10

15

20

Comment on "'Estimating causal networks in biosphere—-atmosphere
interaction with the PCMCI approach"

Jarmo Mikeli!, Laila Melkas!, Ivan Mammarella?, Tuomo Nieminen??, Suyog Chandramouli!,
Rafael Savvides', and Kai Puolamiki'?

1Depalrtment of Computer Science, P.O. Box 68, FI-00014 University of Helsinki, Helsinki, Finland

2Institute for Atmospheric and Earth System Research / Physics, P.O. Box 64, FI-00014 University of Helsinki, Helsinki,
Finland

3Institute for Atmospheric and Earth System Research / Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki,
Helsinki, Finland

Correspondence: Jarmo Mikelid (jarmo.makela@helsinki.fi)

Abstract. This is a comment on "Estimating causal networks in biosphere—atmosphere interaction with the PCMCI approach"
by Krich et al., Biogeosciences, 17, 1033-1061, 2020, which gives a good introduction to causal discovery, but confines the
scope by investigating the outcome of a single algorithm. In this comment, we argue that the outputs of causal discovery
algorithms should not usually be considered as end results but starting points and hypothesis for further study. We illustrate
how not only different algorithms, but also different initial states and prior information of possible causal model structures,
affect the outcome. We demenstrate-provide a proof-of-concept demonstration of how to incorporate expert domain knowledge
with causal structure discovery and remark on how to detect and take into account everfitting-over-fitting and concept drift.

1 Main text

In a recent paper ? tested and applied a newly developed PCMCI algorithm (??) in order to detect causal links in geophysical
data. The algorithm is used on flux tower eddy covariance data and related meteorological measurements of six variables in
order to detect which variables can be seen to steer the behaviour of others. The paper can be viewed as a proof-of-concept
and is a good introduction to causality and underlying problems, given the novelty of applying these types of methods to better

understand biosphere-atmosphere interactions. However, we feel that eontribution-of Krich-et-al—covers-only-one-part-of-the

roach in ?—together with much of the other related work (?)—is limited in its contribution to the practical application
of causal disecovery-structure discovery (CSD) algorithms. There were items that in our opinion are significant forpractical
application-of such-causal-discovery methods-and-which-that were only briefly mentioned or not at all addressed in the-paper

by-2(2). These are:

— TFhe-Different CSD algorithms may produce distinct outcomes (models) ef-causal-structure-diseovery (CSD)-algorithms

when operating on the same data. It is often difficult to identify the "correct"
model-among these models, purely based on data.
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— The choice of initial state affeets-the-final-model(known structures) affects the behaviour and output of CSD algorithms.

Due to their setup, ? employed an empty graph, but other choices are also possible.

— Utilising the knowledge of the domain experts and user interaction can be used to improve the models.

— Overfitting-Over-fitting and concept drift —Overfitting-were addressed in (?) via the use of Akaike information criteria
AIC) (?) but as these issues are central to any model selection or development we want to stress their importance.

Over-fitting means that the analysis relies too much on the training data. Usually this happens when the amount of
data is too small, resulting the causal model fitting to noise. Concept drift means that the underlying data distribution
changes, rendering the causal model irrelevantobsolete. An example of a concept drift is that a model trained on a certain
location may not describe relations in another location; it is important to be able to take this phenomena-phenomenon

into account.

These comments are based on our recent workshop paper in the KDD 2021 conference (?). Since many experts in Earth

system sciences are not likely to follow said conference, we wanted to convey the main findings via this reply to ? as it also

originally inspired us to explore the topic. In short, et

we try to find a model (directed acyclic graph) that best reflects
the data, domain knowledge and user beliefs. Here we explore the behaviour of several CSD algorithms on both synthetic and
real data and demonstrate how to incorporate prior knowledge and user interactions to this process. Before examining these
topics in more detail, we present the underlying workflow in our approach:

1. Input domain knowledge (if any) as probabilities of known structures in the data.

2. Apply CSD algorithms to the data with the domain knowledge..

3. Choose a model from those provided by the algorithms, e.g. what the user regards as the best model in terms of their
background knowledge and model score.

