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Abstract. This is a comment on "Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach"

by Krich et al., Biogeosciences, 17, 1033–1061, 2020, which gives a good introduction to causal discovery, but confines the

scope by investigating the outcome of a single algorithm. In this comment, we argue that the outputs of causal discovery

algorithms should not usually be considered as end results but starting points and hypothesis for further study. We illustrate

how not only different algorithms, but also different initial states and prior information of possible causal model structures,5

affect the outcome. We demonstrate
::::::
provide

:
a
::::::::::::::
proof-of-concept

::::::::::::
demonstration

::
of

:
how to incorporate expert domain knowledge

with causal structure discovery and
:::::
remark

:::
on how to detect and take into account overfitting

:::::::::
over-fitting and concept drift.

1 Main text

In a recent paper ? tested and applied a newly developed PCMCI algorithm (??) in order to detect causal links in geophysical

data. The algorithm is used on flux tower eddy covariance data and related meteorological measurements of six variables in10

order to detect which variables can be seen to steer the behaviour of others. The paper can be viewed as a proof-of-concept

and is a good introduction to causality and underlying problems, given the novelty of applying these types of methods to better

understand biosphere-atmosphere interactions. However, we feel that contribution of Krich et al. covers only one part of
:::
the

:::::::
approach

:::
in

:
?
:::::::::
—together

::::
with

:::::
much

:::
of

:::
the

::::
other

:::::::
related

::::
work

:::
(?)

::::
—is

::::::
limited

::
in

:::
its

::::::::::
contribution

::
to
::::

the practical application

of causal discovery
:::::::
structure

:::::::::
discovery

::::::
(CSD) algorithms. There were items that in our opinion are significant for practical15

application of such causal discovery methods and which
:::
that were only briefly mentioned or not at all addressed in the paper

by ?
::
(?). These are:

– The
:::::::
Different

::::
CSD

:::::::::
algorithms

::::
may

:::::::
produce

:::::::
distinct outcomes (models) of causal structure discovery (CSD) algorithms

are, in many cases, interchangeable: it is very
::::
when

::::::::
operating

:::
on

::
the

:::::
same

::::
data.

::
It

::
is

::::
often difficult to identify the "correct"

model
::::::
among

:::::
these

::::::
models,

:
purely based on data.20
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– The choice of initial state affects the final model
::::::
(known

:::::::::
structures)

:::::
affects

:::
the

:::::::::
behaviour

:::
and

::::::
output

::
of

::::
CSD

:::::::::
algorithms.

Due to their setup, ? employed an empty graph, but other choices are also possible.

– Utilising the knowledge of the domain experts and user interaction can be used to improve the models.

– Overfitting
::::::::::
Over-fitting and concept drift . Overfitting

::::
were

::::::::
addressed

:::
in

:::
(?)

::
via

::::
the

:::
use

::
of

::::::
Akaike

::::::::::
information

:::::::
criteria

:::::
(AIC)

:::
(?)

:::
but

::
as

:::::
these

::::::
issues

:::
are

::::::
central

::
to

::::
any

::::::
model

::::::::
selection

::
or

:::::::::::
development

:::
we

:::::
want

::
to

:::::
stress

::::
their

:::::::::::
importance.25

:::::::::
Over-fitting

:
means that the analysis relies too much on the training data. Usually this happens when the amount of

data is too small, resulting the causal model fitting to noise. Concept drift means that the underlying data distribution

changes, rendering the causal model irrelevant
::::::
obsolete. An example of a concept drift is that a model trained on a certain

location may not describe relations in another location; it is important to be able to take this phenomena
:::::::::::
phenomenon

into account.30

These comments are based on our recent workshop paper in the KDD 2021 conference (?). Since many experts in Earth

system sciences are not likely to follow said conference, we wanted to convey the main findings via this reply to ? as it also

originally inspired us to explore the topic. In short, our workshop paper presents a procedure on how to utilise prior knowledge

of the domain experts in finding causal structure discovery (CSD) models and how a user might incorporate this knowledge

with CSD algorithms . This knowledgecan be characterised by a prior distribution over all possible causal structures.We use35

both synthetic data as well as flux tower eddy covariance variables – same variables as in ?) – measured at the SMEAR II

station at Hyytiälä, Finland (?). We simulate the user ’s choices
::
we

:::
try

::
to

:::
find

::
a

:::::
model

::::::::
(directed

::::::
acyclic

:::::
graph)

::::
that

:::
best

:::::::
reflects

::
the

:::::
data,

::::::
domain

::::::::::
knowledge

:::
and

::::
user

::::::
beliefs.

