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Key Points 22 

• High iGDGTs turnover in shallow sediments is shown to be non-selective and does not impact 23 
TEX86 paleoclimate ratios.  24 
 25 

• The proxy can be overprinted by sediment sourced lipids when geothermal temperatures rise above 26 
~60–70 °C. 27 

 28 
• A diagenetic correction model is presented to remove overprinting artifacts in the TEX86 proxy.  29 

 30 
Abstract  31 
 32 
The diversity and relative abundances of tetraether lipids produced by archaea and bacteria in soils and 33 
sediments are increasingly used to assess environmental change. For instance, the TetraEther indeX of 86 34 
carbon atoms (TEX86), based on archaeal isoprenoidal glycerol dialkyl glycerol tetraether (iGDGT) lipids, is 35 
frequently applied to reconstruct past sea-surface temperatures (SST). Yet, it is unknown how the ratio fully 36 
responds to environmental and/or geochemical variations and if the produced signals are largely the adaptive 37 
response by Thaumarchaeota to oceanographic effects associated with climate or seasonal temperature 38 
changes in the upper water column. We present the results of a four push-core transect study of surface 39 
sediments collected along an environmental gradient at the Cathedral Hill hydrothermal vent system in 40 
Guaymas Basin, Gulf of California. The transect crosses a region where advecting hydrothermal fluids reach 41 
155 °C within the upper 21cm below the seafloor (cmbsf) close to the vent center to near ambient conditions 42 
at the vent periphery. The recovered iGDGTs closest to the vent center experienced high rates of turnover 43 
with up to 94% of the lipid pool being lost within the upper 21 cmbsf. Here, we show that the turnover is non-44 
selective across TEX86 GDGT lipids and does not affect the ratio independently.  However, as evident by 45 
TEX86 ratios being highly correlated to the Cathedral Hill vent sediment porewater temperatures (R2 = 0.84), 46 
the ratio can be strongly impacted by the combination of severe lipid loss coupled with the addition of in situ 47 
iGDGT production from archaeal communities living in the vent sediments. The resulting overprint produces 48 
absolute temperature offsets of up to 4 °C based on the TEX86

H -calibration relative to modern climate records 49 
of the region. The overprint is also striking given the flux of iGDGTs from the upper water column is 50 
estimated to be ~93% of the combined intact polar lipid (IPL) and core GDGT lipid pool initially deposited 51 
on the seafloor. A model to correct the overprint signal using IPLs is therefore presented that can similarly be 52 

mailto:Todd.ventura@smu.ca


 

2 

 

applied to all near-surface marine sediment systems where calibration models or climate reconstructions are 53 
made based on the TEX86 measure.  54 
 55 

1. Introduction 56 

Archaeal and bacterial tetraether cellular membrane lipids represent a group of common and structurally 57 
diverse compounds frequently used to track the presence of living and dead microorganisms as well as 58 
geochemical and physical conditions within present-day and paleoenvironments (e.g., Schouten et al., 2002, 59 
2004; 2013; Hopmans et al., 2004; Weijers et al., 2007, 2014; Hollis et al., 2012; O’Brien, et al., 2017; Stuart 60 
et al., 2017). In this regard, the proportional abundances of these lipids form various prominent proxies for 61 
assessing environmental change through time.  For example, TEX86 (TetraEther indeX with 86 carbon atoms; 62 
Schouten et al., 2002) is a widely used archaeal lipid-based paleotemperature proxy for marine environments. 63 
The ratio measures variations in the number of cyclopentyl rings for a select group of archaeal core lipids 64 
(CLs) (Supplementary Figure S1) following the assumption that biphytanyl cyclization is an organismal 65 
response to changing sea surface temperatures (SSTs). The proxy is therefore used in many regions around 66 
the world with TEX86 values typically ranging from 0.2–0.9 in marine settings (e.g. Huguet et al., 2006; Kim 67 
et al., 2008; McClymont et al., 2012; Tierney, 2014). The utility of TEX86 rests on the premise that iGDGTs 68 
found in ocean bottom sediments are almost exclusively produced by marine planktonic archaea that inhabit 69 
the epipelagic zone (Wakeham et al., 2003; Tierney, 2014; Besseling et al., 2019, 2020). Lipids are therefore 70 
required to be efficiently and continually transported from the upper water column to the underlying ocean 71 
floor to produce a fossil chemostratigraphic record of microbial response to changing SST conditions with 72 
time (Wuchter et al., 2005).   73 
 74 
Since its introduction, the reliability of TEX86 to accurately track paleoclimate variations has been questioned. 75 
TEX86-based SST estimates have been observed to substantially deviate from other temperature proxies (e.g. 76 
Huguet et al., 2006; Rommerskirchen et al., 2011; Seki et al., 2012). For example, over the past decade, 77 
considerable effort has been made to reconstruct the early Paleogene greenhouse climate system. However, 78 
TEX86 appears to significantly over-estimate reconstructed SSTs (Hollis et al., 2012) relative to other proxies 79 
such as Mg/Ca, or clumped isotopic compositions of foraminiferal calcite, as well as various climate models 80 
based on partial pressure of carbon dioxide (pCO2) predictions (Lunt et al., 2012; Naafs et al., 2018). For late 81 
Neogene climate reconstructions, TEX86 has been shown to underestimate warming trends relative to the 𝑈37

