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S1.  Sensitivity analysis 

The Morris or elementary effects screening method (Morris, 1991) was used to conduct a 

qualitative global sensitivity analysis on phenological development of maize. Sensitivity 

analysis was only performed for site-year 6_2010 under the assumption that ranks of the most 

sensitive parameters would not change significantly due do the different weather and initial 

conditions in Kraichgau and the Swabian Alb. The sensitivity package in R (Bertrand Iooss et 

al., 2020) was used. The one-at-a-time (OAT) design in the morris function was used to 

define the parameter vectors. A total of 11 parameters that influence phenological 

development in the SPASS model were pre-selected based on expert knowledge. Uniform 

parameter distributions with a range equal to three standard deviations from the expected 

value were used. It is noted that different distributions have been used for Bayesian 

calibration (platykurtic prior distribution) and sensitivity analysis (uniform distribution). 

However, this is assumed to have a limited influence in identifying the most sensitive 

parameters. Settings to the morris function were provided: 1000 samples, 10 levels and a grid 

jump-size of 2 units. Phenology was simulated using the SPASS model in XN5 software for 

all the proposed parameter vectors. The morris function was then used to estimate elementary 

effects (Cuntz et al., 2015; Morris, 1991) of phenological development at an interval of every 

5 days within the growing season. The sensitivity measures, namely, the mean (𝜇𝜇∗) of the 

absolute value of the elementary effects of a parameter and the standard deviation (𝜎𝜎) were 

calculated on these days to evaluate parameter sensitivity over the growing season.  
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where 𝜇𝜇𝜃𝜃𝑖𝑖
∗ and 𝜎𝜎𝜃𝜃𝑖𝑖 are the 𝜇𝜇∗ and 𝜎𝜎 sensitivity measures for the 𝑖𝑖th parameter in the parameter 

vector 𝜃𝜃, 𝑒𝑒𝑒𝑒𝑛𝑛 is the elementary effects for the 𝑛𝑛th parameter vector, 𝑁𝑁 are the total parameter 

vectors and 𝜇𝜇𝜃𝜃𝑖𝑖is given by: 
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Based on 𝜇𝜇∗, the effective sowing depth (SOWDEPTH) was the most and only sensitive 

parameter during emergence, which is intuitive as the other parameters influence development 

after emergence (Fig. S1). Then the relative importance of parameters that define the cardinal 

temperatures (DELTMAX1, DELTOPT1 and TMINDEV1) and the physiological 

development days (PDD1) of the vegetative phase increased. These parameters continued to 

be the most influential parameters even through the generative phase of development. Even 

though DELTOPT2 and PDD2 are important parameters for the generative phase of 

development, their influence was small and over-shadowed by the influence of the vegetative 

phase parameters.  



 

Figure S1: Plots of (i) 𝛍𝛍∗ and (ii) sigma of elementary effects calculated for simulated 

phenological development at an interval of 5 days over the growing season of silage maize 

(between sowing day 112 and harvest day 278 of the year) at site 6 in the year 2010. The 

parameters that influence phenological development in the SPASS model are listed in the 

legend. Plots (iii) and (iv) are the normalized  𝛍𝛍∗ and sigma values per day, respectively, 

expressed as a percentages. 

  



S2.  Estimation of information entropy 

Information entropy (𝐻𝐻) for a continuous distribution is given by: 

 𝐻𝐻 = −�𝑓𝑓(𝜃𝜃)ln�f(𝜃𝜃)�d𝜃𝜃 S4.  

where 𝑓𝑓(𝜃𝜃) is the probability density function of 𝜃𝜃. 

Information entropy estimates of the posterior parameter distributions were obtained using the 

redistribution estimate equation (Beirlant et al., 1997): 
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where 𝐻𝐻𝑛𝑛 is the estimate of information entropy, 𝑓𝑓𝑛𝑛 is the Kernel Density Estimate (KDE) 

and 𝜃𝜃1,…𝜃𝜃𝑛𝑛 are independent and identically distributed (i.i.d.) parameter vector samples from 

the posterior distribution. The KDE was obtained by using the kde function from the ks 

package in R (Duong, 2020). Least Squares Cross-Validation (LSCV) was used for bandwidth 

selection.  