:::::
Here

::
we

:::::::
explore

:::
the

::::::::
behaviour

::
of

:::::::
several

::::
CSD

:::::::::
algorithms

:::
on

::::
both

:::::::
synthetic

::::
and

:::
real

::::
data

:::
and

:::::::::::
demonstrate

::::
how

::
to

::::::::::
incorporate

::::
prior

::::::::::
knowledge

:::
and

::::
user

::::::::::
interactions

::
to

::::
this

:::::::
process.

::::::
Before

:::::::::
examining

:::::
these

:::::
topics

::
in

::::
more

::::::
detail,

:::
we

::::::
present

:::
the

:::::::::
underlying

::::::::
workflow

::
in

:::
our

:::::::::
approach:40

1.
::::
Input

:::::::
domain

:::::::::
knowledge

::
(if

::::
any)

:::
as

::::::::::
probabilities

::
of

::::::
known

::::::::
structures

::
in
:::
the

:::::
data.

2.
:::::
Apply

::::
CSD

:::::::::
algorithms

:::
to

::
the

::::
data

::::
with

:::
the

:::::::
domain

::::::::::
knowledge.

3.
::::::
Choose

::
a

:::::
model

:::::
from

::::
those

::::::::
provided

:::
by

:::
the

::::::::::
algorithms,

:::
e.g.

:::::
what

:::
the

::::
user

::::::
regards

::
as

:::
the

::::
best

::::::
model

::
in

:::::
terms

::
of

:::::
their

:::::::::
background

::::::::::
knowledge

:::
and

::::::
model

:::::
score.

4.
:::::
Apply

::::
user

:::::::::
interactions

::
to
:::
the

::::::
chosen

::::::
model.

:::
We

::::
have

:::::::::
substituted

::
an

::::::
actual

:::
user

:
with a greedy search from the neighboring45

states
::::::::
algorithm

:::
that

::::::::
examines

:::
the

::::::::::::
neighbouring

::::::
models

::::
(one

::::
edit

:::::
away)

:
of the current model. By “neighbourhood” we

mean the models that can be reached from the current model by simple edits and “greedy” we mean that the user always

chooses the best model from the neighbourhood of the current model,
:::
one

:::
and

:::::::
chooses

:::
the

::::
best,

::
in

:::::
terms

::
of

::::::
model

:::::
score.

5.
:::::
Check

:::
the

:::::::
validity

:::
of

:::
the

::::::
chosen

:::::::
model.

:::
We

::::
use

:::::::::::::
cross-validation

:::
to

:::::
detect

::::::::::
over-fitting

::::
and

:::::::
concept

::::
drift

::::
due

::
to

:::
its50

::::::::
simplicity

:::
but

:::::
other

:::::::
methods,

::::
e.g.,

::::
AIC

:::
are

:::::::
possible

::
as

:::::
well.

:::
The

:::::::::
presented

::::::::
approach

::
is

::::::::
Bayesian

::
in

::::::
nature

:::
and

::::
can

::
be

::::::::::
formulated

::
as

::::::::
building

:
a
:::::::::::

probabilistic
::::::
model

::
of

:::
the

:::::
data.

::::
The

:::
aim

::
is

::
to

::::
find

:::::::
(locally)

:::::::
optimal

:::::
model

:
and this

:
as

:::::
such,

:::
we

::::::
assume

::::
that

:::
the

::::::
domain

::::::::::
knowledge

:::
can

::
be

:::::::::::
characterised

:::
by

:
a
:::::
prior

:::::::::
distribution

::::
over

:::
all

:::::::
possible

:::::
causal

::::::::
structures

:::::::
(known

::::::
features

::
in
:::
the

:::::
graph

::::
and

:::::::::
confidence

::
in

:::
that

::::::::::
knowledge).

:::::::::
Similarly,

::
in

:::
our
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:::::::::
simulation,

:::
the

::::
user

:::
will

::::
have

::::::::::
confidence,

::::::::::
represented

::
by

:::::::::
parameter

::
k,

::
in

::::::
certain

::::::::
structures

:::::::
between

:::
any

::::
pair

::
of

::::::::
variables

::
(A

:::
→55

::
B,

::
B

::
→

::
A

::
or

:::
no

::::
link).

