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Abstract: Various machine learning methods were attempted in the global mapping of 14 

surface ocean partial pressure of CO2 (pCO2) to reduce the uncertainty of global ocean 15 

CO2 sink estimate due to undersampling of pCO2. In previous researches the predicators 16 

of pCO2 were usually selected empirically based on theoretic drivers of surface ocean 17 

pCO2 and same combination of predictors were applied in all areas unless lack of 18 

coverage. However, the differences between the drivers of surface ocean pCO2 in 19 

different regions were not considered. In this work, we combined the stepwise 20 

regression algorithm and a Feed Forward Neural Network (FFNN) to selected 21 

predicators of pCO2 based on mean absolute error in each of the 11 biogeochemical 22 

provinces defined by Self-Organizing Map (SOM) method. Based on the predicators 23 

selected, a monthly global 1° × 1° surface ocean pCO2 product from January 1992 to 24 

August 2019 was constructed. Validation of different combination of predicators based 25 

on the SOCAT dataset version 2020 and independent observations from time series 26 

stations was carried out. The prediction of pCO2 based on region-specific predicators 27 

selected by the stepwise FFNN algorithm were more precise than that based on 28 

predicators from previous researches. Appling of a FFNN size improving algorithm in 29 

each province decreased the mean absolute error (MAE) of global estimate to 11.32 30 

μatm and the root mean square error (RMSE) to 17.99 μatm. The script file of the 31 

stepwise FFNN algorithm and pCO2 product are distributed through the Institute of 32 

Oceanology of the Chinese Academy of Sciences Marine Science Data Center (IOCAS; 33 

http://dx.doi.org/10.12157/iocas.2021.0022, Zhong et al., 2021). 34 
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1 Introduction 35 

As a net sink for atmospheric CO2, global oceans have been thought to have 36 

removed about one third of anthropogenic CO2 since the beginning of the industrial 37 

revolution (Sabine et al., 2004; Friedlingstein et al., 2019). However, great differences 38 

existed between previous estimates of sea-air CO2 flux, due to large uncertainty in 39 

estimates of surface ocean partial pressure of CO2 (pCO2) (Regnier et al., 2013; 40 

Schuster et al., 2013; Wanninkhof et al., 2013; Ishii et al., 2014). surface ocean pCO2 is 41 

an essential parameter to describe the release and uptake for atmospheric CO2 by the 42 

oceans in the data-based method. Greater pCO2 of surface water than that of overlying 43 

air indicating that CO2 released from oceans to the air, and absorption of CO2 by oceans 44 

happened when the pCO2 of surface water was lower than that of air. The ocean in these 45 

two scenarios is known as oceanic carbon source and oceanic carbon sink respectively. 46 

Sparse and uneven observations of surface ocean pCO2 in time and space severely 47 

limited the understanding of interannual variability of oceanic carbon sink, and 48 

researches based on different methods were carried out to break this barrier. In earlier 49 

studies, traditional unitary and multiple regression methods between surface ocean 50 

pCO2 and its drivers was attempted in the mapping of surface ocean pCO2, which were 51 

limited in specific regions and sometimes even in specific seasons with a relatively high 52 

root mean square error (RMSE) (Sarma et al., 2006; Takahashi et al., 2006; Shadwick 53 

et al., 2010; Chen et al., 2011; Marrec et al., 2015). Recent researches on artificial neural 54 

networks and other machine learning algorithms, such as feed-forward neural network 55 

(FFNN) method (Zeng et al., 2014; Zeng et al., 2015; Moussa et al., 2016; Denvil-56 

Sommer et al., 2019) and self-organization mapping (SOM) method (Friedrich and 57 

Oschlies, 2009; Telszewski et al., 2009; Hales et al., 2012; Nakaoka et al., 2013), 58 

significantly reduced the bias in the interpolation based on relationships between 59 

surface ocean pCO2 and its drivers. In addition, method such as finding better 60 

predicators or combining SOM and other neural networks was also attempt to further 61 

decrease the pCO2 predicting error (Hales et al., 2012; Nakaoka et al., 2013; 62 

Landschuetzer et al., 2014; Chen et al., 2019; Denvil-Sommer et al., 2019; Zhong et al., 63 

2020; Wang et al., 2021). However, the selection of predicators in the surface ocean 64 

pCO2 mapping was more empirical, focusing on the theoretical drivers of the pCO2 and 65 

its variation. Sea surface temperature and salinity were considered as the most 66 

important and used in almost all related studies (Landschutzer et al., 2013; Nakaoka et 67 

al., 2013; Moussa et al., 2016; Laruelle et al., 2017; Zeng et al., 2017; Denvil-Sommer 68 

et al., 2019), similarly the chlorophyll-a concentration is also widely used (Nakaoka et 69 
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al., 2013; Landschuetzer et al., 2014; Laruelle et al., 2017; Zeng et al., 2017; Denvil-70 

Sommer et al., 2019). One more indicator, mixed layer depth, appeared frequently in 71 

related studies (Telszewski et al., 2009; Nakaoka et al., 2013; Landschuetzer et al., 2014; 72 

Zeng et al., 2017; Denvil-Sommer et al., 2019). Besides, the sampling information have 73 

been also used as indicators, including latitude and longitude (Friedrich and Oschlies, 74 

