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Abstract 14 

 15 

With the increased occurrence of forest fires around the world, interest in the chemistry of pyrogenic 16 

organic matter (pyOM) and its fate in the environment has increased. Upon leaching from soils by rain events, 17 

significant amounts of dissolved pyOM (pyDOM) enter the aquatic environment and interact with microbial 18 

communities that are essential for cycling organic matter within the different biogeochemical cycles. To evaluate 19 

the bio-reactivity of pyDOM, aqueous extracts of laboratory-produced chars were incubated with soil microbes 20 

and the molecular changes to the composition of pyDOM were probed using ultrahigh resolution mass 21 

spectrometry (Fourier transform – ion cyclotron resonance – mass spectrometry). Given that photo-degradation 22 

also affects the composition and reactivity of pyDOM during terrigenous-to-marine export, the effects of 23 

photochemistry were also evaluated in the context of the bio-reactivity of pyDOM.  24 

 Ultrahigh resolution mass spectrometry revealed that, after incubation, many different (both aromatic and 25 

aliphatic) compounds were degraded, and new labile compounds, 22 – 40 % of which were peptide-like, were 26 

produced. This indicated that a portion of pyDOM has been labilized into microbial biomass during the 27 

incubations. Fluorescence excitation-emission matrix spectra revealed that some fraction of these new molecules 28 

is associated with fluorophores from proteinaceous and/or autochthonous/microbial biomass origin. Two-29 

dimensional 1H-1H total correlation NMR spectroscopy identified a peptidoglycan-like backbone within the 30 

microbially produced compounds. These results are consistent with previous observations of nitrogen from 31 

peptidoglycans within the soil and ocean nitrogen cycles. 32 

Interestingly, the exact nature of the bio-produced organic matter was found to vary drastically among 33 

samples indicating that the used microbial consortium may produce different exudates based on the composition 34 

of the initial pyDOM. Another potential explanation for the vast diversity of molecules is that microbes only 35 

consume low molecular weight compounds, but they also produce reactive oxygen species (ROS), which initiate 36 

oxidative and recombination reactions that produce new molecules. The observed microbially-mediated 37 

diversification of pyDOM suggests that pyDOM contributes to the observed large complexity of natural organic 38 

matter. More broadly, pyDOM can be substrate for microbial growth and be incorporated in environmental food 39 

webs.  40 

 41 

1 Introduction 42 

 43 

Pyrogenic organic matter (pyOM), the carbonaceous solid residue that is left after biomass burning (e.g., 44 

forest fires, biochar production), has been gaining attention in recent years as an important active component of 45 
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the global biogeochemical cycles. Compositionally, pyOM is mainly comprised of condensed aromatic 46 

compounds (ConAC) of various degrees of condensation and functionalization (Masiello, 2004; Schneider et al., 47 

2010; Wagner et al., 2018). These molecules have been found in various environmental matrices such as soils 48 

and sediments (Schmidt and Noack, 2000; Skjemstad et al., 2002; Reisser et al., 2016) and atmospheric aerosols 49 

(Wozniak et al., 2008; Bao et al., 2017). In these environmental matrices, ConAC were originally thought to be 50 

exclusively stable (“recalcitrant”) due to their highly condensed character (Goldberg, 1985; Masiello and Druffel, 51 

1998). However, more and more studies report the presence of pyrogenic molecules in different aquatic 52 

environments (Hockaday et al., 2006; Dittmar and Paeng, 2009; Roebuck et al., 2017; Wagner et al., 2017; Li et 53 

al., 2019). These studies support the estimates that riverine systems annually export large amounts of pyrogenic 54 

dissolved organic matter (pyDOM) to the global ocean (Dittmar et al., 2012; Jaffé et al., 2013; Wang et al., 2016; 55 

Marques et al., 2017; Jones et al., 2020). During export, pyDOM is likely altered by various processes resulting 56 

in degradation and alteration of its physico-chemical characteristics (Masiello, 2004; Coppola et al., 2019; 57 

Wagner et al., 2019). Using laboratory-prepared chars and conservative assumptions, Bostick et al. (2018) 58 

approximated that 86% of the leached pyDOM is degradable (e.g., mineralizable to CO2), which indicates that 59 

pyDOM is a very active component within the global carbon cycle, as previously suggested (Druffel, 2004; 60 

Lehmann, 2007; Riedel et al., 2016).  61 

 In sunlit aquatic environments, photo-degradation is the most significant sink for the ConAC fraction of 62 

pyDOM (Stubbins et al., 2012). The photochemistry of ConAC and pyDOM has been studied utilizing either 63 

laboratory-prepared pyDOM (Ward et al., 2014; Fu et al., 2016; Li et al., 2019; Bostick et al., 2020b; Goranov et 64 

al., 2020; Wang et al., 2020) or ConAC-rich natural organic matter (Stubbins et al., 2010, 2012; Wagner and 65 

Jaffé, 2015). These studies have reported that ConAC are exceptionally photo-labile and they degrade through a 66 

series of oxygenation, ring-opening, and decarboxylation reactions leading to a pool of smaller aliphatic by-67 

products. Additionally, pyDOM photochemistry has been associated with the production of high fluxes of reactive 68 

oxygen species (ROS), important transients involved in the photo-degradation of pyDOM (Fu et al., 2016; Li et 69 

al., 2019; Goranov et al., 2020; Wang et al., 2020). These studies have contributed to a better understanding of 70 

the biogeochemical cycling of pyDOM in the presence of sunlight in the environment. Microbial (biotic) pathways 71 

are another degradative pathway with high potential for altering and/or mineralizing pyDOM, but they are far less 72 

understood.  73 

Biotic reworking of organic molecules is a key mechanism for producing the diverse molecular 74 

composition of natural organic matter (Lechtenfeld et al., 2015; Hach et al., 2020). Due to the highly condensed 75 

character of pyOM, it is often regarded as bio-recalcitrant, though several studies have shown that a fraction 76 

(about 0.5 to 10 %) is indeed bio-degradable (Kuzyakov et al., 2009, 2014; Zimmerman, 2010; Zimmerman et 77 

al., 2011). PyOM is mainly comprised of ConAC (Bostick et al., 2018; Wozniak et al., 2020), which contributes 78 

to its low bio-degradability (Zimmerman, 2010). By contrast, pyDOM is highly heterogeneous (Wozniak et al., 79 

2020), and in addition to ConAC, it contains numerous low molecular weight (LMW) species (e.g., acetate, 80 

methanol, formate; Bostick et al., 2018; Goranov et al., 2020) as well as various pyrogenic aliphatic compounds 81 

and inorganic nutrients (Hockaday et al., 2007; Mukherjee and Zimmerman, 2013; Goranov et al., 2020; Wozniak 82 

et al., 2020). The very solubility of pyDOM is imparted by the greater abundance of polar functional groups, 83 

which would also allow for greater microbial accessibility. To date, there is no study that evaluates the molecular-84 

scale bio-degradability of pyDOM. It is unknown whether and how (e.g., mechanistic pathways, kinetic rates) 85 

these different compound groups are bio-degraded.  86 

Additionally, there are concerns that leachates of fire-derived substances may be toxic due to the presence 87 

condensed and ligninaceous aromatics. It has been shown that cellulose- and pinewood-derived biochar water-88 

extracts (pyDOM of laboratory-made charcoals) inhibit the growth of cyanobacteria while pyDOM of lignin-89 

derived biochar has no inhibitory effects (Smith et al., 2016). The toxicity has been mainly attributed to 90 

polysubstituted phenols in the above-mentioned biochars. In natural systems, however, it is likely that other 91 

pyDOM components also play a role in controlling the bio-reactivity of pyDOM. An important very recent finding 92 
is that pyOM and pyDOM contain organochlorine compounds (both aliphatic and aromatic; Wozniak et al., 2020), 93 

which may enhance the toxicity of these pyrogenic substances. Thus, biotic incubations of pyDOM are needed to 94 

reveal if microbial growth can be sustained in a pyDOM/ConAC-rich environment. 95 
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 To explore these questions, we incubated aqueous biochar leachates with a soil-derived microbial 96 

consortium and evaluated the compositional changes to pyDOM using numerous analytical techniques. 97 

Laboratory-produced biochars can be considered model pyrogenic substances as they are similar to what is 98 

produced during forest fires in the environment (Santín et al., 2017) but have not experienced environmental 99 

aging which impacts their physico-chemical properties (Ascough et al., 2011). We have used oak wood because 100 

most of riverine dissolved organic matter (DOM) is exported from forested catchments (Hedges et al., 1997), and 101 

used two pyrolysis temperatures (400 and 650 OC) representative of forest fire temperatures (Santín et al., 2015, 102 

2016). As photochemistry has been shown to increase the bio-lability of various types of DOM (Kieber et al., 103 

1989; Lindell et al., 1995; Wetzel et al., 1995; Benner and Biddanda, 1998; Moran and Covert, 2003; Qualls and 104 

Richardson, 2003; Obernosterer and Benner, 2004; Abboudi et al., 2008; Chen and Jaffé, 2014; Antony et al., 105 