k′  82 
alkenone-index (Brassell et al., 1986) derived temperatures (Lawrence et al., 2020). The apparent SST offsets 83 
have been attributed to how the proxy’s associated lipids change in relation to their environment and if these 84 
changes are regulated by internal adaptations within the archaeon or by an overarching community 85 
succession. In this regard, the debate surrounding these discrepancies largely centers on establishing 86 
responses to seasonal biases (e.g. Herford et al., 2006; Wuchter et al., 2006; Huguet et al., 2011); the 87 
development of adequate calibration methods (e.g. Kim et al., 2010; Pearson et al., 2013; Tierney et al. 2014); 88 
identifying lipid sourcing effects – including subsurface sediments origins for those used with the calculation 89 
of TEX86 (e.g. Lipp and Hinrichs, 2009); as well as physical, chemical, and ecological controls for archaeon 90 
iGDGTs cyclization (e.g. Elling et al., 2015; Qin et al., 2015; Hurley et al., 2016).   91 
 92 
For non-thermal influences, the primary concern is what archaeal taxa produce iGDGTs and where they are 93 
sourced. To this end, most TEX86 lipids are thought to be produced by Marine Group I (MGI) planktonic 94 
Thaumarchaeota (Brochier-Armanet et al., 2008), which are most abundant below the photic and epipelagic 95 
zone (e.g., Karner et al., 2001). Within this context, many regions of the ocean floor may become highly 96 
impacted by colder, deeper water column inputs (e.g. Karner et al., 2001; Huguet et al., 2007; Lopes dos 97 
Santos et al., 2010; Kim et al., 2012a,b; Pearson et al., 2013; Kim et al., 2015;  Ho & Laepple, 2016; Hurley 98 
et al., 2016; Lui et al., 2018; Sinninghe Damsté et al., 2018). Other non-thermogenic driving forces impacting 99 
the production, cyclization, and relative abundance of TEX86-based lipids include organismal selectivity to 100 
specific growth phases and growth rates (Elling et al., 2014; Hurley et al., 2016); redox conditions (Qin et al., 101 
2015); and the incorporation of iGDGT from archaeal communities living in the ocean floor sediments. With 102 
respect to the latter, Lipp and Hinrichs (2009) demonstrated that the production of intact polar lipid GDGTs 103 
(IPL-GDGTs) by ocean floor sediment microbial communities collected in the Peru Margin were distinctly 104 
different from upper water column sourced CLs and that the conversion of this living pool to fossil lipids 105 
would shift TEX86 ratios to higher values.  However, the overall impact may not be substantial as Umoh et al. 106 
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(2020) found little effect to the TEX86 paleoclimate ratio when examining surface sediments near 107 
hydrothermal vent sites on the Southeast Indian Ridge in the southern Indian Ocean. Lengger et al. (2012, 108 
2014) also reported no significant deviation between the TEX86 values in sediment cores collected near the 109 
oxygen minimum zone from that of the overlying water column in the Arabian Sea with near linear 110 
degradation rates of both IPLs and CLs. All together, the iGDGT abundances recorded in a TEX86 sediment 111 
value may ultimately constitutes a multi-variable datapoint – mixing lipid components that are themselves 112 
responses to: temperature, organismal substrate and metabolism dynamics, biozone niche partitions spanning 113 
from the ocean surface to the shallow sediment archaeal community, which ultimately become further 114 
attenuated by depositional and diagenetic processes. 115 
 116 
While not an ideal location to create SST reconstructions, hydrothermal vents of sedimented ocean basins do 117 
represent an anomalous endmember to the vast expanse of ambient ocean floor sediment where paleoclimate 118 
reconstructions are commonly produced. The sedimented vent systems of Guaymas Basin, Gulf of California 119 
(Figure 1) is one such site. The basin experiences high sedimentation rates ranging from 0.4–0.2 cm yr-1 120 
(Curray et al., 1979; Gieskes et al., 1988) due in part to the high productivity of the upper water column. The 121 
ocean floor hydrothermally impacted surface sediments are also a location of active and diverse microbial 122 
communities with vents that are often covered by Beggiatoa dominated microbial mats (e.g. McKay et al., 123 
2012; Meyer et al., 2013; Teske et al., 2016). These sites should in principle, enable a high-resolution archaeal 124 
lipid stratigraphic record that provides optimal conditions for studying potential shallow diagenetic and 125 
subseafloor interferences to common archaeal lipid-based environmental proxies. The region further offers 126 
an ideal setting to compare TEX86 proxy responses to in situ lipid production from thermophilic sedimentary 127 
archaea that differ from the pelagic background communities (e.g. Schouten et al., 2003). Recently, Bentley 128 
et al. (2022) produced a survey of the source and diagenetic and catagenetic alteration of archaeal lipids from 129 
the Cathedral Hill hydrothermal vent complex (Figure 1) in the Guaymas Basin, Gulf of California. Within 130 
the investigation, it was observed that most iGDGTs are sourced from the overlying water column. Building 131 
on the results of Schouten et al. (2003), it was observed that these lipids can become heavily turned over in 132 
the hotter portions of the vent site where they rarely survive long enough to become cracked into hydrocarbon 133 
biomarkers such as biphytanes and derivatives of biphytanes. For this study, we further examine the iGDGT 134 
lipid distributions in these near-surface ocean floor sediments to determine if paleoclimate proxy signals can 135 
be impacted by the presence of subsurface archaeal populations. The distribution of iGDGTs and their 136 
corresponding environmental proxy signals were measured within the sediments along a transect at the 137 
complex. In this regard, this site offers the unique opportunity to evaluate the response of TEX86 and other 138 
tetraether-lipid proxies within a microbially diverse sedimentary environment that is exposed to high 139 
temperature vent fluids.  140 
 141 
 142 
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 144 

