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Abstract. This is a comment on "Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach"

by Krich et al., Biogeosciences, 17, 1033–1061, 2020, which gives a good introduction to causal discovery, but confines the

scope by investigating the outcome of a single algorithm. In this comment, we argue that the outputs of causal discovery

algorithms should not usually be considered as end results but starting points and hypothesis for further study. We illustrate

how not only different algorithms, but also different initial states and prior information of possible causal model structures,5

affect the outcome. We demonstrate how to incorporate expert domain knowledge with causal structure discovery and how to

detect and take into account overfitting and concept drift.

1 Main text

In a recent paper Krich et al. (2020) tested and applied a newly developed PCMCI algorithm (Runge, 2020; Runge et al.,

2019) in order to detect causal links in geophysical data. The algorithm is used on flux tower eddy covariance data and related10

meteorological measurements of six variables in order to detect which variables can be seen to steer the behaviour of others.

The paper can be viewed as a proof-of-concept and is a good introduction to causality and underlying problems, given the

novelty of applying these types of methods to better understand biosphere-atmosphere interactions. However, we feel that

contribution of Krich et al. covers only one part of practical application of causal discovery algorithms. There were items that

in our opinion are significant for practical application of such causal discovery methods and which were only briefly mentioned15

or not at all addressed in the paper by Krich et al. (2020). These are:

– The outcomes (models) of causal structure discovery (CSD) algorithms are, in many cases, interchangeable: it is very

difficult to identify the "correct" model purely based on data.

– The choice of initial state affects the final model. Due to their setup, Krich et al. (2020) employed an empty graph, but

other choices are also possible.20
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– Utilising the knowledge of the domain experts and user interaction can be used to improve the models.

– Overfitting and concept drift. Overfitting means that the analysis relies too much on the training data. Usually this

happens when the amount of data is too small, resulting the causal model fitting to noise. Concept drift means that

the underlying data distribution changes, rendering the causal model irrelevant. An example of a concept drift is that a

model trained on a certain location may not describe relations in another location; it is important to be able to take this25

phenomena into account.

These comments are based on our recent workshop paper in the KDD 2021 conference (Melkas et al., 2021). Since many

experts in Earth system sciences are not likely to follow said conference, we wanted to convey the main findings via this reply

to Krich et al. (2020) as it also originally inspired us to explore the topic. In short, our workshop paper presents a procedure

on how to utilise prior knowledge of the domain experts in finding causal structure discovery (CSD) models and how a user30

might incorporate this knowledge with CSD algorithms. This knowledge can be characterised by a prior distribution over all

possible causal structures. We use both synthetic data as well as flux tower eddy covariance variables – same variables as in

Krich et al. (2020)) – measured at the SMEAR II station at Hyytiälä, Finland (Mammarella, 2020). We simulate the user’s

choices with a greedy search from the neighboring states of the current model. By “neighbourhood” we mean the models that

can be reached from the current model by simple edits and “greedy” we mean that the user always chooses the best model35

from the neighbourhood of the current model, and this process is iterated, until the current model is at least as good as any of

the neighbours – see Melkas et al. (2021) for details. The outcomes are also compared to a model produced by actual domain

experts. The takeaway message is that instead of using expert knowledge to merely quality check the final model produced by

a CSD algorithm, the prior knowledge should be incorporated into the process.

2 Differences in CSD algorithms40

While Krich et al. (2020) have focused on PCMCI, it is worthwhile to note that different CSD algorithms have varied outputs

(models) for the same input data (Druzdzel, 2009) since each algorithm makes different assumptions about the underlying data.