2009; Jo et al., 2012; Zeng et al., 2015; Zeng et al., 2017; Denvil-Sommer et al., 2019), 75 

and sampling time (Friedrich and Oschlies, 2009; Zeng et al., 2015). In recent 76 

researches, dry air mixing ratio of atmospheric CO2 (xCO2) was also used as a 77 

predicator (Landschuetzer et al., 2014; Denvil-Sommer et al., 2019). The sea surface 78 

height, which was considered effective in improving the spatial pattern and the accuracy 79 

of surface ocean pCO2 mapping at the basin and regional scale, and the monthly 80 

anomalies of the most widely used parameters mentioned above were used by the 81 

Denvil-Sommer et al (2019). In the research focused on the surface ocean pCO2 82 

mapping of coastal areas, the bathymetry, sea ice and wind speed were also used as 83 

indicators (Laruelle et al., 2017). In each of these researches, same combination of 84 

indicators was applied in all areas of the global ocean, although the global ocean was 85 

divided into several biogeochemical provinces in some of the researches. However, the 86 

indicator that plays an important role in the surface ocean pCO2 reconstruction at one 87 

region may be not a good predicator of surface ocean pCO2 in other regions, due to 88 

complex and variable drivers in different regions. But no widely recognized method for 89 

judging the importance of each predicator in the surface ocean pCO2 mapping are 90 

available yet. Thus, we attempted to construct a stepwise FFNN algorithm to rank the 91 

importance of predicators and figure out the optimal combination in each 92 

biogeochemical province defined by SOM, for decreasing the predication errors in the 93 

surface ocean pCO2 mapping.  94 

2 Methodology 95 

2.1 Data 96 

The surface ocean fugacity of CO2 (fCO2) observation data from the Surface Ocean 97 

CO2 Atlas fCO2 dataset version 2020 (SOCATv2020) (Bakker et al., 2016) was used to 98 

construct the non-liner relationship between surface ocean pCO2 and predicators. The 99 

transition between fCO2 and pCO2 was following the formula (Körtzinger, 1999)： 100 

 𝑓CO = 𝑝CO ∙ 𝑒𝑥𝑝 𝑃 ∙  (1) 101 

where P is the total atmospheric surface pressure using the National Centers for 102 

Environmental Prediction (NCEP) monthly mean sea level pressure product (Dee et al., 103 

https://doi.org/10.5194/bg-2021-224
Preprint. Discussion started: 7 September 2021
c© Author(s) 2021. CC BY 4.0 License.



4 

 

2011), and T is the absolute temperature. R is the gas constant (8.314 J K-1 mol-1). 104 

Parameters B and δ are both viral coefficients (Weiss, 1974). 105 

In this work, parts of indicators was choose from previous researches of surface 106 

ocean pCO2 reconstruction based on machine learning methods, including sea surface 107 

temperature (SST) and sea surface salinity (SSS) using the 1°×1° gridded product from 108 

Chen et al (2017) at http://159.226.119.60/cheng/ and the anomalies (SSTanom and 109 

SSSanom), chlorophyll-a concentration (CHL-a) and the anomaly (CHL-a anom) using 110 

satellite derived monthly product in 9 km resolution (Hu et al., 2012), mixed layer depth 111 

(MLD) and sea surface height (SSH) and the anomalies (MLDanom and SSHanom) using 112 

the ECCO2 cube92 daily product (Menemenlis et al., 2008), W velocity of ocean 113 

currents (Wvel) at 5, 65, 105 and 195 m depth using the ECCO2 cube92 3-day product 114 

(Menemenlis et al., 2008), dry air mixing ratio of atmospheric CO2 (xCO2) and the 115 

anomaly (xCO2 anom) from the GLOBAL VIEW marine boundary layer product 116 

(GLOBALVIEW-CO2, 2011), sea ice area fraction using the monthly product from 117 

ECMWF ERA Interim(Dee et al., 2011), 10 meters wind speed using the monthly 118 

product from ECMWF ERA Interim (Dee et al., 2011), bathymetry from ETOPO2 119 

(Commerce et al., 2006) , year and month (represented by 1-12), the total number of 120 

months since January 1992 (Nmon), the sine of latitude and the sine and cosine of 121 

longitude (sLat, sLon and cLon). In addition, 8 parameters which were only used in 122 

similar previous research focused on other parameters, or were possibly related to the 123 

driver of surface ocean pCO2 and its variability, were selected to be tested. These 124 

parameters included nitrate, phosphate, silicate and dissolved oxygen (DO) using the 125 

monthly climatology product from WOA18 (Garcia et al., 2019a, b), sea level pressure 126 

(SLP) and surface pressure from the ECMWF ERA Interim (Dee et al., 2011), the 127 

Oceanic Nino Index (ONI) (Huang et al., 2017), the Southern Hemisphere Annular 128 

Mode Index (SAM) (Marshall, G. J., 2003). 129 

2.2 Biogeochemical provinces defined by the Self-Organizing Map  130 

For applying different combination of indicators in regions based on the differences 131 

in the dominated drivers of pCO2 and its variability, the global ocean was divided into 132 

a set of biogeochemical provinces using a Self-Organizing Map (SOM) method. The 133 

monthly climatology of temperature, salinity, nitrate, phosphate, silicate, and dissolved 134 

oxygen were put into a 3-by-4 size SOM networks to generate 12 biogeochemical 135 

provinces, where the monthly climatology data in all 12 months were put into one SOM 136 

network to generate one discrete set of biogeochemical provinces. Then the discrete 137 

small “island” provinces and provinces lack of SOCAT pCO2 data were merged into the 138 
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nearest dominated province, and the provinces covering areas separated by land were 139 

further divided artificially. The final version includes total 11 biogeochemical provinces. 140 