FIGURE 1 A) Location map of Guaymas Basin and the Southern Sill (red outlined box) in the Gulf of 145 
California. Cathedral Hill is marked with a yellow star. B) Photo of Cathedral Hill taken via Alvin. C) 146 
Schematic of the push core transect with a color-coding that is consistent for all plots throughout this paper. 147 
Maps modified from Teske et al. (2016), Dalzell et al. (2021), and Bentley et al. (2022).  148 

 149 

2. Material and methods 150 

2.1. Study location and sampling  151 

Four sediment push cores were collected using HOV Alvin (Dive 4462; 10/22/08) at the Cathedral Hill 152 
hydrothermal vent site, located at a water depth of 1996 m in the Southern Trough of Guaymas Basin, Gulf 153 
of California (27°0.629’ N, 111°24.265’ W) (Figure 1). The push cores, labeled 1 to 4, were taken along a 154 
transect with ~ 2 m spacing extending outwards from microbial mat-covered sediments near the sulfide 155 
chimney complex to just outside of the microbial mat area in ambient seafloor sediment. Thermal-probe 156 
measurements were sequentially taken beside each core (Table 1). Once the push cores were brought to the 157 
surface, the sediments were subsampled into 2–3 cm-thick depth intervals, transferred to combusted glass 158 
vials, and immediately stored at -40 °C (onboard the ship) before being shipped under dry ice to the laboratory 159 
and later freeze-dried and stored at -80 °C.  160 
 161 
 162 
 163 
 164 
 165 
 166 
 167 
 168 
 169 
 170 
 171 
 172 
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Table 1. Cathedral Hill sample push core, sediment, geochemical, and lipid proxy data. 173 
 174 

Core*a 

Depth 

interval 

(cmbsf) 

Alvin dive 

# and core 

ID 

Description/lithology*b 

Pore water 

temperature 

(°C)* 

Interpolated 

Pore water 

temperature 
(°C)* 

Sediment 

weight 

(g) * 

TLE 
(mg g 

sed-1)* 

Sum of  

IPL 

iGDGT 

(µg g-1)† 

Sum of 

iGDGT 

(µg g-1)‡ 

1 0-2 GB4462-5 Black mud with microbial mat filaments 19 19 1.97 11.5 16.7 503.1 

1 2-4 GB4462-5 Brownish-green diatomaceous mud - 67 2.04 7.65 14.6 461.7 
1 4-6 GB4462-5 Brownish-green diatomaceous mud 85 85 2.03 9.37 6.0 203.3 

1 6-8 GB4462-5 Brownish-green diatomaceous mud - 105 1.99 2.09 4.3 148.6 

1 8-10 GB4462-5 Brownish-green diatomaceous mud - 117 2.01 4.38 3.2 59.0 
1 10-12 GB4462-5 Grayish-green mud 121, 124 125 2.01 1.97 1.7 48.8 

1 12-15 GB4462-5 Brownish-green consolidated mud with clay shards - 135 1.98 1.99 1.4 78.7 

1 15-18 GB4462-5 Brownish-green consolidated clay 142 145 1.96 1.69 0.0 42.6 
1 18-21 GB4462-5 Brownish-green consolidated clay 153 153 1.98 1.72 0.0 38.4 

2 0-2 GB4462-6 Black mud with microbial mat filaments 9, 13 11 2.02 8.48 17.8 591.0 

