1 Labilization and diversification of pyrogenic dissolved organic matter by

2 microbes

Aleksandar I. Goranov^{1,*}, Andrew S. Wozniak², Kyle W. Bostick^{3,†}, Andrew R. Zimmerman³, Siddhartha
 Mitra⁴, and Patrick G. Hatcher¹

⁶
⁷ ¹Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA, USA
²School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, ewes, DE, USA
³Department of Geological Sciences, University of Florida, Gainesville, FL, USA
⁴Department of Geological Sciences, East Carolina University, Greenville, NC, USA

Correspondence to: Patrick G. Hatcher (<u>phatcher@odu.edu</u>)

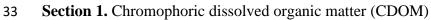

Supplement

Table of Contents

22	Section 1. Chromophoric dissolved organic matter (CDOM) (Fig. S1)	2
23	Section 2. Presence/Absence analysis of FT-ICR-MS data (Figs. S2-4)	3
24	Section 3. H/C versus Molecular Weight analysis (Figs. S5-8)	6
25	Section 4. Bio-resistant formulas evaluation (Fig. S9)	10
26	Section 5. Comparison of bio-produced formulas with marine DOM samples (Table S1)	11
27	Section 6. Analysis of Variance (ANOVA) of bio-produced peptide-like organic matter (Table S2)	12
28	Section 7. Peptide sequences (Table S3)	13
29	Section 8. Kendrick Mass Defect analysis plots of bio-produced formulas (Fig. S10-12)	15
30	Section 9. Correlation analysis (Table S4)	18
31	References	19

^{*} Current Address: Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA

[†] Current Address: Fugro GeoServices, 6100 Hillcroft Avenue, Houston, TX, USA

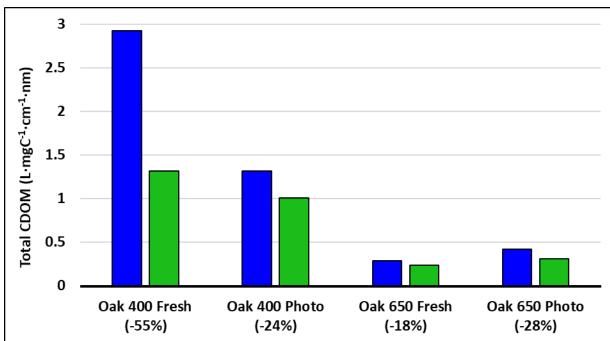
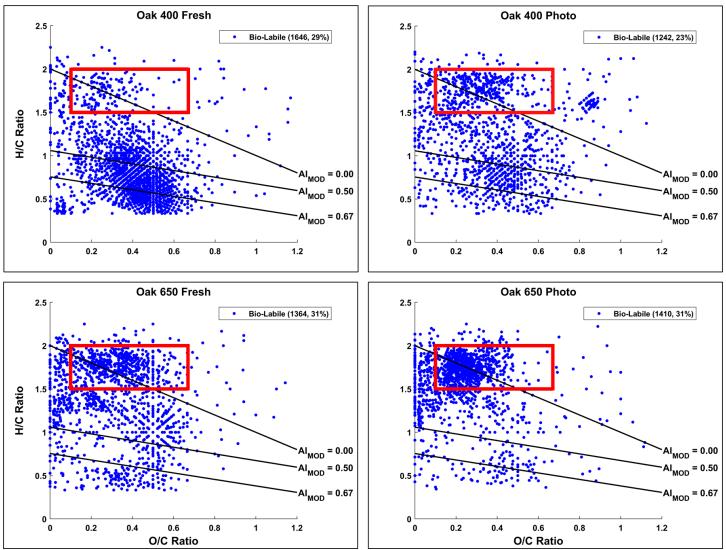
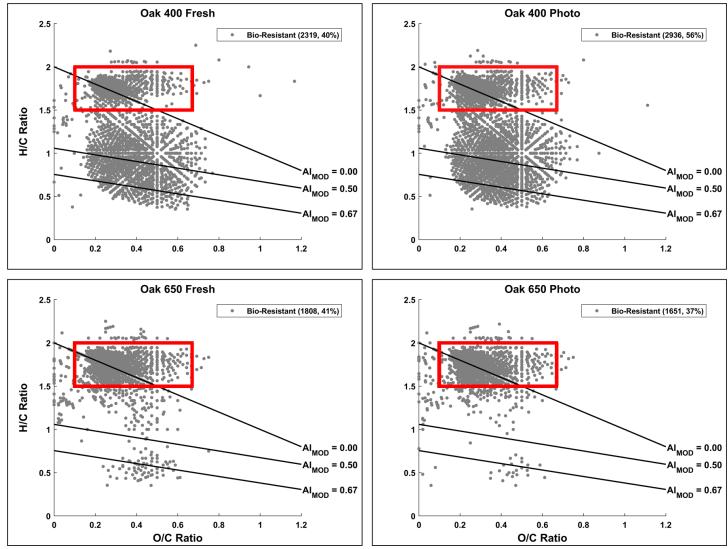
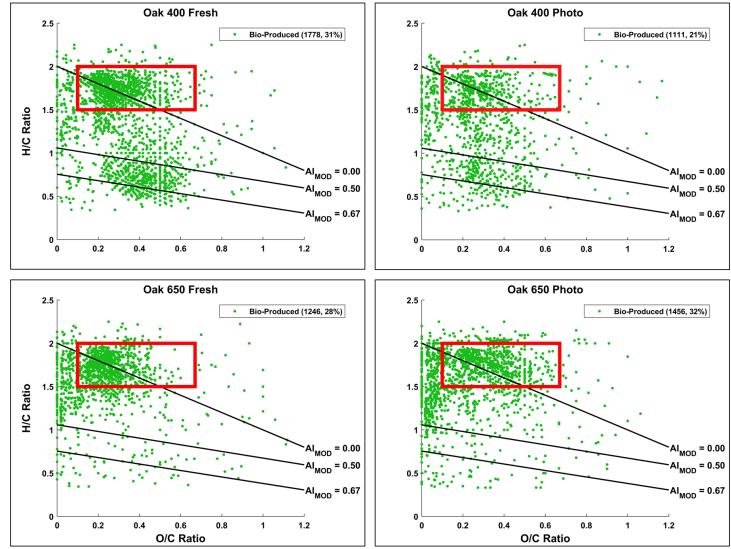