2018), we also incubated pyDOM that had been photo-irradiated. Previous studies of these pyDOM samples 106 

showed significant compositional and structural changes after photo-irradiation, which certainly implies different 107 

bio-reactivity (Bostick et al., 2020b; Goranov et al., 2020).  108 

In a parallel study of the same samples (Bostick et al., 2020a), we quantified the total organic carbon 109 

(TOC) loss, respired CO2, as well as the changes to the bulk structural composition as determined by one-110 

dimensional 1H nuclear magnetic resonance (NMR) spectroscopy. Additionally, in that study, 111 

benzenepolycarboxylic acids (BPCA) molecular markers were used to quantify the changes specific to the 112 

condensed (ConAC) fraction of pyDOM. It was found that pyDOM leachates derived from biochars of higher 113 

pyrolysis temperature (650 OC) were less bio-degradable than those from lower temperature (400 OC) leachates, 114 

and photo-irradiation increased the bio-lability of pyDOM. Over the 96-day incubation, up to 48% of the carbon 115 

was respired to CO2 following first-order kinetics, with LMW compounds (e.g., acetate, formate, methanol) being 116 

preferentially degraded. To elucidate the molecular-level changes taking place during the bio-incubation of 117 

pyDOM, and probe the various molecules that are being degraded or produced by soil biota, we examined these 118 

samples using ultrahigh resolution mass spectrometry (Fourier transform – ion cyclotron resonance – mass 119 

spectrometry, FT-ICR-MS), two-dimensional NMR, and fluorescence spectroscopy. The collective results from 120 

these two studies improve our understanding of the degradative pathways of pyDOM and ConAC in the 121 

environment and allow us to better interpret observations pertaining to terrigenous-to-marine transfers and global 122 

cycling of organic matter.  123 

 124 

2 Materials and Methods 125 

 126 

2.1  Preparation of pyDOM samples 127 

 128 

Two biochars were prepared by heating laurel oak wood (Quercus hemisphaerica) under N2 atmosphere 129 

at 400 and 650 OC for 3 hours. After grinding and sieving to particles of uniform size (0.25 - 2.00 mm), the chars 130 

were leached in 18.1 mΩ MilliQ laboratory-grade water (5 g in 500 mL) over 50 hours on a shaker table. The 131 

obtained pyDOM leachates, hereafter referred to as “Oak 400 Fresh” and “Oak 650 Fresh”, were filtered using 132 

0.2 µm Millipore GSWP mixed cellulose ester filters. Physico-chemical characteristics of similarly-produced 133 

solid chars and their leachates were reported in several previous studies (Zimmerman, 2010; Mukherjee et al., 134 

2011; Bostick et al., 2018; Wozniak et al., 2020). A fraction of each leachate was also subjected to photo-135 

irradiation for 5 days in a custom-made solar simulator equipped with Q-Lab Corporation UV-A lamps (295 – 136 

365 nm, λMAX = 340 nm, 40 watt) equivalent to natural photo-irradiation of 12 days. Photo-transformation rates, 137 

structural changes, photo-irradiation apparatus design, and other relevant information has been published 138 

previously (Bostick et al., 2020b; Goranov et al., 2020). Photo-irradiated pyDOM samples will be hereafter 139 

referred to as “Oak 400 Photo” and “Oak 650 Photo”. The four samples were diluted to a uniform TOC 140 

concentration of 4.7 mgC·L-1 prior to microbial incubation. 141 

 142 
2.2  Incubation of pyDOM 143 

 144 
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Microbial incubation was performed using a soil-derived microbial consortium as an inoculum. Soil from 145 

the Austin Cary Memorial Forest (Gainesville, FL) was chosen, because this area is frequently subjected to 146 

prescribed burns (Johns, 2016), and its soil microbes likely interact with pyOM and pyDOM on a regular basis. 147 

Taxonomic details of its soil microbial characteristics have been published previously (Khodadad et al., 2011). 148 

The collected soil was treated to remove roots and detritus, and its water-extract was centrifuged to obtain a pellet. 149 

The pellet was then dissolved in 10 mL MilliQ laboratory-grade water to obtain an inoculate, 100 L of which 150 

was used to spike 50 mL of each pyDOM substrate. Additionally, microbial nutrients (KH2PO4 and (NH4)2SO4) 151 

were provided following Zimmerman (2010) to support a healthy growth medium. Samples were incubated in 152 

gas-sealed amber vials on a shaker table at 28 ± 5 OC for 10 days in the dark. Using a double-needle assembly, 153 

CO2-free air (Airgas, Zero) was flushed through the samples on days 0, 2, 5, and 10, which oxygenated the 154 

samples and removed dissolved inorganic carbon for its measurement, and is reported by Bostick et al. (2020a). 155 

A procedural blank and control samples were prepared in the exact same way but were poisoned with HgCl2 156 

immediately following the mixing of the different components (pyDOM, inoculate, nutrients). Additionally, a 157 

solution of sucrose (0.5 g C12H22O11 in 40 mL MilliQ laboratory-grade water) was also incubated in the same 158 

manner. All incubated samples were poisoned with HgCl2 to terminate microbial activity before shipment to Old 159 

Dominion University (Norfolk, VA) for spectroscopic and spectrometric analyses. Prior to spectroscopic analysis 160 

(see Sect. 2.3 below) or spectrometric analysis (see Sect. 2.4 below), samples were filtered using acid-washed 0.1 161 

µm Teflon (PTFE) syringe filters. Further details about sample preparation can be found in the parallel study 162 

(Bostick et al., 2020a).  163 

 164 

2.3  Analysis of chromophoric and fluorophoric dissolved organic matter 165 

 166 

Chromophoric DOM (CDOM) measurements were performed on a Thermo Scientific Evolution 201 167 

ultraviolet-visible (UV-VIS) spectrophotometer operated in a double-beam mode. A matched Starna quartz 168 

cuvette with MilliQ water was used as a reference during all spectral measurements. Spectra were recorded from 169 

230 – 800 nm using a 1 nm step, 0.12 s integration time, and 500 nm/min scan speed. In addition to the double-170 

beam referencing, the average noise in the 700-800 nm spectral region was subtracted from the spectra to correct 171 

for any instrument baseline drifts, temperature fluctuations, as well as scattering and refractive effects (Green and 172 

Blough, 1994; Helms et al., 2008). After consecutive procedural-blank corrections, the spectra (kept in decadic 173 

units) were normalized to the cuvette path length (1.0 cm) and the TOC content (in mgC·L-1) to convert them to 174 

specific absorbance (L·mgC-1·cm-1; Weishaar et al., 2003). CDOM was quantified by integrating the spectra from 175 

250 – 450 nm (Helms et al., 2008) and is reported in L·mgC-1·cm-1·nm units. 176 

Fluorophoric DOM (FDOM) measurements were performed on a Shimadzu RF-6000 spectrofluorometer 177 

operated in 3D acquisition mode. Samples were analyzed without dilution as no sample yielded absorbance at 178 

230 nm above 0.07 (Miller et al., 2010). Samples were excited from 230 – 500 nm (5 nm step) and emission was 179 

recorded over 250 – 650 nm (5 nm step) to obtain excitation-emission matrices (EEMs). Additionally, five 180 

replicate water Raman scans were acquired on MilliQ water in 2D emission mode by exciting the sample at 350 181 

nm and fluorescence intensity was monitored over 365 – 450 nm (0.5 nm steps). All measurements were done 182 

with 5 nm slit widths of the monochromators, 600 nm/min scan speed, and in high-sensitivity mode.  183 

EEMs were processed in MATLAB using the drEEM toolbox (version 0.4.0.) using previously published 184 

routines (Murphy et al., 2010, 2013). Briefly, using the FDOMcorrrect.m function, the raw EEMs were adjusted 185 

for instrumental bias, blank-corrected using an EEM of the procedural blank, and scaled to adjust for any inner-186 

filter effects using the raw UV-VIS spectra (Kothawala et al., 2013). This function also normalized the EEMs to 187 

Raman units (RU) after the area of the water Raman peak (peak maximum at 397 nm) had been determined by 188 

the ramanintegrationrange.m function (Murphy, 2011) on the averaged water Raman spectrum. The EEMs were 189 

then processed using the smootheem.m function to remove 1st and 2nd order Rayleigh signals and Raman 190 

scattering. EEMs are visualized and difference plots are generated using an in-house MATLAB script.  191 
 192 

2.4  Fourier transform - ion cyclotron resonance - mass spectrometry (FT-ICR-MS) 193 

 194 
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Procedural blank, control, and incubated samples were loaded onto solid-phase extraction cartridges 195 

(Agilent Technologies Bond Elut PPL, 100 mg styrene divinyl copolymer) as previously described (Dittmar et 196 

al., 2008). Cartridges were eluted with methanol (Fisher Scientific, Optima LC-MS grade) and infused into an 197 

Apollo II electrospray ionization (ESI) source interfaced with a Bruker Daltonics Apex Qe FT-ICR-MS operating 198 

at 10 T and housed in the College of Sciences Major Instrumentation Cluster (COSMIC) facility at Old Dominion 199 