2 2-4 GB4462-6 Black mud with microbial mat filaments - 22 1.97 8.65 7.5 266.3 

2 4-6 GB4462-6 Brownish-green diatomaceous mud 20 20 1.95 2.51 2.5 87.4 
2 6-8 GB4462-6 Brownish-green diatomaceous mud - 47 1.95 3.38 3.4 69.7 

2 8-10 GB4462-6 Brownish-green diatomaceous mud - 60 1.95 1.48 2.0 48.4 

2 10-12 GB4462-6 Brownish-green diatomaceous mud 69, 77 73 1.94 4.19 2.0 52.1 
2 12-15 GB4462-6 Brownish-green diatomaceous mud - 87 2.02 1.69 1.0 44.2 

2 15-18 GB4462-6 Brownish-green diatomaceous mud 118 105 1.95 2.01 0.0 22.3 

2 18-21 GB4462-6 Brownish-green diatomaceous mud 109 125 1.94 1.38 0.0 31.2 

3 0-2 GB4462-3 Black mud with microbial mat filaments 3.2 3.2 1.96 7.31 15.3 511.3 

3 2-4 GB4462-3 Brownish-green diatomaceous mud - 8 1.96 3.91 8.3 308.9 

3 4-6 GB4462-3 Brownish-green diatomaceous mud 15 15 2.00 2.86 7.0 283.5 
3 6-8 GB4462-3 Brownish-green diatomaceous mud - 26 2.02 5.00 7.5 275.3 

3 8-10 GB4462-3 Brownish-green diatomaceous mud 34 34 1.97 2.02 5.7 251.1 

3 10-12 GB4462-3 Brownish-green diatomaceous mud - 43 2.01 1.86 5.8 227.7 
3 12-15 GB4462-3 Brownish-green diatomaceous mud - 54 1.94 1.78 6.5 184.6 

3 15-18 GB4462-3 Brownish-green diatomaceous mud 61 66 2.01 1.43 12.3 473.1 

3 18-21 GB4462-3 Brownish-green diatomaceous mud 83 80 1.96 1.98 5.2 182.3 

4 0-2 GB4462-8 Black mud 0 0 1.93 3.44 16.7 485.4 

4 2-4 GB4462-8 Brownish-green diatomaceous mud 1.5 8 2.01 3.17 14.6 417.8 

4 4-6 GB4462-8 Brownish-green diatomaceous mud 16 16 1.95 4.00 6.0 480.6 
4 6-8 GB4462-8 Brownish-green diatomaceous mud - 18 2.02 4.19 4.3 359.7 

4 8-10 GB4462-8 Brownish-green diatomaceous mud - 21 2.02 4.76 3.2 153.5 

4 10-12 GB4462-8 Brownish-green diatomaceous mud - 23 1.95 4.84 1.7 459.5 

4 12-15 GB4462-8 Brownish-green diatomaceous mud - 25 1.95 5.74 1.4 515.2 

4 15-18 GB4462-8 Sample lost during collection - - - - 0.0 503.1 

4 18-21 GB4462-8 Sample lost during collection 29 - - - 0.0 461.7 

 175 
 176 
 177 
 178 
 179 
 180 
 181 
 182 
 183 

 184 
 185 
 186 
 187 
 188 
 189 
 190 
 191 
 192 
 193 
 194 
 195 
 196 
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Table 1. Cathedral Hill sample push core, sediment, geochemical, and lipid proxy data (continued). 197 
 198 

Core*a 

Depth 

interval 

(cmbsf) 

Alvin dive # 

and core ID 

SUM of 

TEX86 

cGDGTc 

(µg g-1)  

TEX86 

cGDGTc 

 

