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Abstract: Various machine learning methods were attempted in the global mapping of 14 

surface ocean partial pressure of CO2 (pCO2) to reduce the uncertainty of global ocean 15 

CO2 sink estimate due to undersampling of pCO2. In previous research, the predictors 16 

of pCO2 were usually selected empirically based on theoretic drivers of surface ocean 17 

pCO2, and the same combination of predictors was applied in all areas unless lack of 18 

coverage. However, the differences between the drivers of surface ocean pCO2 in 19 

different regions were not considered. In this work, we combined the stepwise 20 

regression algorithm and a Feed-Forward Neural Network (FFNN) to select predictors 21 

of pCO2 based on the mean absolute error in each of the 11 biogeochemical provinces 22 

defined by the Self-Organizing Map (SOM) method. Based on the predictors selected, 23 

a monthly global 1° × 1° surface ocean pCO2 product from January 1992 to August 24 

2019 was constructed. Validation of different combinations of predictors based on the 25 

SOCAT dataset version 2020 and independent observations from time-series stations 26 

was carried out. The prediction of pCO2 based on region-specific predictors selected by 27 

the stepwise FFNN algorithm was more precise than that based on predictors from 28 

previous researches. Applying the FFNN size improving algorithm in each province 29 

decreased the mean absolute error (MAE) of the global estimate to 11.32 μatm and the 30 

root mean square error (RMSE) to 17.99 μatm. The script file of the stepwise FFNN 31 

algorithm and pCO2 product are distributed through the Institute of Oceanology of the 32 

Chinese Academy of Sciences Marine Science Data Center (IOCAS; 33 

http://dx.doi.org/10.12157/iocas.2021.0022, Zhong et al., 2021). 34 
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1 Introduction 35 

As a net sink for atmospheric CO2, global oceans have removed about one-third 36 

of anthropogenic CO2 since the beginning of the industrial revolution (Sabine et al., 37 

2004; Friedlingstein et al., 2019). However, the global ocean sea-air CO2 flux averaged 38 

between 2001-2015 varies from -1.55 to -1.74 PgC yr-1 with the maximum difference 39 

in individual years nearly 0.6 PgC yr-1, depending on the surface ocean partial pressure 40 

of CO2 (pCO2) product. These differences largely stem from differences in pCO2 41 

estimates across the products (Rödenbeck et al., 2014; Iida et al., 2015; Landschützer 42 

et al., 2014; Denvil-Sommer et al., 2019). The magnitude and direction of the flux are 43 

primarily set by the air-sea pCO2 difference. Surface water pCO2 greater than the 44 

overlying air indicates CO2 is released from the ocean to the air. Conversely, absorption 45 

of CO2 by oceans happens when the pCO2 of the surface water is lower than the 46 

overlying air. The ocean in these two scenarios is known as oceanic carbon source and 47 

oceanic carbon sink, respectively.  48 

Sparse and uneven observations of surface ocean pCO2 in time and space severely 49 

limited the understanding of interannual variability of oceanic carbon sink, and 50 

researches based on different methods were carried out to break this barrier. In earlier 51 

studies, traditional unitary and multiple regression methods between surface ocean 52 

pCO2 and its drivers were attempted in the mapping of surface ocean pCO2, which were 53 

limited in specific regions and sometimes even in particular seasons with a relatively 54 

high root mean square error (RMSE) (Sarma et al., 2006; Takahashi et al., 2006; 55 

Shadwick et al., 2010; Chen et al., 2011; Marrec et al., 2015). Advances in artificial 56 

neural networks and other machine learning algorithms, such as the feed-forward neural 57 

network (FFNN) method (Zeng et al., 2014; Zeng et al., 2015; Moussa et al., 2016; 58 

Denvil-Sommer et al., 2019) and self-organization mapping (SOM) method (Friedrich 59 

and Oschlies, 2009; Telszewski et al., 2009; Hales et al., 2012; Nakaoka et al., 2013), 60 

significantly reduced the bias in the interpolation based on relationships between 61 

surface ocean pCO2 and its drivers. In addition, finding better predictors or combining 62 

SOM with other neural networks was also attempted to decrease the pCO2 predicting 63 

error further (Hales et al., 2012; Nakaoka et al., 2013; Landschützer et al., 2014; Chen 64 

et al., 2019; Denvil-Sommer et al., 2019; Zhong et al., 2020; Wang et al., 2021). 65 

However, the selection of predictors in the surface ocean pCO2 mapping was more 66 

empirical, focusing on the theoretical drivers of the pCO2 and its variation. Sea surface 67 

temperature and salinity, related to the solubility of CO2 in seawater, are considered as 68 

the most important and used in almost all related studies (Landschützer et al., 2013; 69 
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Nakaoka et al., 2013; Moussa et al., 2016; Laruelle et al., 2017; Zeng et al., 2017; 70 

Denvil-Sommer et al., 2019). Similarly, the chlorophyll-a concentration is also widely 71 

used (Nakaoka et al., 2013; Landschützer et al., 2014; Laruelle et al., 2017; Zeng et al., 72 

2017; Denvil-Sommer et al., 2019), which is related to the phytoplankton uptake of 73 

CO2. One more predictor, mixed layer depth, frequently appears in associated studies 74 

as a proxy related to the vertical transport of dissolved carbon (Telszewski et al., 2009; 75 