University (Norfolk, VA). The instrument is externally calibrated daily with a polyethylene glycol standard, and 200 

a surrogate laboratory pyDOM standard was analyzed before and after pyDOM analyses to verify for the lack of 201 

instrumental drift. Additionally, an instrumental blank of methanol was analyzed between samples to verify for 202 

the absence of sample carryover. ESI spray voltages were optimized for each sample to assure for consistent spray 203 

currents among the samples. For each sample, 300 transients with a 4MWord time domain were collected, co-204 

added, and the resultant free induction decay was zero-filled and sine-bell apodized. After fast Fourier 205 

transformation, internal calibration of the resultant mass spectra was performed using naturally abundant fatty 206 

acids, dicarboxylic acids, and compounds belonging to the CH2-homologous series as previously described 207 

(Sleighter et al., 2008). Then, using an in-house MATLAB script, salt, blank, and isotopologue (13C, 37Cl) peaks 208 

were removed. Molecular formulas within ± 1 ppm error were assigned to FT-ICR-MS spectral peaks (S/N ≥ 3) 209 

using the Molecular Formula Calculator from the National High Magnetic Field Laboratory (Tallahassee, FL). 210 

Formula assignments were restricted to elemental composition of 12C5-∞, 1H1-∞, 14N0-5,
16O0-30, 

32S0-2, 
31P0-2, and 211 

35Cl0-4, and were refined using previously established rules (Stubbins et al., 2010). Any ambiguous peak 212 

assignments were refined by inclusion within homologous series (CH2, H2, COO, CH2O, O2, H2O, NH3, HCl) 213 

following Kujawinski and Behn (2006) and Koch et al. (2007). For all samples, at least 80% of the mass spectral 214 

peaks were assigned, and they accounted for at least 93% of the mass spectral magnitude.  215 

Molecular composition was evaluated by plotting the molecular formulas on van Krevelen (vK) diagrams, 216 

scatterplots of the formulas’ hydrogen to carbon (H/C) versus oxygen to carbon (O/C) ratios (Van Krevelen, 1950; 217 

Kim et al., 2003). Formulas were further categorized using the modified aromaticity index (AIMOD), a proxy for 218 

the aromatic character of the associated molecule (Koch and Dittmar, 2006, 2016) and calculated as shown in 219 

Eq.1.  220 

 221 

 

AIMOD =
1 + C −

1
2 O − S −

1
2 (N + P + H + Cl)

C −
1
2 O − N − S − P

 Eq. 1 

 222 

Formulas were classified as following: Condensed aromatic compounds (ConAC, AIMOD ≥ 0.67, number 223 
of C-atoms ≥ 15), aromatic (0.67 < AIMOD ≤ 0.50), olefinic/alicyclic (0 < AIMOD < 0.50), and aliphatic (AIMOD = 224 

0). Additionally, N-containing formulas falling in the ranges of 1.5 ≤ H/C ≤ 2 and 0.1 ≤ O/C ≤ 0.67 were classified 225 

as peptide-like. Statistical evaluation of means was performed in MATLAB using the “anova1” function which 226 

performs one-way analysis of variance (ANOVA). Post-hoc Scheffé's assessments were performed using the 227 

“multcompare” function in the same software. 228 

For the Kendrick Mass Defect (KMD) series analysis (described later in the manuscript), Kendrick Mass 229 

(KM) was first calculated using the molecular weight of each compound (i.e., calculated mass from its molecular 230 

formula) following Eq. 2. Then, the Kendrick Nominal Mass (KNM) was calculated as the rounded integer (no 231 

decimals) of the Kendrick Mass (KM) as shown in Eq. 3. The Kendrick Nominal Mass (KMD) is the difference 232 

between KM and KNM, i.e., the decimals (Eq. 4). This analysis was performed for oxygen (O), carbonyl (CO), 233 

and carboxyl (COO) series (S).  234 

  235 

 KM = Molecular Weight × S           Eq. 2 

where   S =  
15.9949146

16.0000000
 for O series;    

27.9949146

28.0000000
 for CO series;   and 

43.9898292

44.0000000
 for COO series 
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 KNM = integer of KM Eq. 3 

 KMD = KM − KNM Eq. 4 

 236 

2.5  Two-dimensional Nuclear Magnetic Resonance (NMR) spectroscopy 237 

 238 

One-dimensional 1H NMR spectra of the samples of this project were published and evaluated in the 239 

parallel study (Bostick et al., 2020a). For the study of this manuscript, a select sample was analyzed using two-240 

dimensional 1H-1H total correlation spectroscopy (TOCSY) to further evaluate several functional groups of 241 

interest. Analyses were performed on a 400 MHz (9.4 Tesla) Bruker BioSpin AVANCE III spectrometer fitted 242 

with a double-resonance broadband z-gradient inverse (BBI) probe in the COSMIC facility. Samples were 243 

analyzed without pre-concentration and volumetrically diluted with deuterated water (D2O, Acros Organics, 244 

100% D) to obtain a 90:10 H2O:D2O solution. Further details of sample preparation and acquisition of 1D 1H 245 

spectra are published elsewhere (Bostick et al., 2020a). To obtain ultraclean NMR spectra, NMR tubes were 246 

soaked with aqua regia, rinsed extensively with ultrapure water, and individually tested as blanks to verify that 247 

no background peaks are present. While 1H spectra were originally processed using an exponential multiplication 248 

function (line broadening) of 5 Hz to obtain higher signal-to-noise for a more accurate and precise integration 249 

(Bostick et al., 2020a), here they were re-processed using a multiplication function of 1.5 Hz to better observe the 250 

splitting (multiplicity) patterns of the peaks of interest. TOCSY spectra were acquired using the phase-sensitive 251 

gradient-enhanced mlevgpphw5 pulse program. It utilizes a 17-step Malcolm Levitt (MLEV-17) composite 252 

scheme (Bax and Davis, 1985) for magnetization transfer between any coupled nuclear spins, and a W5-253 

WATERGATE element for water suppression (Liu et al., 1998). Both short-range and long-range spin-spin 254 

couplings were observed using 30 ms and 100 ms mixing times, respectively. The data were then zero-filled to a 255 

4096 x 1024 matrix and then fitted with a π/2-shifted (SSB = 2) sine-squared window function. Linear prediction 256 
to 256 points was used in the F1 dimension. All spectra were internally calibrated to the sharp distinguishable 257 

methanol singlet at 3.34 ppm (Gottlieb et al., 1997), and then were phased and baseline-corrected. T1-noise 258 

removal was performed by calculating the positive projection of rows with no resonances and the summed 259 

projections were subtracted from all rows in the spectrum (Klevit, 1985). The same procedure was performed for 260 

all columns (F2 dimension).  261 

 262 

3 Results 263 

 264 

3.1  Molecular changes to pyDOM after microbial degradation 265 

 266 

Ultrahigh resolution mass spectrometric analysis of the bio-incubated and corresponding control pyDOM 267 

leachates revealed significant changes in molecular composition after the 10-day incubation (Fig. 1). The 268 

identified molecular formulas for these samples were classified into one of three groups using a presence-absence 269 

approach (Stubbins et al., 2010; Sleighter et al., 2012). This approach identifies any common formulas among the 270 

two samples being compared (control and bio-incubated), as well as any formulas that are unique to each sample. 271 

It is important to note that the electrospray ionization (ESI) source is prone to biases, and the analytical window 272 

of FT-ICR-MS depends most critically on it. Thus, it may not identify compounds that are present if they are not 273 

ionizable (Stenson et al., 2002; Patriarca et al., 2020). Therefore, it is essential that observations by FT-ICR-MS 274 

are always paired with supplementary quantitative techniques (optical analyses, NMR, etc.) in order to determine 275 

if the identified trends are real or an artifact of ESI charge competition (D’Andrilli et al., 2020).  276 

 277 

 278 

 279 
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 280 
Figure 1. Van Krevelen (vK) diagrams of 10-day microbially incubated pyDOM leachates. Formulas are 281 

classified as bio-labile (molecular formulas only found in the “killed” control pyDOM leachates) and bio-282 

produced (formulas that are only found in the bio-incubated samples). Formulas that are present in both the 283 

control and bio-incubated samples are operationally classified as bio-resistant and not shown for clarity. These 284 

three classes of molecules are separately plotted on vK diagrams and shown in Sect. 2 of the Supplement (Figs. 285 

S2-4). The number of formulas found in each of these pools is listed in the legends along with corresponding 286 

percentages (relative to total number of formulas in the two samples being compared). The black lines indicate 287 

modified aromaticity index cutoffs (AIMOD; Koch and Dittmar, 2006, 2016), and the red box indicates the peptide 288 

region (valid only for N-containing formulas).  289 

 290 

In all samples, nearly a third of the formulas (23 – 31%) present in the control samples were not observed 291 

after the biotic incubations, which is proportional to the organic carbon losses observed by Bostick et al. (2020a). 292 

Interestingly, for all leachates the degraded (“bio-labile”) molecules were not from a specific area of the vK 293 

diagrams but rather represent a broad range of H/C and O/C ratios and compound types (see Fig. S2). This variety 294 

of compound characteristics among bio-labile molecules suggests that the degradation pathway may not be from 295 

microbial consumption alone. It would be unlikely for the soil microorganisms to utilize organic matter 296 

compounds as food indiscriminately. Most interestingly, it is evident that large numbers of aromatic (AIMOD ≥ 297 