Additionally, even if the modelling assumptions in the causal discovery process are correct, insufficient or biased data may

result in skewed results. Therefore, the model gained from any one of these algorithms should not be viewed as the end result,

but rather a starting point for further analysis. Often it is not clear, which among the discovered models is the "best", although45

we can argue that some of them are more plausible (Runge et al., 2019), given the expert’s knowledge. In some algorithms,

inputting this prior knowledge (e.g., probabilities of certain structures) is possible, but the ability to iteratively refine this

background knowledge during the data analysis process nor the possibility to express uncertainty in the prior information have

not been built in. These caveats hinder the usability of many CSD algorithms.
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3 The choice of initial state50

As different algorithms produce different models, so does the choice of initial state affects the outcome. These states can be,

for example, empty graphs (as in Krich et al. (2020)), states produced by sampling methods, or states that reflect certain expert

knowledge. Depending on the choice of initial state and on how uncertain the prior information is, different locally optimal

models that fit the data may be found. Intuitively, it would be interesting to have a set of initial states that would cover all local

optima, which could give rise to a global maximum-a-posteriori (MAP) solution. The underlying problem here would be to55

find a representative set of starting points for the exploration.

We demonstrate the combined effect of utilising multiple initial states and different levels of prior knowledge (k) with

synthetic data (Fig. 1). The initial states are generated by four different CSD algorithms and are complemented by an empty

graph and the correct model, which we know as the data is synthetic. The user knowledge is reflected by parameter k, where

k = 1 indicates that user has full knowledge of the causal structure and k = 1/3 means that the user has no prior information60

(see Melkas et al. (2021) for details; values of k > 1/2 lead to near constant results). The structural Hamming distance (SHD)

indicates how many modifications to a model have to be made in order to end up with another model. Even with a small

amount of prior information, the end result after user interactions (greedy search) becomes much more stable – the spread of

SHD diminishes as k increases (Fig. 1).
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Figure 1. Pairwise structural Hamming distances when running analysis on the same data starting from different initial models. Variance in

the distances show that the final model is affected by choice of initial model. Additionally, the spread of distances decreases rapidly with

increasing prior knowledge.
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4 Utilising expert knowledge and user interactions65

The knowledge of the domain experts is classically used to provide suitable initial states for the CSD algorithms or to quality

check the outcomes, but this knowledge should also be used to steer the CSD processes via user interactions and to allow

reassessment of both user’s own prior knowledge and related uncertainty as well as the algorithm process. When this knowledge

is disregarded and the data is blindly trusted, any CSD algorithm or user (e.g., our greedy search) can uncover erroneous

connections and miss relevant ones (Fig. 2). For example, the expert model (d) identifies four direct and well-established causal70

links from downwelling shortwave radiation (Rg) to latent and sensible heat fluxes (LE,H), temperature (T) and net ecosystem

exchange (NEE). Two of these links (T and NEE) are missing from the best scoring model among the CSD algorithms (a),

which also erroneously asserts that H is a driving force behind Rg. Both user models (b,c) find a new unrealistic link from Rg

to vapour pressure deficit (VPD) and indicate that Rg is affecting T only indirectly through NEE.
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(d) Expert model.

Figure 2. The user (greedy search) finds slightly different models (b,c) whether we start the search from the best scoring model among

our CSD algorithms (a) or an empty graph. The underlying causal structures were given a uniform prior. Also shown is the expert model,

produced before these experiments. The SHD from the expert model to (a),(b) and (c) are ten, seven and five.

5 Overfitting and concept drift75

Overfitting the model to the data is a common problem in statistical modelling, but to the best of our knowledge this problem

has not been addressed in the context of CSD. In Melkas et al. (2021) we demonstrate how to detect overfitting using k-fold

blocked cross-validation (Bergmeir and Benítez, 2012). The same method is also applicable in detecting concept drift, which

we induced by including a set of measurements taken in August 2015 to calibration data containing measurements taken in

April 2013–2015 – this violates causal stationarity stemming from seasonality.80
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6 Concluding remarks

Novel CSD algorithms, and more generally many machine learning methods, offer new insights in Earth system sciences. We

argue that combining these methods with already abundant knowledge of the domain experts will yield more robust results. We

also argue that while there are plethora of CSD algorithms that has been applied in earth sciences the question of how to use

them in practice is still open. We have briefly presented here one fairly simple approach as how to achieve this, demonstrated its85

effectiveness and highlighted some pitfalls. Hopefully, this will encourage developers to implement and study further interactive

workflows. We direct anyone interested in a more detailed presentation to see Melkas et al. (2021).
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