkalinity (TA), more recent than 1998, with
a similar >98% of data predating 2000 for pCO,. Thus, the global products of TK09 and L15 are based upon conditions in
the AS from 20 years ago. Since quantities like surface pCO5 concurrently trend with rising atmospheric CO» concentration
(Tjiputra et al., 2014), the dearth of recent sampling means that uncertainty in the AS’s carbon system will only grow with
time. The gap in data collection also means that the AS is proportionally under-represented in global datasets: whereas the AS
is 2% of the ocean surface, DIC and TA measurements in the AS are <1% of the GLODAP ensemble, which is also the case
with pCOs reported in the Surface Ocean Carbon ATlas (SOCAT; Bakker et al., 2016; Pfeil et al., 2013).

Where data are sparse in the AS, numerical circulation models have been used to complement the lack of spatiotemporal
coverage. These models fill the domain with their own estimates of carbon variables, such as pCOs, while also providing
detailed information on the factors affecting them, e.g. DIC, temperature, biological productivity, etc. For example, in the

wake of the JGOFS expeditions, the synthesis study of Sarma et al. (2003) used a numerical model to examine biological and
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chemical aspects of the annual carbon budget in the central and eastern AS. Further studies focus on other aspects over different
timescales, such as intraseasonal pCOs variability due to temperature versus DIC (Valsala and Murtugudde, 2015), or decadal
trends in pH (Sreeush et al., 2019a). These approaches, without more in situ data, are the best estimates we have of the current
AS carbon system’s behavior. Therefore, it is incumbent that these models are vigorously validated against what precious few
data exist. The need to reduce uncertainty is further emphasized when modeled carbon chemistry quantities are utilized as a
proxy for other things. For example, a recent modeling study in the AS found that pCO; could be used to indicate community
compensation depth, which reflects the complicated balance between primary production and respiration in the water column
(Sreeush et al., 2019b). As a result, the possibility exists to propagate uncertainties beyond carbon chemistry. However, these
AS modeling studies compare output to established climatologies, such as TK09, which are coarse in spatial resolution and
smooth out unique features of the AS such as coastal upwelling, although some studies have begun using ARGO float profiles
for model validation (Chakraborty et al., 2018).

Despite the wealth of information that models provide, they have their own weaknesses. In a review of CO; flux esti-
mates from various independent methodologies, Sarma et al. (2013) found that coupled ocean biogeochemical models under-
estimated the air-sea CO4 flux in the AS. The underestimate was attributed to poor resolution of monsoonal currents, specifi-
cally near the coasts of Oman and Somalia. The need for sufficient resolution of monsoon and upwelling currents is underscored
by the roles that small-scale horizontal (Mahadevan et al., 2004) and vertical (Mahadevan et al., 2011; Resplandy et al., 2019)
currents can play in advecting carbon. Additionally, Sarma et al. (2013) found that the peak of air-sea CO5 flux observed in
boreal summer occurred slightly out of phase, with models leading observations by over a month in the AS. Finally, the mod-
eled pCOx, in the AS found a springtime maximum not seen in the observations based on the data from TKO09. Clearly, an effort
must be made to establish whether these discrepancies are residual effects of low resolution, endemic to models generally, or
indicative of a real pattern that suggests future concerted in situ sampling.

Considering the challenges specific to studying the AS carbon cycle, in this paper we aim to put into context the role of the
AS as a COs, source by quantifying air-sea CO4 flux with a targeted approach. First, by employing a higher-resolution regional
numerical model of the AS carbon system, monsoonal and upwelling currents will be sufficiently resolved. Furthermore, model
validation will use raw data, not a smoothed climatological product, to evaluate the model air-sea CO, flux. Quantification of
seasonal air-sea CO5 flux will focus on the contributing factors of ApCO-, the difference in seawater and atmospheric pCOo,
and wind. In particular, the role of sea surface temperature (SST), sea surface salinity (SSS), DIC, and TA in determining the
seasonal cycle of pCO, will be investigated for the entire domain of the AS as well as its spatial heterogeneity within the
AS. A further budget analysis of surface DIC compares the physical and biological mechanisms governing carbon sources and
sinks, such as advection and mixing versus biological production and respiration, among others. The relative impact of pCOq
and winds upon the seasonal cycle of CO- flux are also compared, culminating in a meta-analysis of the model’s CO, flux
estimates relative to alternative approaches.

For this study, we choose to focus on the seasonal cycle due to the strength of the monsoon in the AS and because it is
resolved by the in situ data, although models suggest interannual (Valsala and Maksyutov, 2013; Valsala et al., 2020) and
intraseasonal (Valsala and Murtugudde, 2015) variability exists. The study begins with a description of pCO, datasets used,
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along with the model configuration and methods of analysis in Section 2. Following this in Section 3 is a description of the
model validation and results, with discussion in Section 4. We conclude in Section 5 with perspectives and recommendations

regarding future studies of pCO4 and air-sea CO; flux in the AS.

2 Methods
2.1 pCO; data

In this study, sea surface pCOs is used as the primary in situ data for model validation. Whereas models favor DIC and TA
(Wolf-Gladrow et al., 2007), shipboard pCO, can be measured underway and hence there are more observations available.
Additionally, since model pCOs is calculated from DIC and TA (see Sect. 2.2), pCO2 measurements act as an independent
dataset. Here, pCO» validation stems from in sifu un-gridded data merged from SOCAT v. 2019 (downloaded from https://
www.socat.info/index.php/version-2019/ September 2019) and the Lamont-Doherty Earth Observatory (LDEO) surface pCO2
database (Takahashi et al., 2019). Both databases aggregate all available in situ surface pCO4 data, including JGOFS. SOCAT
and LDEO contain >180,000 and ~90,000 data in the AS, respectively. SOCAT has more data because it includes multiple
methodologies. As a result, SOCAT data are preferred, and LDEO observations are included for the years 1980-81 where
SOCAT data are unreported. SOCAT fugacity (fCO-) values are converted to pCO5 and mole fraction (xCO-) using reported
SST and SSS data included in the products using routines from the CO2SYS software package (Van Heuven et al., 2011). The
anthropogenic effect of increasing surface pCOs is removed by calculating a fit linear trend of 2 patm yr—!, slightly higher
than ~1.5 seen in Tjiputra et al. (2014). pCO- values are calibrated to the year 2005, the representative year used for the
model’s atmospheric XCOs. The year 2005 is chosen for the model’s xCO- concentration because it is the end of the historical
period for the Intergovernmental Panel of Climate Change (IPCC) models used in its Sth report published 2014. The earliest
SOCAT data comes from 1962, and different databases used in this study stem from similarly different timespans. As a result,
we assume there is a baseline seasonal cycle of pCO, and air-sea CO, flux which has held stable over the past decades.
Alternative pCO4 products are used for comparison purposes. A complete list of these datasets and their characteristics is
provided in Table 1. For all the comparison datasets, air-sea CO» flux is calculated from monthly values. ApCO5 values are
calculated using Keeling curve data (downloaded from https://www.esrl.noaa.gov/gmd/ccgg/trends/gl_data.html, downloaded
September 2019) of atmospheric xCO4 for the respective calibrated year of each data set. The same climatological winds
as used in the model (Sect. 2.2) are applied to the pCO4 products. The gridded product TK09 is chosen because previous
modeling studies in the AS use it as validation (see Introduction). The L15 climatology, while based upon the same in situ
data mentioned above, represent different processing methodologies, and as a high-resolution, global pCO, dataset, also serves
to provide independent context to the model validation. pCO,, is also calculated from DIC and TA provided by the statistical
fits to JGOFS data by Sarma (2003) and to the gridded GLODAP climatological product. The statistical fits of Sarma (2003)
are used twice, first using model SST,SSS, and Chl-a, and second with World Ocean Atlas (WOA) 2009 SST, SSS with
SeaWifs Chl-a. GLODAP-derived pCO2 also uses WOA2009 SST, SSS applied to the annual DIC, TA values. Calculations
of pCO;, are performed using the CO2SYS software package (Van Heuven et al., 2011). Since all calculations are conducted
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at the near-surface, differences between this software suite and Orr and Epitalon (2015) are minimal. Furthermore, for air-
sea CO- flux intercomparison purposes, all pCO- values except for TK09 are interpolated to the same 1°x1° grid already
shared by GLODAP, WOA, and L15. Due to the model’s higher resolution, the re-gridding process reduces the area covered,

consequently lowering the total model CO flux quoted in later sections of this study.
2.2 Model details and set-up

The model we use is the Regional Ocean Modeling System-Adaptive Grid Refinement In Fortran (ROMS-AGRIF) version
3.1.1. Shchepetkin and McWilliams (2005). Previously used in the AS by (Lachkar et al., 2016), the model is a free-surface
primitive equation model, with a sigma and curvilinear grid for the vertical and horizontal dimensions, respectively. ROMS
implements a forward-backward time-stepping alogrithm with split baroclinic and barotropic modes. The advection of tracers
uses a rotated-split 3rd order upstream biased algorithm to reduce spurious mixing (Marchesiello et al., 2009). The K-profile
parameterization (KPP; Large et al., 1994) for vertical mixing is used. The model domain spans from 5.3°S to 30.5°N, and
from 33°E to 78.1°E (Fig. 1). For the sake of comparison with Sarma et al. (2013), we will present the region north of the
equator, and exclude the Red Sea and Arabian Gulf. The model’s horizontal resolution is 1/24°, resulting in ~5km horizontal
grid spacing.