0.50) and some ConAC (AIMOD ≥ 0.67) formulas are lost, in agreement with observed losses in CDOM (Fig. S1 298 
in the Supplement), as well as aryl functional groups (measured by 1H NMR) and ConAC (measured by BPCA 299 

analysis) reported in the parallel study (Bostick et al., 2020a). Losses of specific compound classes, especially 300 
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ConAC (due to their low ionizability) might be considered an artifact due to competition processes in the ESI 301 

source (Stenson et al., 2002; Patriarca et al., 2020. The agreement between FT-ICR-MS and other quantitative 302 

data (UV-VIS, NMR, TOC, BPCA) confirms the interpretation of degradation. Approximately half of the 303 

formulas (37 – 56%) in the original pyDOM leachates are classified, using the presence/absence approach, as bio-304 

resistant (observed before and after biotic degradation). These formulas are located in all areas of the vK diagram 305 

(Fig. S3), showing variable oxygenation and aromaticity. Furthermore, the relative peak magnitudes of these 306 

formulas did not change significantly (R2 > 0.95, Fig. S9; Sleighter et al., 2012), suggesting that a wide variety 307 

of pyDOM molecules appear to be recalcitrant to microbial degradation. Using the available molecular data, it is 308 

not possible to attribute the observed recalcitrance to any molecular property. Therefore, it is likely that some of 309 

these molecules are still bio-labile and would have degraded in due time if the incubations were sampled at later 310 

time points. Longer biotic incubations should be conducted in future studies to fully differentiate between labile 311 

and recalcitrant pyDOM molecules.  312 

The use of hydrogen-to-carbon ratio (H/C) versus molecular weight (MW) plots has also been useful in 313 

interpreting ultrahigh resolution mass spectrometry data (e.g., Gonsior et al., 2018; Powers et al., 2019; Valle et 314 

al., 2020). Such graphs are presented using the presence-absence approach in Figs. S5-8 in Sect. 3 of the 315 

Supplement. These graphics help evaluate how different types of compounds (aliphatic vs aromatic) change 316 

relative to their MW. For both Oak 400 leachates, it is clear that large aromatic molecules (H/C < 1.5, MW > 550 317 

Da) are removed during the biotic degradation, and smaller (300 < MW < 550) aromatic compounds are produced. 318 

These aromatic molecules that are being degraded into smaller ones are mainly ligninaceous and not ConAC, in 319 

agreement with the BPCA data published by Bostick et al. (2020a). With regards to the aliphatic molecules (H/C 320 

> 1.5), it is clear that molecules of a wide range of sizes are removed and created during the incubation suggesting 321 

that molecular weight is not a critical factor in their bio-lability. This is in apparent disagreement with the general 322 

knowledge that microbes preferentially consume low molecular weight substrates (e.g., Søndergaard and 323 

Middelboe, 1995), which was also concluded for these samples by Bostick et al. (2020a). The consumption of 324 

large molecules indicates that microbes utilize extracellular enzymes to degrade them into smaller substrates 325 

(Billen et al., 1990) or secondary degradative pathways are also at play.  326 

 327 

3.2 Composition of bio-produced organic matter 328 

 329 

The bio-produced organic compounds can be evaluated in various ways to examine the processes that may 330 

have occurred during the incubations. Using a presence/absence approach (Sleighter et al., 2012), the bio-331 

produced formulas of each sample are compared with those of the other samples (Table 1). No significant overlap 332 

was found (2 – 320 formulas, 0 – 12%) among the molecules produced in the incubated pyDOM samples. 333 

Furthermore, no significant match was found between the bio-produced formulas of incubated pyDOM and those 334 

of the sucrose control sample (63 – 94 formulas, 3%, Table 1). These observations indicate that the products of 335 

the incubations were either vastly different for each sample and may depend on the starting substrate or were 336 

further altered post-exudation to result in their diversification. 337 

 338 

 339 

Table 1. Overlap of bio-produced molecular formulas among samples. The number of formulas corresponds to 340 

the formulas in common between the two samples being compared, and the percentage is relative to the total 341 

number of formulas in the two formula sets. 342 

Sample Oak 400 Fresh Oak 400 Photo Oak 650 Fresh Oak 650 Photo 

Oak 400 Fresh - - - - 

Oak 400 Photo 320 (12%) - - - 

Oak 650 Fresh 126 (4%) 104 (5%) - - 

Oak 650 Photo 165 (5%) 81 (3%) 2 (0%) - 

Sucrose 94 (3%) 63 (3%) 68 (3%) 83 (3%) 

 343 
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 A significant fraction of the bio-produced organic matter was characterized as peptide-like (N-containing, 344 

1.5 ≤ H/C ≤ 2.0, 0.1 ≤ O/C ≤ 0.67). This indicates that microbes convert a part of pyDOM into labile DOM 345 

(Moran et al., 2016; Vorobev et al., 2018), a process hereafter referred to as “microbial labilization”. Given that 346 

the pyDOM samples used in this study were poor in organic nitrogen, the microbes must have used the inorganic 347 

nitrogen (NH4
+) that was provided as a nutrient and converted some or all of it into microbial biomass. The 348 

peptide-like microbially-produced formulas comprise 22 – 40 % of the bio-produced formulas (Table S2 in the 349 

Supplement), and the results of the comparative analyses described above also imply that these proteinaceous 350 

formulas are of highly variable composition. Their molecular diversity is additionally evaluated using one-way 351 

analysis of variance (ANOVA) reported in Sect. 6 of the Supplement. This statistical tool indicated high molecular 352 

variability supporting the findings by the presence/absence comparisons presented earlier (Table 1). The results 353 

from these statistical assessments support the findings by the presence/absence comparisons and these findings 354 

collectively conclude that the microbial incubations of pyDOM created pools of new, very diverse molecules, a 355 

process hereafter referred to as “microbial diversification”. As FT-ICR-MS was performed with soft electrospray 356 

ionization with no fragmentation, the structure of the observed molecules is inferred from the elemental 357 

composition of the assigned molecular formulas. Another possibility for these N-containing molecules is that they 358 

were formed by radical processes that coupled pyDOM molecules with the NH4
+ nutrient that was added to 359 

support microbial growth. A preliminary experiment (data not shown) showed that mixing pyDOM with NH4
+ 360 

did not result in abiotic formation of new molecules (for example via Michael addition; McKee et al., 2014), but 361 

abiotic formation was not tested in the presence of radicals.  362 

To confirm that these formulas were associated with proteinaceous structures and are not just N-containing 363 

compounds that coincidentally plotted in the ’peptide region’, spectrofluorometric analysis was performed to 364 

obtain excitation-emission matrices (EEMs) of the pyDOM samples before and after bio-incubation (Fig. 2). The 365 

data for Oak 650 Photo is not reported as the produced EEM spectra were of questionable quality, and as the 366 

sample was in very limited amounts, analytical validation and quality assessment were not possible.  367 

 368 
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 369 
Figure 2. Fluorescence excitation-emission matrices (EEMs) of control (left panels) and bio-incubated (middle 370 

panels) pyDOM samples. Difference spectra are shown in the right panels. The black box indicates the region 371 

where compounds of proteinaceous and autochthonous/microbial origin fluoresce (Coble, 1996; Coble et al., 372 

2014), with tyrosine-like (B1 and B2) and tryptophan-like (T1 and T2) peaks labeled on the difference plots (right 373 

panels).  374 

 375 

Proteinaceous organic matter has a highly characteristic fluorophoric signature due to the distinguishable 376 

signals of the aromatic amino acids tyrosine and tryptophan. The short Stokes’ shifts of these fluorophores allow 377 

them to spectroscopically separate on the EEM plot allowing for identification of related labile substances 378 

(Wünsch et al., 2019). Other amino acids, namely histidine and phenylalanine, are also fluorophoric, but are not 379 

easily identified in EEM data of complex matrices. A simplistic approach to evaluate the change after the bio-380 

incubation is to use difference plots (e.g., Hemmler et al., 2019). For all samples, strong proteinaceous signals 381 
evolve after biotic incubations indicating that molecules of proteinaceous and autochthonous/microbial origin are 382 

produced (Coble, 1996; Coble et al., 2014). This indicated that peptide-like molecules observed using FT-ICR-383 

https://doi.org/10.5194/bg-2021-23
Preprint. Discussion started: 12 May 2021
c© Author(s) 2021. CC BY 4.0 License.