4. Apply user interactions to the chosen model, We have substituted an actual user with a greedy search from-the neighboring

states-algorithm that examines the neighbouring models (one edit away) of the current modet By “neighbourhood™we

5. Check the validity of the chosen model. We use cross-validation to detect over-fitting and concept drift due to its
simplicity but other methods, e.g., AIC are possible as well.

The presented approach is Bayesian in nature and can be formulated as building a probabilistic model of the data. The
aim is to find (locally) optimal model and this-as such, we assume that the domain knowledge can be characterised by a prior
distribution over all possible causal structures (known features in the graph and confidence in that knowledge). Similarly, in our
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simulation, the user will have confidence, represented by parameter k, in certain structures between any pair of variables (A —

B, B — A orno link). The user (in our case greedy search) is presented with options for simple edits and how these edits would
affect the model score. This process is iterated, until the current model is at least as good as any of the neighbours — see ? for

details. The outcomes are also compared to a model produced by actual domain experts (IM and TN). The takeaway message
is that instead of using expert-domain knowledge to merely quality check the final model produced by a CSD algorithm, the

prior knowledge should be incorporated into the preeesscausal structure discovery process. The CSD methods we have used
are PC-Stable with two significance levels 0.1 and 0.01, GES, and ICA-based LINGAM. We use both synthetic data as well as

flux tower eddy covariance variables — same variables as in ? — measured at the SMEAR II station at Hyytiéld, Finland (?).

All presented numerical analyses use synthetic data, which enables us to know the “true model”. This data is created b
enerating a random (directed acyclic) graph and sampling it with random edge weights to produce data sets of varying size.
Each graph is generated with a sparsity of 0.3, which means that each pair of variables has an edge between them with a

robability of 0.3. All edges are oriented away from the first variable and in the same order the variables are defined, which
. Noise from either uniform distribution (-0.01, 0.01) or Gaussian with a standard deviation of 0.01 was added

ensures acyclicit

for each variable (for each variable the choice of the distribution was random). The reason for including both types of noise

distributions is to create data sets which almost follow assumptions made by the algorithms while still breaking some of them.
All of the algorithms we use in the experiments assume linearity but, additionally, PC-Stable and GES assume Gaussianity of
noise and LINGAM assumes non-Gaussianity.

2 Differences in CSD algorithms

While ? have focused on PCMCI, it is worthwhile to note that different CSD algorithms have varied outputs (models) for the
same input data 2)-(2?) since each algorithm operates differently and makes different assumptions about the underlying data
(Fig. 1). Additionally, even if the modelling assumptions in the causal discovery process are correct, insufficient or biased data
may result in skewed results. Therefore, the model gained from any one of these algorithms should not be viewed as the end
result, but rather a starting point for further analysis. Often it is not clear, which among the discovered models is the "best",
although we can argue that some of them are more plausible (?), given the expert’s knowledge. In some algorithms, inputting
this prior knowledge (e.g., probabilities of certain structures) is possible, but the ability to iteratively refine this background
knowledge during the data analysis process nor the possibility to express uncertainty in the prior information have not been

built in. These caveats hinder the usability of many CSD algorithms.

3 The choice of initial state

As different algorithms produce different models, so does the choice of initial state affects the outcome. These states can be, for
example, empty graphs (as in ?), states produced by sampling methods, or states that reflect certain expert-domain knowledge.

Depending on the choice of initial state and on how uncertain the prior information is, different locally optimal models that
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Figure 1. Different algorithms produce different causal graphs for the same data. PC algorithm is started from a full graph, LINGAM

has no defined initial graph and we started GES from an empty graph. GES produces (multiple) graphs with indistinguishable conditional

dependency relationships.

fit the data may be found. Intuitively, it would be interesting to have a set of initial states that would cover all local optima,
which could give rise to a global maximum-a-posteriori (MAP) solution. The underlying problem here would be to find a
representative set of starting points for the exploration.