Coupled to the hydrodynamic model is a nitrogen-based biogeochemical model with two components for nutrients, nitrate
and ammonium, with one phytoplankton, zooplankton, and two detrital pools (Gruber et al., 2006). Biological parameters for
the model are the same as those used in Gruber et al. (2011). A carbon module is also applied to the model with the state
variables of DIC, TA, and calcium carbonate (CaCQOj3) (Gruber et al., 2012; Hauri et al., 2013; Lachkar and Gruber, 2013). In
addition to usual physical transport and mixing, CaCO3 is allowed to vertically sink at 20 mday—!. The chosen sinking rate
is a simplification in that it does not include the faster rates observed for foraminifera shells (Curry et al., 1992), which as a
biological group are not resolved by the biological model due to numerical constraints. Organic carbon is linked to organic
nitrogen through the Redfield ratio 106:16. DIC is altered by air-sea CO» flux, primary production, respiration/remineralization,
and dissolution/precipitation of CaCOs. TA changes with the removal and creation of nitrate (NO3), including nitrification
and denitrification, as well as dissolution/precipitation of CaCOj3. The amount of CaCOg precipitation is linked to primary
production through a constant ratio of 0.07, meaning 0.07 moles of CaCOg are produced for each mole of organic carbon. The

1in the water column and 0.002 day ! in the sediments. Surface fluxes of DIC and TA

dissolution rate is a constant 0.0057 day ™~
due to evaporation, precipitation, and river input are included as virtual fluxes proportional to SSS forcing. Inside the module,
surface carbon chemistry is calculated using routines from the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP)
carbonate chemistry routines (http://ocmip5.ipsl.jussieu.fr/fOCMIP/phase3/simulations/). Carbon chemistry coefficients used
here include K; and K> CO; dissociation from Millero (1995), original data from Mehrbach et al. (1973) and refit by Dickson
and Millero (1987). A summary of the biological parameters used in the biogeochemical model is provided in Table 2.

The model is run with 360-day years and interpolated, climatologically averaged monthly forcing. The different climatolog-
ical products derive from datasets spanning slightly different periods, and so here we assume that the dynamics represented

within them have not changed in the time since. Heat flux, evaporation and precipitation, and restoring SSS are provided by
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the Comprehensive Ocean-Atmosphere Data Set (COADS; da Silva et al., 1994). SST forcing is provided by a monthly clima-
tology of Pathfinder data from 1985-1997 (Casey and Cornillon, 1999). Wind stress is produced using the QuikSCAT/SCOW
monthly climatology from 1999-2009 (Risien and Chelton, 2008). Tracer values for the initial conditions and the boundaries are
given by WOA 2009 for temperature, salinity, NO3, and oxygen. Horizontal velocities u,v for initial and boundary conditions
derive from the Simple Ocean Data Assimilation (SODA) analysis (Carton and Giese, 2008). Initial and boundary conditions
for DIC and TA come from GLODAP from 300m down to the bottom. Surface TA was calculated using the relations from Lee
et al. (2006), and the corresponding DIC was calculated using WOA phosphate, silicate, T, and S values along with L15 pCO,.
DIC and TA values between the surface and 300m are calculated using density-weighting. The model is spun up for 30 years,
with 5 additional years for analysis. Atmospheric XCO, values are set to 380ppm, equivalent to 2005 levels, with an annual

sinusoidal perturbation of 2.9ppm.
2.3 Domains of Analysis

In this study we focus on 6 distinct regions (Fig. 1). The first, the entire analysis domain, is the AS north of the equator.
The upwelling regions of the Oman and Somalian coasts are included separately to focus on the summer monsoon impact of
enhanced DIC but also enhanced biological productivity (Schott and McCreary Jr, 2001). The Oman region begins at the coast
and extends 300km outward. The Somalia region begins near 3.8°N and extends north to the tip of the Horn of Africa, with an
eastern extension to 58.6°E so as to encompass the region known as the Great Whirl (Vic et al., 2014), shown to be important
for air-sea exchange in previous studies (Valsala and Murtugudde, 2015). The North region is defined by a rectangle from
59.4°E, 21°N to 69.5°E, 26.5°N, encompassing the northern part of the AS where the winter monsoon’s primary productivity
is most intense (Kumar et al., 2001). An oligotrophic region representing the central AS, which has less productivity and
chlorophyll-a on average (Fig. 1), is defined by a rectangle from 61.31°E, 3.3°N to 70.8°E, 17°N. The last region, covering the

western coast of India, extends from the coastline 100km offshore.
2.4 Analysis of air-sea CO; flux, pCO-, and DIC variability
2.4.1 Air-sea CO; variability

The air-sea flux in the model is calculated using

Foo, = Ky a (pCO5** — pCOS”)
=Ko a ApCOq (D

where K is the solubility determined by temperature and salinity (Weiss, 1974), a is the CO4 piston velocity with a quadratic
wind speed dependence (Wanninkhof, 1992), and the difference in ocean and atmosphere pCO3, ApCOo, is arranged so that
the flux convention is positive outward from the ocean. The choice of Wanninkhof (1992) for the solubility parameterization
is for direct comparison with previous modeling studies (see Introduction), despite the fact that more recent formulations

are available, such as Wanninkhof (2014). The objective being to characterize seasonal anomalies of air-sea CO- flux, here
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we use a Reynolds decomposition. Briefly, a Reynolds decomposition takes a timeseries and divides it into a temporal mean
and fluctuating component. When applied correctly, multiple terms can be produced in isolation showing their fluctuating
contribution to the total. Noting that temperature effects upon solubility (K() and piston velocity («) approximately cancel,
meaning that their product mostly reflects wind forcing, we have the following arrangement for the decomposition of flux

anomalies (Doney et al., 2009b):

Flo, = (Ko a) ApCO; + (Ko @) ApCOb + ((KO Q) (ApCOs) — (Ko a)/Apcog), )

wind pCO2

Cross terms

where ’ indicates an anomaly and T is a five-year average of variable x, which are calculated at each grid point. The five-year
average is necessary for exact closure in the Reynolds decomposition. Féoz is the seasonal flux anomaly, with groupings based
on wind anomalies (K «)’, ApCO} anomalies, and cross-terms involving both.

The winds in this study are prescribed, so uncertainty in air-sea flux stems from pCOs. The SOCAT protocol assigns a
minimum uncertainty of 2patm to observations. Using the average SST and SSS from the SOCAT observations, the solubility
change is 2.68-10"2mmolCm 3patm—!. Wind speeds of 1, 5, and 10ms~' will then produce a shift of 0.0018, 0.0443, and

1

0.177molCm~2yr—!, respectively. The model presents a median value of 1.28molCm~2yr~! with median winds of Sms~!,

so therefore the baseline uncertainty in air-sea CO3 is ~3.5%.
2.4.2 pCO; variability

The proximate variables that affect pCO- change in the model are DIC, TA, SST, and SSS. Following previous studies (Loven-
duski et al., 2007; Turi et al., 2014), we use a first-order Taylor expansion to decompose pCO; into contributions from these

four, neglecting contributions from nutrients (phosphate and silicate). Initially, the decomposition would follow the form

ICOs \ b1y PCO2 oy OPCOs \ g, IPCOs

ArCO2~ F5ra OTA dSST 9555

ASSS 3)

where ApCOs is the perturbation of pCO5 from a mean value, and the A terms for DIC, TA, SST, and SSS likewise express
deviations from a prescribed value depending on whether the deviations are spatial or temporal in nature (see below). The
coefficients of the A terms are partial derivatives of pCO> with respect to these variables, namely DIC, TA, SST, and SSS,
and are calculated via centered differences described below. However, in order to control for salinity effects on DIC and TA

(Keeling et al., 2004), we normalize DIC and TA by the salinity So=35 psu, to create the variables

. . DIC . . TA
DIC _SOW a,nd TA —S()%. (4)

Substituting these terms into Eqn. (3), we can expand to produce, for example with DIC, the following (Lovenduski et al.,

2007):

pCO;, IpCO,
ADIC = A DIC?
dDIC ¢ 9(SS5S/S,DIC?) (S55/SoDIC?)
_ DIC* 9pCO, S pCO, .
= =g apIc 2585+ ¢ op1eAPICT (5)
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Collectively, the ASSS term in Eqn. (5) and its counterpart in TA can be added to the original ASSS term in Eqn. (3) to
represent all salinity effects in a "freshwater” term, so that we now have (Turi et al., 2014):

opC O, . OpCOs s pCO, IpC Oy
apIcs MO+ Gpas ATA + =5 AT+ o

ApCOPIC* ApCOFA® ApCOT ApCO5SS

APC 02 ~

ASSS. (6)

For the remainder of this paper, when discussing the results of the Taylor series decomposition method, it will be understood
that DIC and TA refer to DIC® and TA®, and SSS will refer to the combined term.