Figure S1. Total chromophoric (colored) dissolved organic matter (CDOM) content of pyDOM leachates before
(blue) and after (green) 10-day biotic incubations. Total CDOM content is reported as the integrated carbonnormalized absorbance from 250 – 450 nm (Helms et al., 2008). The percent loss of CDOM for each leachate is
shown as percentage under the label of each leachate.


- 50

O/C Ratio
Figure S2. Van Krevelen diagrams of bio-labile formulas identified in the four pyDOM samples using
presence/absence approach (Sleighter et al., 2012). The number of formulas and the corresponding percentage
(relative to total number of formulas in the two samples being compared) are shown in the legends. The black
lines indicate modified aromaticity index cutoffs (AI_{MOD}; Koch and Dittmar, 2006, 2016), and the red box
indicates the peptide region (valid only for N-containing formulas).

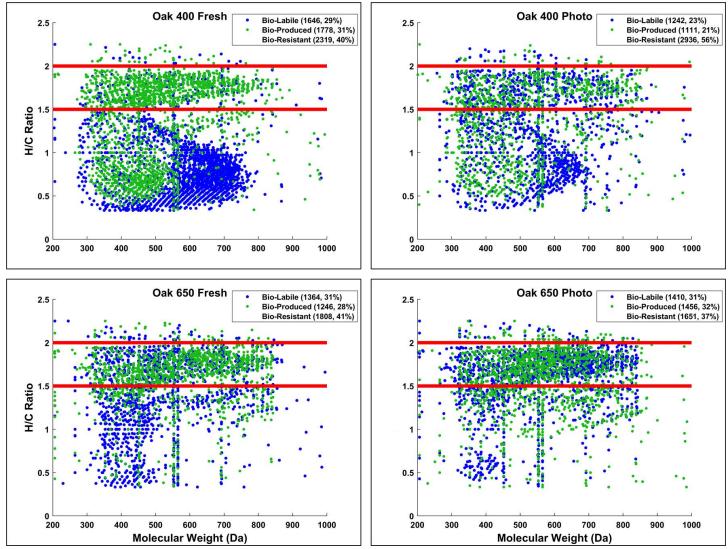


Figure S3. Van Krevelen diagrams of **bio-resistant** formulas identified in the four pyDOM samples using presence/absence approach (Sleighter et al., 2012). The number of formulas and the corresponding percentage (relative to total number of formulas in the two samples being compared) are shown in the legends. The black lines indicate modified aromaticity index cutoffs (AI_{MOD}; Koch and Dittmar, 2006, 2016), and the red box indicates the peptide region (valid only for N-containing formulas).