::::
The

::::
user

::
(in

:::
our

::::
case

::::::
greedy

::::::
search)

::
is

::::::::
presented

::::
with

:::::::
options

::
for

::::::
simple

::::
edits

::::
and

::::
how

::::
these

::::
edits

::::::
would

:::::
affect

::
the

::::::
model

:::::
score.

::::
This

:
process is iterated, until the current model is at least as good as any of the neighbours – see ? for

details. The outcomes are also compared to a model produced by actual domain experts
:::
(IM

:::
and

::::
TN). The takeaway message

is that instead of using expert
::::::
domain

:
knowledge to merely quality check the final model produced by a CSD algorithm, the

prior knowledge should be incorporated into the process
:::::
causal

:::::::
structure

:::::::::
discovery

:::::::
process.

:::
The

:::::
CSD

:::::::
methods

:::
we

::::
have

:::::
used60

::
are

:::::::::
PC-Stable

::::
with

::::
two

::::::::::
significance

:::::
levels

:::
0.1

:::
and

:::::
0.01,

::::
GES,

::::
and

:::::::::
ICA-based

:::::::::
LiNGAM.

:::
We

:::
use

::::
both

::::::::
synthetic

:::
data

:::
as

::::
well

::
as

:::
flux

:::::
tower

:::::
eddy

:::::::::
covariance

:::::::
variables

::
–

::::
same

::::::::
variables

::
as

::
in

::
?

:
–
::::::::
measured

::
at
:::
the

::::::::
SMEAR

::
II

:::::
station

::
at
::::::::
Hyytiälä,

:::::::
Finland

:::
(?).

:

:::
All

::::::::
presented

:::::::::
numerical

:::::::
analyses

:::
use

::::::::
synthetic

:::::
data,

:::::
which

:::::::
enables

::
us

:::
to

:::::
know

:::
the

::::
“true

:::::::
model”.

:::::
This

::::
data

::
is

::::::
created

:::
by

::::::::
generating

::
a
:::::::
random

:::::::
(directed

:::::::
acyclic)

:::::
graph

::::
and

::::::::
sampling

:
it
::::
with

:::::::
random

::::
edge

:::::::
weights

::
to

:::::::
produce

::::
data

::::
sets

::
of

:::::::
varying

::::
size.

::::
Each

:::::
graph

::
is
:::::::::

generated
::::
with

::
a

:::::::
sparsity

::
of

::::
0.3,

:::::
which

::::::
means

::::
that

::::
each

::::
pair

::
of

::::::::
variables

::::
has

::
an

:::::
edge

:::::::
between

:::::
them

::::
with

::
a65

:::::::::
probability

::
of

::::
0.3.

:::
All

:::::
edges

:::
are

:::::::
oriented

:::::
away

::::
from

:::
the

::::
first

:::::::
variable

::::
and

::
in

:::
the

:::::
same

::::
order

:::
the

::::::::
variables

:::
are

:::::::
defined,

::::::
which

::::::
ensures

:::::::::
acyclicity.

:::::
Noise

::::
from

:::::
either

:::::::
uniform

:::::::::
distribution

::::::
(-0.01,

:::::
0.01)

::
or

::::::::
Gaussian

::::
with

:
a
:::::::
standard

::::::::
deviation

::
of

::::
0.01

::::
was

:::::
added

::
for

:::::
each

:::::::
variable

:::
(for

::::
each

:::::::
variable

::::
the

:::::
choice

:::
of

:::
the

:::::::::
distribution

::::
was

::::::::
random).

::::
The

::::::
reason

::
for

:::::::::
including

::::
both

:::::
types

::
of

:::::
noise

::::::::::
distributions

::
is

::
to

:::::
create

::::
data

:::
sets

::::::
which

::::::
almost

:::::
follow

:::::::::::
assumptions

::::
made

:::
by

:::
the

:::::::::
algorithms

:::::
while

:::
still

::::::::
breaking

:::::
some

::
of

:::::
them.

:::
All

::
of

:::
the

:::::::::
algorithms

:::
we

:::
use

::
in

:::
the

::::::::::
experiments

:::::::
assume

:::::::
linearity

:::
but,

:::::::::::
additionally,

::::::::
PC-Stable

::::
and

::::
GES

:::::::
assume

::::::::::
Gaussianity

::
of70

::::
noise

::::
and

::::::::
LiNGAM

:::::::
assumes

::::::::::::::
non-Gaussianity.