The contributions of DIC, TA, SST, and SSS to pCOs, variability are used to construct maps and timeseries of pCO5 anoma-
lies. In order to calculate the anomaly ApCO, requires calculating both the A deviations of DIC, TA, T, and SSS, as well as
partial derivatives. In this study, we calculate both temporal and spatial anomalies. To consider spatial variability, starting with
annual means of pCO4, DIC, TA, SST, and SSS, an average value for the whole domain is calculated and removed from each
grid point’s annual mean to get a A perturbation, or anomaly. Similarly, for temporal variability, with the monthly values of
pCO-, DIC, TA, SST, and SSS at each grid point, the annual average at that grid point is removed to produce the monthly A
perturbation/anomaly. Partial derivatives are approximated via centered differences. These are obtained by calculating pCO4
with slight deviations of DIC, TA, SST, and SSS from the mean value. Both positive and negative deviations are used to con-
struct centered differences, with deviation magnitude determined by Orr et al. (2018). For example to calculate the monthly
pCO4 anomaly due to SST for a gridpoint with annual mean pCO; of 430patm, annual mean SST of 24°C, and monthly SST
of 26°C:

OpC O _pCO2(24+1-1074,...) = pCO,(24 —1-107%)
gor ASST +..~ SRR

ApCOs ~ (26 —24) + ... 7

where 1-10~4 is the recommended SST deviation.
2.4.3 DIC budget

Whereas the state variables of DIC, TA, SST, and SSS provide the chemical context which determines carbon availability to
potential air-sea flux via pCO., tracking the overall inventory of inorganic carbon (i.e. DIC), allows for the parsing of numerous
source and sink processes governing the total amount of carbon reaching the surface. Beyond the biological processes impacting
DIC as outlined in Sect. 2.2, the physical processes impacting DIC are air-sea CO» flux, surface evaporation and precipitation,
horizontal and vertical advection, and horizontal and vertical mixing. In order to diagnose the relative importance of these
terms (i.e. to weigh competition between upwelling circulation-source and biological drawdown-sink), we calculate the budget

Iprc in a 3D volume by integrating:

n
IDIC:// / J(z,y,2)dAdz ®)

A —2z(o)



250

255

260

265

270

275

with

J = _PPNeerReg - CaCOSprec—remin + Zooresp + Detremin - FAS’

Biology Air—Sea
+ Adv, + Advy + Mix, + Mixy + Adv, + Mix, + Evap — Precip, 9)
Horz. Circ Vert. Circ Fore

which is the volume-specific flux J of DIC in a given grid cell. P Pyecw+Reg 1S net community primary production scaled by
the Redfield ratio, CaCO3,.¢pin—prec 18 net CaCOj3 precipitation and remineralization, Z00;.c,, is zooplankton respiration,
and Det,emin 1S remineralization of both detrital pools. All these terms are grouped together into Biology because they
represent all biological processes. Fag is air-sea flux, with a sign convention of positive outward. Adv,, is advective flux in the
x-direction, with corresponding y and z components. Mix,, is the x-component of mixing flux, again with y and z components.
All x and y components of both advective and mixing DIC fluxes are grouped into horizontal circulation, with a similar
grouping for vertical circulation in the z-direction. Fvap — Precip is the forced virtual flux from evaporation and precipitation
at the surface. A is the two-dimensional horizontal area to be considered, which in our study includes the entire domain but also
the sub-regions of analysis. The bottom boundary of integration, —z(o), is the sigma-layer depth at which integration starts,
moving up to the free-moving surface 1. We chose to integrate the top five sigma layers of the model, corresponding to ~20m
depth. This level was chosen because below this depth, annual cycles of Ip;¢ begin to deviate from the surface DIC, which is

our focus in this study of air-sea CO5 flux.

3 Results
3.1 Model validation and pCO- data-model comparisons

The implementation of ROMS-AGRIF presented here has been used in previous studies of the AS (Lachkar et al., 2016).
Model output of net primary productivity (NPP) captures the summer monsoon highs near the upwelling regions of Oman and
Somalia (model >400 vs data >500gCm~2yr—!), with enhanced NPP in the North during the winter monsoon (model ~300
vs data >400gCm~2yr—!) (Fig. 1). The model also captures the vertical distributions of temperature and salinity (Fig. S1-2)
with deviations from WOA around 1°C and 0.2psu. Depth profiles of nitrate, oxygen, DIC, and TA are similarly conserved
(Fig. S3-S6). Nitrate, DIC, and TA all show their usual nutrient-like profiles, while oxygen is its minimum within the OMZ.
The deviations seen between in situ data and model output are greatest at depths less than 500m. Deviations in near-surface
NOs3 (Fig. S3) can be large for intermediate values (5-20uM) but overall do not show a systematic bias. DIC (Fig. S5) also
has large deviations (~50uM) in the top 500m and with a slight positive bias. It is in TA (Fig. S6) that deviations, while
similarly ~50uM — eq, show a consistent near-surface underestimation. The surface currents in the model also demonstrate
the monsoonal shifts and reversals seen in the AS (Fig. S7).

Regarding pCOs, in situ data from the merged SOCAT/LDEO database shows that ~90% of ApCO- values in the AS
are positive (Fig. 2a, inset), indicating a positive flux to the atmosphere that is applicable geographically (Fig. 2a). Sampling
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dates for pCO; (Fig. 2b) show that ~70% are from the summer monsoon months (June-September, JJAS). Most observations
similarly date from the 1990s, with 1995 and 1997 alone accounting for 96%.

Seasonal pCOs distributions from both data and the model are shown in Fig. 3. During the winter monsoon, pCO5 values
are at their lowest (range: 348-455 patm; Fig. 3a). Spring intermonsoon (Fig. 3d) finds pCO5 values similar to the winter
(range: 354-451 patm), with data coverage improving in the western AS. Summer monsoon, with best data coverage (Fig. 3g),
has pCO, peaking at 773 patm. In contrast, the fall intermonsoon (Fig. 3j) has very little data coverage, with pCO5 ranging
from 311-485 patm. Similar to the data, model pCO> (Fig. 3b) is at its lowest during the winter. However, in the spring
(Fig. 3e) open-ocean pCO; finds its peak with a domain-average of 439uatm, which is not reflected in the in situ data set
(Fig. 3d,e). Maximum model pCOs is found in the summer monsoon near upwelling regions (Fig. 3h), with values attaining
>800uatm in Oman. Fall model pCO, (Fig. 3k) still has elevated values averaging 427 patm, but less than the summer period.
Certain regions in the model show persistent maxima in pCOsz, such as the Gulf of Oman and the Strait of Hormuz, which
are not reflected in the few data collected there. Model pCO; values in the Gulf of Aden increase during spring and then peak
during the summer, a pattern which is unclear from the data. Annual and seasonal pCO, means, with standard deviations in
parentheses, are displayed in Table 3 for both the data and model. Differences from interpolated model output and in sifu data
are shown on the right column of Figure 3 (Fig. 3c.f,i,1). Most differences show that model output is higher in value than the
data, averaging 24.6, 48.4, and 33.7 patm higher for the winter, spring, and fall seasons, respectively.

A Taylor diagram (Taylor, 2001) comparing in situ pCO2 data with model output shows the model’s relative performance
(Fig. 4). The distance from the origin is model variability normalized by standard deviation of the in situ data. The angle
created from the y-axis is the Pearson correlation coefficient between the model and in situ data. If the model were to perfectly
reproduce the data, it would appear at the position (1,0), equivalent to a normalized standard deviation of 1, and correlation
coefficient of 1. For the entire dataset, as well as for the spring and summer seasons, the model’s correlation with data is ~0.5.
Winter and fall have lower values at 0.2 and 0.06, respectively. Variability expressed as normalized standard deviation shows
that overall, and during spring and summer periods, the model under-estimates data variability (~0.5patm). During the winter
and fall, however, the model over-estimates variability (1.1 and 1.6, respectively). For all periods apart from summer, model
pCO- has a positive bias (9.1, 24.6, 48.4, and 33.7 patm for the annual, winter, spring, and fall, respectively). During the
summer, the model has a negative bias of -3.1 patm.