In this study the coastal area was not involved and the boundary was defined as 200m 141 

depth. In addition, the pCO2 mapping based on SOM defined provinces tend to be less 142 

smooth near the border of different biogeochemical provinces, with obvious border line 143 

appearing. However, applying of different predictors may make this problem worse. To 144 

obtain a smoother distribution, we defined that the grid within 5 1°×1° grids of province 145 

borders belong to all provinces adjacent to the nearest province border. Samples in these 146 

grids were involved in the FFNN training process of multiple provinces, but only 147 

counted once in the validation. 148 

2.3 Stepwise FFNN algorithm 149 

For finding better combination of pCO2 predicators, a stepwise FFNN algorithm 150 

was constructed. We used the idea of the multiple linear stepwise regression, replacing 151 

the linear regression part by a Feed-forward neural networks (FFNN). The mean 152 

absolute error (MAE) difference that before and after adding or removing one indicator 153 

in the input of FFNN was used to estimate the performance of each indicator in the 154 

FFNN predicating. Although the root mean square error (RMSE) was widely used for 155 

the validation of machine learning methods. Compared to the MAE, the RMSE was 156 

more sensitive to a few extreme samples, which were generally deviated far from the 157 

FFNN predicting values, resulting in a huge discrepancy between the FFNN outputs 158 

and pCO2 observations sometimes up to hundreds of μatm. A higher weight may be put 159 

on these few extreme samples than other samples in the predicator selection if the 160 

performance of each indicator was estimated by RMSE in the stepwise FFNN algorithm. 161 

To avoid the higher weight on these few extreme samples, the MAE was used instead 162 

in the stepwise FFNN algorithm. The basic principle of the stepwise FFNN algorithm 163 

was adding each indicator from a set of indicators into the inputs of FFNN and 164 

removing each redundant indicator from the inputs successively to reduce the MAE 165 

between the FFNN outputs and SOCAT pCO2 values in the fastest way, until no 166 

decrease in the MAE appearing (Fig. 1), where the indicator having no contribution to 167 

reduce the prediction error was considered as redundant.  168 
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 169 

Figure 1. the procedure of stepwise FFNN algorithm 170 

In the beginning of the stepwise FFNN algorithm, all available indicators were put 171 

into a matrix, referred to as indicators pool, where each of rows represents one indicator 172 

and each of columns represents one SOCAT sample. In this work we collected 33 173 

parameters for test, that is, the indicators pool matrix has 33 rows. Meanwhile a matrix, 174 

referred to as inputs pool, was set up to storage indicators with good performance, 175 

where good performance means that adding these indicators as predicators can 176 

significantly decrease the MAE between SOCAT pCO2 measurements and FFNN pCO2 177 

predictions. Then a loop of K-fold validation test run out to calculated the MAE that 178 

predicting pCO2 by each one indicator in the indicators pool in the first step (loop 1 in 179 

the Fig. 1). Thus total 33 MAE values were obtained and the minimum was recorded as 180 

E0. The indicator that corresponds to the minimum of all MAE values was moved from 181 

the indicators pool to the inputs pool. After that the loop 1 restarted, i.e., the second step 182 

started with one indicator removed to the inputs pool and the rest 32 indicators waiting 183 

to be tested. Then 32 MAE values of predicting pCO2 by each one of the rest indicators 184 

in the indicators pool with the addition of all indicators in the inputs pool were 185 

calculated out. If the MAE in the lowest situation, represented by the MAEi, decreased 186 

compared to the E0, the ith indicator was considered as a good indicator and was moved 187 

from the indicators pool to the inputs pool as well. Then the value of E0 was replaced 188 

by the MAEi. This part was repeated that the good indicators were selected out in one-189 

by-one step and moved to the inputs pool in the way that the E0 decreases in the fastest 190 

way, until no indicator was left in the indicators pool or no decrease can be found no 191 
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matter which indicator was added in the next two steps. At this time the part 1 of 192 

stepwise FFNN algorithm finished, and all indicators left in the indicators pool were 193 

considered redundant. The loop K-fold validation in the second part run out in a 194 

opposite way that the MAE was calculated with the indicators were removed from the 195 

inputs pool one by one in the way that the E0 decreases the fastest (loop 2 in Fig. 1). 196 

The second part was aimed to remove the indicator that can be represented by other 197 

indicators in the inputs pool, and finished in the similar condition that no significant 198 

decrease can be found no matter which indicator was removed in the next two steps.  199 

The FFNN is composed of four main parts, which are namely input, hidden, 200 

summation and output layer (Fig.2). The input layer is designed to pass the inputs to 201 

the hidden layer and the number of neurons is equal to the dimensions of the input 202 

matrix p. The hidden layer includes 25 neurons in the FFNN model, with the tan-203 

sigmoid function as the transfer function. The input p is multiplied by a matrix of 204 

weights (w1 in Fig. 2) and the inner product between the result and a bias matrix (b1 in 205 