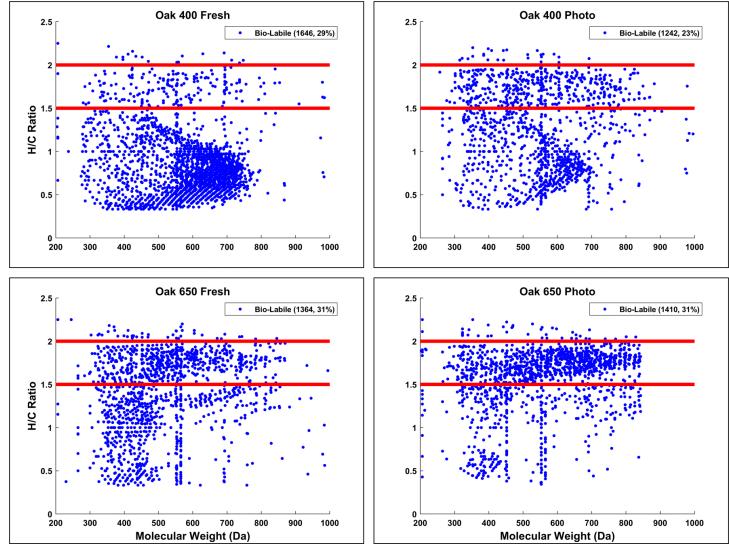
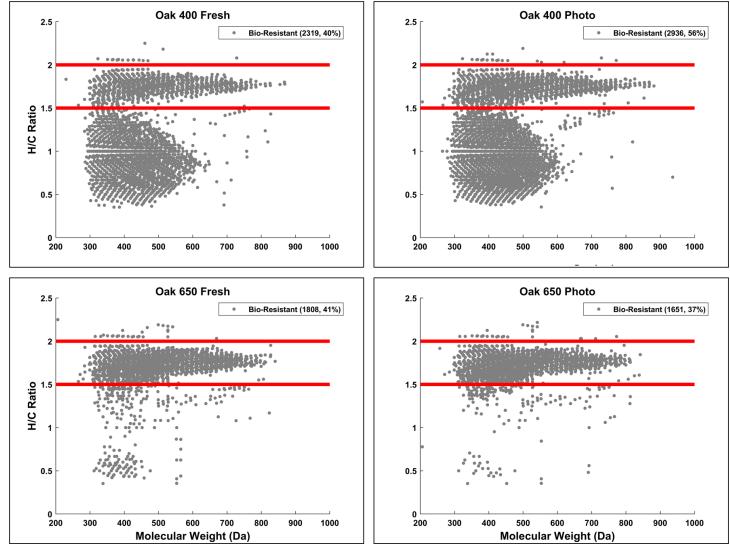
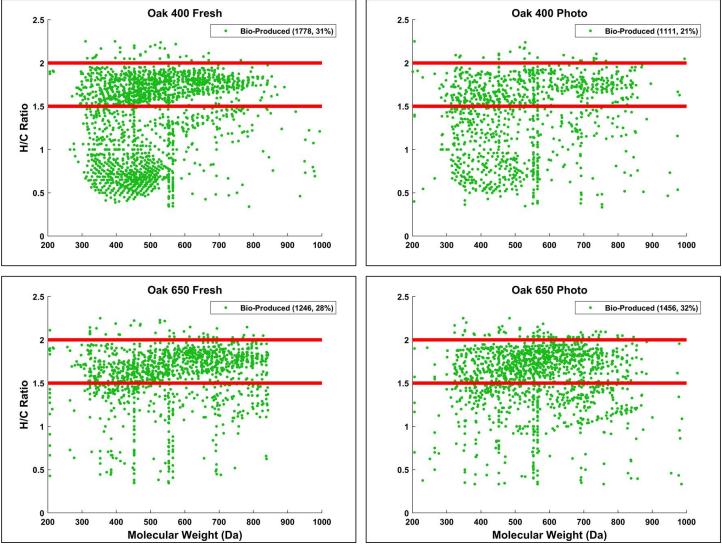


Figure S4. Van Krevelen diagrams of **bio-produced** formulas identified in pyDOM samples using presence/absence approach (Sleighter et al., 2012). The number of formulas and the corresponding percentage (relative to total number of formulas in the two samples being compared) are shown in the legends. The black lines indicate modified aromaticity index cutoffs (AI_{MOD}; Koch and Dittmar, 2006, 2016), and the red box indicates the peptide region (valid only for N-containing formulas).

125 Section 3. H/C versus Molecular Weight analysis126



Molecular Weight (Da)
Figure S5. Hydrogen-to-carbon (H/C) ratio versus molecular weight plots of microbially incubated pyDOM leachates. Formulas are classified as bio-labile (molecular formulas only found in the "killed" control (Fresh or Photo) pyDOM leachates) and bio-produced (formulas that are only found in the bio-incubated samples).
Formulas that are present in both the "killed" control and bio-incubated samples are operationally classified as bio-resistant and not shown for clarity. These classes are also individually plotted on Figs. S6-8. The number of formulas of each of these pools is shown in the legends (along with corresponding percentages). The red lines indicate where peptide-like formulas would plot.



135

Figure S6. Hydrogen-to-carbon (H/C) ratio versus molecular weight plots of the **bio-labile** formulas. The number of formulas and the corresponding percentage (relative to total number of formulas in the two samples being compared) are shown in the legends. The red lines indicate where peptide-like formulas would plot.