  



S3.  Residual analysis 

Residuals were analysed for the synthetic and true sequences for simulated phenology at the 

maximum a posteriori probability (MAP) estimate of the model parameters. The residual plots 

provided in the following sections have been separated into the synthetic sequences (section 

S3.1), Swabian Alb true sequence (section S3.2), and Kraichgau true sequence (section S3.3).  

Homoscedasticity was checked by plotting the residuals against days-after-sowing and 

simulated phenology (Fig. S2, Fig. S3, Fig. S8 – Fig. S13, Fig. S18 – Fig. S20). In general, 

heteroscedasticity was not observed. Normal assumption of the error model was verified by 

plotting histograms of the residuals and quantile-quantile plots (Fig. S4, Fig. S5, Fig. S14 – 

Fig. S16, Fig. S21). For the first few sequential updates, the number of observations were 

limited making a thorough analysis difficult. For the latter few sequential updates, the 

residuals were found to be nearly normal.  

In the synthetic sequences, the residual error distribution was nearly normal (Fig. S4, Fig. S5). 

The slight skewness is attributed to model limitations (controlled cultivar-environment 

sequence) and specific site-years that had a different phenological development as compared 

to the remaining site-years in the calibration sequence (both synthetic sequences). 

The slight skewness observed in the true sequence is attributed to model limitations where the 

model is unable to capture the slow development during the vegetative phase that was 

observed at a few site-years like 6_2013 (Fig. S14, Fig. S15, Fig. S16) and 5_2016 (Fig. S16). 

Autocorrelation was estimated after padding the dataset as the observations are not at regular 

time-intervals. Therefore, there is no ACF estimated at some lags. Figure S17: contains the 

autocorrelation (ACF) plot of the residuals after the model is calibrated to data from site-years 

6_2010, 5_2011, 5_2012, 6_2013, 5_2015, and 5_2016. Based on the limited data with 

unequal lags, no autocorrelation was detected. However, it is suspected that with state 

variables like phenology, which are based on cumulative sums, autocorrelation of errors could 



theoretically exist. However, due to data limitations, error modelling would be limited in its 

scope for improving the results.  

S3.1 Synthetic sequences 

In the ideal sequence where there is no model structural error, the skewness in the residual 

distribution (Fig. S4) is caused by site-year 2. This site-year exhibits a different development-

behaviour as compared to other site-years in the calibration sequence (Fig. S6). In the 

controlled cultivar-environment sequence the slight skewness (Fig. S5) in the distribution of 

the residuals are caused due to two reasons. The site-year 9 exhibits a different phenological 

development-behaviour as compared to other site-years in the calibration sequence (Fig. S7). 

Additionally, the model is unable to capture the rapid growth seen in site-years 3, 4, 5, 8 and 9 

between 82 and 110 days after sowing.  

 

Figure S2: Residuals vs simulated phenology and days after sowing after calibration to 10 

site-years in the ideal synthetic sequence 



 

Figure S3: Residuals vs simulated phenology and days after sowing after calibration to 10 

site-years in the controlled cultivar-environment synthetic sequence 

 

 

Figure S4: Histogram and quantile-quantile plots of the residuals after calibration to 10 

site-years of the ideal synthetic sequence 



 

Figure S5: Histogram and quantile-quantile plots of the residuals after calibration to 10 

site-years of the controlled cultivar-environment synthetic sequence 

 

Figure S6: The boxplots show the phenological development (BBCH) of all the site-years 

used in calibration in the ideal synthetic sequence. The blue point corresponds to the 

phenological development (BBCH) for site-year 2. 



 

Figure S7: The boxplots show the phenological development (BBCH) of all the site-years 

used in calibration in the controlled cultivar-environment synthetic sequence. The blue point 

corresponds to the phenological development (BBCH) for site-year 9. 

 

 

  



S3.2  True sequence in Swabian Alb 

The residual plots for the sequential updates with greater than 3 calibration site-years show 

high residuals in the vegetative phase (simulated phenology<61BBCH) (Fig. S11, Fig. S12, 

Fig. S13). Residuals from site-years 6_2013 and 5_2016 cause this skewness in the 

distribution of the residuals (Fig. S14, Fig. S15, Fig. S16). This behaviour is attributed to the 

model’s inability to capture the slow development seen in these site-years as evident from the 

single-site-year calibration results in Fig. S22. 