Fig. 2) is calculated as the input of the transfer function in the first hidden layer. In the 206 

summation layer, the transfer function f2 is a pure linear function. The output of the 207 

hidden layer is multiplied by another matrix of weights and summed. All bias and 208 

weights matrixes were randomly assigned in the beginning of FFNN training. Here we 209 

set one constant random number stream in the MATLAB, thus the way that the bias and 210 

weights matrixes randomly assigned were steady, avoiding the appearance of 211 

inconsistent results when algorithm repeats. 212 

 213 

Figure 2. The structure of feed-forward neural network. p: input matrix; w: weighted matrix; b: bias 214 

matrix; ∑: sum; f1: tan-sigmoid transfer function; f2: pure linear function; a: output matrix. 215 

2.4 pCO2 product 216 

Dataset of parameters except CHL-a start since 1992 or earlier, while CHL-a data 217 

ranges from 2002 to present. In each one of the provinces, the stepwise FFNN algorithm 218 

was run out once first based on all samples covered by CHL-a data, then the algorithm 219 

was run out secondly based on samples and all indicators except CHL-a and CHL-a anom 220 

in the year that CHL-a gridded data was not available. The pCO2 mapping in the year 221 

that CHL-a gridded data was not available was carried out based on the predicators 222 

selected in the second run. Although the performance may improve with the number of 223 
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neurons increasing, the influence of number of neurons on the performance of FFNN 224 

pCO2 prediction remains unclear. To further decrease the predicating error between 225 

FFNN outputs and SOCAT measurements, the number of neurons was improved by an 226 

error test in each province. The number of neurons increased from 10 to 70 and the 227 

corresponding MAE values of each size were record, and then the number of neurons 228 

with lowest MAE was applied. This test avoided the appearance of insufficient learning 229 

capacity for complex nonlinear relationship due to too few neurons and overfitting 230 

problem due to too many neurons. Finally, based on the indicators selected by the 231 

stepwise FFNN algorithm and improved FFNN size, a monthly global 1°×1° surface 232 

ocean pCO2 product from 1992 to 2019 was constructed. 233 

2.5 Validation 234 

 To better estimate the predicating error of FFNN, the MAE and additionally the 235 

RMSE which was widely used in previous researches, were calculated using a K-fold 236 

cross validation method. To avoid overfitting caused by a lack of independence between 237 

the training samples and testing samples, the SOCAT samples were put in chronological 238 

order and then divided into group of years (Table 1). In this paper, the value of K was 239 

set as 4. Thus, among every 4 neighboring years, three group samples were used for 240 

training FFNN model and the rest one was used for testing. Total 4 iterations were 241 

carried out, where testing year changed in each iteration. After 4 iterations finished, all 242 

samples have been used for testing only once, and the MAE and RMSE between FFNN 243 

output and the testing samples was calculated. The performance of the predicator 244 

selection algorithm was estimated by comparing the MAE and RMSE result of the 245 

FFNN based on stepwise selected indicators with the result based on indicators used in 246 

previous researches in each biogeochemical province (Table 2). All validation groups 247 

were applied with same FFNN and same samples from SOCAT, with the only 248 

differences in predicators. Same K-fold validation procedure was applied for three 249 

validation groups based on different pCO2 predicators. Thus, three results were 250 

generated to estimate whether the stepwise FFNN algorithm can effectively find better 251 

combination of pCO2 predictors. Finally the pCO2 data generated in all validation 252 

groups were further compared with the independent observations from the Hawaii 253 

Ocean Time-series (HOT) (Dore et al., 2009), Bermuda Atlantic Time-series Study 254 

(BATS) (Bates, 2007) and The European Station for Time Series in the Ocean Canary 255 

Islands (ESTOC) (González-Dávila and Santana-Casiano, 2009) time series station.  256 

 257 

 258 
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Table 1. The procedure of K-fold validation. 259 

 260 

Table 2. validation group  261 

Validation 

group 
Predictor 

FFNN1 Indicators selected by stepwise FFNN algorithm 

FFNN2 
SST, SSS, log10(MLD), CHL-a, xCO2, SSTanom, SSSanom, xCO2 anom, CHL-a 

anom, log10(MLD) anom (Landschuetzer et al., 2014) 

FFNN3 SST, SSS, SSH, MLD, xCO2, CHL-a, SSSanom, SSTanom, SSHanom, CHL-a anom, 

MLDanom, xCO2 anom, sLat, sLon, cLon (Denvil-Sommer et al., 2019) 

3 Results and discussion  262 

3.1 Biogeochemical provinces and corresponding predictors of pCO2 263 

11 biogeochemical provinces generated from the SOM method after the separated 264 

small ‘island’ was removed and the province separated by lands was divided manually 265 

(Fig. 3). The results of the stepwise FFNN algorithm in each province were shown in 266 

the Table 3. The indicators were listed in the order that the stepwise FFNN algorithm 267 

printed recommended predicators out. The indicator printed earlier was relatively more 268 

recommended and played an important role in the prediction of pCO2 based on FFNN. 269 

Applying of these indicators as the predicators of surface ocean pCO2 effectively 270 

decreased the predicating error between the FFNN outputs and pCO2 values from 271 

validation samples, thus it is reasonable to consider that these indicators were highly 272 

related to the drivers of pCO2 and its variability. Indicators representing sampling 273 

position were also listed as recommended predicators in some provinces, including 274 

latitude, longitude and sampling time, suggesting that relatively steady spatial or 275 

temporal variability pattern of surface ocean pCO2 existed in these biogeochemical 276 

provinces. For example, month was considered as a recommended predicator in most 277 

provinces. Especially in the provinces covering the north Atlantic Ocean (P4 and P5), 278 

the parameter month was relatively more recommended. While pCO2 in these areas 279 

regularly peaked and bottomed out in summer and winter (Takahashi et al., 2009; 280 

1992 1993 1994 1995 1996 1997 1998 1999 … 2012 2013 2014 2015 2016 2017 2018 2019

FFNN training FFNN testing

1992 1993 1994 1995 1996 1997 1998 1999 … 2012 2013 2014 2015 2016 2017 2018 2019

1992 1993 1994 1995 1996 1997 1998 1999 … 2012 2013 2014 2015 2016 2017 2018 2019

1992 1993 1994 1995 1996 1997 1998 1999 … 2012 2013 2014 2015 2016 2017 2018 2019

1st iteration

2nd

3rd

4th iteration

https://doi.org/10.5194/bg-2021-224
Preprint. Discussion started: 7 September 2021
c© Author(s) 2021. CC BY 4.0 License.