The source of bias in pCO; is linked to the four state variables SST, SSS, DIC, and TA. Comparisons with the model are
made with SST and SSS from the merged LDEO/SOCAT database, while DIC and TA come from the ungridded GLODAP
product (Fig. S8). In this case, model SST and SSS (Fig. S8a,b) largely overlap with a 1:1 relationship, but with slight positive
biases of ~0.4°C and 0.3psu. Removing these biases from the model results in a pCOx shift of -6.8 and -3.5 patm for SST and
SSS, respectively. These deviations are close in magnitude to the best-case measurement error of ~2uatm. Taylor diagrams
for SST and SSS (Fig. S9) further show the seasonal performance of these two variables. The model performs best for SST
(Fig.S9a) during the winter, with correlation of 0.93 and normalized standard deviation of 0.97. The other seasons have lower
correlations (0.74-0.81), and reduced standard deviations (0.63-0.8), except for the fall with standard deviation of 1. SSS (Fig.

S9b) has lower correlations and standard deviations than SST, with all seasons demonstrating a positive bias (0.02-0.39psu).
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Correlation is best in the winter at 0.89, and worst in the fall at 0.46. Model variability in SSS is also less than the data, with
standard deviations ranging from 0.33 to 0.72. Lower variability is most likely due to the raw nature of the in situ data used
here, in opposition to the monthly averaged climatological forcing and initial conditions of the model.

Ungridded DIC and TA data from GLODAP, though more sparse (n=334 data points with both DIC and TA at depth < 50m),

Land -30.0 umol — eqkg~! for

show more deviation from the 1:1 line (Fig. S8c,d) with overall negative biases of -15.8 umolkg™
DIC and TA. These biases result in pCO- perturbations of -33.8 and +45.7 patm, respectively, when accounted for individually.
Since the buffering capacity of seawater is related to the ratio of TA and DIC, when both biases are considered average pCO2
shifts +16.7 patm. As a result, while the DIC model bias lowers pCOs, the stronger bias in TA is the most likely cause for the
model’s overall positive pCO; bias, which may in part be due to the unresolved fast sinking rates of foraminifera in the model.

Direct comparisons between the in situ and model output demonstrate the positive bias and middling correlations of the
model with respect to the data, as well as the model’s tendency to under-represent variability. As a result, it is necessary to
investigate how these shortcomings compare with alternative pCO- estimates in the AS. Figure 5 shows monthly comparisons
of the pCO,, probability distribution functions from in situ data, model output, and L15. For most of the year, the data (Fig. 5a)
stays within a relatively narrow range (375-425 patm), except for the summer monsoon where values can exceed 500 patm
and the median value has its peak. In the model (Fig. 5b), pCOs is almost entirely above 400 patm, with the median value
increasing during spring inter-monsoon and peaking in June (453patm). Similar to the data, the upper bound variability in
pCO, peaks in August. L15 (Fig. 5c), by contrast, has a tighter envelope of variability, with 5-95 percentile values never going
beyond the range of 368-434 patm. Median pCOs in L15 peaks in the summer like the data at 402patm, but there is no large
increase in upper bound variability, with the 95% upper bound in L15 reaching 434patm in September.

In summary, the survey of available data and comparing it to the model output produces a few distinct features: 1) available
in situ data shows that the majority of observations are skewed towards the summer monsoon during the years 1995 and 1997,
2) most in situ data show CO4 out-gassing in the AS; 3) the model has a net positive bias in surface pCO,, driven by a joint
DIC-TA bias which is slightly stronger in TA; and 4) the model captures the high summer monsoon pCOs values better than

the alternative L.15 climatology.
3.2 Air-sea CO flux, drivers of seasonal variability, and flux intercomparison

Modeled annual mean atmospheric flux of CO4 (Fig. 6a) shows outgassing (positive, red) throughout the entire domain, pro-
ducing an average annual CO5 flux density rate of 1.9 mol C m~2yr~! and a total of 162.6TgC yr~". Similar to pCO», several
hotspots appear in the geographic distribution. Near the coast of Oman, the average flux density is 2.7, with 3.2 in Somalia and
2.4 along the coast of India, producing a flux of 11.4, 32.9, and 4.9 TgCyr !, respectively. The other regions, the North AS and
oligotrophic central AS, have average densities of 2.0 and 1.5 mol C m~2yr~*, with total fluxes of 10.5 and 28.6 TgCyr~1.
The seasonal air-sea flux (Fig 6b-e) has minima during fall and winter, with an increase in spring and a strong maximum during

summer monsoon. Oman and Somalia flux densities during summer monsoon are 5.8 and 5.9 mol C m~2yr—!

, respectively.
The distribution of enhanced summer air-sea CO5 flux coincides with the southwest monsoon winds, (Fig. S10) as well as the

band of cooler temperatures impacting spatial pCO2 anomalies (see Sect. 3.3.1). The entire domain fluxes 32.0, 26.6, 90.9, and
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13.1 TgCyr*1 for the winter, spring, summer, and fall periods, respectively, each contributing 19.7, 16.3, 55.9, and 8.1% of
the annual total.

The variability in air-sea CO, flux can be attributed to the contributions of winds, ApCO-, and interacting cross-terms,
as described in Eqn. (2). The temporal anomalies for the summer monsoon, the period with strongest CO5 flux signal, are
presented in Figure 7. Most of the domain has positive but variable strength anomalies in air-sea flux (Fig. 7a), averaging

1.3molCm—2yr—!

with a standard deviation of 1.35. The wind contribution to flux variability, ko (Fig. 7b), is also positive
in most of the domain except the Gulf of Aden and the south-eastern corner of the domain. The wind anomaly’s magnitude
and distribution closely match the total anomaly in Fig. 7a, with mean flux anomaly of 1.18molCm~2yr~" and 0.96 standard
deviation. The ApCO-, contribution to seasonal flux anomaly (Fig. 7c) has a lower magnitude effect overall (mean flux anomaly
0.1, deviation 0.5, maximum 6.2 molCm~2yr—1!), with positive values north of 10°N and slightly negative to the south. The

1

maxima approaching 6.2 molCm~2yr~! are in the upwelling centers of Oman, Somalia, and the Indian coast. Second-order

cross-term values (Fig. 7d) are almost all positive, with maxima also occurring near upwelling centers similar to the ApCO,
term, but weaker in magnitude with average 0.04molCm~2yr—1.

The seasonal flux anomalies for all regions are displayed in Fig. 8. The summer monsoon flux is so strong that it makes
the anomalies (black lines) for all the other seasons negative, except for May in the spring. During the winter months DJFM,
both wind and pCO, terms produce negative flux anomalies (ranging to -0.78 and -0.38 in the domain for wind and pCO.,
respectively; Fig. 8a), indicating the relative lack of winds and minimum pCOy values. In winter, while the negative wind
term is universally strongest, within the upwelling regions the pCO4 term is 58% (Fig. 8b) of the wind term’s magnitude, and
49% for the entire domain. The spring intermonsoon, where many regions such as Somalia and the central oligotrophic AS
(Fig. 8d-e) experience their pCO2 maximum, shows a positive pCO4 effect on flux anomaly that is as large as or larger than

the negative wind effect (Somalia May pCO, anomaly of 1.1molCm2yr—!

, wind anomaly of 0.1). Summer monsoon winds
represent the majority contribution to CO; flux variability, with a minimum 64.7% contribution relative to the total anomaly
in India, a maximum of 112.8% in the oligotrophic AS, and 90.8% for the whole domain. By contrast, summer pCOy and
cross-terms contribute 6.0% and 3.1% to the domain’s anomaly, respectively. Fall inter-monsoon months resemble the winter
monsoon, with negative wind anomalies contributing most with small or negative pCO5 contributions. In most scenarios, pCO2
contributes in the same direction as the winds or little at all, with the notable exceptions of Oman, oligotrophic AS, Somalia,
and the domain during spring inter-monsoon.