2 Differences in CSD algorithms

While ? have focused on PCMCI, it is worthwhile to note that different CSD algorithms have varied outputs (models) for the

same input data (?)
::::
(??) since each algorithm

:::::::
operates

:::::::::
differently

:::
and

:
makes different assumptions about the underlying data

::::
(Fig.

::
1). Additionally, even if the modelling assumptions in the causal discovery process are correct, insufficient or biased data75

may result in skewed results. Therefore, the model gained from any one of these algorithms should not be viewed as the end

result, but rather a starting point for further analysis. Often it is not clear, which among the discovered models is the "best",

although we can argue that some of them are more plausible (?), given the expert’s knowledge. In some algorithms, inputting

this prior knowledge (e.g., probabilities of certain structures) is possible, but the ability to iteratively refine this background

knowledge during the data analysis process nor the possibility to express uncertainty in the prior information have not been80

built in. These caveats hinder the usability of many CSD algorithms.

3 The choice of initial state

As different algorithms produce different models, so does the choice of initial state affects the outcome. These states can be, for

example, empty graphs (as in ?), states produced by sampling methods, or states that reflect certain expert
::::::
domain knowledge.

Depending on the choice of initial state and on how uncertain the prior information is, different locally optimal models that85
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PC, alpha=0.1
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Figure 1.
::::::
Different

:::::::::
algorithms

::::::
produce

:::::::
different

:::::
causal

::::::
graphs

:::
for

::
the

:::::
same

::::
data.

:::
PC

:::::::
algorithm

::
is
::::::

started
::::
from

::
a

:::
full

:::::
graph,

::::::::
LiNGAM

::
has

:::
no

::::::
defined

::::
initial

:::::
graph

:::
and

:::
we

:::::
started

::::
GES

::::
from

::
an

:::::
empty

:::::
graph.

::::
GES

:::::::
produces

::::::::
(multiple)

:::::
graphs

::::
with

:::::::::::::
indistinguishable

:::::::::
conditional

:::::::::
dependency

::::::::::
relationships.

fit the data may be found. Intuitively, it would be interesting to have a set of initial states that would cover all local optima,

which could give rise to a global maximum-a-posteriori (MAP) solution. The underlying problem here would be to find a

representative set of starting points for the exploration.

We demonstrate the combined effect of utilising multiple initial states and different levels of prior knowledge (k) with

synthetic data (Fig. 2). The initial states are generated by four different CSD algorithms and are complemented by an empty90

graph and the correct model, which we know as the data is synthetic. The user knowledge is reflected by parameter
:::::
There

:::
are

::::
three

:::::::
possible

::::::
causal

:::::
states

:::
for

::
a

:::
pair

:::
of

:::::
model

::::::::
variables

::
A

::::
and

:::
B:

:::::::
A→B,

:::::::
A←B,

::::
and

::
no

::::::
causal

:::::::::
connection

::::::::
between

:::
the

:::
two.

::::
The

::::
user

::::::
knows

:::
the

::::::
correct

::::
state

:::::::
between

::::
each

::::
pair

::
of

::::::::
variables

::::
with

:::
the

:::::::::
probability

::
of

:
k, where k = 1 indicates that user

has full knowledge of the causal structure and
::
e.g.

:
k = 1/3 means that the user has no prior information (see ? for details;

values of k > 1/2 lead to near constant results).
::::::
means

:::
flat

::::
prior

:::
and

:::::::
k = 1/2

::::::
means

:::
that

::::
user

::::::
knows

:::
the

:::
true

:::::
states

::
of

:::
the

:::::
pairs95

::::
with

:
a
:::::::::
probability

::
of

::::
1/2.

:::
In

::::
these

::::::::::
simulations,

:::
the

:::::
level

::
of

::::
prior

::::::::::
knowledge

:::::::::::
k ∈ [1/3,1/2]

:::
We

:::
do

:::
not

::::
take

:::
into

:::::::
account

::::::
wrong

:::::::::
information

:::::::::
(k < 1/3),

::::
and

::::::
values

:::::
above

::::
1/2

::
do

:::
not

:::::::
produce

:::::::::
interesting

::::::
results

::
as
:::::

such
::::
high

::::::::
certainty

::::
leads

::
to
::::::::::::
near-constant

::::::
results.