10 

 

Landschutzer et al., 2016; Landschützer et al., 2020). Similarly, latitude and the sine 281 

and cosine of longitude were listed as recommended predicators of pCO2 in most 282 

provinces, suggesting an obvious spatial distribution pattern of pCO2, which was not 283 

learned sufficiently by the FFNN model from existing indicators and the indicators 284 

related to spatial position were applied as supplementary.  285 

 286 

Figure 3. The map of biogeochemical provinces 287 

As basic parameters highly related to the ocean environment, the temperature and 288 

salinity was considered as parts of the most important predictors of surface ocean pCO2, 289 

and was applied in the pCO2 prediction in almost all previous relating researches based 290 

on various method (Jo et al., 2012; Signorini et al., 2013; Landschuetzer et al., 2014; 291 

Marrec et al., 2015; Chen et al., 2016; Moussa et al., 2016; Chen et al., 2017; Laruelle 292 

et al., 2017; Zeng et al., 2017; Chen et al., 2019; Denvil-Sommer et al., 2019). The 293 

results of stepwise FFNN algorithm also supported this. Temperature was listed as a 294 

recommended predictor in all biogeochemical provinces, suggesting that temperature 295 

was the one of the most important drivers of pCO2 and its variability in these provinces. 296 

Similarly, the result of stepwise FFNN algorithm proved the importance of salinity in 297 

the predication of pCO2, which was also listed as a predicator in most provinces. In the 298 

province P1 located in the Arctic, the silicate concentration and temperature were 299 

considered as the most crucial predicator of pCO2. The dry air mixing ratio of 300 

atmospheric CO2 (xCO2) and the monthly anomaly of xCO2 were also recommended 301 

predicators in most of the biogeochemical provinces, suggesting that the exchange of 302 

CO2 across the sea-air interface was also an important driver of surface ocean pCO2. As 303 

a widely used predictor in the pCO2 prediction, the chlorophyll-a concentration (CHL-304 
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a) played an important role in fitting the influence of biological activities on pCO2 in 305 

previous researches (Landschuetzer et al., 2014; Zeng et al., 2017; Laruelle et al., 2017; 306 

Denvil-Sommer et al., 2019). Especially in the Southern Ocean (province P10 and P11) 307 

the CHL-a was listed as the most recommended predicator in the result of stepwise 308 

FFNN algorithm. While in some other provinces (P1 and P5), the CHL-a were 309 

considered redundant that no effective decrease of MAE between FFNN outputs and 310 

pCO2 measurements appeared when CHL-a data was used. Similar with the period that 311 

CHL-a was not available (represented by the subscript ‘b’), the phosphate, nitrate, 312 

silicate or dissolved oxygen were recommended instead. 313 

Table 3. Predicators in each biogeochemical province  314 

Province Predictors 

P1 Silicate, SST, Wind speed, SSS, log10(MLD), SSSanom, sLat, month, Wvel(65m), log10(MLD) anom, 

xCO2, cLon, Bathymetry, SSH 

P2a
* Nitrate, CHL-a, SSS, xCO2, cLon, SST, log10(MLD), sLon, sLat, month 

P2b
* Nitrate, xCO2anom, sLon, SST, sLat, log10(MLD), cLon, SSS, SSHanom, DO, Wvel(195m), 

Bathymetry, Silicate 

P3a log10(MLD), Nmon, SSH, SST, sLon, sLat, SSS, Bathymetry, month, log10(MLD) anom, cLon, 

Surface pressure, Wvel(105m), CHL-a, DO, SSH anom, xCO2 anom 

P3b log10(MLD), xCO2, sLat, sLon, SST, Surface pressure, cLon, SSS, Wvel(5m), Nmon, log10(MLD) 

anom, month, Phosphate, xCO2 anom, Wvel(105m) 

P4a month, sLat, cLon, SST, Year, CHL-a, DO, SSSanom, Wvel(195m), SSH, log10(MLD), Bathymetry, 

SSS 

P4b
* month, xCO2, DO, Wind speed, log10(MLD), Wvel(195m), sLon, Bathymetry, Wvel(5m), SST, 

Phosphate, Year, Nmon 

P5 month, Year, SST, sLon, sLat, SSS, SSTanom, SSH, Bathymetry, Wvel(5m), cLon, Wvel(65m), 

log10(MLD) anom 

P6a SST, sLon, xCO2 anom, sLat, SSS, month, Phosphate, CHL-a, CHL-a anom, Wvel(65m), log10(MLD), 

log10(MLD)anom, Nitrate, Bathymetry 

P6b xCO2, sLat, SSS, SST, Phosphate, SLP, xCO2 anom, sLon, cLon, Wvel(105m), Wvel(65m), DO, 