Nakaoka et al., 2013; Landschützer et al., 2014; Zeng et al., 2017; Denvil-Sommer et 76 

al., 2019). In addition, sampling information, such as latitude and longitude (Friedrich 77 

and Oschlies, 2009; Jo et al., 2012; Zeng et al., 2015; Zeng et al., 2017; Denvil-Sommer 78 

et al., 2019; Gregor et al. 2019) and sampling time (Friedrich and Oschlies, 2009; Zeng 79 

et al., 2015), has been used as a predictor. In recent research, the dry air mixing ratio of 80 

atmospheric CO2 (xCO2), related to the CO2 level in the air, was also used to predict 81 

surface ocean pCO2 (Landschützer et al., 2014; Denvil-Sommer et al., 2019). The sea 82 

surface height, which was considered effective in improving the spatial pattern and the 83 

accuracy of surface ocean pCO2 mapping at the basin and regional scale, and the 84 

monthly anomalies of the most widely used predictors mentioned above were used by 85 

the Denvil-Sommer et al. (2019). In the research focusing on the surface ocean pCO2 86 

mapping of coastal areas, the bathymetry, sea ice, and wind speed were also used as 87 

predictors (Laruelle et al., 2017). In each of these researches, the same combination of 88 

predictors was applied in all global ocean areas, although the global ocean was divided 89 

into several biogeochemical provinces in some of the researches. However, the 90 

predictor that plays a vital role in the surface ocean pCO2 reconstruction at one region 91 

may not be a good predictor of surface ocean pCO2 in the other regions due to complex 92 

and variable drivers. Nevertheless, no widely recognized methods for judging the 93 

importance of each predictor in the surface ocean pCO2 mapping are available yet. Thus, 94 

we attempted to construct a stepwise FFNN algorithm to rank the importance of 95 

predictors and figure out the optimal combination in each biogeochemical province 96 

defined by SOM for decreasing the prediction errors in the surface ocean pCO2 mapping.  97 

2 Methodology 98 

2.1 Data 99 

The surface ocean fugacity of CO2 (fCO2) observation data from the Surface Ocean 100 

CO2 Atlas fCO2 dataset version 2020 (SOCATv2020) (Bakker et al., 2016) was used to 101 

construct the non-linear relationship between surface ocean pCO2 and predictors. The 102 

conversion between fCO2 and pCO2 was following the formula (Körtzinger, 1999)： 103 
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 𝑓COଶ = 𝑝COଶ ∙ 𝑒𝑥𝑝 ቀ𝑃 ∙
஻ାଶఋ

ୖ்
ቁ (1) 104 

where fCO2 and pCO2 are in micro-atmospheres (µatm), P is the total atmospheric 105 

surface pressure (Pa) using the National Centers for Environmental Prediction (NCEP) 106 

monthly mean sea level pressure product (Dee et al., 2011), and T is the absolute 107 

temperature (K). R is the gas constant (8.314 J K-1 mol-1). Parameters B (m3 mol−1) and 108 

δ (m3 mol−1) are both viral coefficients (Weiss, 1974). 109 

In this work, 33 predictors were used (Table 1), where 21 were chosen from 110 

previous researches of surface ocean pCO2 reconstruction based on machine learning 111 

methods. In addition, 12 predictors which were only used in similar previous research 112 

focused on the mapping of total alkalinity or dissolved inorganic carbon (Broullón et 113 

al., 2019; Broullón et al., 2020), or were possibly related to the driver of surface ocean 114 

pCO2 and its variability, were selected to be tested (Predictors with the * label in Table 115 

1). Most of these products were retrieved at 1° × 1° resolution. Some products retrieved 116 

at higher resolution were downscaled to 1° × 1° resolution by taking the average of all 117 

values in each 1° × 1° grid. 118 

Table 1. Predictors and corresponding data products 119 

Predictor Abbreviation Data product Resolution 

Sine of latitude sLat - - 

Sine of longitude sLon - - 

Cosine of longitude cLon - - 

Number of months 

since January 1992 

Nmon - - 

Year Year - - 

Month Month - - 

Sea surface 

temperature 

SST Chen et al., 2016; 

Chen et al., 2017 

1°× 1°, monthly, 1940-2021  

Monthly anomaly of 

SST 

SSTanom Chen et al., 2016; 

Chen et al., 2017 

1°× 1°, monthly, 1940-2021  

Sea surface salinity SSS Chen et al., 2020 1°× 1°, monthly, 1940-2021  

Monthly anomaly of 

SSS 

SSSanom Chen et al., 2020 1°× 1°, monthly, 1940-2021  

Mixed layer depth MLD Menemenlis et al., 

2008 

0.25°× 0.25°, monthly, 

1992-2019 

Monthly anomaly of 

MLD 

MLDanom Menemenlis et al., 

2008 

0.25°× 0.25°, monthly, 

1992-2019 

Sea surface height SSH Menemenlis et al., 

2008 

0.25°× 0.25°, monthly, 

1992-2019 

Monthly anomaly of 

SSH 

SSHanom Menemenlis et al., 

2008 

0.25°× 0.25°, monthly, 

1992-2019 
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Sea ice fraction fice Dee et al., 2011 1°× 1°, monthly, 1979-2019 

10 m Wind speed  Wind Dee et al., 2011 1°× 1°, monthly, 1979-2019 

Dry air mixing ratio of 

atmospheric CO2 

xCO2 GLOBALVIEW-CO2, 

2011 

0.25° latitude, monthly, 

1979-2019 

Monthly anomaly of 

xCO2 

xCO2 anom GLOBALVIEW-CO2, 

2011 

0.25° latitude, monthly, 

1979-2019 

Bathymetry Bathymetry Commerce et al., 2006 2'× 2' 

Chlorophyll 

concentration 

Chl-a NASA Ocean Biology 

Processing Group, 

2018 

9km×9km, monthly, 2002-

2021 

Monthly anomaly of 

CHL 

Chl-a anom NASA Ocean Biology 

Processing Group, 

2018 

9km×9km, monthly, 2002-

2021 

W velocity of ocean 

currents at 5 m depth* 

Wvel(5m) Menemenlis et al., 

2008 

0.25°× 0.25°, monthly, 

1992-2019 

Wvel at 65 m depth* Wvel(65m) Menemenlis et al., 

2008 

0.25°× 0.25°, monthly, 

1992-2019 

Wvel at 105 m depth* Wvel(105m) Menemenlis et al., 

2008 

0.25°× 0.25°, monthly, 

1992-2019 

Wvel at 195 m depth* Wvel(195m) Menemenlis et al., 

2008 

0.25°× 0.25°, monthly, 

1992-2019 

Sea level pressure* SLP Dee et al., 2011 1°× 1°, monthly, 1979-2019 

Surface pressure* Surface pressure Dee et al., 2011 1°× 1°, monthly, 1979-2019 

Climatology of 

dissolved oxygen* 

DO Garcia et al., 2019b 1°× 1° in the horizontal, 102 

depth levels (0–5500 m) in 

the vertical and monthly  

Climatology of 

nitrate* 

Nitrate Garcia et al., 2019a 1°× 1° in the horizontal, 102 

depth levels (0–5500 m) in 

the vertical and monthly  

Climatology of 

phosphate* 

Phosphate Garcia et al., 2019a 1°× 1° in the horizontal, 102 

depth levels (0–5500 m) in 

the vertical and monthly  

Climatology of 

silicate* 

Silicate Garcia et al., 2019a 1°× 1° in the horizontal, 102 

depth levels (0–5500 m) in 

the vertical and monthly  

Oceanic Nino Index* ONI Huang et al., 2017 Monthly, 1950-2021 

Southern Hemisphere 

Annular Mode Index* 

SAM Marshall, G. J., 2003 Monthly, 1957-2021 

(Predictors with the * label were first included in the pCO2 mapping, where the climatology of 120 