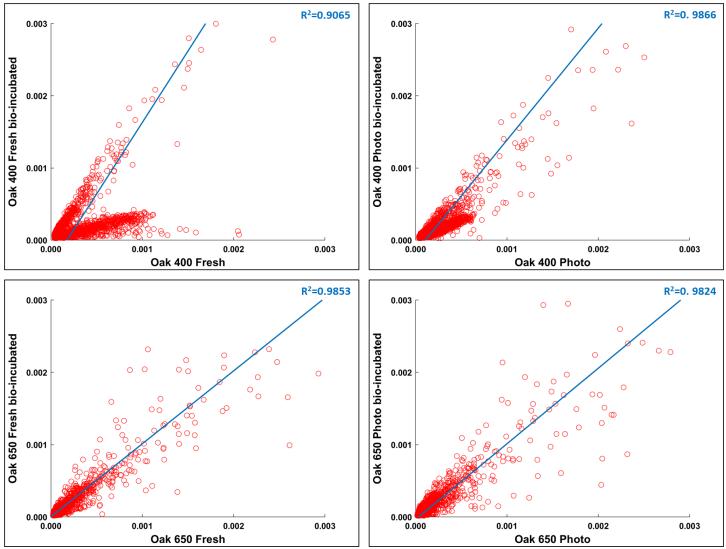


Figure S7. Hydrogen-to-carbon (H/C) ratio versus molecular weight plots of the **bio-resistant** formulas. The number of formulas and the corresponding percentage (relative to total number of formulas in the two samples being compared) are shown in the legends. The red lines indicate where peptide-like formulas would plot.

Molecular Weight (Da)
 Figure S8. Hydrogen-to-carbon (H/C) ratio versus molecular weight plots of the bio-produced formulas. The number of formulas and the corresponding percentage (relative to total number of formulas in the two samples being compared) are shown in the legends. The red lines indicate where peptide-like formulas would plot.

179 Section 4. Bio-resistant formulas evaluation

181 Oak 650 Fresh Oak 650 Photo
 182 Figure S9. Abundance scatterplots of the bio-resistant formulas following Sleighter et al. (2012). This approach
 183 evaluates the similarity in relative abundance of each common formula among the control and its corresponding
 184 bio-incubated sample. A high R² value indicates a high similarity in the abundance of these formulas.
 185

- **Section 5.** Comparison of bio-produced formulas with marine DOM samples

For this analysis, the bio-produced formulas after the four pyDOM incubations were combined into one master mass list (total of 4762 formulas). These formulas were searched in previously published molecular data to test whether or not biotic incubations of pyDOM produced marine-like DOM.

Table S1. Overlap of bio-produced formulas of pyDOM with marine DOM samples.

Comple Nome	Number of	Number of formulas in common with all
Sample Name	Formulas	bio-produced formulas of pyDOM
DS ^a	1752	4 (~0%)
GB ^a	1727	6 (~0%)
TP ^a	1303	4 (~0%)
CCB ^a	1079	4 (~0%)
OSC ^a	1189	4 (~0%)
DOM411 ^b	2402	3 (~0%)
DOM412 ^b	3524	6 (~0%)
DOM417 ^b	3312	3 (~0%)
DOM 1, RO/ED ^{c,d}	1697	249 (~5%)
DOM 1 rep, RO/ED ^{c,d}	1756	272 (~6%)
DOM 2, RO/ED ^{c,d}	1918	223 (~5%)
DOM 2 rep, RO/ED ^{c,d}	1950	219 (~5%)
DOM 3, PPL ^d	2226	223 (~5%)
DOM 3 rep, PPL ^d	2256	235 (~5%)
DOM 4, PPL ^d	2325	246 (~5%)
DOM 4 rep, PPL ^d	2429	244 (~5%)

^aSleighter and Hatcher (2008)

^bUnpublished data from samples obtained during the WACS-2 cruise (R/V Knorr) as part of the Western Atlantic

- 207 Climate Study (WACS).
- 208 ^cChen et al. (2014)
- d Sleighter et al. (2012)

Section 6. Analysis of Variance (ANOVA) of bio-produced peptide-like organic matter by the pyDOM

samples, as well as by the sucrose reference sample.

231

Table S2. Molecular metrics of peptide-like bio-produced formulas (N-containing, $1.5 \le H/C \le 2.0$, $0.1 \le O/C \le 0.67$) found in pyDOM samples after the 10-day incubation. The metrics below are reported as number-weighed mean \pm standard deviation. The molecular metrics colored in **red** correspond to the means that were found to be significantly different (p < 0.05) from at least one of the other four means (evaluation done by ANOVA followed by Scheffé's post-hoc test).