Bathymetry, SSH, SAM 

P7a Nitrate, xCO2, sLat, SSS, SST, cLon, xCO2 anom, log10(MLD), sLon, CHL-a, Phosphate, Wvel(5m), 

Wvel(105m), Wvel(195m) 

P7b SST, SSS, Year, sLat, month, cLon, SSH, Bathymetry, Wvel(65m), xCO2 

P8a sLat, xCO2 anom, SSS, log10(MLD), CHL-a, SSHanom, Wvel(195m), cLon, SST, Wvel(65m), 

Bathymetry, Nitrate 
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Province Predictors 

P8b SST, xCO2, cLon, sLat, SSS, Silicate, SSH, log10(MLD), sLon 

P9a SST, cLon, sLat, Nitrate, Wvel(65m), log10(MLD), SLP, CHL-a, Year, log10(MLD)anom, SSHanom 

P9b SLP, month, sLon, xCO2 anom, SST, Silicate, Wvel(65m) 

P10a CHL-a, log10(MLD), Nmon, SSS, SST, Bathymetry, SSHanom, Wvel(5m), CHL-a anom, xCO2 

P10b Wind speed, xCO2 anom, SSS, Phosphate, log10(MLD), Wvel(65m), Bathymetry, SST, month 

P11a CHL-a, sLon, Bathymetry, SSS, SSH, SST, Nitrate, cLon, sLat 

P11b month, DO, SST, SSH, sLat, Nitrate, sLon, SSS, Wvel(195m), Silicate, SSHanom 

*: Due to insufficient coverage of CHL-a data in the polar areas and during the period before 2002.  The pCO2 data in the province 

that CHL-a or CHL-a anom was selected as predicators was divided into two periods. The period that CHL-a data available was 

represented by the subscript ‘a’, such as P2a, including global grids from 2002 to 2019 except polar grids in winter. The period that 

CHL-a data not available was represented by the subscript ‘b’, such as P2b, including global grids from 1992 to 2001 and additionally 

some polar grids in winter from 1992 to 2019.  

3.2 pCO2 product 315 

Based on the predicators given by the stepwise FFNN algorithm in each 316 

biogeochemical province, a FFNN size (representing the number of neurons in the 317 

hidden layer) improving validation was applied to further decrease the predication error. 318 

The MAE values based on same samples and FFNN model with different number of 319 

neurons were calculated, then the number of neurons corresponding to the lowest MAE 320 

were applied (Fig. 4a). The MAE in most provinces tend to decrease first and then 321 

increase when the number of neurons in the hidden layer of FFNN model increased 322 

from 10 to 70. Based on the variation of MAE with the number of neurons in the FFNN 323 

hidden layer, the optimal FFNN size in each province was considered as the number of 324 

neurons when the MAE was lowest. The result and corresponding MAE were shown in 325 

Fig. 4b. The MAE and RMSE of global estimates between predicted pCO2 and 326 

measurements from SOCAT v2020 further decreased to 11.32 and 17.99 μatm 327 

respectively after applying optimal FFNN size in each province. 328 

 329 

https://doi.org/10.5194/bg-2021-224
Preprint. Discussion started: 7 September 2021
c© Author(s) 2021. CC BY 4.0 License.



13 

 

 330 

Figure 4. MAE of different FFNN size in each biogeochemical province.  331 

Then the RMSE and mean residuals in each grid were calculated based the K-fold 332 

cross validation method. In most grids, the RMSE was lower than 10 μatm and the mean 333 

residuals was close to zero (Fig. 5). However, the prediction error in the north subpolar 334 

Pacific, the east equatorial Pacific and the Southern Ocean near the Antarctic continent 335 

was obviously higher than other areas. Distribution of mean residuals suggested that 336 

surface ocean pCO2 in the Indian Ocean tend to be overestimated by the FFNN models. 337 

While in other regions the distribution of mean residuals was more discrete and no 338 

obvious pattern was found.  339 

 340 

Figure 5. Global maps of (a) RMSE and (b) mean residuals between predicted pCO2 and SOCAT 341 

observations 342 

Based on stepwise FFNN algorithm and improved FFNN size in each province, a 343 

monthly 1°×1° grided surface ocean pCO2 product from January 1992 to August 2019 344 

was constructed. The interannual variability of global average pCO2 was showed in the 345 

Fig. 6. The global open ocean average pCO2 increased about 1.85 μatm per year from 346 

1992 to 2019. 347 

5 10 20 30 40 50 60 70
number of neurons in the hidden layer of FFNN

5

10

15

20

25

30

35

40
MAE change with FFNN size

P1
P2

P3
P4

P5
P6

P7
P8

P9
P10

P11

(a)

10

20

30

40

50

60

70
optimal FFNN size and corresponding MAE

1 2 3 4 5 6 7 8 9 10 11
Biogeochemical province

0

5

10

15

20

25
MAE
FFNN size

(b)

https://doi.org/10.5194/bg-2021-224
Preprint. Discussion started: 7 September 2021
c© Author(s) 2021. CC BY 4.0 License.