nitrate, phosphate, silicate, and dissolved oxygen were used in the mapping of total alkalinity and 121 

dissolved inorganic carbon in previous research. All data products retrieved at the resolution higher 122 

than 1°× 1° were downscaled to 1° × 1° resolution.) 123 

 124 
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2.2 Biogeochemical provinces defined by the Self-Organizing Map  125 

For applying a different combination of predictors in regions based on the 126 

differences in the dominated drivers of pCO2 and its variability, the global ocean was 127 

divided into a set of biogeochemical provinces using a Self-Organizing Map (SOM) 128 

method. The monthly climatology of temperature, salinity, mixed layer depth, sea 129 

surface height, nitrate, phosphate, silicate, and dissolved oxygen and pCO2 climatology 130 

from Landschützer et al. (2020) were put into a 3-by-4 size SOM network to generate 131 

12 biogeochemical provinces, where the monthly climatology data in all 12 months 132 

were put into one SOM network to generate one discrete set of biogeochemical 133 

provinces. Provinces with less than 10 pixels and less than 1000 SOCAT observations 134 

were defined as discrete small “island” provinces and then merged with nearest 135 

provinces. The provinces covering areas separated by land were further divided 136 

artificially. For example, the province covering the north subtropical Pacific and the 137 

province covering the north subtropical Atlantic was set as one province in the original 138 

output of SOM, but it was mainly separated by the North American continent. So, we 139 

divided the province into two new provinces. The final version includes 11 140 

biogeochemical provinces. In this study, the coastal area was not involved, and the 141 

boundary was defined as 200 m depth. In addition, the pCO2 mapping based on SOM-142 

defined provinces tends to be less smooth near the border of different biogeochemical 143 

provinces, with an obvious borderline appearing. However, applying different 144 

predictors may make this problem worse. To obtain a smoother distribution, we defined 145 

the area within five 1x1 grids of province boundaries as a “boundary area”. Samples in 146 

the boundary area will be used as training samples in all adjacent provinces (Fig. S1). 147 

But this definition does not change the actual spatial coverage of each province, only 148 

bringing more training samples near the province boundary. 149 

2.3 Stepwise FFNN algorithm 150 

For finding a better combination of pCO2 predictors, a stepwise Feed-forward 151 

neural networks (FFNN) algorithm was constructed. The FFNN comprises four parts: 152 

input, hidden, summation, and output layer (Fig. 1). The input layer is designed to pass 153 

the inputs to the hidden layer, and the number of neurons is equal to the dimensions of 154 

the input matrix p. The hidden layer includes 25 neurons in the FFNN model, with a 155 

tan-sigmoid function as the transfer function. The input p is multiplied by a matrix of 156 

weights (w1 in Fig. 1), and the inner product between the result and a bias matrix (b1 in 157 

Fig. 1) is calculated as the input of the transfer function in the first hidden layer. In the 158 

summation layer, the transfer function f2 is a linear function. The output of the hidden 159 
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layer is multiplied by another matrix of weights and summed. All bias and weights 160 

matrixes were randomly assigned at the beginning of FFNN training. The randomly 161 

assigned bias and weights matrixes, the number of training samples, and the sort order 162 

of training samples in the input matrix p define where the FFNN starts training in errors 163 

space. The practice of FFNN changes when these conditions change. Here we fixed the 164 

training samples and set one constant random number stream in MATLAB to ensure 165 

that the difference between the MAE based on different predictors entirely stems from 166 

the predictor differences. The random number was randomly chosen. When using 167 

different random number streams, several predictors at the end of the output list of the 168 

stepwise FFNN algorithm differed. However, the leading predictors were consistent, 169 

and the different predictors were also related. The fixed random number makes all 170 

networks using different predictors start training from the same point at the error space 171 

when comparing the performance of each predictor. 172 

 173 

Figure 1. The structure of feed-forward neural network. p: input matrix; w: weighted matrix; b: bias 174 

matrix; ∑: sum; f1: tan-sigmoid transfer function; f2: linear function; a: output matrix. 175 

In the stepwise part, predictors of pCO2 are going to be added and removed one by 176 

one, and which predictors will be finally used in the pCO2 predicting is determined 177 

according to the real-time change of predicting error. The mean absolute error (MAE), 178 

calculated using a K-fold cross validation method, was used to estimate the 179 

performance of each predictor in the FFNN predicting. Although the Root-Mean-180 

Squared Error (RMSE) was widely used for the validation of machine learning methods, 181 

compared to the MAE, the RMSE was more sensitive to a few extreme samples, which 182 

were generally deviated far from the FFNN predicting values, resulting in a 183 

considerable discrepancy between the FFNN outputs and pCO2 observations sometimes 184 

up to hundreds of μatm. A higher weight might be put on these few extreme samples 185 

than other samples in the predictor selection if the performance of each predictor was 186 

estimated by RMSE in the stepwise FFNN algorithm. To avoid the higher weight on 187 

these few extreme samples, the MAE was used instead for the internal performance loss 188 

function in the stepwise FFNN algorithm. The basic principle of the stepwise FFNN 189 

algorithm was adding each predictor from a set of predictors into the inputs of FFNN 190 