by Scherre's post-	Oak 400 Fresh	Oak 400 Photo	Oak 650 Fresh	Oak 650 Photo	Sucrose
Nhow of		Oak 400 I 11010	Oak USU FICSH		Sucrose
Number of	1770	1111	1046	1450	1220
bio-produced	1778	1111	1246	1456	1339
formulas					
Number of					
peptide-like	541 (30%)	261 (23%)	497 (40%)	314 (22%)	160 (12%)
bio-produced	011 (0070)	201 (2070)		511 (2270)	100 (12/0)
formulas					
Number of					
identified	14	5	11	18	2
oligopeptides					
C number	28.5 ± 7.6	30.9 ± 10.9	30.7 ± 7.6	30.3 ± 8.7	31.7 ± 9.6
H number	49.8 ± 14.4	54 ± 20.6	53.7 ± 14.8	54 ± 16.5	55.4 ± 18.5
O number	7.8 ± 2.6	7.8 ± 3.2	7.8 ± 2.9	9.0 ± 2.8	7.9 ± 3.1
N number	2.4 ± 1.1	2.8 ± 1.3	2.5 ± 1.2	2.4 ± 1.2	2.4 ± 1.3
O/C ratio	$\boldsymbol{0.28 \pm 0.08}$	0.26 ± 0.09	0.25 ± 0.08	0.31 ± 0.10	0.25 ± 0.08
H/C ratio	1.74 ± 0.12	1.74 ± 0.13	1.74 ± 0.13	1.78 ± 0.16	1.74 ± 0.14
N/C ratio	0.085 ± 0.037	0.094 ± 0.045	0.082 ± 0.038	0.083 ± 0.045	0.078 ± 0.042
H/N ratio	24.8 ± 11.4	23.5 ± 13.4	26 ± 13.2	28.6 ± 16.7	29.4 ± 16
O/N ratio	4.0 ± 2.2	3.5 ± 2.2	3.8 ± 2.5	5.1 ± 3.5	4.3 ± 2.7
$\mathbf{M}\mathbf{W}^{\mathrm{a}}$	550 ± 140	589 ± 188	582 ± 147	596 ± 143	597 ± 172
DBE ^b	5.81 ± 1.78	6.28 ± 2.17	6.13 ± 2.06	5.51 ± 2.59	6.2 ± 2.33
DBE/C ^c	0.211 ± 0.065	0.215 ± 0.071	0.206 ± 0.069	0.189 ± 0.083	0.203 ± 0.071
DBE-O ^d	-2.27 ± 2.75	-1.75 ± 3.52	-1.90 ± 3.55	-3.82 ± 4.26	-1.86 ± 3.65
AI _{MOD} ^e	0.077 ± 0.05	0.090 ± 0.052	0.083 ± 0.049	0.089 ± 0.057	0.116 ± 0.049
NOSC ^f	-0.929 ± 0.239	-0.933 ± 0.259	-0.984 ± 0.227	-0.903 ± 0.269	-1.002 ± 0.218

237

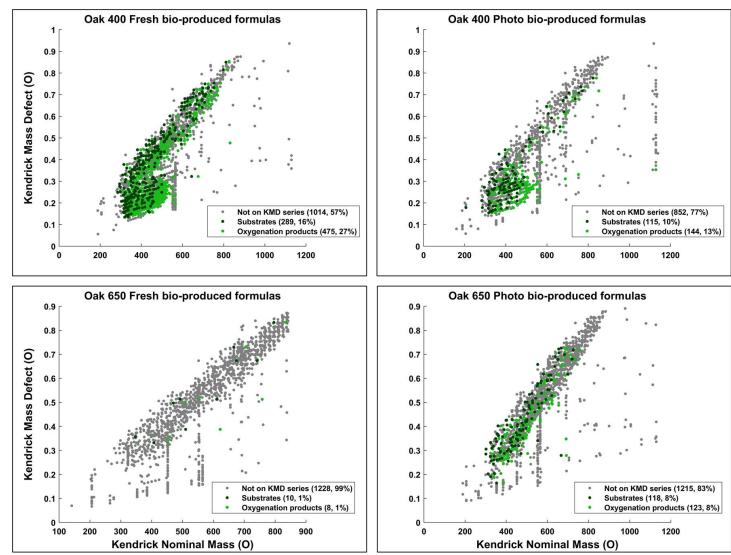
^aMolecular Weight (Da), ^bDouble-bond equivalency, ^cCarbon-normalized DBE, ^dOxygen-corrected DBE