While strong monsoon winds dominate the timing of air-sea CO» flux, and the AS is always a source of CO2 due to positive
ApCOs,, differences in pCO> between independent sources can still result in a wide range of overall magnitudes. In the AS,
CO, outgassing estimates vary from 7 TgCyr—! (Goyet et al., 1998b) to >90 TgCyr~! (Sarma, 2003), and everything in
between (Somasundar et al., 1990), with each study using their own pCO; data and wind parameterizations. Considering the
important seasonal role of winds, the best way to investigate the role of pCO, variability is to keep winds (and their flux
parameterization) constant. Towards this end, we use multiple pCO5 products to calculate CO5 flux with the same wind and

parameterization as the model (Fig. 9). As summarized in Table 1, pCO2 from TK09, L15, GLODAP data and Sarma (2003),

interpolated to the WOA 1°x1° grid, are used in these calculations (except for TK09 where the coarse resolution reduced
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coverage). The original applicability of the Sarma (2003) model is north of 10°N, and so flux is calculated for this region, as
well.

All calculations have their peak CO- flux sometime in the summer, confirming the role of winds in CO» flux timing. This
study’s model consistently produces one of the higher estimates with 120TgCyr~! (reduced from 162.6 due re-gridding) and
57 TgCyr~*! north of 10°N. The only estimate higher than the model is GLODAP data in the region north of 10°N with 65
TgCyr~! possibly driven by summer monsoon sampling bias. The high model estimate is perhaps unsurprising, considering
the pCO, bias. The range in estimates of total COy flux is 57-120 TgCyr !, resulting in a ratio of 2.1x variability. In the
reduced domain of the AS north of 10°N, estimates range from 12.3 to 65.6, resulting in 5.3x variability. The 5.3x ratio is quite
high, and is in part driven by the low estimates from the Sarma (2003) model, which are 12.3 and 17.6 using tracer data from
WOA and ROMS, respectively. Indeed, the Sarma (2003) model estimates have negative CO5 flux for some months, which is

not observed in the original publication, and the total fluxes are quite smaller than the 70 TgCyr—!

reported. If the two lower
estimates are removed, the range in air-sea CO, flux in the domain north of 10°N is 41-65 TgCyr~!, providing a ratio of 1.6
similar to 2.1 for the whole domain. Even considering the model’s pCO,, bias, as previously mentioned the GLODAP estimate
supersedes it in the region north of 10°N, as does the original Sarma (2003) estimate of 70 TgCyr~!. Thus, while we may

think the model over-estimates flux, it is still within the range of previous studies in the AS.
3.3 pCO. distribution, seasonal cycle, and underlying contributors
3.3.1 Spatial pCO- distribution

Spatial pCO< anomalies calculated from the annual mean highlight the geographic hotspots of pCO inside the domain (Fig
10a). pCO, anomalies range from -89 to +415patm, indicative of a positive skew in the distribution. Within the regions of
analysis prescribed in this study, it is clear that Oman, the Indian coast, and the North AS host enhanced pCO;, with average
positive anomalies of 8.6, 21.5, and 49uatm, respectively. In contrast, both the oligotrophic central AS and Somalia regions
have negative pCO, anomalies (-13.7 and -2.9patm, respectively). The contributing factors to these pCO2 anomalies, SST,
DIC, TA, and SSS, display differing distributions. SST (Fig. 10c) contributes toward negative pCO, anomalies in a southwest-
to-northeast band along the coasts of east Africa and the Arabian peninsula, up to the coasts of Pakistan and the northern
coast of India near Gujarat. The cold SST structure contributes a -20patm effect on pCO;, and largely overlaps the stronger
summer monsoon winds (Fig. S10). The opposite trend is found in the central oligotrophic and Indian regions, where the
average temperature contribution to pCOs is 20patm despite upwelling along the southern Indian coast. The distribution of
DIC-induced anomalies (Fig. 10d) shows a positive influence near coastal regions and the western AS off the coast of Somalia
(+25patm), whereas a strong minimum is found in an oval region encompassing the central, open-ocean AS (-36.6patm). TA
effects (Fig. 10e) show a north-south gradient similar to SSS, with positive contributions to pCO4 of +20patm occurring in the
north and -20patm towards the south, resulting in magnitudes similar to SST contributions. SSS contributions (Fig. 10f) show

a similar distribution as TA, but weaker in magnitude (+10patm).
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3.3.2 Seasonal pCO5 cycle

The previous section outlines the geographic regions within the AS that have overall high or low pCO; values, but in order
to investigate the strong seasonal monsoon cycle in the AS, the decomposition of variables affecting monthly pCO5 values is
calculated at each model grid point and averaged into each analysis region (Fig. 11). Regarding the whole domain (Fig. 11a),
pCOy, variability is similar to that seen in Fig. 5b, with a spring pCO> anomaly peak (20 patm) and minimum during fall and
winter (-9.4 patm). Temperature effects largely mirror the overall pCO2 cycle (May peak 30, January minimum -17patm).
Change in pCO- associated with DIC acts in opposition to temperature but with lower magnitude (16 in February, -8 in June).
Both TA and SSS effects are negative for the first half of the year before becoming slightly positive in the second half, never
reaching 10patm in magnitude.

Different pCO5 anomaly cycles can be found in the upwelling regions of Oman, Somalia and India (Fig. 11b,e,f). Here,
a positive temperature peak appears in the spring (27-45patm), which is then supplanted by a positive DIC peak during the
summer monsoon (41-81patm). In both Oman and India, the summertime DIC peak is strong enough to contribute to the annual
pCO, peak despite cooler temperatures. In Somalia, the summertime DIC peak is not sufficiently stronger than temperature (41
vs -34patm) such that in sum with the other terms maximum pCOs is found in the spring, not the summer, similar to the whole
domain and oligotrophic regions. Both TA and SSS effects in these three regions are lower in magnitude (never exceeding 18.4,
7.3patm for TA and SSS, respectively) and generally run counter to DIC.

A completely different regime occurs in the North AS (Fig. 11c). Here, while temperature effects (49uatm in June) create a
similar spring-summertime peak in pCO4 (15.9uatm) somewhat counter-acted by DIC (-40uatm), during the winter monsoon
temperature and DIC effects are both maximal and in opposing amplitudes (-49.5 and 51.4patm for SST and DIC, respectively).
This occurs due to the convective mixing that occurs during winter in the North AS, where cooling temperatures lower pCOq
but subsurface water introduces more DIC, resulting in a near-balance.

The oligotrophic central region (Fig. 11d), the largest in area, has similar pCO2 and temperature impacts as the whole
domain, with the two largely overlapping. DIC, TA, and SSS impacts also follow similar patterns, but have slightly higher
magnitudes in the central AS, with DIC reaching 32patm.

3.4 Near-surface DIC budgets and cycling

SST’s effect on pCO, reflects physical processes like surface heating and cooling, mixing and advection. DIC, by contrast,
reflects both physical and biological processes because in addition it is also impacted by photosynthesis, CaCOj3 shell formation
and dissolution, zooplankton respiration, detritus remineralization (bacterial respiration), and air-sea exchange. Budgets of DIC
fluxes in the upper 20 m (Fig. 12; see Fig. S11 for a volume-specific DIC flux) show that two major processes dominate, vertical
circulation (light blue lines) and net biological processes (magenta lines). In the entire domain and all sub-regions, and for all
months, vertical circulation (advection and mixing) acts as a source of DIC, with the sum of all biological processes acting as a
sink (n.b. the top 20 m does not constitute the entire euphotic zone, so respiration and remineralization at depth is not included).

Maximum magnitudes of both vertical circulation and biological flux occur during the summer monsoon for all regions, except
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for the North AS where they occur during the winter monsoon bloom (Fig. 12¢). The maximum DIC flux in the domain due to
vertical circulation is 1.76PgCyr—!, whereas biological flux peaks at -1.0PgCyr ! .Biological fluxes are nearly phase-matched
with vertical circulation, though peaks in summer biological flux lag vertical circulation by a month (Fig. 12d,e,f). Comparing
the two flux terms, after normalizing biological flux by vertical circulation flux, the relative strength of biological processes
versus vertical sources of DIC becomes apparent. In the whole domain, biological flux ranges from -90% to -34.5% of vertical
flux, similar to Rixen et al. (2005). As a result, biological fixation of carbon is generally weaker than physical vertical delivery
of DIC.