Input layer

a1W1

b1

f1 pCO2

p

Output layerHidden layer Summation layer

∑ ∑
W2

b2

a2f2

25 1

𝑎ଵ = 𝑓ଵ(𝑤ଵ𝑝 + 𝑏ଵ) 𝑎ଶ = 𝑓ଶ(𝑤ଶ𝑎ଵ + 𝑏ଶ)
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and removing each redundant predictor from the inputs successively to reduce the MAE 191 

in the fastest way, until no decrease in the MAE appeared (Fig. 2), where the predictor 192 

having no contribution to the reducing of prediction error was considered as redundant.  193 

 194 

Figure 2. The procedure of the stepwise FFNN algorithm. The flowchart follows an order of “left 195 

top – left bottom – right bottom – right top”. The meaning of Predictors pool: store all predictors 196 

waiting to be tested; Inputs pool: store predictors that were temporally considered as good predictors; 197 

Loop 1 and Loop 2: calculate the MAE when each predictor was added or removed; Selection step: 198 

add good predictors to the Inputs pool; Removal step: remove predictors from the Inputs pool if 199 

removing lead to MAE decrease; Determine step: check if the process reach end condition. N1 and 200 

N2: number of predictors in the Predictors pool and Inputs pool, respectively; E0: lowest MAE in 201 

the last iteration of Loop 1 or Loop 2; Endcheck: the number of iterations that E0 continuously 202 

increased. 203 

At the beginning of the stepwise FFNN algorithm, all available predictors were 204 

put into a matrix, referred to as Predictors pool (Start in Fig. 2). Each row represents 205 

one predictor, and each column represents one SOCAT sample. In this work, we 206 

collected 33 predictors for the test, that is, the Predictors pool matrix has 33 rows. 207 

Meanwhile, a matrix referred to as Inputs pool (Start in Fig. 2) was set up to store 208 

predictors with good performance, where good performance means that adding these 209 

predictors can significantly decrease the MAE between SOCAT pCO2 measurements 210 

and FFNN pCO2 predictions. Then a loop of K-fold validation test ran out to calculate 211 

the MAE when predicting pCO2 by each predictor in the Predictors pool in the first step 212 

(Loop 1 in Fig. 2). Thus 33 MAE values were obtained totally, and the minimum was 213 

yes

yes

n=1
N2=0
Endcheck=0

sLat, sLon, cLon, Year, Month, Nmon, Nitrate, 
Phosphate, Silicate, DO, MLD, SSH, xCO2, Wind 

speed, SLP, Surface Pressure, fice, ONI, SAM, 
Bathymetry, Wvel, CHL-a, the monthly anomalies…

Feed-forward neural 
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…
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recorded as E0. The predictor corresponding to the minimum MAE value was moved 214 

from the Predictors pool to the Inputs pool (Selection step in Fig. 2). After that, the 215 

Loop 1 restarted, i.e., the second step started with one predictor removed to the inputs 216 

pool and the rest 32 predictors waiting to be tested. Then, the pCO2 was predicted using 217 

each of the rest 32 predictors in the predictors pool with the addition of all predictors in 218 

the inputs pool, and 32 MAE values were calculated out. If the MAE in the lowest 219 

situation, represented by the MAEi, decreased compared to the E0, the ith predictor was 220 

considered a good predictor and moved from the predictors pool to the inputs pool. 221 

Then the value of E0 was replaced by the MAEi (Selection step in Fig. 2). The part 1, 222 

including Loop 1, Selection step, and Determine step 1 in Fig. 2, was repeated until no 223 

predictor was left in the Predictors pool or no decrease of E0 can be found no matter 224 

which two predictors were added in the next two steps. At this time, the part 1 of the 225 

stepwise FFNN algorithm finished, and all predictors left in the Predictors pool were 226 

considered redundant. The second part ran in the opposite way that the predictors were 227 

removed from the Inputs pool one by one to decrease E0 the fastest (Loop 2 in Fig. 2). 228 

The second part was aimed to remove the predictor that can be represented by other 229 

predictors in the inputs pool (Removal step in Fig. 2) and finished in the similar 230 

condition that no significant decrease can be found no matter which predictor was 231 

removed in the next two steps (Determine step 2 in Fig. 2).  232 

2.4 pCO2 product 233 

Dataset of predictors except for Chl-a start since 1992 or earlier, while Chl-a data 234 

ranges from August 2002 to the present. In each province, the stepwise FFNN algorithm 235 

was run out once first based on all samples covered by Chl-a data; then the algorithm 236 

was run out secondly based on samples and all predictors except Chl-a and Chl-a anom 237 

in the year that Chl-a gridded data was not available. The pCO2 mapping in the year 238 

that Chl-a gridded data was not available was carried out based on the predictors 239 

selected in the second run. Then the final product was built based on two FFNNs, one 240 

trained for the period from August 2002 to August 2019 using one predictor set 241 

including Chl-a or Chl-a anom, and the second one for the period from January 1992 to 242 

July 2002 using the second predictor set without Chl-a and Chl-a anom. Although the 243 

performance may improve with the number of neurons increasing, the influence of the 244 

number of neurons on the performance of FFNN pCO2 prediction remains unclear. To 245 

further decrease the predicting error between FFNN outputs and SOCAT measurements, 246 

the number of neurons was improved by an error test in each province. The number of 247 

neurons increased from 5 to 300 (the increment was five during 5-50 and ten during 50-248 
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100 and fifty during 100-300). Then the corresponding MAE values of each size were 249 

recorded, and the number of neurons with the lowest MAE was applied. This test 250 

avoided the appearance of insufficient learning capacity for complex nonlinear 251 

relationships due to too few neurons and the overfitting problem due to too many 252 

neurons. Finally, based on the predictors selected by the stepwise FFNN algorithm and 253 

improved FFNN size, a monthly global 1°×1° surface ocean pCO2 product from 254 

January 1992 to August 2019 was constructed. 255 

2.5 Validation 256 

 To better estimate the predicting error of FFNN, the MAE and the RMSE, which 257 

were widely used in previous research, were calculated using a K-fold cross validation 258 

method. To avoid overfitting caused by a lack of independence between the training 259 

and testing samples, we put the SOCAT samples in chronological order and then divided 260 

them into the group of years (Fig. 1) (Gregor et al., 2019). In this paper, the value of K 261 

was set as 4. Thus, among every four neighboring years, three group samples were used 262 

to train the FFNN model, and the rest was used for testing. Total 4 iterations were 263 

carried out, where testing year changed in each iteration. After 4 iterations finished, all 264 

samples were used for testing only once, and the MAE and RMSE between FFNN 265 

output and the testing samples were calculated. The performance of the predictor 266 

selection algorithm was estimated by comparing the MAE and RMSE results of the 267 