^eModified Aromaticity Index, ^fNominal Oxidation State of Carbon

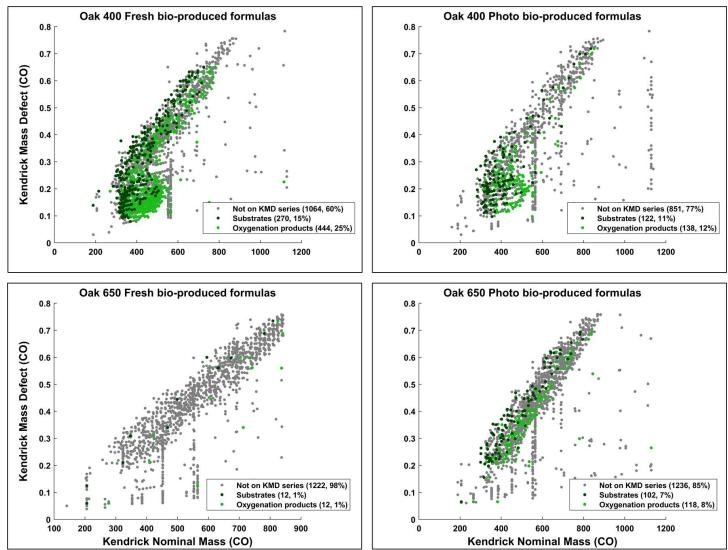
239 The proteinaceous formulas in the four samples were evaluated using one-way ANOVA to extract the variability 240 in their composition. Averages of molecular parameters were derived from the formula lists – average number of 241 elements (C, H, O, N), elemental ratios (O/C, H/C, N/C, H/N, O/N), molecular weight, double-bond equivalencies 242 (DBE, DBE/C, DBE-O), modified aromaticity index (AI_{MOD}) and nominal oxidation state of carbon (NOSC). 243 While the peptide-like formulas seem similar when plotted in the vK space (Figs. 1 and S3), significant differences 244 (p < 0.05) in the means of all molecular parameters were observed. When each metric was evaluated using 245 246 ANOVA, there was at least one sample among the five being compared that had a significantly different mean. Using Scheffe's post-hoc test, it was observed that it was not the same sample that was statistically different each 247 248 time, which indicated the vast diversity of bio-produced peptide-like molecules after these five incubations. 249

250 Section 7. Oligopeptide Sequences

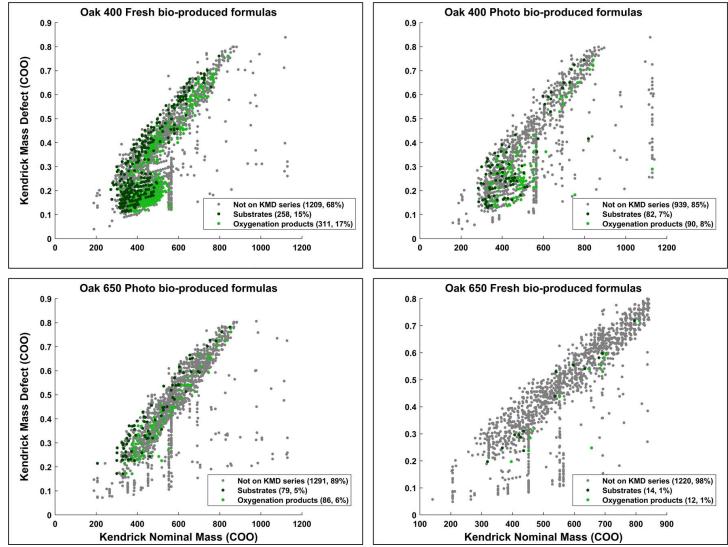
252	Table S3. Oligope	ptide sequence	s found in the bio-p	produced formulas	of each pyDOM sample.
-----	-------------------	----------------	----------------------	-------------------	-----------------------