11 
 

MS are not an artifact due to charge competition in the source, but are truly bio-produced, validating the findings 384 

of the presence/absence analysis. There are subtle differences among the EEMs of all control and bio-incubated 385 

samples indicative of the high variability in fluorophoric content of these samples. This agrees with the observed 386 

variability in molecular composition described earlier. An interesting observation is that in the two Oak 400 387 

pyDOM incubations, tyrosine-like fluorescence (peaks B1 and B2) decreases after biotic incubation while 388 

tryptophan fluorescence (peaks T1 and T2) increases. In contrast, the tryptophan-like fluorophores are degraded 389 

and tyrosine-like ones are produced after biotic incubation of Oak 650 Fresh pyDOM. It must be noted that there 390 

are proteinaceous fluorophores (and peptide-like formulas) in the control samples resulting from the addition of 391 

the microbial inoculate, but the associated fluorophores were present in low amounts. Thus, proteinaceous 392 

fluorescence signals in the control samples are not unexpected. However, a decrease in proteinaceous 393 

fluorophores is opposite of what is expected after significant microbial growth. Therefore, it is possibly due to 394 

fluorophoric compounds in this system being highly bio-labile and/or susceptible to oxidation by specific ROS, 395 

but the residual post-oxidation by-products would be still detectable by FT-ICR-MS and classified as peptide-like 396 

compounds. The loss of tyrosine-like fluorophores in the Oak 400 samples, and loss of tryptophan-like 397 

fluorophores in Oak 650 Fresh, are indicative of different microbial physiology and exudates in these incubations. 398 

The complexity of these EEM spectra and the compound-specific changes observed here indicate that proteomic 399 

and/or metabolomic analyses (e.g., Nalven et al., 2020) are necessary in future microbiological studies of pyDOM 400 

in order to fully understand the changes in molecular composition during such incubations. 401 

To determine if the bio-produced formulas are from true proteins, or are compounds with residual 402 

proteinaceous fluorophores, the formulas were evaluated in the context of possible combinations of amino acids 403 

that would be singly charged. Given that microbes exude large proteins (molecular weight > 30 kDa) such as 404 

lignin peroxidases, manganese peroxidases, and laccases (Higuchi, 2004), the peptide-like formulas observed by 405 

FT-ICR-MS (analytical window of 200-1000 Da) may have resulted from hydrolysis of the above-mentioned 406 

enzymes (or other proteinaceous exudates). If that is the case, the hydrolysates would likely have had a simple 407 

oligomeric composition. To test this, the bio-produced peptide-like formulas in each sample were compared to a 408 

library of 888,009 possible combinations of 20 amino acids (oligomeric sequences of 2-7 residues). Only a small 409 

number of oligopeptides were identified (5 – 18 oligopeptides of 2 – 5 amino acids, Tables S2 and S3 in the 410 

Supplement) which is counter to the proposed idea that hydrolysis of microbial exudates produced these newly 411 

observed peptide-like formulas. The lack of identified oligopeptides also calls into question the idea that microbial 412 

processes were solely responsible for the high variability of the bio-produced organic matter observed after the 413 

microbial incubation of pyDOM.  414 

In an attempt to further elucidate the composition of these bio-produced N-containing substances, we re-415 

evaluated the previously published 1H NMR data of these samples (Bostick et al., 2020a) in greater detail. 416 

Additionally, to further elucidate the connectivity between observed functional groups, two-dimensional 1H-1H 417 

total correlation NMR spectroscopy (TOCSY) was utilized on a select sample. Figure 3 shows the TOCSY spectra 418 

of the bio-incubated Oak 650 Fresh sample.  419 

 420 
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Figure 3. Two-dimensional 1H-1H total 421 

correlation spectroscopy (TOCSY) NMR 422 

spectra of the bio-incubated Oak 650 Fresh 423 

sample. Short- and long-range couplings 424 

were allowed to evolve during mixing 425 

times (τ) of 30 (blue) and 100 ms (red), 426 

respectively. The 1D 1H spectrum is shown 427 

as a projection on top (black).  428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 

 448 

 449 

 450 

 451 

 452 

 453 

 454 

 455 

 456 

 457 

There are three groups of resonances that were found in all samples, even in the controls (although of 458 

small contributions relative to the total spectral signal). These resonances have not been previously observed in 459 

the 1H NMR spectra of these pyDOM samples (Bostick et al., 2018; Goranov et al., 2020) indicating that they 460 

represent by-products of the microbial incubations, likely microbial biomass. In the control samples, the 461 

compounds associated with these resonances must be from the soil inoculant that was added. The three resonances 462 

are also observed to be in the same coupling network indicating that they are a part of the same or similar 463 

structures. Due to the very low concentration of these samples (3.5 – 4 mgC·L-1), the NMR analysis did not allow 464 

for a high-resolution structural elucidation, but some distinct signatures were nonetheless observed. The 465 

deshielded aliphatic peaks at δ = 2.1 – 2.3 ppm have a complex multiplicity pattern, a characteristic feature of 466 

alicyclic structures. These are likely residual carbohydrate moieties which have lost most of their O-containing 467 
groups through various cleavage processes and their backbone Calicyclic-H resonances have been shifted upfield. 468 

The peak at 1.55 ppm is from -hydrogens to a heteroatom (H-Cβ-Cα-X, where X = O, N, S), and these are known 469 

to be associated with peptidoglycans (Spence et al., 2011). The TOCSY analysis was performed with two different 470 

https://doi.org/10.5194/bg-2021-23
Preprint. Discussion started: 12 May 2021
c© Author(s) 2021. CC BY 4.0 License.



13 
 

mixing times (τ = 30 and τ = 100 ms) in order to evaluate short-range (2 – 3 bond) and long-range (4 – 6 bond) 471 

connectivities. Based on the observed couplings the observed resonances are vicinal to each other (3 bonds away). 472 

This indicates that these functional groups are closely bound in the peptidoglycan substances they likely represent. 473 

 All of these analyses of the molecules observed after the biotic incubation of the four pyDOM samples 474 

conclude that the observed biochemical processes in these systems are complex and difficult to unambiguously 475 

interpret. Based on the findings above it is clear that these formulas can originate from three different sources:  476 

1) exoenzymes, which microbes use to extracellularly degrade larger molecules into smaller ones (Hyde and 477 

Wood, 1997; Higuchi, 2004);  478 

2) peptidoglycans, which likely leached into solution after bacterial death and cell lysis (Yavitt and Fahey, 479 

1984); and  480 

3) other metabolites and exudates involved in the physiology of the different microbes in the used consortium 481 

(e.g., signaling compounds).  482 

The significant degradation of pyDOM and production of these biological compounds indicates that microbes 483 

successfully converted the presumably carbon-rich recalcitrant pyrogenic molecules into more labile substances, 484 

a process we hereafter refer to as “microbial labilization”. However, the fact that the observed bio-produced labile 485 

molecules are not identifiable as simple oligopeptides, and are present in significantly different composition 486 

among the four samples, suggests that this molecular diversity may not be caused by predictable biotic reactions 487 

but by random radical-driven processes. Further evidence for the random radical-driven processes comes from 488 

the observed degradation of molecules across the whole vK space (Figs. 1 and S2), which is unusual because 489 

microbes generally preferentially consume smaller aliphatic species (Berggren et al., 2010a,b; Kirchman, 2018). 490 

 491 

3.3 Radical oxygenation as a potential source of molecular diversity  492 

 493 

Microbial physiology has been associated with the production of reactive oxygen species (ROS), which 494 

have been shown to be important in the degradation of various types of organic compounds (e.g., Scully et al., 495 

2003; McNally et al., 2005; Porcal et al., 2013; Trusiak et al., 2018; Xiao et al., 2020). A recent study showed 496 

that radicals can degrade various types of ligninaceous molecules (Waggoner et al., 2017) suggesting that 497 

microbially induced radical reactions can target a variety of pyDOM molecules. While there were no ROS 498 

measurements made in this study, we have performed Kendrick Mass Defect (KMD) analysis of the FT-ICR-MS 499 

data (Kendrick, 1963; Hughey et al., 2001) to seek evidence for radical action. The KMD analysis identifies 500 

formulas that differ by any repeating structural moiety (e.g., -CH2-). To identify potential products of radical 501 

attack, we have evaluated the FT-ICR-MS data in the context of oxygenation, i.e., searched the mass lists for 502 

formulas differing by one oxygen atom (addition of hydroxyl group), carbonyl group (addition of aldehydes or 503 

ketones), and carboxyl groups (Fig. 4). 504 

 505 
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 506 
Figure 4. Kendrick Mass Defect (KMD) analysis using oxygen (O) series of the bio-produced formulas of Oak 507 

400 Fresh pyDOM. Panel a) shows the whole KMD plot while panel b) shows an expanded region of it. Formulas 508 

not part of the O KMD series are colored in gray. Formulas in dark green are proposed substrates, and their 509 

oxygenation products are colored in light green. Only the molecular formulas for one of the series (KMD = 510 

0.4174 Da) are labeled on panel b), while for the rest of the molecules, only the substrate formula and the number 511 

of oxygens in the oxygenation products are listed for clarity. The red arrows in panel b) show the formation of 512 

the four oxygenation products of the C24H40O5 substrate after a sequential attack by hydroxyl radicals (•OH). 513 

Panel c) shows possible chemical reactions that can cause an increase of number of oxygens. Panel d) shows 514 

further oxidative processes involving the formation of keto and carboxyl groups which can contribute to the 515 

degradation of pyDOM, as well as to the formation of DOM. The KMD plots for all samples are shown on Figs. 516 