FFNN based on predictors selected by the stepwise FFNN algorithm with the result 268 

based on predictors used in previous researches in each biogeochemical province (Table 269 

2). All validation groups were applied with the same FFNN and same samples from 270 

SOCAT, with the only differences in predictors. The same K-fold validation procedure 271 

was applied for three validation groups based on different pCO2 predictors. Thus, three 272 

results were generated to estimate whether the stepwise FFNN algorithm can effectively 273 

find a better combination of pCO2 predictors. Finally, the pCO2 data generated in all 274 

validation groups were further compared with the completely independent observations 275 

from the Hawaii Ocean Time-series (HOT, 22° 45'N, 158° 00'W, since October 1988) 276 

(Dore et al., 2009), Bermuda Atlantic Time-series Study (BATS, 31°50'N, 64°10'W, 277 

since October 1988) (Bates, 2007) and The European Station for Time Series in the 278 

Ocean Canary Islands (ESTOC, 29°10'N, 15°30'W, from 1995 to 2009) (González-279 

Dávila and Santana-Casiano, 2009) time-series station. The pCO2 at HOT and BAT 280 

were estimated from TA and DIC, and pCO2 at ESTOC were directly measured. These 281 

observations were not included in the SOCAT dataset. 282 



11 

 

 283 

Figure 3. The procedure of K-fold validation. (The K value was set as 4, so iterations repeated four 284 

times until all samples were set as testing samples once. In each iteration, samples in 7 years were 285 

set as testing samples (green cells) and in the rest 21 years as training samples (white cells) to 286 

increase the independence.) 287 

Table 2. Validation group using different predictors 288 

Validation 

group 
Predictor 

FFNN1 Predictors selected by stepwise FFNN algorithm 

FFNN2 
SST, SSS, log10(MLD), Chl-a, xCO2, SSTanom, SSSanom, xCO2 anom, Chl-a anom, 

log10(MLD) anom (Landschützer et al., 2014) 

FFNN3 SST, SSS, SSH, MLD, xCO2, Chl-a, SSSanom, SSTanom, SSHanom, Chl-a anom, 

MLDanom, xCO2 anom, sLat, sLon, cLon (Denvil-Sommer et al., 2019) 

(The FFNN performance of three groups with different predictors of pCO2 were compared to test 289 

the result of stepwise FFNN algorithm. Predictors in the group FFNN1 were selected using stepwise 290 

FFNN algorithm, and predictors in the group FFNN2 were selected from Landschützer et al. (2014), 291 

and in the group FFNN3 from Denvil-Sommer et al. (2019).) 292 

3 Results and discussion  293 

3.1 Biogeochemical provinces and corresponding predictors of pCO2 294 

11 biogeochemical provinces generated from the SOM method after the separated 295 

small ‘island’ was removed and the province separated by lands was divided manually 296 

(Fig. 4). The results of the stepwise FFNN algorithm in each province are shown in 297 

Table 3. The predictors were listed in the order that the stepwise FFNN algorithm 298 

printed recommended predictors out. The predictor printed earlier was relatively more 299 

recommended and played an important role in predicting  pCO2 based on FFNN. 300 

Applying these predictors effectively decreased the predicting error between the FFNN 301 

outputs and pCO2 values from validation samples. Thus it is reasonable to consider that 302 

these predictors were highly related to the drivers of pCO2 and its variability. Predictors 303 
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representing sampling positions were also listed as recommended predictors in some 304 

provinces, including latitude, longitude, and sampling time, suggesting that relatively 305 

steady spatial or temporal variability patterns of surface ocean pCO2 existed in these 306 

biogeochemical provinces. For example, the predictor month was considered 307 

recommended in most provinces, especially P4 subpolar Atlantic and P5 north 308 

subtropical Atlantic. While pCO2 in these areas regularly peaked and bottomed out in 309 

summer and winter (Takahashi et al., 2009; Landschützer et al., 2016; Landschützer et 310 

al., 2020). Similarly, the sine of latitude and the sine and cosine of longitude were listed 311 

as recommended predictors of pCO2 in most provinces, suggesting a meridional or 312 

zonal uniformly varying spatial distribution pattern of pCO2, which was not learned 313 

sufficiently by the FFNN model from existing measured predictors and the predictors 314 

related to the spatial position were applied as supplementary.  315 

 316 

 317 

Figure 4. The map of biogeochemical provinces based on SOM. 318 

As basic predictors highly related to the ocean environment, the temperature and 319 

salinity was considered as parts of the most important predictors of surface ocean pCO2 320 

and was applied in the pCO2 prediction in almost all previous relating researches based 321 

on various method (Jo et al., 2012; Signorini et al., 2013; Landschützer et al., 2014; 322 

Marrec et al., 2015; Chen et al., 2016; Moussa et al., 2016; Chen et al., 2017; Laruelle 323 

et al., 2017; Zeng et al., 2017; Chen et al., 2019; Denvil-Sommer et al., 2019). The 324 

results of the stepwise FFNN algorithm also supported this. The temperature was listed 325 

as a recommended predictor in all biogeochemical provinces, suggesting that 326 

temperature was one of the most critical drivers of pCO2 and its variability in these 327 

provinces. Similarly, results from the stepwise FFNN algorithm provide evidence for 328 

the importance of salinity in predicting pCO2, which was also listed as a predictor in 329 

most provinces. The dry air mixing ratio of atmospheric CO2 (xCO2) and the monthly 330 



13 

 

anomaly of xCO2 were also recommended predictors in most biogeochemical provinces, 331 

suggesting that the exchange of CO2 across the sea-air interface was also an important 332 

driver of surface ocean pCO2. As a widely used predictor in the pCO2 prediction, the 333 

chlorophyll-a concentration (Chl-a) played an essential role in fitting the influence of 334 

biological activities on pCO2 in previous researches (Landschützer et al., 2014; Zeng et 335 

al., 2017; Laruelle et al., 2017; Denvil-Sommer et al., 2019). Especially in the province 336 