𝐓𝐄𝐗𝟖𝟔
𝐇   

cGDGTd 

𝐓𝐄𝐗𝟖𝟔
𝐇  

Reconstructed 

SSTs  

(Kim et al., 

2010)e 

RIf MIg 
TEX86 

IPLGDGTc 

1 0-2 GB4462-5 110.7 0.56 -0.25 21.2 2.44 0.34 0.58 

1 2-4 GB4462-5 117.1 0.58 -0.23 22.6 2.45 0.38 0.58 

1 4-6 GB4462-5 47.7 0.58 -0.24 22.3 2.48 0.36 0.55 

1 6-8 GB4462-5 33.0 0.58 -0.24 22.2 2.55 0.35 0.57 

1 8-10 GB4462-5 13.0 0.59 -0.23 22.9 2.60 0.34 0.72 

1 10-12 GB4462-5 10.1 0.57 -0.25 21.8 2.63 0.31 0.70 

1 12-15 GB4462-5 17.8 0.61 -0.22 23.8 2.65 0.37 0.69 

1 15-18 GB4462-5 9.8 0.61 -0.22 23.9 2.66 0.36 - 

1 18-21 GB4462-5 9.3 0.63 -0.20 24.9 2.66 0.38 - 

2 0-2 GB4462-6 128.5 0.55 -0.26 20.6 2.52 0.32 0.46 

2 2-4 GB4462-6 58.2 0.54 -0.27 20.4 2.52 0.32 0.58 

2 4-6 GB4462-6 19.2 0.54 -0.27 20.4 2.53 0.33 0.60 

2 6-8 GB4462-6 13.4 0.56 -0.25 21.5 2.68 0.29 0.71 

2 8-10 GB4462-6 9.3 0.58 -0.25 21.7 2.70 0.29 0.70 

2 10-12 GB4462-6 10.1 0.57 -0.24 21.9 2.71 0.28 0.68 

2 12-15 GB4462-6 8.5 0.57 -0.24 21.9 2.73 0.28 0.73 

2 15-18 GB4462-6 4.5 0.58 -0.23 22.6 2.68 0.31 - 

2 18-21 GB4462-6 6.0 0.59 -0.23 22.8 2.74 0.28 - 

3 0-2 GB4462-3 127.0 0.54 -0.27 20.2 2.41 0.37 0.53 

3 2-4 GB4462-3 57.7 0.53 -0.27 19.8 2.62 0.27 0.49 

3 4-6 GB4462-3 60.0 0.53 -0.27 19.9 2.53 0.31 0.56 

3 6-8 GB4462-3 59.8 0.54 -0.27 20.3 2.50 0.33 0.54 

3 8-10 GB4462-3 53.0 0.53 -0.27 19.9 2.54 0.31 0.61 

3 10-12 GB4462-3 42.1 0.54 -0.27 20.3 2.64 0.27 0.74 

3 12-15 GB4462-3 39.2 0.56 -0.25 21.5 2.56 0.30 0.69 

3 15-18 GB4462-3 86.8 0.55 -0.26 20.9 2.77 0.26 0.74 

3 18-21 GB4462-3 36.4 0.57 -0.25 21.6 2.68 0.29 0.66 

4 0-2 GB4462-8 112.9 0.54 -0.27 20.4 2.43 0.35 0.54 

4 2-4 GB4462-8 85.3 0.53 -0.27 20.0 2.59 0.30 0.37 

4 4-6 GB4462-8 102.7 0.54 -0.27 20.2 2.55 0.31 0.43 

4 6-8 GB4462-8 70.8 0.52 -0.28 19.3 2.55 0.29 0.45 

4 8-10 GB4462-8 26.6 0.53 -0.27 19.9 2.69 0.26 - 

4 10-12 GB4462-8 91.0 0.53 -0.27 19.8 2.54 0.30 - 

4 12-15 GB4462-8 73.7 0.53 -0.28 19.7 2.90 0.20 - 
4 15-18 GB4462-8 110.7 - - - - - - 

4 18-21 GB4462-8 117.1 - - - - - - 
* Also reported in Bentley et al. (2022). 199 
† Sum of GDGT-1, -2, -3. -4, -5, and -5' (Table S1). 200 
‡ Sum of all detected 1G- and 2G-GDGTs (Table S3). 201 
*a Collected core numbers are relabelled in the sample name to reflect a relative transect position (1-4). 202 
*b Sediment lithology based on freeze-dried sediments.  203 
c TEX86 = (GDGT-2 + GDGT-3 + GDGT-5')/(GDGT-1 + GDGT-2 + GDGT-3 + GDGT-5'), (Schouten et 204 
al., 2002) applied to both core GDGTs and 1-glycosyl-GDGTs (also referred to as MTEX86 in section 3.4).    205 
d TEX86

H  = log ((GDGT-2 + GDGT-3 + GDGT-5')/(GDGT-1 + GDGT-2 + GDGT-3 + GDGT-5')), for 206 
sediments outside low latitudes (Kim et al., 2010). 207 
e Following the mean annual sea surface calibration of 0 m water depth (SST = 68.4 × TEX86

H  + 38.6) of 208 
Kim et al. (2010).    209 
f Ring index (RI) = 0×(GDGT-0) + 1×(GDGT-1) + 2×(GDGT-2) + 3×(GDGT-3) + 4×(GDGT-4) + 210 
5×(GDGT-5)/ ΣGDGTs, adapted from Pearson et al. (2004) and promoted by Zeng et al. (2016).               211 
g Methane index (MI) = (GDGT-1 + GDGT-2 + GDGT-3)/(GDGT-1 + GDGT-2 + GDGT-3 + GDGT-5 + 212 
GDGT-5') by Zhang et al. (2011).  213 
 214 
 215 
 216 
 217 
 218 
 219 
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2.2. Lipid extraction 220 