14 

 

 348 
Figure 6. Interannual variability of global open-oceanic pCO2 during 1992-2019. (a): global 349 

monthly mean pCO2, (b): growth rate of global monthly mean pCO2 350 

3.3 Validation of the stepwise FFNN algorithm based on SOCAT samples 351 

Validation based on the K-fold cross validation method suggested that most FFNN 352 

outputs were quite close to the pCO2 values from SOCAT v2020 samples (Fig. 7). 353 

Comparing the results based on different combination of predicators, the results of 354 

FFNN1 (based on stepwise FFNN algorithm，this paper) and FFNN3 (based on 15 355 

predicators from Denvil-Sommer, et al. 2019) were obviously more precise than that of 356 

FFNN2 (based on 10 predicators from Landschuetzer, et al. 2014). Where the plots in 357 

the result of FFNN1 was most concentrated along the y=x line, suggesting extremely 358 

close FFNN outputs with the measured pCO2 values from SOCAT, with the RMSE of 359 

17.99 μatm in the global open oceans. The RMSE of FFNN1 was lower than that of 360 

FFNN2 (22.95 μatm) and FFNN3 (19.17 μatm). 361 

 362 

Figure 7. Comparing of FFNN predicted pCO2 with SOCAT pCO2. FFNN1 was based on predictors 363 

selected by the stepwise-FFNN algorithm. FFNN2 and FFNN3 were based on predictors from 364 

Landschuetzer et al., 2014 and Denvil-Sommer et al., 2019 respectively. 365 

For specific comparison of accuracy in each province, the MAE of FFNN1 was 366 

lower in most provinces (Table. 4), except the relatively close results between the 367 

FFNN1 and FFNN3 in parts of provinces. Where the MAE of FFNN1 in the province 368 
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P9 was significantly lower than that of the other validation groups, suggesting a better 369 

combination of predicators highly related to the drivers of surface ocean pCO2 and its 370 

variability in the Indian Ocean. Compared with predicators of FFNN2 and FFNN3, the 371 

predicators of FFNN1 added surface pressure and W velocity of ocean currents, and 372 

abandoned the monthly anomalies of other indicators in the province P9. The low 373 

relevance between part of the monthly anomalies, such as SSSanom and SSHanom, may 374 

be responsible for significant lower MAE of FFNN1. Adding redundant indicators may 375 

cause misleading in the learning of FFNN model on the contrary. The MAE and RMSE 376 

difference between FFNN1 and FFNN3 in some provinces were relatively small, 377 

because predicators used in both FFNN1 and FFNN3 were related to main drivers of 378 

pCO2, such as CHL-a, xCO2 and MLD. 379 

Table 4. Performance of the pCO2 prediction based on different predicators 380 

Province 
FFNN 

size 

MAE (μatm) RMSE (μatm) 

FFNN1  FFNN2 FFNN3 FFNN1  FFNN2 FFNN3 

P1 (9856) 10 24.50 32.32 26.87 32.27 43.68 35.08 

P2 (30516) 35 16.32 20.63 16.67 24.32 29.87 25.03 

P3 (56367) 25 7.39 12.16 7.95 11.33 17.75 11.88 

P4 (29595) 10 13.89 16.91 14.73 21.06 24.29 22.27 

P5 (45358) 35 8.55 12.28 9.00 12.80 17.86 13.72 

P6 (31803) 20 6.96 9.94 7.24 9.86 14.64 11.00 

P7 (11233) 25 15.05 19.55 15.49 20.98 27.61 21.10 

P8 (10259) 25 11.19 15.07 12.43 17.10 20.87 17.66 

P9 (7440) 25 11.54 13.78 15.49 17.15 22.89 28.29 

P10 (21206) 15 11.00 11.76 12.14 16.61 17.22 17.66 

P11 (10683) 10 24.84 29.26 25.74 34.73 40.42 35.22 

Global (264316)  11.32 15.08 12.06 17.99 22.95 19.17 

(FFNN1 was based on predictors selected by the stepwise-FFNN algorithm. FFNN2 and FFNN3 381 

were based on predictors from Landschuetzer et al., 2014 and Denvil-Sommer et al., 2019 382 

respectively.) 383 

 384 

3.4 Validation based on independent observations 385 

The FFNN outputs based on different combination of predicators were compared 386 

with independent observations from the Ocean Time-series (HOT) (Dore et al., 2009), 387 
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Bermuda Atlantic Time-series Study (BATS) (Bates, 2007) and The European Station 388 

for Time Series in the Ocean Canary Islands (ESTOC) (González-Dávila and Santana-389 

Casiano, 2009) (Fig. 8). The interannual variability and seasonal pattern of pCO2 in the 390 

grids the HOT station located from different validation groups were similar and close 391 

to the observations from the HOT, which was located in the province P3. From 1992 to 392 

2019, the RMSE between FFNN1 outputs and HOT observations was only 9.29 μatm, 393 

lower than the 10.85 μatm of FFNN2 and the 10.70 μatm of FFNN3.The monthly mean 394 

pCO2 of FFNN2 during winter was obviously lower than the HOT observations and 395 

pCO2 values of other validation groups, while the FFNN1 and FFNN3 outputs were 396 

closer to the HOT observations. MAE between predicted pCO2 and HOT observations 397 

were also lower in the validation group FFNN1, which was only 7.17 μatm, compared 398 

to the 8.61 μatm of FFNN2 and the 8.44 μatm of FFNN3. Higher bias generated in the 399 

winter bottom and summer peak, which was showed more obviously in the monthly 400 

average of pCO2 (Fig. 8b). Compared with other validation groups, the result of FFNN1 401 

was closer to the monthly average values of the HOT observations. Same conclusion 402 

can be obtained in the ESTOC and BATS station located in the province P5. The RMSE 403 

between FFNN1 outputs and independent observations were 13.03 μatm in the BATS 404 

station and 11.35 μatm in the ESTOC station, lower than that of other validation groups. 405 