P10 subpolar Southern Ocean and P11Southern Ocean ice, the Chl-a was listed as the 337 

most recommended predictor in the result of the stepwise FFNN algorithm. While in 338 

some other provinces (P1 Arctic Ocean and P5 north subtropical Atlantic), the Chl-a 339 

was considered redundant that no effective decrease of MAE between FFNN outputs 340 

and pCO2 measurements appeared when Chl-a data was used. Similar to the period that 341 

Chl-a was not available (represented by the subscript ‘b’), the phosphate, nitrate, silicate, 342 

or dissolved oxygen were recommended instead. In the province P1 Arctic Ocean, the 343 

silicate concentration and temperature were considered the most crucial predictor of 344 

pCO2. 345 

Table 3. Predictors in each biogeochemical province  346 

Province Predictors in the order of the stepwise FFNN algorithm output 

P1 Arctic Ocean Silicate, SST, Wind speed, SSS, log10(MLD), SSSanom, sLat, month, 

Wvel(65m), log10(MLD) anom, xCO2, cLon, Bathymetry, SSH 

P2 subpolar Pacific a
* Nitrate, Chl-a, SSS, xCO2, cLon, SST, log10(MLD), sLon, sLat, month 

P2 subpolar Pacific b
* Nitrate, xCO2anom, sLon, SST, sLat, log10(MLD), cLon, SSS, SSHanom, DO, 

Wvel(195m), Bathymetry, Silicate 

P3 north subtropical Pacific a log10(MLD), Nmon, SSH, SST, sLon, sLat, SSS, Bathymetry, month, 

log10(MLD) anom, cLon, Surface pressure, Wvel(105m), Chl-a, DO, SSH anom, 

xCO2 anom 

P3 north subtropical Pacific b log10(MLD), xCO2, sLat, sLon, SST, Surface pressure, cLon, SSS, Wvel(5m), 

Nmon, log10(MLD) anom, month, Phosphate, xCO2 anom, Wvel(105m) 

P4 subpolar Atlantic a month, sLat, cLon, SST, Year, Chl-a, DO, SSSanom, Wvel(195m), SSH, 

log10(MLD), Bathymetry, SSS 

P4 subpolar Atlantic b month, xCO2, DO, Wind speed, log10(MLD), Wvel(195m), sLon, Bathymetry, 

Wvel(5m), SST, Phosphate, Year, Nmon 

P5 north subtropical Atlantic month, Year, SST, sLon, sLat, SSS, SSTanom, SSH, Bathymetry, Wvel(5m), 

cLon, Wvel(65m), log10(MLD) anom 

P6 south Pacific a SST, sLon, xCO2 anom, sLat, SSS, month, Phosphate, Chl-a, Chl-a anom, 

Wvel(65m), log10(MLD), log10(MLD)anom, Nitrate, Bathymetry 
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P6 south Pacific b xCO2, sLat, SSS, SST, Phosphate, SLP, xCO2 anom, sLon, cLon, Wvel(105m), 

Wvel(65m), DO, Bathymetry, SSH, SAM 

P7a equatorial Pacific Nitrate, xCO2, sLat, SSS, SST, cLon, xCO2 anom, log10(MLD), sLon, Chl-a, 

Phosphate, Wvel(5m), Wvel(105m), Wvel(195m) 

P7b equatorial Pacific SST, SSS, Year, sLat, month, cLon, SSH, Bathymetry, Wvel(65m), xCO2 

P8 south Atlantic a sLat, xCO2 anom, SSS, log10(MLD), Chl-a, SSHanom, Wvel(195m), cLon, SST, 

Wvel(65m), Bathymetry, Nitrate 

P8 south Atlantic b SST, xCO2, cLon, sLat, SSS, Silicate, SSH, log10(MLD), sLon 

P9 Indian Ocean a SST, cLon, sLat, Nitrate, Wvel(65m), log10(MLD), SLP, Chl-a, Year, 

log10(MLD)anom, SSHanom 

P9 Indian Ocean b SLP, month, sLon, xCO2 anom, SST, Silicate, Wvel(65m) 

P10 subpolar Southern Ocean a Chl-a, log10(MLD), Nmon, SSS, SST, Bathymetry, SSHanom, Wvel(5m), Chl-a 

anom, xCO2 

P10 subpolar Southern Ocean b Wind speed, xCO2 anom, SSS, Phosphate, log10(MLD), Wvel(65m), 

Bathymetry, SST, month 

P11 Southern Ocean ice a Chl-a, sLon, Bathymetry, SSS, SSH, SST, Nitrate, cLon, sLat 

P11 Southern Ocean ice b month, DO, SST, SSH, sLat, Nitrate, sLon, SSS, Wvel(195m), Silicate, 

SSHanom 

*: Due to insufficient coverage of Chl-a data in the polar areas and during the period before 2002, in provinces that Chl-a or Chl-a anom 

were selected as predictors, the pCO2 data was divided into two periods. The period with Chl-a data available was represented by the 

subscript ‘a’, such as P2a, including global grids from 2002 to 2019 except polar grids in winter. The period with Chl-a data unavailable 

was represented by the subscript ‘b’, such as P2b, including global grids from 1992 to 2001 and some polar grids in winter from 1992 to 

2019.  