Air-sea flux (red lines) is always negative due to the high pCOs values, peaking during the summer monsoon. DIC flux due
to atmospheric escape, while reaching its maximum magnitude of ~0.32PgCyr~"! in June and July for the whole domain (Fig.
12a), only surpasses biological flux in May, when 0.23PgCyr~! is releasing to the atmosphere compared to 0.15PgCyr—!
in biological processes. Evaporation and precipitation (brown lines) results in higher DIC for most of the year in the entire

domain and upwelling regions (i.e. net evaporation, averaging 0.07PgCyr—!

in the domain) , except India where it is nega-
tive (net precipitation, averaging -4.8-10~3PgCyr~!). The oligotrophic region’s evaporation and precipitation flux (Fig. 12d)
oscillates from being either positive or negative four times during the year, with magnitudes rivaling air-sea flux at times
(5-1072PgCyr!). Horizontal advection (dark blue lines) is negative on average for the whole domain (-0.2PgCyr—1!), denot-
ing net export (Fig. 12a). The same pattern occurs for all sub-regions except India with net horizontal import of surface DIC
(Fig. 12f;2.9-1073PgCyr—!). The Oman upwelling region and the oligotrophic region experience positive peaks of horizontal
import during the summer monsoon (27 and 56TgCyr~! for Oman and oligotrophic regions, respectively), though for Somalia

1

this period is the maximum DIC export, peaking at 220TgCyr~" in July.

4 Discussion
4.1 Model pCO vs. data

The pCO, output from the model has a positive bias with respect to the in situ data, as is clear from Fig. 3-5. The question
becomes whether the model bias precludes its use in acquiring a reasonable air-sea CO» flux estimate. Regarding the direction
of CO,, flux (positive outgassing or negative uptake), since most in situ ApCO4 data are already positive (Fig. 2), an additional
positive bias will not impact flux direction, reaffirming the previous findings of Sarma et al. (1998) and subsequent work
demonstrating that the AS is a source of CO» to the atmosphere. A positive model bias in pCO, has been noted in previous
modeling studies. For instance, in the global data assimilation study of Valsala and Maksyutov (2010), they found an overall
positive bias in the North Indian ocean, ~+5-15patm above TK09 (compared to our -3.1 to +48.4patm with respect to in situ
data). Additionally, that study found a similar underestimate near the upwelling regions (summer negative bias in the model)
of the AS and overestimate elsewhere (their Figures 3 and 4). In Sreeush et al. (2019a), ROMS resulted in systematic positive
pCO; bias, whereas the offline Ocean Transport Tracer Model (OTTM) produced negative bias in pCO5 in comparison to
TKO09.
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The search for the model bias source is hindered by the lack of in situ data in the region. As already noted, GLODAP has 334
locations with DIC and TA in the top 50m. The few available in situ data that do exist in the AS have a number of deficiencies for
the purpose of validating model output. First, the data available are both old and concentrated around the years 1995 and 1997.
While the JGOFS studies were quintessential in diagnosing the seasonal cycle of pCOs, they preclude being able to decipher the
secular trend in surface pCO> due to increasing atmospheric CO5 concentrations. In our analysis, we estimated a +2patm yr—?
trend, close to that of Tjiputra et al. (2014), though finding an inter-annual linear trend requires more data at regular intervals.
Second, due to the nature of strong upwelling in the AS, previous cruise sampling also biases not only the summer months
(=70% of data), but also in the vicinity of the Oman coast (Fig. 3g). As a result, it is difficult to determine to what extent the
data are representative of the entire AS. Consider that in the model, flux intensities are lower in the central, oligotrophic region
(Fig.6), but due to its surface area the total flux (28.6 TgCyr—1!) was close to that of Somalia (32.9 TgCyr—'), an observation
also made by Lendt et al. (2003). Determining to what extent the model over- or under-estimates CO2 flux due to pCO; bias
would require more in sifu sampling, which would need to be designed around solving the problems of areal coverage (outside
of Oman and upwelling zones) and temporal coverage (off-summer months and recurrent over multiple years).

The distribution of model pCOs; is both similar to and different from previous data-based and modeling studies. Apart from
the aforementioned bias leading to heightened absolute values (though Bates et al. (2006) has >400 patm for large parts of the
AS), the relatively enhanced pCO- values near Oman, along the west coast of India, and in the Gulf of Aden have already been
observed (Sabine et al., 2000; Bates et al., 2006; Sarma et al., 2000; Kortzinger et al., 1997). These same studies, however,
note a minimum of pCO outside of the summer monsoon near the south-west coast of India due to freshwater influx, which is
not replicated well in the model. Additionally, elevated pCO5 near the equator is not observed (Sabine et al., 2000; Bates et al.,
2006), although it can appear in other models (Valsala and Murtugudde, 2015). The model’s seasonal pCO2 minimum during
the winter monsoon is also not reflective of results found elsewhere (Goyet et al. (1998a, b); Bates et al. (2006); though many
studies highlight the North AS, where minimum model pCO; occurs during the spring). Instead, these papers state pCOs is
minimal during the fall inter-monsoon. Likewise, the large-scale spring maximum of pCOs seen in the model is not found in
these studies, except for in Louanchi et al. (1996), though this result is somewhat anomalous since that study showed a pCO2
minimum during summer monsoon. Thus, while the model agrees with previous work insofar as the coastal regions impacted
by upwelling show enhanced pCO,, mismatches do appear in the seasonal timing of maxima and minima, especially within
certain sub-regions.

Despite the model’s limitations, its advantages are also clear. Beyond the obvious increase in spatio-temporal coverage,
capturing the monsoon’s strong seasonal dynamics helps the model where other approaches fall short. This is especially il-
lustrated in Fig. 5. Since upwelling regions are limited in geographic extent near the coast, capturing their high pCO; values
can be difficult for other approaches, such as TK09 with its coarse grid. Even the L15 product, with its finer grid, is unable to
produce the higher pCO4 values seen during the summer. Judging from these comparisons, the trade-off appears to be that the
model currently may produce less accurate pCO5 values outside of summer, but the explicit resolving of upwelling allows for

enhanced pCO; values during the summer monsoon, the peak of CO flux.
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4.2 Spatial distribution of air-sea CO, flux and pCO-

The model results both affirm the conclusions of previous studies in terms of CO, flux direction and seasonality, yet find
difference in magnitudes. As previously stated, the AS is a atmospheric CO5 source, with most flux occurring (56%) during
the summer monsoon (Fig. 6). In our results, however, there is no region during any of the seasons where CO- uptake takes
place. While somewhat expected, this is still in disagreement with some of the other pCO4 datasets previously considered, such
as in Sarma (2003), where negative ApCOs values appear, such as during winter monsoon near the south coast of India. The
model’s positive pCO5 bias may be to blame for this, making it so that no negative ApCO- appears. Despite the positive pCO4
bias, a few other patterns are clear in comparison to other CO5 flux estimates. Sabine et al. (2000) and Sarma (2003) both find
the maximum flux occurring during the summer monsoon centered around the upwelling regions, which is also quite visible
in the model results (Fig. 6d). However, Bates et al. (2006) found that a secondary maximum of flux occurs during the winter
monsoon, though due to the color scale in their figure 6 it is difficult to ascertain much beyond CO5 outgassing from the AS
during all months of the year. Their secondary max in flux may be partly attributable to higher wintertime pCO-, as well.

The spatial decomposition of factors influencing pCO2 (Fig. 10) highlights how geographically DIC can be the strongest
factor, with SST and TA taking secondary roles and SSS being a weak contributor. Since DIC and TA can co-vary with salinity,
when they are not normalized their distribution in the AS mirrors the north-south salinity gradient (see figures 2,3 in Bates et al.
(2006)). Once corrected for salinity, it is clear that the upwelling region of Oman still has elevated DIC whereas the central,
oligotrophic AS shows a DIC deficit. By contrast, the onshore-offshore gradient in TA is weaker. Differences between coastal
and offshore normalized DIC and TA in the AS have been previously observed (Millero et al., 1998b; Lendt et al., 2003),
but the stronger relative absence of DIC in the central AS and its role in affecting pCOs has not been emphasized. A similar
analysis in the California Current upwelling system (Turi et al., 2014) indicates near-compensation of DIC and temperature
in opposing directions, nearly overlapping each other. In that scenario, DIC overpowers temperature at the coast, with TA and
SSS being secondary. For the AS, while the upwelling regions of Oman and Somalia show temperature and DIC working
against each other, they are not as well compensated. Furthermore, the gradients of positive/negative pCOs contributions from
temperature and DIC do not overlap, leading to the curious scenario where temperature and DIC both contribute positively to
the pCO; anomaly along the Indian coast. The positioning of these gradients and the surprising negative influence of DIC away
from upwelling regions perhaps underscores how the AS is rather unique, where strong seasonal upwelling winds mingle with

strong tropical heating and the influence of outflows from marginal seas (Prasad et al., 2001; ’Hegaret et al., 2015).
4.3 Seasonality of air-sea CO-, flux, pCO5, and DIC
4.3.1 Air-sea CO; Flux

The fact that model COs, flux for the entire domain peaks in summer despite a spring peak in pCOs for the domain as a whole
(along with the Somalia and oligotrophic regions) is the first sign that perhaps pCOz is not the primary driver in determining
flux timing. The Reynolds decomposition of CO5 flux terms (Fig. 8) clearly shows that a large proportion of the summer flux

is due to the arrival of the strong SW summer monsoon winds. The positive contributions due to pCO4 occur in the usual
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upwelling regions, though their contribution in magnitude is relatively muted, and negative in the southern portion of the AS.
Cross-terms, while non-zero, are inconsequential in determining the overall anomaly in summer flux intensity, as has been
seen elsewhere (Doney et al., 2009b). Indeed, in a scenario where the cross-term contribution is at its maximum amplitude, the
Omani upwelling region during summer, the cross-term is not stroung enough to sway the direction of the flux anomaly.