The RMSE between FFNN2 outputs and independent observations was 16.15 μatm in 406 

the BATS station and 14.51 μatm in the ESTOC station. For the group FFNN3, the 407 

RMSE was 13.09 μatm in the BATS station and 13.01 μatm in the ESTOC station. All 408 

results were extremely close to the independent observations, but the RMSE and MAE 409 

of FFNN1 were lower. Similar with the situation in the HOT station, the FFNN1 was 410 

most close and the FFNN3 second. Based on the better performance of FFNN1, in 411 

which the predicators selected by stepwise FFNN algorithm were used, we may 412 

conclude that the stepwise FFNN algorithm can effectively find better combination of 413 

predictors to fit the diver of surface ocean pCO2 and obtained lower error. 414 
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 415 

Figure 8. Validation based on independent observation from time series stations. a) and b): the 416 

Hawaii Ocean Time-series (HOT) (Dore et al., 2009); c) and d): the Bermuda Atlantic Time-series 417 

Study (BATS) (Bates, 2007); e) and f): the European Station for Time Series in the Ocean Canary 418 

Islands (ESTOC) (González-Dávila and Santana-Casiano, 2009) time series station. FFNN1 was 419 

based on predictors selected by the stepwise-FFNN algorithm. FFNN2 and FFNN3 were based on 420 

predictors from Landschuetzer et al., 2014 and Denvil-Sommer et al., 2019 respectively. 421 

SOCATv2020 represents the monthly mean pCO2 of SOCAT observations in the corresponding 422 

grids of each time series station. 423 

3.5 Climatological spatial distribution 424 

The climatological average distribution of pCO2 suggested a significant spatial 425 

variability (Fig. 9), which is consistent with the average distribution of SOCAT 426 
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observations. In the Pacific Ocean, the high pCO2 areas showed by the stepwise-FFNN 427 

product (Fig. 9b), including the equatorial areas, east temperate areas and north 428 

subpolar areas, were highly consistent with the SOCAT datasets (Fig. 9a). Similarly, the 429 

distribution of pCO2 in the Atlantic Ocean and the Indian Ocean was also close. 430 

However, the stepwise-FFNN product suggested lower pCO2 average values in the 431 

Arctic and higher values in the Southern Ocean near the Antarctic continent. Compared 432 

with previous climatology product (Landschützer et al., 2020), the global distribution 433 

pattern of surface ocean pCO2 was basically well consistent. Inconsistent spatial 434 

distribution also existed in the Arctic and parts of the Southern Ocean near the Antarctic 435 

continent. The differences between stepwise-FFNN product and previous climatology 436 

product may be caused by differences in methods or SOCAT dataset versions used. 437 

While lower average values of the SOCAT dataset in the Southern Ocean may be caused 438 

by the undersampling in winter. The global spatial distribution pattern of the stepwise 439 

FFNN pCO2 product was basically well consistent with previous climatology product 440 

and SOCAT dataset, suggesting that pCO2 predicting based on regional different 441 

predictors selected by the stepwise FFNN algorithm was credible. 442 
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 443 

Figure 9. Comparison between long term average of a): SOCAT v2020 dataset, b): the stepwise 444 

FFNN pCO2 product and c): previous climatology product adapted from Landschützer et al., 2020. 445 
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4. Conclusions 446 

 A stepwise FFNN algorithm was constructed to decreasing the predicating error in 447 

the surface ocean pCO2 mapping by finding better combinations of pCO2 predicators in 448 

each biogeochemical province defined by SOM method. Comparing with the 449 

performance of FFNN based on predicators same with previous researches, the RMSE 450 

decreased when using predicators selected by the stepwise FFNN algorithm in all 451 

provinces, suggesting that the stepwise FFNN algorithm was capable to find better 452 

combination of predicators. In addition, validation based on independent observations 453 

from HOT, BATS and ESTOC time series stations also proved the better performance 454 

of FFNN based on predicators selected by the stepwise FFNN algorithm. We further 455 

decreased the MAE and RMSE of global estimates to 11.32 and 17.99 µatm by 456 

improving the number of neurons in the hidden layer of FFNN. Then a monthly 1°×1° 457 

gridded global open-oceanic surface ocean pCO2 product from January 1992 to August 458 

2019 was constructed, based improved FFNN size and the predicators selected by 459 

stepwise FFNN algorithm. In this study, regional specific combination of predicators 460 

was first applied in the global surface ocean pCO2 mapping. The result of the stepwise 461 

FFNN algorithm was also capable for analyzes of driving based on the ranking of 462 

relative importance of each predicator. The more important predicator, which played a 463 

more important role in decreasing the predicting error, will be selected earlier and listed 464 

at the front of the recommended predicator list. In the future work, the stepwise FFNN 465 

algorithm will be attempted in the mapping of other parameters, such as total alkalinity 466 

and pH, to provide more sufficient data support for studies on ocean acidification and 467 

carbon cycling. 468 
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The stepwise FFNN algorithm (as a .m file for MATLAB) and the global 1°×1° 470 

gridded surface ocean pCO2 product since from January 1992 to August 2019 (as a 471 

NetCDF file) generated during this study is available from the Institute of Oceanology 472 

of the Chinese Academy of Sciences Marine Science Data Center at 473 
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