3.2 pCO2 product 347 

Based on the predictors given by the stepwise FFNN algorithm in each 348 

biogeochemical province, a FFNN size (representing the number of neurons in the 349 

hidden layer) improving validation was applied to decrease the prediction error further. 350 

The MAE values based on the same samples and FFNN model with a different number 351 

of neurons were calculated, then the number of neurons corresponding to the lowest 352 

MAE was applied (Fig. 5a). The MAE in most provinces tends to decrease first and 353 

then increase when the number of neurons in the hidden layer of the FFNN model 354 

increased from 5 to 300. Based on the variation of MAE with the number of neurons in 355 

the FFNN hidden layer, the optimal FFNN size in each province was considered as the 356 

number of neurons when the MAE was lowest. The result and corresponding MAE are 357 

shown in Fig. 5b. After applying optimal FFNN size in each province, the MAE and 358 
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RMSE of global estimates between predicted pCO2 and measurements from SOCAT 359 

v2020 further decreased to 11.32 and 17.99 μatm, respectively. 360 

 361 

Figure 5. MAE of different FFNN size in each biogeochemical province. a): MAE between 362 

predicted pCO2 and SOCAT observations was calculated using the same samples and FFNN with a 363 

different number of neurons. b): the optimal FFNN size refers to the number of neurons when MAE 364 

is lowest. 365 

Then the RMSE and mean residuals in each grid were calculated based on the K-366 

fold cross validation method. In most grids, the RMSE was lower than 10 μatm, and the 367 

mean residuals was close to zero (Fig. 6). However, the prediction error in the north 368 

subpolar Pacific, the eastern equatorial Pacific, and the Southern Ocean near the 369 

Antarctic continent was significantly higher than in other areas. Also, the distribution 370 

of mean residuals suggested that surface ocean pCO2 in the Indian Ocean tends to be 371 

overestimated by the FFNN models. While in other regions the distribution of mean 372 

residuals was more discrete, and no obvious pattern was found.  373 

 374 

Figure 6. Global maps of (a) RMSE and (b) mean residuals between predicted pCO2 and SOCAT 375 

observations 376 

3.3 Validation of the stepwise FFNN algorithm based on SOCAT samples 377 

Validation based on the K-fold cross validation method suggested that most FFNN 378 

outputs were quite close to the pCO2 values from SOCAT v2020 samples (Fig. 7). 379 
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Comparing the results based on a different combination of predictors, the results of 380 

FFNN1 (based on stepwise FFNN algorithm，this paper) and FFNN3 (based on 15 381 

predictors from Denvil-Sommer et al. 2019) were more precise than that of FFNN2 382 

(based on 10 predictors from Landschützer et al. 2014). The plots in the result of FFNN1 383 

were most concentrated along the y=x line, suggesting extremely close FFNN outputs 384 

with the measured pCO2 values from SOCAT, with the RMSE of 17.99 μatm in the 385 

global open oceans. The RMSE of FFNN1 was lower than that of FFNN2 (22.95 μatm) 386 

and FFNN3 (19.17 μatm). 387 

 388 

Figure 7. Comparison of FFNN predicted pCO2 with SOCAT pCO2. FFNN1 was based on predictors 389 

selected by the stepwise-FFNN algorithm. FFNN2 and FFNN3 were based on predictors from 390 

Landschützer et al., 2014 and Denvil-Sommer et al., 2019, respectively. 391 

For specific comparison of accuracy in each province, the MAE of FFNN1 was 392 

lower in most provinces (Table 4), except for the relatively close results between the 393 

FFNN1 and FFNN3 in parts of provinces. The MAE of FFNN1 in the province P9 394 

Indian Ocean was significantly lower than that of the other validation groups, 395 

suggesting a better combination of predictors highly related to the drivers of surface 396 

ocean pCO2 and its variability in the Indian Ocean. Compared with FFNN2 and FFNN3, 397 

the predictors of FFNN1 added surface pressure and W velocity of ocean currents and 398 

abandoned the monthly anomalies of other predictors in the province P9 Indian Ocean. 399 

The low relevance between pCO2 and part of the monthly anomalies, such as SSSanom 400 

and SSTanom, may be responsible for significantly lower MAE of FFNN1. Adding 401 

redundant predictors may cause misleading in the learning of the FFNN model on the 402 

contrary. The MAE and RMSE differences between FFNN1 and FFNN3 in some 403 

provinces were relatively small. The reason for higher MAE and RMSE of FFNN2 may 404 

be applying latitudes and longitudes as predictors in both the FFNN1 and FFNN3 but 405 

not in the FFNN2. In the province P10 subpolar Southern Ocean, latitudes and 406 

longitudes were considered not good predictors by the stepwise FFNN algorithm, and 407 
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the results of three validation groups were extremely close. 408 

Table 4. Performance of the pCO2 prediction based on different predictors 409 

Province 
FFNN 

size 

MAE (μatm) RMSE (μatm) 

FFNN1  FFNN2 FFNN3 FFNN1  FFNN2 FFNN3 

P1 Arctic Ocean (9856) 10 24.50 32.32 26.87 32.27 43.68 35.08 

P2 subpolar Pacific (30516) 35 16.32 20.63 16.67 24.32 29.87 25.03 

P3 north subtropical Pacific (56367) 25 7.39 12.16 7.95 11.33 17.75 11.88 

P4 subpolar Atlantic (29595) 10 13.89 16.91 14.73 21.06 24.29 22.27 

P5 north subtropical Atlantic (45358) 35 8.55 12.28 9.00 12.80 17.86 13.72 

P6 south Pacific (31803) 20 6.96 9.94 7.24 9.86 14.64 11.00 

P7 equatorial Pacific (11233) 25 15.05 19.55 15.49 20.98 27.61 21.10 

P8 south Pacific (10259) 25 11.19 15.07 12.43 17.10 20.87 17.66 

P9 Indian Ocean (7440) 25 11.54 13.78 15.49 17.15 22.89 28.29 

P10 subpolar Southern Ocean (21206) 15 11.00 11.76 12.14 16.61 17.22 17.66 

P11 Southern Ocean ice (10683) 10 24.84 29.26 25.74 34.73 40.42 35.22 

Global (264316)  11.32 15.08 12.06 17.99 22.95 19.17 

(FFNN1 was based on predictors selected by the stepwise-FFNN algorithm. FFNN2 and FFNN3 410 

were based on predictors from Landschützer et al., 2014 and Denvil-Sommer et al., 2019, 411 

respectively. The lowest MAE and RMSE between different validation groups was shown in bold.) 412 

3.4 Validation based on independent observations 413 

The FFNN outputs based on a different combination of predictors were compared 414 

with independent observations from the Ocean Time-series (HOT) (Dore et al., 2009), 415 

Bermuda Atlantic Time-series Study (BATS) (Bates, 2007), and The European Station 416 

for Time Series in the Ocean Canary Islands (ESTOC) (González-Dávila and Santana-417 

Casiano, 2009) (Fig. 8). Compared with the independent observations from the HOT 418 

station, the three validation groups both show close results, which were also similar in 419 

the seasonal and interannual variability of pCO2. From 1992 to 2019, the RMSE 420 

between FFNN1 outputs and HOT observations was only 9.29 μatm, lower than the 421 