The summer flux signal is such that in nearly all the regions outside of summer, the anomaly is negative. Furthermore, the
contribution of winds in particular is so strong, it is the largest factor all year except for the spring intermonsoon, where peak
pCOy, is important relative to the effects of wind (or lack thereof) in the central oligotrophic AS, Somalia, and the averaged
domain. This suggests that, on first order, winds are the most important factor in determining the seasonal air-sea flux cycle in
the AS. We should keep in mind, however, that these results conflict with the analysis of Roobaert et al. (2019). In their global
study of coastal waters, while seasonal CO» flux variability in the AS is relatively high compared to other regions (their Figure
6), the largest contributions come from ApCO- and cross-terms (their Figure 7), especially near the Horn of Africa. As a result,
further work should be conducted to reduce uncertainty in sea surface pCO5 values to determine whether winds, ApCO-, or
cross-terms are significant drivers of air-sea flux. Additionally, when considering the inconsistencies of models in estimating
air-sea CO» flux (Sarma et al., 2013), uncertainties from incomplete representation of winds and the various parameterizations
of piston velocity must be considered in addition to pCOs, especially in light of recent work in the field (Ho et al., 2006;
Wanninkhof, 2014; Roobaert et al., 2018).

Wind parameterizations notwithstanding, once winds are controlled in our metanalysis (Fig. 9) it appears that on balance: 1)
gridded data-based pCOs products will under-estimate the upwelling zone maxima of pCO- and CO, flux during the summer,
2) the model over-estimates pCO> the rest of the year, eventually contributing to a possible over-estimate of CO5 flux, and 3)
this leaves reality somewhere in between. The only way to rectify these differences and arrive at a more accurate estimate will
be to conduct sufficient in situ sampling of DIC, TA, and pCO> in more regions than the upwelling zones, and preferably outside
of the summer and over the course of multiple years. With the advent of ARGO floats with pH sensors, and the advancement of
technology for other variables such as TA, the possibility emerges of using autonomous sampling platforms to expand beyond

the limitations of ship-board measurements to fill the data gap in the AS carbon system.
4.3.2 pCO; seasonality

Decomposition of seasonal pCO, anomalies within regions portrays a slightly different picture where temperature is the dom-
inant force, with DIC countervailing in the upwelling regions. Not only is this seasonal cycle more akin to that seen in the
California Current (Turi et al., 2014), the dueling role of these two forces is also reflected in a similar analysis by Sreeush et al.
(2019a) for pH instead of pCO- in the AS. Interestingly, in that study both ROMS and OTTM were compared side-by-side, and
in OTTM, TA played a larger role than in ROMS. Similarly, in Valsala and Maksyutov (2013), TA played an important role in
regulating inter-annual pCOs, variability in the AS. A preliminary TA budget of the model (Fig. S12) shows that while vertical
circulation and biological processes dominate the seasonal cycle of near-surface DIC, TA has multiple forces influencing its

time evolution. However, the magnitude of the fluxes are ~ % those of DIC, indicating that TA is less seasonally variable than
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DIC (reflected also in Fig. 11). These results, from another model as well as the low variability in this model’s TA, raise the
possibility that TA’s importance is under-estimated in the current study.

Zooming out from the upwelling regions and looking at the whole AS, the dominance of temperature on the seasonal pCOq
cycle is clear. In the domain average, temperature effects nearly overlap with the overall pCO5 anomaly. This result brings
back into focus the seasonal timing of pCO5 minima/maxima in the model vis a vis previous work. In the earlier studies, which
either use data directly or build statistical models from those data, there is no spring intermonsoon pCO2 maximum driven by
heating. Indeed, Sabine et al. (2000) noted that pCO3 in the spring was much lower than would be expected given the SST,
but attributed this to drawdown due to biological production. The model, however, indicates that this is precisely the season
where biological production is at its lowest. The presence of these springtime maxima can be seen in other models, visible in
the results of Valsala and Maksyutov (2010) and a synthesis by Sarma et al. (2013). Since the model indicates temperature is
producing the maxima, it reduces the concern that erroneous DIC or TA values in the model are driving this signal. The model
SST matches well with the in sifu data (Fig. S8-S9), and the forcing datasets for SST and heat flux correspond to data that
predate or include the pCO4 sampling period (i.e. before 2000), so a climate change bias is unlikely. What might be more likely,
then, is a sampling bias towards summertime Oman, one of the few areas in the AS with a summertime instead of springtime
pCO4 max. Such a bias could possibly obscure what is happening in the rest of the AS. Regardless, the discrepancy between
models and observations during the spring period can be added as yet another reason to conduct more in situ sampling to either

confirm or disavow whether the model results are spurious.
4.3.3 DIC seasonality

The potential for biological control in setting pCO5 has been found in Sri Lanka near the AS (Chakraborty et al., 2018). In this
study, it was found that the source water in Sri Lanka was sufficiently low in DIC relative to inorganic nutrients that upwelling
actually reduced surface pCOs;. In a similar vein, Takahashi et al. (2002) found, using a metric comparing temperature and
"biological" effects (i.e. everything else), that the AS’s pCO, is reduced more by biological production than temperature
effects. Conducting this analysis on the model output (Fig. S13), it appears that "biological" control appears dominant over
the upwelling areas (Oman coast, coast of Somalia, India) and near the equator east of 60°E, but for the majority of the AS
temperature dominates. This cursory analysis aside, as is evident in the results of Chakraborty et al. (2018), the more useful
comparison is in determining whether biological production is sufficient to outweigh DIC enhancement from subsurface water.

In summary, the results in Fig. 12 indicate that for the entire AS, DIC enhancement by vertical circulation (both advection
and mixing) brings more DIC into the near-surface than is removed by net biological processes, and so no biologically-induced
decrease of pCO- occurs in the final pCO- signal. The timing of biological drawdown, occurring at the same time or lagging
vertical circulation, is consistent with the general phenology of blooms and similar to previous findings (Louanchi et al., 1996;
Rixen et al., 2006; Sharada et al., 2008). The result that biological cycling of carbon is much larger than the air-sea flux of
CO., also corroborates the results of Lendt et al. (2003), who found net community production to be ~3.6 times larger than
CO; emission. The relatively low impact of horizontal advection is an interesting detail to consider; in other upwelling systems,

significant proportions of water and biological production are advected offshore (Nagai et al., 2015). Lendt et al. (2003) suggest
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upwelled nitrate is assimilated and does not arrive in the central AS, while Resplandy et al. (2011) show that a large fraction of
total nutrients in the central AS come from the upwelling zones. Thus, although water may be advected offshore, the relevant
timescale for DIC cycling processes (i.e. air-sea emission, biological uptake) may be short enough so that horizontal export of
enhanced DIC (keep in mind the onshore-offshore normalized DIC gradient) from the upwelling regions does not significantly

contribute to the central AS or other regions.

5 Conclusions

In this study, we used a regional circulation model coupled with a biogeochemical model to investigate the annual magnitude,
seasonal cycle, and drivers of air-sea CO» flux in the AS, primarily winds and ApCOs. This effort was made to complement
previous flux estimates, where limited data or insufficient model resolution have produced contrasting results. Consistent with
previous work, we find that the AS is a source of CO; to the atmosphere for the entire year, with the bulk occurring during

1, with concentrated flux densities up to 6 molCm~2yr~! in the

the summer monsoon. Our estimate of flux, ~160 TgCyr~
upwelling regions, is larger than most previous reports but not inconsistent with the range of other findings (Sarma, 2003;
Nagvi et al., 2005; Sarma et al., 2013) . Since the AS lacks carbon data, here we subjected the model to validation with raw
data instead of smoothed climatologies. The model is shown to have a positive bias in pCOs, attributed to TA and DIC, with
TA bias being stronger. Despite this, pCO- variability compares favorably to alternative products in the region. The bias results
in strongly positive ApCOs throughout the domain year-round. While positive ApCOy values have been observed before in
the AS, we likely over-estimate COs flux outside of the summer monsoon.