Lipid extractions followed a modified Bligh and Dyer protocol laid out in Bentley et al. (2022) and following 221 
Sturt et al. (2004). A subsample of freeze-dried sediment was added to a Teflon© centrifuge tube followed by 222 
the addition of 6 ml of mix A solvent solution comprising of 2:1:0.8 v/v/v methanol (MeOH), 223 
dichloromethane (DCM), and phosphate buffer (5.5 g L-1 Na2HPO4; Avantor Performance Materials, LLC. 224 
adjusted to pH of 7.4 with HCl; Anachemia Co.). The solvent sediment mixture was further spiked with 1-225 
alkyl-2-acetoyl-sn-glycero-3-phosphocholine (PAF) recovery standard purchased from Avanti Polar Lipids, 226 
Inc. The slurry was sonicated for 5 min then centrifuged for 5 min at 1250 rpm. The resulting supernatant 227 
was added to a separatory funnel. This procedure was performed twice before being joined by two replicate 228 
extractions using mix B, a 2:1:0.8; v/v/v solution of MeOH, DCM, and trichloroacetic acid buffer (50 g L-1 229 
C2HCl3O2; Avantor Performance Materials, LLC. of pH 2) and a final two replicate extractions using mix C, 230 
a 5:1 v/v solution of MeOH and DCM. Once complete, the combined A, B, and C. For each step, the organic 231 
fraction was collected in a beaker, and the combination of mix A, B, and C were subjected to 10 ml of DCM 232 
and H2O (MilliQ) to achieve separation. The organic phase was drawn off and the water was extracted using 233 
3 DCM washes, drawing off the organic phase after each wash. The organic phase was back-extracted with 234 
H2O to ensure purity. The resulting organic phase was then evaporated to dryness at 60 °C under dry nitrogen. 235 
The resulting total lipid extract (TLE) was transferred to pre-weighed autosampler vials using DCM:MeOH 236 
1:1 v/v, spiked with 1, 2-diheneicosanoyl-sn-glycero-3-phosphocholine (C21-PC; Avanti Polar Lipids, Inc.) 237 
and stored at -20 °C. 238 
 239 
 240 
2.3. High performance liquid chromatography – mass spectrometry (HPLC-MS)  241 
 242 
Mass spectrometric analyses were performed on an Agilent Technologies 1260 Infinity II HPLC coupled to 243 
an Agilent Technologies 6530 quadruple time-of-flight mass spectrometer (qToF-MS) operated in positive 244 
mode. Chromatographic separation used a reverse-phase method outlined by Zhu et al. (2013). The HPLC 245 
was fitted with an Agilent Technologies ZORBAX RRHD Eclipse Plus C18 (2.1 mm × 150 mm × 1.8 µm) 246 
reverse phase column and guard column maintained at 45 °C. The sample injection solvent was methanol. An 247 
aliquot of each sample representing 1% of the TLE was analyzed. A 0.25 mL min-1 flow rate was established 248 
with mobile phase A consisting of methanol/formic acid/ammonium hydroxide (100:0.04:0.10 v/v/v) held at 249 
100% for 10 min, thereafter mixed following a linear gradient with mobile phase B (propan-2-ol/formic 250 
acid/ammonium hydroxide (100:0.04:0.10 v/v/v) to 24%, 65%, and 70% over 5-, 75-, and 15-min intervals, 251 
respectively. Each sample run was finished by re-equilibrating the system with 100% mobile phase A for 15 252 
min The effluent was ionized by an electrospray ionization source with a gas temperature of 300 °C, a 3 L 253 
min-1 drying gas flow, and a 5.33 μA source current. The mass spectrometer was set to a 100–3000 m/z scan 254 
range in positive mode in an untargeted method with 10 ppb resolution to simultaneously resolve both 255 
archaeal IPLs and CLs.   256 
 257 
Analyte identification was achieved by accurate mass resolution, mass spectral analysis using Agilent 258 
Technology’s MassHunter software, and comparison of fragmentation patterns with the literature (e.g., 259 
Knappy et al., 2009; Liu et al., 2010; Yoshinaga et al., 2011 – see Bentley et al., 2022 for further details). 260 
Mass fragments consistent with the loss of a biphytane (m/z 743.7) were screened for all archaeal lipids. 261 
Quantification was achieved by summing the integration peak areas of [M+H]  +, [M+NH4] +, and [M+Na] + 262 
adducts for the respective IPLs and CLs of interest. Concentration values were obtained relative to the internal 263 
C21-PC standard and reported in μg g-1 dry sediment weight. Response factors were determined by a series of 264 
injections of a standard solution containing: PAF, C21-PC, 1,2-diacyl-3-O-(α-D-galactosyl1-6)-β-D-265 
galactosyl-sn-glycerol (DGDG), 1,2-diacyl-3-O-β-D-galactosyl-sn-glycerol (MGDG), 1,2-di-O-phytanyl-sn-266 
glycerol (archaeol), 1',3'-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-glycerol (14:0 Cardiolipin)  from Avanti 267 
Polar Lipids, Inc., USA, and  2,2´-di-O-decyl-3,3´-di-O-(1´´,ω´´-eicosanyl)-1,1´-di-(rac-glycerol) (C46-268 
GTGT) from Pandion Laboratories, LLC in amounts ranging from 100 pg to 30 ng. Response factors were 269 
calculated relative to the C21-PC, and the appropriate correction factor was then applied to the lipid class of 270 
interest.  271 
 272 
A series of samples were re-run to identify or confirm deviations in the data set. The variations between the 273 
concentrations of GDGTs in the re-run and the initial runs yielded a maximum difference of ~ ± 4 µg g-1 per 274 
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GDGT compound, providing confidence in the initial results and confirming the presence of two outliers in 275 
the data set (Bentley et al., 2022). These outliers are Core 4 at 8-10 cm, with abnormally low concentrations 276 
of all compounds that are likely ion suppression from a sample heavily impregnated with oil, and Core 3 at 277 
15–18 cm, which contains relatively high lipid concentrations that are yet to be explained.  278 
 279 
 280 
3. Results and Discussion 281 