 

Figure S8: Residuals vs simulated phenology and days after sowing after calibration to 

site-year 6_2010 



 

Figure S9: Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010 and 5_2011 

 

Figure S10: Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010, 5_2011, and 5_2012 



 

Figure S11: Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010, 5_2011, 5_2012, and 6_2013 

 

Figure S12: Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010, 5_2011, 5_2012, 6_2013, and 5_2015 



 

Figure S13: Residuals vs simulated phenology and days after sowing after calibration to 

site-years 6_2010, 5_2011, 5_2012, 6_2013, 5_2015, and 5_2016 

 

Figure S14: Histogram and quantile-quantile plots of the residuals after calibration to site-

years 6_2010, 5_2011, 5_2012, and 6_2013 



 

Figure S15: Histogram and quantile-quantile plots of the residuals after calibration to site-

years 6_2010, 5_2011, 5_2012, 6_2013, and 5_2015 

 

Figure S16: Histogram and quantile-quantile plots of the residuals after calibration to site-

years 6_2010, 5_2011, 5_2012, 6_2013, 5_2015, and 5_2016 



 

Figure S17: ACF (auto-correlation function) plots of the residuals after calibration to site-

years 6_2010, 5_2011, 5_2012, 6_2013, 5_2015, and 5_2016 

S3.3  True sequence in Kraichgau 

The residual plots for Kraichgau with limited observations show no evidence of 

heteroscedasticity (Fig. S18, Fig. S19, Fig. S20) and a nearly normal distribution (Fig. S21). 



 

Figure S18: Residuals vs simulated phenology and days after sowing after calibration to 

site-years 3_2011 

 

Figure S19: Residuals vs simulated phenology and days after sowing after calibration to 

site-years 3_2011 and 2_2012 



 

Figure S20: Residuals vs simulated phenology and days after sowing after calibration to 

site-years 3_2011, 2_2012, and 1_2014 

 

Figure S21: Histogram and quantile-quantile plots of the residuals after calibration to site-

years 3_2011, 2_2012, and 1_2014 

S4.  Single-site-year calibration results 

Observed and simulated phenology, after the SPASS model was calibrated individually to the 

site-years in the study, are plotted in Fig. S22. 



 

Figure S22: Observed and simulated phenological development after calibration, plotted 

against the day of the year. The red points are the mean observations, while the black error 

bars indicate +/- 3 standard deviations. The mean simulation is indicated by the continuous 

black line. The green bands represent the different percentiles of simulated phenology. It is 



noted that for some site-years, the calibrated model is unable to capture the slow development 

rate during the vegetative phase. 

 

  



S5.  Parameter distributions and entropy: synthetic sequences 

Marginal prior and posterior distributions for the 6 estimated parameters of the SPASS 

phenology model and the entropy estimates are plotted for the ideal (Fig. S23) and controlled 

cultivar-environment (Fig. S24) synthetic sequences. 

 

Figure S23: (i) Marginal prior and posterior parameter distributions of the 6 estimated 

parameters after BSU in the ideal synthetic sequence. Marginal posterior parameter values (y-

axis) is plotted against the number of site-years used for calibration (x-axis), starting with the 

initial prior (0 on x-axis). (ii) Information entropy of the posterior parameter distributions 

after BSU was applied to the synthetic sequence. Length of the box represents the inter-

quartile range (IQR), whiskers extend from the boxes up to 1.5 × IQR and values beyond this 

range are plotted as points. The ranges for parameters SOWDEPTH and DELTOPT2 

narrowed through the sequential updates while the remaining parameters do not show a 

noticeable narrowing in range.  



 

Figure S24: (i) Marginal prior and posterior parameter distributions of the 6 estimated 

parameters after BSU in the controlled cultivar-environment synthetic sequence. Marginal 

posterior parameter values (y-axis) is plotted against the number of site-years used for 

calibration (x-axis), starting with the initial prior (0 on x-axis). (ii) Information entropy of the 

posterior parameter distributions after BSU was applied to the synthetic sequence. Length of 

the box represents the inter-quartile range (IQR), whiskers extend from the boxes up to 1.5 × 

IQR and values beyond this range are plotted as points. The ranges for parameters 

SOWDEPTH and DELTOPT2 narrowed through the sequential updates while the remaining 

parameters do not show a noticeable narrowing in range.   
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