We demonstrate the combined effect of utilising multiple initial states and different levels of prior knowledge (k) with

synthetic data (Fig. 2). The initial states are generated by four different CSD algorithms and are complemented by an empty

graph and the correct model, which we know as the data is synthetic. The-tuserknowledge-isreflected-by parameter There are
three possible causal states for a pair of model variables A and B: A = B, A <= B, and no causal connection between the
has—full-knowledge-of the-causal-structureand-¢.g. k = 1/3 means-that-the-user-hasno-priorinformation{(see2for-details:

‘ ~means flat prior and k = 1/2 means that user knows the true states of the pairs
with a probability of 1/2. In these simulations, the level of prior knowledge k € [1/3.1/2] We do not take into account wrong
information (k < 1/3), and values above 1/2 do not produce interesting results as such high certainty leads to near-constant

The structural Hamming distance (SHD) inei
up-with-anether-medelbetween two models indicates the minimum number of edge modifications (simple edits) required to

transform either of the models into the other one. Even with a small amount of prior information, the end result after user

interactions (greedy search) becomes much more stable — the spread of SHD diminishes as k increases (Fig. 2).

4 Utilising expert-domain knowledge and user interactions

The knowledge of the domain experts is classically used to provide suitable initial states for the CSD algorithms or to quality
check the outcomes, but this knowledge should also be used to steer the CSD processes via user interactions and to allow

reassessment of both user’s own prior knowledge and related uncertainty as well as the algorithm process. When this knowledge
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Figure 2. Pairwise structural Hamming distances when running analysis on the same data starting from different initial models. Variance in
the distances show that the final model is affected by choice of initial model. Additionally, the spread of distances decreases rapidly with

increasing prior knowledge.

is disregarded and the data is blindly trusted, any CSD algorithm or user (e.g., our greedy search) can uncover erroneous
connections and miss relevant ones (Fig. 3). For example, the expert model (d) identifies four direct and well-established causal
links from downwelling shortwave radiation (Rg) to latent and sensible heat fluxes (LE,H), temperature (T) and net ecosystem
exchange (NEE). Two of these links (T and NEE) are missing from the best scoring model among the CSD algorithms (a),
which also erroneously asserts that H is a driving force behind Rg. Both user models (b,c) find a new unrealistic link from Rg

to vapour pressure deficit (VPD) and indicate that Rg is affecting T only indirectly through NEE.

5 Concluding remarks

Novel CSD algorithms, and more generally many machine learning methods, offer new insights in Earth system sciences. We

argue that combining these methods with already abundant knowledge of the domain experts svit-may yield more robust results
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(a) Initial model from algorithms, (b) Final model starting from (a) (c) Final model starting from an (d) Expert model, produced b
roduced by PCstable. with greedy search. empty graph with greedy search. IMand TN.
Figure 3. The user (greedy search) finds slightly different models (b,c) whether we start the search from the best scoring model among our

CSD algorithms (a) or an empty graph. The underlying causal structures were given a uniform prior (k = 1/3). Also shown is the expert

model, produced before these experiments. The SHD from the expert model to (a),(b) and (c) are ten, seven and five.

and provide promising questions for future research. We also argue that while there are plethora of CSD algorithms that has
been applied in earth sciences the question of how to use them in practice is still open. We have briefly presented here ene
fairly-simple-a fairly simple proof-of-concept approach as how to achieve this, demonstrated its effectiveness and highlighted

some pitfalls — we direct anyone interested in a more detailed presentation to see ?, where we have also demonstrated how to

detect over-fitting and concept drift, two common problems in statistical modelling, using k-fold blocked cross-validation (?

. Hopefully, this-the work presented here will encourage developers to implement and study further interactive workflows. We
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