10.85 μatm of FFNN2 and the 10.70 μatm of FFNN3. The monthly mean pCO2 of 422 

FFNN2 during winter was lower than the HOT observations and pCO2 values of other 423 

validation groups, while the FFNN1 and FFNN3 outputs were closer to the HOT 424 

observations. MAE between predicted pCO2 and HOT observations was also lower in 425 

the validation group FFNN1, which was only 7.17 μatm, compared to the 8.61 μatm of 426 
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FFNN2 and the 8.44 μatm of FFNN3. Higher bias generated in the winter bottom and 427 

summer peak, shown more obviously in the monthly average of pCO2 (Fig. 8b). 428 

Compared with other validation groups, the result of FFNN1 was closer to the monthly 429 

average values of the HOT observations. The same conclusion can be obtained in the 430 

ESTOC and BATS station located in the province P5 north subtropical Atlantic. The 431 

RMSE between FFNN1 outputs and independent observations was 13.03 μatm in the 432 

BATS station and 11.35 μatm in the ESTOC station, lower than other validation groups. 433 

The RMSE between FFNN2 outputs and independent observations was 16.15 μatm in 434 

the BATS station and 14.51 μatm in the ESTOC station. For the group FFNN3, the 435 

RMSE was 13.09 μatm in the BATS station and 13.01 μatm in the ESTOC station. All 436 

results were extremely close to the independent observations, but the RMSE and MAE 437 

of FFNN1 were lower. Similar to the situation in the HOT station, the FFNN1 was most 438 

close and the FFNN3 second. Based on the better performance of FFNN1, in which the 439 

predictors selected by stepwise FFNN algorithm were used, we may conclude that the 440 

stepwise FFNN algorithm can effectively find a better combination of predictors to fit 441 

the diver of surface ocean pCO2 and obtain a lower error. 442 
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 443 

Figure 8. Validation based on independent observation from time series stations. a) and b): the 444 

Hawaii Ocean Time-series (HOT) (Dore et al., 2009); c) and d): the Bermuda Atlantic Time-series 445 

Study (BATS) (Bates, 2007); e) and f): the European Station for Time Series in the Ocean Canary 446 

Islands (ESTOC) (González-Dávila and Santana-Casiano, 2009) time-series station. FFNN1 was 447 

based on predictors selected by the stepwise-FFNN algorithm. FFNN2 and FFNN3 were based on 448 

predictors from Landschützer et al., 2014 and Denvil-Sommer et al., 2019, respectively. 449 

SOCATv2020 represents the monthly mean pCO2 of SOCAT observations in the corresponding 450 

grids of each time series station. 451 

3.5 Climatological spatial distribution 452 

The climatological average distribution of pCO2 suggested a significant spatial 453 
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variability (Fig. 9), consistent with the average distribution of SOCAT observations. In 454 

the Pacific Ocean, the high pCO2 areas showed by the stepwise-FFNN product (Fig. 455 

9b), including the equatorial areas, east temperate areas, and north subpolar areas, were 456 

highly consistent with the SOCAT datasets (Fig. 9a). Similarly, the distribution of pCO2 457 

in the Atlantic Ocean was also close. However, the stepwise-FFNN product suggested 458 

lower pCO2 average values in the Arctic and higher values in the Southern Ocean near 459 

the Antarctic continent. Compared with the previous climatology product 460 

(Landschützer et al., 2020), the stepwise FFNN product has similar spatial patterns with 461 

high pCO2 in the eastern equatorial Pacific and equatorial Atlantic: inconsistent spatial 462 

distribution also existed in the Arctic and parts of the Southern Ocean near the Antarctic 463 

continent. The differences between the stepwise-FFNN product and the previous 464 

climatology product may be caused by differences in methods or SOCAT dataset 465 

versions used. In comparison, lower average values of the SOCAT dataset in the 466 

Southern Ocean may be caused by the undersampling in winter. The global spatial 467 

distribution pattern of the stepwise FFNN pCO2 product was basically well consistent 468 

with previous climatology product and SOCAT dataset, suggesting that pCO2 predicting 469 

based on regional specific predictors selected by the stepwise FFNN algorithm was 470 

better than that based on the globally same predictors. 471 
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Figure 9. Comparison between long term average of a): SOCAT v2020 dataset, b): the stepwise 473 

FFNN pCO2 product, and c): previous climatology product adapted from Landschützer et al., 2020. 474 

4. Conclusions 475 

 A stepwise FFNN algorithm was constructed to decrease the predicting error in the 476 

surface ocean pCO2 mapping by finding better combinations of pCO2 predictors in each 477 

biogeochemical province defined by SOM method, based on which a monthly 1°×1° 478 

gridded global open-oceanic surface ocean pCO2 product from January 1992 to August 479 

2019 was constructed. Our work provided a statistical way of predictor selection for all 480 

researches based on relationship fitting by machine learning methods. The validation 481 

based on the SOCAT dataset and independent observations shows that using regional-482 

specific predictors selected by the stepwise FFNN algorithm retrieved lower predicting 483 

error than globally same predictors. This stepwise FFNN algorithm can also be used in 484 

pCO2 mapping research for higher resolution and coastal regions and other data 485 

mapping research using SOM or other region dividing methods. The preparation work 486 

was only collecting as many predictors, which are possibly related to the target data and 487 

need to be sufficiently available in time and space. However, high predicting error in 488 

particular regions remains to be improved, such as polar regions and equatorial Pacific. 489 

Since the stepwise FFNN algorithm’s result largely depends on how biogeochemical 490 

provinces are divided, improving the SOM step is still necessary. Besides, the FFNN 491 

can be replaced by any suitable type of neural network. A possible way to improve the 492 

performance of the stepwise FFNN algorithm is to modify the structure of FFNN or to 493 

use networks with more sophisticated architecture and to use different learning 494 

algorithms. In the future work, the stepwise FFNN algorithm with possible 495 

improvement will be attempted in the mapping of other products, such as total alkalinity 496 

and pH, to provide sufficient data support for studies on ocean acidification and carbon 497 

cycling. 498 
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