S10-12 in the Supplement.  517 

 518 

The mathematics behind the KMD analysis (see Sect. 2.4) convert the mass of the molecular formula (also 519 

known as the IUPAC mass) to a “Kendrick” mass, whose mass is on a different scale which is specific for the 520 
selected structural moiety. On Fig. 4a, an example is shown with the KMD analysis for molecules differing by 521 

one oxygen (-O-). On the regular (IUPAC) mass scale, such formulas would differ by 15.994915 Da, but on the 522 

Kendrick “O” mass scale, they differ by 16 Da. The difference between the Kendrick Mass, KM (e.g., 408.2876 523 
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Da) and the Kendrick Nominal Mass, KNM (408 Da) is the Kendrick Mass Defect, KMD (i.e., 0.2876 Da), and 524 

formulas with the exact same KMD differ by one or more oxygens, and lie on a KMD series. Visually these 525 

formulas would plot on horizontal lines on the KMD plot as indicated by the dashed lines in Fig. 4b. Taking the 526 

series of KMD = 0.4174, this evaluation shows that there are five formulas in this particular KMD series that 527 

differ in number of oxygens (C24H40O5-10). This implies that once C25H40O5 is produced, it acts as a substrate and 528 

the other four formulas (C24H40O6-10) are produced by oxygenation (likely in a sequential manner: C24H40O5 → 529 

C24H40O6 → C24H40O7 → C24H40O9 → C24H40O10). This can happen via oxygenation by hydroxyl radical (•OH) 530 

attacks. This ROS can abstract a hydrogen from C-H bonds and the hydrogen is substituted with an OH-group, 531 

resulting in the formation of alcohols (C-OH) as shown in Fig. 4c. This is likely how the oxygenation products 532 

shown in Fig. 4a and 4b have formed. Evidence for such reactions will be found on the KMD plots as evolution 533 

of a new molecule within the same KMD series, but with a different number of oxygens. Further radical attack 534 

results in formation of polyols (Fig.4c). In the case of formation of geminal diols (two alcohol groups on the same 535 

carbon atom), they can rearrange to aldehydes or ketones via keto-enol tautomerism (Fig. 4d). Further radical 536 

attack would produce carboxyl groups, which can also be radically cleaved, and DOM radicals be formed. These 537 

radicals (as well as any other radical intermediate in this pathway) can be then further paired with hydrogen 538 

radicals (•H) from the solution, other •OH radicals, or other radicalized pyDOM or proteinaceous species.  539 

Using KMD analysis, formulas produced by oxygenation were identified and plotted individually (Fig. 540 

5). It is assumed that the smallest molecule in each series is the substrate and any molecules with more oxygens 541 

are oxygenation products.  542 

 543 

 544 
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Figure 5. Van Krevelen diagrams evaluating oxygenation products among the bio-produced formulas of the four 545 

incubated pyDOM samples. Formulas not part of any of the oxygenation KMD series (O, CO, or COO) are 546 

colored in gray. Formulas in dark green are substrates with their oxygenation products colored in light green. 547 

The number of formulas in each of these pools are shown in the legends (along with corresponding percentages). 548 

The black lines indicate modified aromaticity index cutoffs (AIMOD; Koch and Dittmar, 2006, 2016).  549 

  550 

KMD analysis revealed that about a third (34 – 748, 3 – 42%) of the bio-produced formulas in these 551 

pyDOM samples could be classified as products of oxygenation reactions, likely driven by ROS species such as 552 

the hydroxyl radical (•OH). This is in agreement with previously observed cross-linking of microbial compounds 553 

through oxidative processes (Sun et al., 2017). The majority of the formulas, however, were not found to be 554 

products of oxidation as they did not lie on neither of the evaluated KMD series (O, CO, nor COO). Therefore, 555 

these compounds are likely formulas of exudates which were resistant to radical attacks or are formulas of 556 

compounds which have already been radically coupled with other compounds to result in unrecognizable 557 

molecules by the KMD analysis.  558 

Additional evidence for intense radical processes in these systems is the evolution of bio-produced 559 

unsaturated aliphatic compounds (1 < H/C < 2, O/C <2) on the vK diagrams (Figs. 1 and S4). ROS can attack 560 

aliphatic and aromatic compounds, open aromatic and alicyclic rings, cleave oxygen- or nitrogen-containing 561 

functionalities, and produce highly aliphatic molecules, as previously observed after photo-irradiation of pyDOM 562 

(Goranov et al., 2020), ConAC (Zeng et al., 2000a,b), and radical-based degradation studies of lignin (Waggoner 563 

et al., 2015, 2017; Waggoner and Hatcher, 2017; Khatami et al., 2019a, b). ROS can also attack any of the 564 

proteinaceous exudates and peptidoglycans cleaving them from many of their functional groups and converting 565 

them into the observed unsaturated aliphatic compounds. These produced aliphatic compounds could also 566 

contribute to the newly produced N-containing (“peptide-like”) compounds observed by FT-ICR-MS if they are 567 

oxygenated by ROS post-formation. However, this seems unlikely as data from the supplementary fluorescence 568 

and NMR analyses support the formation of microbial biomass. These indirect observations of intense radical 569 

processes indicate that the microbial incubations of pyDOM are extremely complex systems, and future studies 570 

need to employ specialized more bio-analytical techniques to fully understand the processes occurring in them.  571 

While FT-ICR-MS peak magnitudes are considered to be semi-quantitative, making it generally 572 

impossible to quantify the different bio-labile and bio-produced compounds, the ultrasensitivity of this technique 573 

ensures detection of all compounds that are within its analytical window. Here, the number of molecular formulas 574 

can be used as a quantitative measure for molecular diversity (e.g., Gurganus et al., 2015). Previously published 575 

liquid-state 1H NMR data for the same samples (Bostick et al., 2020a) provide a quantitative measure of functional 576 

group content. Strong positive and negative correlations were observed between the numbers of bio-labile and 577 

bio-produced formulas and the percent NMR spectral signal accounted for by olefinic functionalities and 578 

methanol, respectively (Fig. 6 and Table S4). These correlations suggest that the diversity of bio-degraded (bio-579 

labile) and bio-produce molecules was related in some way with a process related to the availability of methanol 580 

(CH3OH) and olefinic functionalities (C=C) in pyDOM. 581 

 582 
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 583 
Figure 6. Correlation analysis between the number of bio-labile and bio-produced formulas detected by FT-584 

ICR-MS and relative intensity (in %) of olefinic functionalities (C=C) and methanol (CH3OH) as measured by 585 

liquid-state 1H NMR and reported by Bostick et al. (2020a). No significant correlations were found between other 586 

functional groups and the number of bio-produced or bio-labile formulas (data shown in Table S4 of the 587 

Supplement).  588 

 589 

Olefinic functionalities have been recently identified as important structural motifs in the composition of 590 

pyDOM and were observed to degrade in photochemical experiments due to their high reactivity with ROS 591 

species (Goranov et al., 2020). Although they are in low abundance in pyDOM (< 10%), it is likely they act as 592 

important intermediates in the degradative pathways of pyDOM. The olefinic bonds can be homolytically cleaved 593 

when attacked by radicals and effectively act as radical-accelerators that further propagate radical-mediated 594 

organic matter transformations. Thus, the abundance of olefins can further increase the abundance of radicals and 595 

contribute to the elevated molecular diversity resulting in the linear relationship shown in Fig. 6.  596 

 The other correlation between molecular diversity and NMR data is observed to be with methanol 597 

(CH3OH), a very sharp highly distinguishable singlet at δ = 3.34 ppm in 1H NMR spectra (Gottlieb et al., 1997). 598 

As it is a common contaminant in NMR analysis, special precautions were taken to obtain ultraclean spectra (see 599 

Sect. 2.5). Methanol is a species that is naturally present in pyDOM (Bostick et al., 2018), and while it is generally 600 

considered to be toxic to microbes (Dyrda et al., 2019), there are methylotrophic bacteria and fungi (microbes of 601 

the families methylococcaceae and methylobacteriaceae) that can utilize it as a substrate (Chistoserdova et al., 602 

2003; Kolb and Stacheter, 2013; Chistoserdova and Kalyuzhnaya, 2018). These species have been previously 603 

observed in the soil from the area where the microbial inoculum was extracted from (Khodadad et al., 2011), 604 

suggesting that the degradation of methanol may be biotic. In fact, in these samples, methanol, along with the 605 

other two measured low molecular weight substances, acetate and formate, was nearly completely degraded over 606 

the 10-day incubation (Bostick et al., 2020a).  607 

 The inverse relationship between the content of methanol and molecular diversity (Fig. 6) can be 608 

interpreted in several ways. Firstly, methanol could be exhibiting toxicity to the microbes that assimilate pyDOM, 609 

as has been observed previously (Dyrda et al., 2019). This, however, is unlikely for the pyDOM systems studied 610 

here because the sample with the highest amount of methanol (Oak 400 Photo, ~3.7% CH3OH) was the second 611 
most bio-reactive (Bostick et al., 2020a). Instead, the observed strong negative correlation may be explained by 612 

the fact that methanol is a known radical-scavenger (Múčka et al., 2013). If, as we propose, the molecular diversity 613 
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results from the activity of radical processes, an increasing concentration of methanol would quench these radicals 614 

thereby decreasing their activity and limiting the molecular diversity. This would explain the negative relationship 615 

depicted by the correlation shown in Fig. 6. 616 

 617 

4 Discussion 618 

 619 

4.1  Multiple pathways for the alteration of pyDOM by microbes 620 

 621 

Using a variety of analytical platforms in this and the parallel study (Bostick et al., 2020a), significant 622 

quantitative and qualitative losses were observed when pyDOM was subjected to incubation with a microbial 623 

consortium collected from a site impacted by forest fires. Additionally, labile and diverse compounds were 624 

produced during these incubations. Due to the high complexity of pyDOM, the changes are not straightforward, 625 

and there are at least two important pathways at play, 1) degradation through microbial assimilation (consumption 626 

of pyDOM), and 2) degradation/transformation via radical-mediated reactions (e.g., oxygenation) by ROS 627 

produced from microbial exoenzymes. These two pathways are discussed in the context of degradation of pyDOM 628 

and formation of new labile and diverse molecules. 629 

 630 

4.1.1     Molecular degradation of pyDOM 631 

 632 

A surprising observation in this study is that there was a uniform loss of pyDOM molecules from all 633 

regions of the vK diagrams. Microbes, it is generally presumed, preferentially assimilate small non-aromatic 634 

substances such as carbohydrates, proteins, low molecular weight acids (Berggren et al., 2010a,b; Kirchman, 635 