The majority of flux occurs during the summer as opposed to a modeled spring pCO2 maximum due to the influence of
winds. A Reynolds decomposition of both pCO5 and wind variability shows that the intense winds of the summer monsoon
contribute 90% of that season’s flux anomaly. In fact, winds play a more important role than the increase of pCOs in the
upwelling regions. Even though winds represent such a major variable in determining AS COs flux timing, the variability in
total flux due to different pCO; products leads to a 2x range in magnitude. These results suggest that in addition to the expected
increase of surface ocean pCO- due to anthropogenic climate change, possible changes in the timing, location, and magnitude
of monsoon winds (Lachkar et al., 2018; Praveen et al., 2020) will have downstream impacts on seasonal air-sea flux.

An important result of this modeling study is that temperature drives a springtime maximum of pCO; in the AS. This max-
imum has been observed in lower-resolution models, but is not found in the in sifu data. Due to the fact that temperature is
not sensitive to biological processes like DIC and TA, this discrepancy suggests that more sampling is necessary to deter-
mine whether it is an artifact of spotty sampling or an inherent problem in models unrelated to resolving coastal upwelling.
Additionally, we find that spatial gradients of DIC and temperature do not overlap as they do elsewhere in the ocean. Instead,
temperature follows a southwest-northeast monsoon wind pattern, whereas DIC is enhanced nearest to the coasts. The resulting
apparent deficit of normalized DIC in the central, oligotrophic AS has not been emphasized previously. Finally, we find that
despite the intense biological activity in the AS, primary production by phytoplankton is insufficient to counter the increased

carbon supply provided by vertical circulation during bloom periods.
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Models can be used to expand spatiotemporal coverage when data is scarce. However, models’ limitations often manifest
when there is no new data to test their fidelity. Limitations in the spatiotemporal coverage of existing datasets stem from biases
in sampling during summer monsoon, sampling close to the Oman upwelling region, and limited in scope to the years of
JGOFS expeditions of the 1990s. In order to fully characterize the pCO4 cycle outside of summer in the rest of the AS, as
well as to determine the secular trend of surface pCOs due to anthropogenic carbon additions to the atmosphere, more in situ
data of the carbon system (e.g. DIC, TA, pCOs), from shipboard measurements or autonomous sampling platforms, are sorely
needed. Finally since ApCOs, is generally positive in the AS, the direction of air-sea CO5 exchange examined here is robust
to model error, whereas other important indicators such as pH and aragonite saturation, €2,, which at important thresholds of
low values have deleterious impacts for various biological taxa (Doney et al., 2009a; Bednarsek et al., 2019, 2021) will be
less so. These data are thus critical for resolving the possible responses of the carbon system in the AS to ongoing climate
change, whether from changes in timing or magnitude of monsoon wind forcing, the impact of increased surface heating on
stratification and vertical circulation, or changing levels of primary and fisheries productivity with altered carbonate solubility.

Without this baseline information, it will be difficult to predict what the future has in store for the AS carbon system.
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Figure 1. Vertically integrated net primary production in the Arabian Sea (gCm~2yr~') from the VGPM algorithm (Behrenfeld and
Falkowski, 1997) for SeaWifs data (years 1997-2010) (a,c) and model output (b,d) for summer (JJAS, top) and winter (DJFM, bottom)

monsoons. White boxes in (b,d) denote regions of analysis in the paper.
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Figure 2. (a) Average surface in situ ApCO2 (ppm), with probability density function of all ApCO values inset. ApCOs data are calculated
in comparison to Keeling atmospheric pCO2, then binned into a 1°x1° grid. (b) Monthly distribution of in sifu data sampling times, color-

coded by sampling year.
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Figure 3. Seasonal surface pCO2 (patm) from data (left column, a,d,g,j) and the model (middle, b,e,h.k), as well as their differences (right,
c,f,i,]). Plots are arranged by season: winter monsoon DJFM (a-c), spring intermonsoon AM (d-f), summer monsoon JJAS (g-i), and fall

intermonsoon ON (j-1).
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Figure 4. Taylor diagram of modeled vs. observed surface pCO2, both annually and seasonally. Data are from merged SOCAT and LDEO
databases, corrected to year 2005. Distance from origin (concentric solid lines) is normalized model standard deviation. Angle from vertical
axis is Pearson correlation coefficient. Distance from observation point (black dot) is root-mean square deviation (blue dashed lines). Color

of each point denotes model bias, i.e. positive values are overestimates.
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Figure 6. (a) Modeled annual mean air-sea CO2 flux density (molCm~2yr~1). (b-e) Seasonal flux density for winter DJFM, spring AM,

summer JJAS, and fall ON, respectively. Positive is flux out of the ocean.

33



apniijeT

apnijeT

Flux Anomaly (molC m“r") Flux Anomaly (molC m’yr")

40 5044_" 60 70 40 50':‘ 60 70
Longitude Longitude

Figure 7. (a) Anomaly of air-sea CO2 flux during summer monsoon JJAS (molCm_er_l). Summer flux anomaly contributions due to (b)

wind, (c) pCOz2, and (d) cross-terms in Eqn.(2).
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Figure 9. (a) Monthy CO, flux (TgCmonth ') from the AS as calculated using pCO2 from TKO09 (cyan), L15 (blue), model (black), and
GLODAP (red). (b) Monthly CO2 flux from 10°N and north using pCO2 from L15 (blue), model (black), GLODAP (red), Sarma using
model output (purple), and Sarma using WOA data (orange). Dashed line in (b) is the zero flux axis, gray regions denote winter and summer

monsoons. Positive flux is out from the ocean surface.
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Figure 10. (a) Spatial anomaly of time-averaged surface pCO2 (pnatm). Black boxes represent regions of analysis used in (b) to show

averaged contributions of four parameters to pCO2 variability. The changes in pCO2 due to these variables are shown for (c) temperature,

(d) DIC, (e) TA, and (f) SSS.
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Table 2. List of parameters and their values used in the biogeochemical model.

Parameter Value
K., seawater light attenuation 0.04m™t
Kcni, Chl-a light attenuation 0.024m !
Paipha, initial slope of P-I curve 1.0 Wm—2d~!

C:Np, carbon-to-nitrogen ratio of phytoplankton

C:N_z, carbon-to-nitrogen ratio of zooplankton

02:NOs3, oxygen-to-nitrogen ratio for nitrate uptake
02:NHy4, oxygen-to-nitrogen ratio for ammonium uptake
N:Cgen, nitrate-to-DIC ratio for denitrification

O24en, 0Xygen threshold for denitrification

RcaC O3, ratio of calcium carbonate precipitation to production
©,,,, maximum Chl-a to Carbon ratio

Ky o3, half-saturation rate for nitrate uptake

K m4, half-saturation rate for ammonium uptake

Unitr, nitrification rate

up, phytoplankton mortality rate

Ginaz, maximum zooplankton growth rate

B, zooplankton assimilation efficiency

Kpny, half-saturation rate for zooplankton ingestion

Wexc, zoOplankton excretion rate

W zmor, zooplankton mortality rate

Zg4am, fraction of sloppy feeding to fecal pellets

usp, small detritus breakdown rate to ammonium

Hagg, specific aggregation rate of small detritus and phytoplankton
wrp, large detritus breakdown

Tgaissol, water column dissolution rate of calcium carbonate
Tsedremin, remineralization rate in sediments

w p, phytoplankton sinking velocity

Wwsp, small detritus sinking velocity

WD, large detritus sinking velocity

Wcacos3, vertical sinking speed of calcium carbonate

6.625 molCmolN 1
6.625 molCmolN~*
9.375 molOamolNO; !
7.375 molO>moINO3 !
0.8 molNOzmolDIC™*
4.0 mmolO,m ™3
0.07 molCaCOsmolC ™!
1.3538 mgChlamgC~*
0.75 mmolNm 3
0.5 mmolNm 3
0.05d7!
0.072d7!
0.6d71
0.75
1.0d7?
0.1d7*
0.025d7*

0.33
0.03d7!

0.005 mmolN~*d~*
0.01d7!
0.0057d7!
0.003d7!
0.5md™!
1.0md~!

10.0 md—!

20 md!
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Table 3. Mean and standard deviation (in parentheses) of annual and seasonal surface pCO2 (uatm) in both the merged dataset and model.

‘ Data ‘ Model ‘

Annual 426 (68) | 428 (32)
Winter (DJFM) | 389 (14) | 418 (30)
Spring (AM) 398 (13) | 439 (26)
Summer (JJAS) | 439 (77) | 433 (36)
Fall (ON) 393 (12) | 427 (27)

42