3.1. Archaeal lipid diversity and turnover  282 

The Cathedral Hill transect sediments have iGDGTs containing 0–4 cyclopentyl (GDGT 0–4) as well as 283 
crenarchaeol (Cren) and the isomer of crenarchaeol (Cren') that contains five rings (four cyclopentyl and one 284 
cyclohexyl moiety) (Table S1). Branched GDGTs (brGDGTs) including Ia-c, IIa-c, and IIIa were found to 285 
have discontinuous and/or low absolute abundances, with some compound classes not being detected (i.e. 286 
brGDGT-IIIb; Table S2). The brGDGTs are therefore not further examined in this study. For cores 1 to 3 the 287 
concentrations of nearly all iGDGT compounds systematically decrease with depth (Figure 2). Bentley et al. 288 
(2022) established the sedimentation of archaeal lipids from the upper water column as being uniform both 289 
in terms of spatial loading across the length of the transect as well as over an inferred 52.5–105 yrs of 290 
sedimentation as penetrated by the length of the push core (based on sedimentation rates). From this, it is 291 
estimated that ~70.6 ± 23.5 μg iGDGTs g-1 sed yr-1 is being deposited on the seafloor from the overlying 292 
water column. However, for cores closest to the vent site, lipid abundances exhibited a much sharper decrease 293 
with depth, which Bentley et al. (2022) attribute to the turnover of archaeal lipids coupled to, but not directly 294 
caused by, hydrothermalism. For cores 1 and 2, losses reach as high as 94% within the upper 21 cmbsf (cm 295 
below seafloor). The lipid loss is less severe for core 3 at ~60%. For the ambient core 4, iGDGTs have similar 296 
down core stratigraphic trends with a near-consistent average of 400 µg g-1 sediment concentration and no 297 
systematic loss of lipids.   298 
 299 
Due to the high temperature conditions of the vent fluids at Cathedral Hill, the identified archaeal iGDGT-300 
based IPLs within the sediments most likely represent the composition of cellular membrane material from 301 
archaeal communities living in the sediments. These lipids have exclusively monoglycosyl (1G) or diglycosyl 302 
(2G) head groups linked to a 2,3-sn-glycerol. Within the pyrolytic environment, the transformation of IPL 303 
iGDGTs could hypothetically add to the core iGDGT lipid pool. Similar to CLs, the 1G-GDGTs contain 0-4 304 
cyclopentyl moieties and include Cren and Cren'. Surface concentrations of these lipids are ~15 µg g-1 sed. in 305 
cores 1 to 3 (residing within the microbial mat) and 11 µg g-1 sed. for core 4 (Table S2). Also similar to the 306 
CLs, the archaeal IPL concentrations decrease down core and are closely coupled to increasing porewater 307 
temperatures (Table S2).  For cores 1 and 2, the maximum depths for detectable 1G-GDGTs are 15–18 and 308 
12–15 cmbsf, corresponding to vent porewater temperatures of 145 and 87 °C, respectively. In core 3, 1G-309 
GDGTs persist down core with a consistent lipid depletion that reaches its lowest concentration of 5.2 µg g-1 310 
sed. in the bottom of the core at 18–21 cmbsf sediment depth where porewater temperatures rise to 80 °C. In 311 
core 4, which is most similar to the ambient ocean bottom conditions and falls outside of the area covered by 312 
the microbial mat, the lipid concentrations average is ~8 µg g-1 sed. across the depth of the core. The 2G-313 
GDGTs have 0 to 2 cyclopentyl rings that for cores 1 and 2 are restricted to the upper 4 to 6 cmbsf. These 314 
lipids are not further investigated in this study as 2G-GDGTs are of limited abundance (max summed 315 
concentrations <2 µg g-1 sed.) and their structural diversities negligibly affect isoprenoid-based proxies.  316 
 317 
Lipid-based proxies for the calibration or reconstruction of paleoclimate records such as TEX86, are based on 318 
environmentally scaled contributions of select GDGT compounds. These proxies could be negatively 319 
impacted should other ocean floor sediment systems experience high rates of lipid turnover (Lengger et al., 320 
2014). To evaluate whether down-core depletions of lipid concentrations impacted tetraether-based proxies, 321 
the concentrations of the highly abundant GDGT-0 was plotted relative to the TEX86 ratio lipids (iGDGT-1, -322 
2, -3, and Cren') (Figure 3A). For figure 3A, straight lines in the logarithmic plot indicate near-equal depletion 323 
rates between the paired x- and y-axis lipid classes. Similarly, parallel slopes for the various lipid pairs also 324 
indicates near-equal depletion rates, with vertical offsets between pairs marking different initial starting 325 
abundances of the compared lipid. In this regard, iGDGT-0, -1, -2, and Cren' have undergone the same rate 326 
of turnover. However, the depletion rate of iGDGT-3’s is lower than that of other lipid classes for cores 1 and 327 
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2. Although, this may represent a distinct resilience to turnover, we suggest it instead results from overprinting 328 
by the subsurface hyperthermophilic archaeal community (see below).  329 