2018). Thus, the aromatic fraction of pyDOM, mainly the ConAC, are generally considered to be bio-recalcitrant 636 

(Goldberg, 1985; Masiello, 2004). In addition to the condensed character of many of the molecules, there are 637 

significant numbers of potentially toxic organochlorine compounds, of both aliphatic and aromatic character, in 638 

pyDOM (Wozniak et al., 2020). Thus, the finding of the major biological activity in these samples and the 639 

significant amount of carbon, including aromatic carbon, that was mineralized, is a very significant finding for 640 

the wildfire biogeochemistry community (Bostick et al., 2020a).  641 

Although pyDOM is highly heterogeneous (Wozniak et al., 2020), the observation of diverse molecular 642 

consumption is not unique to it. In a recent microbial degradation study of snow DOM, Antony et al. (2017) 643 

observed that both aromatic (including ConAC, lignin, and tannins) and aliphatic formulas were bio-degraded. 644 

This is likely due to microbes evolving chemical mechanisms to thrive in the extreme conditions of glaciers 645 

(Antony et al., 2016). Analogously, as there have been previous prescribed fires in the area from which the 646 

microbes for this study were extracted (Johns, 2016), it is also possible that our organisms have adapted to the 647 

presence of ConAC and other pyrogenic substances, developing mechanisms for their assimilation (Judd et al., 648 

2007).  649 

 While microbial assimilation of pyDOM compounds certainly occurred, our molecular data show that 650 

there was a second degradative pathway which likely contributed to the extensive molecular alteration, and to the 651 

significant loss of carbon that was quantified in the parallel study (Bostick et al., 2020a). While some microbial 652 

exoenzymes operate via hydrolytic pathways (amylases, lipases, proteases, cellulases, β-galactosidases, etc.), 653 

many other enzymes operate through oxidative (electron-withdrawing) pathways. Examples of such enzymes are 654 

the various lignin-modifying enzymes in the peroxidase (lignin peroxidases, manganese peroxidases, etc.) and 655 

phenoloxidase (e.g., laccases) families (Higuchi, 2004). Thus, reactive oxygen species are usually produced and 656 

involved in the microbial degradation of organic matter in the environment.  657 

The bio-labile molecules in the studied pyDOM samples are of highly variable degree of oxygenation, 658 

aromaticity, and size (some MW > 550 Da). Thus, microbial exoenzymes would have been needed to reduce the 659 

size of substrates into smaller units that could pass through microbial cell membranes (Sinsabaugh et al., 1997; 660 
Fuchs et al., 2011; Burns et al., 2013) and be consumed by the biota. The presence of enzymatic compounds is 661 

confirmed by observation of peptide-like compounds (FT-ICR-MS analysis) and proteinaceous fluorophores 662 

(spectrofluorometric analysis). An important finding is that a preferential degradation of ConAC of smaller 663 
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molecular weights was observed (Bostick et al., 2020a). As small ConAC (i.e., oxygenated PAHs) are known to 664 

be toxic (e.g., Idowu et al., 2019), it is unlikely that they were directly consumed by the microbes. These 665 

substances are highly susceptible to attacks by ROS, which is likely how they were degraded in these samples. 666 

Thus, we speculate that microbes are most likely not directly consuming ConAC, but rather, are degrading them 667 

indirectly using ROS. These radicals can oxygenate pyDOM with various functional groups (e.g., hydroxy, 668 

aldehyde/keto, carboxyl), and can also cleave functional groups (e.g., methoxy functionalities), open aromatic 669 

rings, and completely mineralize compounds to inorganic carbon (CO, CO2, HCO3
- and CO3

2-) as shown on Fig. 670 

4. ROS have been previously shown to be very important in pyDOM photochemistry (Ward et al., 2014; Fu et 671 

al., 2016; Goranov et al., 2020; Wang et al., 2020), and it is likely that they play an important role in the microbial 672 

degradation of pyDOM as well.  673 

 More evidence for radical species involvement is provided by the peptidoglycan molecules produced 674 

during pyDOM incubation. While these molecules are generally large (Vollmer et al., 2008) and would not be 675 

detected as singly-charged molecules using FT-ICR-MS (analytical window covering m/z 200-1000), their 676 

hydrolytic products (small oligopeptides) would be observed. Very few peptide sequences (5 – 18 oligopeptides 677 

of 2 – 5 residues) were identified among the bio-produced formulas indicating that such hydrolysates did not exist 678 

in the samples at the time of measurement. However, if there were abundant radical reactions occurring in the 679 

system, as we suggest, it is very possible that these hydrolysates were altered into unrecognizable organic 680 

structures that would still be classified as “peptide-like” but would have different molecular composition than the 681 

predicted linear peptide sequences. It is also possible that instead of peptidoglycan hydrolysis followed by 682 

consecutive oxygenation, ROS directly cleaved the peptidoglycans into smaller substances of peptide-like 683 

molecular composition.  684 

 685 

4.1.2     Labilization and Diversification of pyDOM 686 

 687 

 The production of labile unrecognizable biological substances during these incubations correlates well 688 

with previous findings showing the formation of thousands of new biological compounds during biotic 689 

incubations unrelated to microbial metabolic pathways (Lechtenfeld et al., 2015; Wienhausen et al., 2017). 690 

However, in difference with previous studies, an insignificant overlap of bio-produced formulas was observed 691 

among the four pyDOM samples after the incubations (2 – 320 formulas, 0 – 12%). Insignificant numbers of 692 

matching formulas from pyDOM were also found in the bio-produced formulas of an incubation of sucrose with 693 

the same soil microbes (63 – 94 formulas, 3%). This indicates that microbes diversified the composition of these 694 

pyDOM samples.  695 

The observed diversity can be explained by a scenario wherein the microbes secreted labile molecules 696 

whose identities differed depending on the growth medium and/or food source, yielding high variability among 697 

bio-produced formulas after the incubation of pyDOM. Additionally, it is possible that different microbial species 698 

(different bacteria, fungi, archaea, etc.) have proliferated in response to the sample-specific pyDOM composition, 699 

yielding different microbial populations growing during each different incubation, sequentially producing 700 

different bio-produced compounds (Fitch et al., 2018). 701 

The finding of extreme molecular diversity contrasts with previous observations made by Lechtenfeld et 702 

al. (2015) in a study evaluating the molecular composition of microbially produced DOM. In their study, marine 703 

microbes were supplied with two different substrates (glucose and glutamic acid; and a mixture of 704 

oligosaccharides and oligopeptides), and a significant overlap (67 – 69 %) in the bio-produced organic matter was 705 

observed. The difference in observations between the work presented in this manuscript and by Lechtenfeld et al. 706 

(2015) is likely caused by a large difference in the composition of the pyDOM substrates relative to those in the 707 

Lechtenfeld et al. (2015) study. While the four pyDOM samples used here are highly heterogeneous to one another 708 

(Goranov et al., 2020; Wozniak et al., 2020), the substrates by Lechtenfeld et al. (2015) were of much higher 709 

similarity. Another possible reason is that the physiology of the soil microbes used here may be producing more 710 
diverse molecules than the marine microbes used by Lechtenfeld et al. (2015). It is likely that that aquatic 711 

microbes have a much different degradation strategy. As soils are far less rich in labile molecules, it is possible 712 

that soil microbes have adapted to produce much higher fluxes of ROS to degrade the more recalcitrant soil 713 
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organic matter, which can also explain the larger dissimilarity in bio-produced organic molecules after the 714 

incubations of pyDOM.  715 

An important observation using the H/C vs molecular weight plots (Fig. S5) was that the bio-produced 716 

compounds after incubation of pyDOM were of various molecular weights. Thus, it is likely that that the microbial 717 

biomass produced during the incubation is radically coupled with pyDOM molecules. This has been recently 718 

proposed as an important process in marine DOM cycling (Hach et al., 2020). In that study, when isotopically 719 
13C-labeled organisms were incubated with oceanic surface waters, microbially produced compounds were 720 

quickly coupled to the ambient marine DOM molecules. This “recombination” process occurred within hours of 721 

the production of microbial exudates, followed by the observation of a highly diversified DOM pool. This process 722 

is likely driven by radical coupling reactions, and such pathways have also been observed in incubations in the 723 

presence of sunlight (Sun et al., 2017). Another possible explanation is that chemically reactive species, such as 724 

quinones, reacted with microbially produced compounds via nucleophile-driven reactions (such as the Michael 725 

addition; McKee et al., 2014) to produce highly diverse pools of molecules after each incubation.  726 