Sample	Measured m/z	Amino Acid	Molecular weight	Molecular		
Oak 400 Fresh	201.1246	combination [#]	(Da) 202.1317	Formula		
Oak 400 Fresh	356.2192	OLL	357.2264	$\frac{C_9H_{18}O_3N_2}{C_2-H_2O_2N_2}$		
		OLL OLLV	456.2948	$\frac{C_{17}H_{31}O_5N_3}{C_1H_2O_1N_3}$		
Oak 400 Fresh	455.2874			$\frac{C_{22}H_{40}O_6N_4}{C_6H_6O_8N_4}$		
Oak 400 Fresh	512.3457	ALLVV	513.3526	C ₂₅ H ₄₇ O ₆ N ₅		
Oak 400 Fresh	512.3457	GLLLV	513.3526	C ₂₅ H ₄₇ O ₆ N ₅		
Oak 400 Fresh	512.3457		513.3526	C ₂₅ H ₄₇ O ₆ N ₅		
Oak 400 Fresh	514.3251	ALLLS	515.3319	C ₂₄ H ₄₅ O ₇ N ₅		
Oak 400 Fresh	514.3251	ALLTV	515.3319	C ₂₄ H ₄₅ O ₇ N ₅		
Oak 400 Fresh	514.3251	GLLLT	515.3319	C ₂₄ H ₄₅ O ₇ N ₅		
Oak 400 Fresh	514.3251	LSVVV	515.3319	$C_{24}H_{45}O_7N_5$		
Oak 400 Fresh	514.3251	TVVVV	515.3319	$C_{24}H_{45}O_7N_5$		
Oak 400 Fresh	526.3607	ALLLV	527.3683	$C_{26}H_{49}O_6N_5$		
Oak 400 Fresh	526.3607	GLLLL	527.3683	$C_{26}H_{49}O_6N_5$		
Oak 400 Fresh	526.3607	LVVVV	527.3683	$C_{26}H_{49}O_6N_5$		
Oak 400 Photo	341.2195	LPX	342.2267	$C_{16}H_{30}O_4N_4$		
Oak 400 Photo	341.2195	KPV	342.2267	$C_{16}H_{30}O_4N_4$		
Oak 400 Photo	350.1836	HPV	351.1907	$C_{16}H_{25}O_4N_5$		
Oak 400 Photo	528.3188	LLWV	529.3264	$C_{28}H_{43}O_5N_5$		
Oak 400 Photo	552.3768	LLLPV	553.3839	$C_{28}H_{51}O_6N_5$		
Oak 650 Fresh	498.3293	AALLL	499.3370	$C_{24}H_{45}O_6N_5$		
Oak 650 Fresh	498.3293	ALVVV	499.3370	$C_{24}H_{45}O_6N_5$		
Oak 650 Fresh	498.3293	GLLVV	499.3370	$C_{24}H_{45}O_6N_5$		
Oak 650 Fresh	512.3455	ALLVV	513.3526	$C_{25}H_{47}O_6N_5$		
Oak 650 Fresh	512.3455	GLLLV	513.3526	$C_{25}H_{47}O_6N_5$		
Oak 650 Fresh	512.3455	VVVVV	513.3526	$C_{25}H_{47}O_6N_5$		
Oak 650 Fresh	552.3042	DLLPP	553.3112	$C_{26}H_{43}O_8N_5$		
Oak 650 Fresh	552.3042	ELPPV	553.3112	C ₂₆ H ₄₃ O ₈ N ₅		
Oak 650 Fresh	552.3042	OOLPV	553.3112	$C_{26}H_{43}O_8N_5$		
Oak 650 Fresh	552.3042	OLUVV	553.3112	$C_{26}H_{43}O_8N_5$		
Oak 650 Fresh	552.3042	LLPUT	553.3112	$C_{26}H_{43}O_8N_5$		
Oak 650 Photo	242.1508	KP	243.1583	$C_{11}H_{21}O_3N_3$		
Oak 650 Photo	342.2034	OLV	343.2107	$C_{16}H_{29}O_5N_3$		
Oak 650 Photo	356.2190	OLL	357.2264	$C_{17}H_{31}O_5N_3$		
Oak 650 Photo	552.2676	ALSTY	553.2748	$C_{25}H_{39}O_9N_5$		
Oak 650 Photo	552.2676	ATTYV	553.2748	C25H39O9N5		
Oak 650 Photo	552.2676	DOLPP	553.2748	C ₂₅ H ₃₉ O ₉ N ₅		
Oak 650 Photo	552.2676	DLPUV	553.2748	C ₂₅ H ₃₉ O ₉ N ₅		

Oak 650 Photo	552.2676	EOPPV	553.2748	$C_{25}H_{39}O_9N_5$
Oak 650 Photo	552.2676	EPUVV	553.2748	$C_{25}H_{39}O_9N_5$
Oak 650 Photo	552.2676	GLTTY	553.2748	C25H39O9N5
Oak 650 Photo	552.2676	OOOPV	553.2748	$C_{25}H_{39}O_9N_5$
Oak 650 Photo	552.2676	OOUVV	553.2748	C25H39O9N5
Oak 650 Photo	552.2676	OLPUT	553.2748	C25H39O9N5
Oak 650 Photo	552.2676	LLUUS	553.2748	$C_{25}H_{39}O_9N_5$
Oak 650 Photo	552.2676	LFSST	553.2748	$C_{25}H_{39}O_9N_5$
Oak 650 Photo	552.2676	LUUTV	553.2748	C25H39O9N5
Oak 650 Photo	552.2676	FSTTV	553.2748	$C_{25}H_{39}O_9N_5$
Oak 650 Photo	552.2676	SSYVV	553.2748	C25H39O9N5
			· · · ·	


Sucrose	340.1880	OLP	341.1951	$C_{16}H_{27}O_5N_3$		
Sucrose	340.1880	LUV	341.1951	$C_{16}H_{27}O_5N_3$		
[#] Combinations can be of any order						

253 [#]C


Section 8. Kendrick Mass Defect Analysis Plots of bio-produced formulas

Kendrick Nominal Mass (O)
 Figure S10. Kendrick Mass Defect versus Kendrick Nominal Mass plots for the Oxygen (O) series within the bio-produced formulas of the four pyDOM samples. Formulas not part of the O KMD series are colored in gray.
 Formulas in dark green are substrates with their oxygenation products colored in light green. The number of formulas of each of these pools are shown in the legends (along with corresponding percentages).