The structural Hamming distance (SHD) indicates how many modifications to a model have to be made in order to end

up with another model
:::::::
between

::::
two

::::::
models

::::::::
indicates

:::
the

::::::::
minimum

:::::::
number

:::
of

::::
edge

:::::::::::
modifications

:::::::
(simple

:::::
edits)

::::::::
required

::
to100

::::::::
transform

:::::
either

::
of

:::
the

:::::::
models

::::
into

:::
the

:::::
other

:::
one. Even with a small amount of prior information, the end result after user

interactions (greedy search) becomes much more stable – the spread of SHD diminishes as k increases (Fig. 2).

4 Utilising expert
::::::
domain

:
knowledge and user interactions

The knowledge of the domain experts is classically used to provide suitable initial states for the CSD algorithms or to quality

check the outcomes, but this knowledge should also be used to steer the CSD processes via user interactions and to allow105

reassessment of both user’s own prior knowledge and related uncertainty as well as the algorithm process. When this knowledge
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Figure 2. Pairwise structural Hamming distances when running analysis on the same data starting from different initial models. Variance in

the distances show that the final model is affected by choice of initial model. Additionally, the spread of distances decreases rapidly with

increasing prior knowledge.

is disregarded and the data is blindly trusted, any CSD algorithm or user (e.g., our greedy search) can uncover erroneous

connections and miss relevant ones (Fig. 3). For example, the expert model (d) identifies four direct and well-established causal

links from downwelling shortwave radiation (Rg) to latent and sensible heat fluxes (LE,H), temperature (T) and net ecosystem

exchange (NEE). Two of these links (T and NEE) are missing from the best scoring model among the CSD algorithms (a),110

which also erroneously asserts that H is a driving force behind Rg. Both user models (b,c) find a new unrealistic link from Rg

to vapour pressure deficit (VPD) and indicate that Rg is affecting T only indirectly through NEE.

5 Overfitting and concept drift

Overfitting the model to the data is a common problem in statistical modelling, but to the best of our knowledge this problem has

not been addressed in the context of CSD. In ? we demonstrate how to detect overfitting using k-fold blocked cross-validation115

(?). The same method is also applicable in detecting concept drift, which we induced by including a set of measurements

taken in August 2015 to calibration data containing measurements taken in April 2013–2015 – this violates causal stationarity

stemming from seasonality.

5 Concluding remarks

Novel CSD algorithms, and more generally many machine learning methods, offer new insights in Earth system sciences. We120

argue that combining these methods with already abundant knowledge of the domain experts will
::::
may yield more robust results
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Rg

TNEE

VPD

H LE

(a) Initial model from algorithms,

:::::::
produced

::
by

:::::::
PC-stable.

Rg

TNEE

VPD

H LE

(b) Final model starting from (a)

:::
with

::::::
greedy

:::::
search.

Rg

TNEE

VPD

H LE

(c) Final model starting from an

empty graph
::::
with

:::::
greedy

:::::
search.

Rg

TNEE

VPD

H LE

(d) Expert model
:
,
:::::::
produced

:::
by

::
IM

:::
and

:::
TN.

Figure 3. The user (greedy search) finds slightly different models (b,c) whether we start the search from the best scoring model among our

CSD algorithms (a) or an empty graph. The underlying causal structures were given a uniform prior
:::::::
(k = 1/3). Also shown is the expert

model, produced before these experiments. The SHD from the expert model to (a),(b) and (c) are ten, seven and five.

:::
and

:::::::
provide

::::::::
promising

::::::::
questions

:::
for

::::::
future

:::::::
research. We also argue that while there are plethora of CSD algorithms that has

been applied in earth sciences the question of how to use them in practice is still open. We have briefly presented here one

fairly simple
:
a

::::
fairly

::::::
simple

::::::::::::::
proof-of-concept

:
approach as how to achieve this, demonstrated its effectiveness and highlighted

some pitfalls
:
–
:::
we

:::::
direct

::::::
anyone

::::::::
interested

:::
in

:
a
:::::
more

::::::
detailed

:::::::::::
presentation

::
to

:::
see

::
?,

:::::
where

:::
we

:::::
have

:::
also

::::::::::::
demonstrated

::::
how

::
to125

:::::
detect

:::::::::
over-fitting

::::
and

::::::
concept

:::::
drift,

:::
two

::::::::
common

::::::::
problems

::
in

::::::::
statistical

:::::::::
modelling,

:::::
using

::::::
k-fold

:::::::
blocked

:::::::::::::
cross-validation

:::
(?)

. Hopefully, this
:::
the

::::
work

:::::::::
presented

::::
here will encourage developers to implement and study further interactive workflows. We

direct anyone interested in a more detailed presentation to see ?.
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