  The observations from this study are compared to previous work by Waggoner et al. (2017) where a 727 

ligninaceous sample was treated with three different ROS: hydroxyl radical (᛫OH), singlet oxygen (1O2), and 728 

superoxide (O2
-᛫). Each different radical degraded a specific pool of ligninaceous compounds, which showed that 729 

different ROS can degrade a variety of types of organic matter. However, there was a significant overlap observed 730 

between the three pools of molecules that were degraded indicating that degradation pathways solely based on 731 

ROS attacks are still ordered. Thus, because ROS on their own do not produce completely diversified molecular 732 

pools, the combination of the two pathways we describe here must have occurred to produce the great variability 733 

in the bio-produced microbial biomass observed in our study. 734 

Clearly, the chemistry behind these microbially induced compositional changes of pyDOM is highly 735 

complex, and the observed molecular diversity after these biotic incubations contrasts with previous studies. 736 

These discrepancies cannot be interpreted unambiguously using the employed analytical approaches, and future 737 

studies need to involve measurements of radicals and their effects, as well as various DNA sequencing and 738 

“omics” approaches. 739 

 740 

4.2  Implications for the cycling of pyDOM in the environment 741 

 742 
The present study provides a detailed evaluation of the compounds that microbes degrade and produce in 743 

samples mimicking pyDOM in hydrologically dynamic environmental systems such as riverine and groundwater 744 

systems. It brings new knowledge about the properties and reactivity of pyDOM and challenges the conventional 745 

idea that pyDOM is stable towards biotic degradation. Several studies have already shown that pyrogenic 746 

substances have soluble DOM components (Hockaday et al., 2007; Mukherjee and Zimmerman, 2013; Wagner 747 

et al., 2017; Bostick et al., 2018) and that more soluble components are produced with environmental aging 748 

(Abiven et al., 2011; Ascough et al., 2011; Roebuck et al., 2017; Quan et al., 2020). A recent study incubated 749 

pyDOM using riverine microbes and observed a significant degree of degradation as well (Qi et al., 2020). 750 

However, rather than using an extracted inoculate, in that work, the authors directly incubated pyOM in riverine 751 

water. Therefore, these incubations can be considered primed by the more labile riverine molecules (Guenet et 752 

al., 2010; Bianchi, 2011). The experiments presented in our study, in parallel with Bostick et al. (2020a), show 753 

that a large portion of pyDOM can be respired (bio-degraded) without priming, which indicates that these 754 

pyrogenic molecules may be far less resistant to degradation than previously presumed.  755 

The involvement of pyDOM within the global carbon cycle is complex, and in many cases poorly 756 

understood. There is a growing body of literature showing that significant amounts of pyOM are solubilized and 757 

exported to the global ocean (Dittmar et al., 2012; Jaffé et al., 2013; Wang et al., 2016; Marques et al., 2017; 758 

Jones et al., 2020). However, the estimated pyDOM production and seepage rates of 1440 TgC·y-1 (Bostick et al., 759 

2018) are greater than previously reported riverine flux estimates (203 Tg·C·y-1; Jaffé et al., 2013; rescaled by 760 
Bostick et al., 2018). In addition to the implied 86% loss of carbon during export, a recent study also reported that 761 

the stable carbon isotopic signature (δ13C) of oceanic ConAC are not terrigenous, but rather, marine-like (Wagner 762 

et al., 2019). This suggests that either all of the riverine-exported ConAC are being mineralized before reaching 763 
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the global ocean or are chemically altered significantly to change its δ13C isotopic signature (Jones et al., 2020). 764 

Furthermore, microbial and photochemical processes have been found to transform DOM with characteristic 765 

terrigenous DOM composition (compounds with lower H/C and higher O/C ratios) into compounds having 766 

characteristics of marine-derived DOM (compounds with higher H/C, lower O/C ratios; Rossel et al., 2013). Thus, 767 

pyDOM may simply be losing its diagnostic molecular and isotopic fingerprints during riverine export due to a 768 

variety of degradative post-production processes, as shown by the diversification observed in our study.  769 

The cycling of organic matter in the environment has always been an enigma, and there has been a long-770 

standing effort to explain the fate of land-derived DOM (terrigenous DOM including pyDOM) in the global ocean 771 

(Hedges et al., 1997). In a previous manuscript evaluating the photochemical transformation of pyDOM (Goranov 772 

et al., 2020), we suggested that biotic consumption of photo-degradation products of pyDOM (“small aliphatic 773 

compounds”) could result in the formation of marine-like DOM. This hypothesis was tested by comparing our 774 

incubation products (the bio-produced formulas) to FT-ICR-MS formulas of several marine DOM samples 775 

(reported in Sect. 5 of the Supplement). An insignificant number of CRAM-like marine formulas (Hertkorn et al., 776 

2006) was observed in these comparisons (4 – 272 common formulas, 0 – 6% overlap) contrasting with this 777 

proposition and suggesting that biotic incubations of photo-degraded pyDOM do not produce significant numbers 778 

of marine-like molecules.  779 

An alternative idea is that the bio-produced molecules observed in this study are part of the fast-cycling, 780 

labile DOM pool per Hansell’s model (Hansell and Carlson, 2015), and are quickly depleted in the natural 781 

environment. This parallels the findings of a recently published study (Hach et al., 2020) observing that 782 

microbially produced molecules are extremely labile and are, within hours, broken down and recombined with 783 

ambient DOM molecules. The closed laboratory systems in our study, may have enabled the observation of these 784 

highly labile molecules, whereas in the natural environment, they would have been quickly transformed, diluted, 785 

or mineralized to inorganic carbon resulting in their removal from analytical detection. The richness in nitrogen 786 

and peptide-like character of these new molecules suggest greater potential lability (Hach et al., 2020), and it is 787 

likely that the by-products of biotic degradation of pyDOM are readily incorporated into microbial food webs. 788 

This is consistent with the idea that terrigenous DOM is either mineralized to CO2 or incorporated into food webs 789 

(Berggren et al., 2010a; Ward et al., 2013; Fasching et al., 2014). It is also consistent with the fact that the majority 790 

of organic nitrogen in the oceans is derived from microbial peptidoglycans (McCarthy et al., 1997, 1998; Simpson 791 

et al., 2011), and with observations of nitrogen from peptidoglycans in soil and sedimentary porewater systems 792 

(Schulten and Schnitzer, 1998; Hu et al., 2018, 2020).  793 

The production of these highly variable and diverse molecules, compositionally, is likely a contributing 794 

factor to the large complexity of natural organic matter (Hertkorn et al., 2007; Hawkes et al., 2018). They 795 

contribute to the highly variable microbial exometabolomes observed previously (Antón et al., 2013; Watrous et 796 

al., 2013; Romano et al., 2014) and stimulate further questions about their function and fate within the global 797 

carbon cycle. In this study, we have used soil microbes, as the corresponding degradation by-products can be 798 

observed in both soil, groundwater, and partially in the upstream of rivers. Therefore, it would be critical to 799 

perform further studies with different microbial consortia (riverine, estuarine, marine, etc.) to fully understand 800 

the biological degradation of pyDOM in different environments.  801 

 802 

5 Conclusions 803 

 804 

This study probing the molecular changes occurring after biotic degradation of pyDOM revealed that soil 805 

microbes can effectively recycle and transform a significant portion of pyDOM molecules into labile microbial 806 

biomass. After the 10-day incubations, it appears that a wide range of molecules, both aromatic and aliphatic, 807 

were degraded, forming a highly diverse pool of compounds, including N-containing compounds with 808 

proteinaceous signatures and a peptidoglycan-like backbone. These observations are consistent with the previous 809 

identification of nitrogen from peptidoglycans in soils and oceans. These bio-produced compounds were highly 810 
specific for each pyDOM sample (very few common bio-produced molecular formulas among samples). The 811 

observed molecular labilization and diversification have implications for the studies of wildfire biogeochemistry, 812 

as this shows that microbial reworking of pyDOM can contribute to the large complexity and variability of natural 813 
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organic matter. This study reveals that 1) pyDOM can be a medium for microbial growth, and 2) previously 814 

considered “recalcitrant” pyrogenic molecules can be incorporated into microbial food webs. This suggests that 815 

pyDOM is a much more active component in the global carbon and nitrogen cycles, and future studies need to 816 

further evaluate the bio-reactivity of pyDOM with microbial consortia of different environments, as well as in the 817 

context of wetted soils, groundwater processes, cycling within the riverine and marine water columns, and other 818 

aspects of the global carbon and nitrogen cycles. 819 
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