309 Kendrick Nominal Mass (CO)
 310 Figure S11. Kendrick Mass Defect versus Kendrick Nominal Mass plots for the Carbonyl (CO) series within the
 311 bio-produced formulas of the four pyDOM samples. Formulas not part of the CO KMD series are colored in gray.
 312 Formulas in dark green are substrates with their oxygenation products colored in light green. The number of
 313 formulas of each of these pools are shown in the legends (along with corresponding percentages).

317 Kendrick Nominal Mass (COO)
 318 Figure S12. Kendrick Mass Defect versus Kendrick Nominal Mass plots for the Carboxyl (COO) series within
 319 the bio-produced formulas of the four pyDOM samples. Formulas not part of the COO KMD series are colored
 320 in gray. Formulas in dark green are substrates with their oxygenation products colored in light green. The
 321 number of formulas of each of these pools are shown in the legends (along with corresponding percentages).

- Section 9. Correlation analysis

- **Table S4.** Data used for the correlation analysis between molecular diversity (as determined by FT-ICR-MS) and 1D NMR (Bostick et al., 2020). Coefficients of determination (R^2 values) are listed for each functional group in the corresponding color.

	Oak 400 Fresh	Oak 400 Photo	Oak 650 Fresh	Oak 650 Photo
Number of bio-labile formulas	1646	1242	1364	1410
Number of bio-produced formulas	1778	1111	1246	1456
Aldehyde (O=CH) R ² =0.1263, R ² =0.2374	3.18%	4.52%	10.99%	4.24%
Aryl R ² =0.0094, R ² =0.0668	9.87%	8.47%	20.65%	7.54%
Olefinic (C=C) R ² =0.9472, R ² =0.9978	7.64%	15.60%	14.31%	11.41%
HC-O-R R ² =0.4217, R ² =0.3385	6.75%	23.64%	4.57%	9.41%
HC-C=Y R ² =0.0201, R ² =0.0511	12.33%	13.14%	4.49%	9.13%
HC-C-C-X R ² =0.4639, R ² =0.3968	3.98%	5.99%	6.52%	7.38%
Methylene (CH ₂) R ² =0.1287, R ² =0.0997	6.46%	7.85%	11.57%	12.65%
Methyl (CH ₃) R ² =0.0653, R ² =0.1664	0.89%	0.84%	0.25%	0.93%
Formate (HCOO ⁻) R ² =0.0033, R ² =0.0124	10.57%	3.51%	24.18%	33.91%
Methanol (CH ₃ OH) R ² =0.9418, R ² =0.9279	3.69%	0.47%	0.72%	1.31%
Acetate (CH ₃ COO ⁻) R ² =0.4217, R ² =0.3909	34.63%	15.97%	1.75%	2.10%

References

- Bostick, K. W., Zimmerman, A. R., Goranov, A. I., Mitra, S., Hatcher, P. G., and Wozniak, A. S.: Biolability of
 fresh and photodegraded pyrogenic dissolved organic matter from laboratory-prepared chars, ESSOAr
 [pre-print], https://doi.org/10.1002/essoar.10503766.1, 31 July 2020.
- Chen, H. M., Stubbins, A., Perdue, E. M., Green, N. W., Helms, J. R., Mopper, K., and Hatcher, P. G.: Ultrahigh
 resolution mass spectrometric differentiation of dissolved organic matter isolated by coupled reverse
 osmosis-electrodialysis from various major oceanic water masses, Marine Chemistry, 164, 48-59,
 10.1016/j.marchem.2014.06.002, 2014.
- Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper, K.: Absorption spectral slopes
 and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved
 organic matter, Limnology and Oceanography, 53, 955-969, https://doi.org/10.4319/lo.2008.53.3.0955,
 2008.
- Koch, B. P., and Dittmar, T.: From mass to structure: An aromaticity index for high-resolution mass data of
 natural organic matter, Rapid Communications in Mass Spectrometry, 20, 926-932,
 https://doi.org/10.1002/rcm.2386, 2006.
- Koch, B. P., and Dittmar, T.: From mass to structure: An aromaticity index for high-resolution mass data of
 natural organic matter (Erratum), Rapid Communications in Mass Spectrometry, 30, 1,
 https://doi.org/10.1002/rcm.7433, 2016.
- Sleighter, R. L., Chen, H., Wozniak, A. S., Willoughby, A. S., Caricasole, P., and Hatcher, P. G.: Establishing a
 measure of reproducibility of ultrahigh-resolution mass spectra for complex mixtures of natural organic
 matter, Analytical Chemistry, 84, 9184-9191, https://doi.org/10.1021/ac3018026, 2012.
- Sleighter, R. L., and Hatcher, P. G.: Molecular characterization of dissolved organic matter (DOM) along a river
 to ocean transect of the lower Chesapeake Bay by ultrahigh resolution electrospray ionization Fourier
 transform ion cyclotron resonance mass spectrometry, Marine Chemistry, 110, 140-152,
 10.1016/j.marchem.2008.04.008, 2008.

371