To better track changes across each core, the degradation rate constants (k') of TEX86 lipid classes were 330 
calculated for each push core (Figure S2; Table S3) using a first-order kinetic model: 331 
 332 

 Ct = Ci·e−k't                      (1)  333 
 334 
in which Ct and Ci are concentration at time (t) and the initial concentration, respectively (e.g. Schouten et 335 
al., 2010).  Rearranging Eq. 1, the k' were calculated as  336 
 337 

k' = (-ln[Ct/ Ci])/t           (2) 338 
 339 
From these data, it is evident that the down core concentrations of each lipid decrease at equivalent rates (i.e. 340 
they have the same slopes for their rates of decay s2= 0.2). the exception to this is core 2, which independent 341 
of two outliers has different decay paths for GDGT-3 and GDGT-5. This is consistent with the TEX86 iGDGT 342 
lipid classes largely being removed from the sediment lipid pool in a non-selective manner.  343 

Based on these results, the TEX86, ring index (RI), and methane index (MI) values were plotted against their 344 
respective summed iGDGTs lipid concentrations (Fig 3B–D). For samples located within the habitable zone 345 
(having porewaters ranging from 0–123 ˚C; Kashefi and Lovley, 2003), no correlation is observed between 346 
the lipid abundances and proxy ratios of TEX86, RI, or MI (Figure 3B–D). This further suggests these proxies 347 
are not affected by turnover in the habitable zone. However, once sediment burial reaches beyond the 348 
habitable zone, TEX86 ratios trend to higher values (similarly also reflected in GDGT-3 concentration trends 349 
of Figure 3A). Collectively, these data strongly indicate that archaeal lipid turnover is largely nonselective of 350 
the TEX86 lipid classes and will therefore theoretically not in and of themselves significantly impact archaeal 351 
lipid paleoclimate proxy reconstructions.  352 
 353 
Apart from paleoclimate reconstructions, archaeal lipid CLs are sometimes used to resolve aspects of 354 
localized biogeochemical cycles within sediments. To this end, the location and degree of anaerobic oxidation 355 
of methane (AOM) is determined by methane and archaeal lipid carbon isotope measures (e.g. Boetius et al., 356 
2000; Schouten et al., 2003; Stadnitskaia et al., 2008; Biddle et al., 2012) as well as by the proportional 357 
abundances of core GDGTs (cGDGTs) in the form of the MI (Zhang et al., 2011; Carr et al., 2018; Petrick et 358 
al., 2019). With respect to the latter, the MI proxy is used to differentiate regions of normal marine (with 359 
values between 0–0.3) and active AOM conditions in and around cold seeps (where values >0.5–1 are 360 
reported for gas hydrate impacted sediments and subsurface environments with high AOM levels). To our 361 
knowledge, the use of this proxy for hydrothermal vent systems has not been thoroughly investigated even 362 
though this microbial process has been well documented at Guaymas Basin. For example, highly 13C-depleted 363 
CLs reaching up to -70‰ in hydrothermal vent sediments with porewater temperatures as high as 95 °C 364 
indicates thermophilic archaea actively engaging in AOM (Schouten et al., 2003). Biddle et al. (2012) through 365 
the detection of relevant archaeal communities by 16S RNA in conjunction with highly depleted methane 366 
carbon isotope values determined active AOM spanning 35 to 90 °C porewater conditions. AOM is not likely 367 
to be the dominant form of carbon and sulfur metabolism as it generally accounts for less than 5% of sulfate 368 
reduction (Kallmeyer and Boetius, 2004). When applying the MI to the Cathedral Hill push core transect 369 
survey low values (ranging from 0.2–0.38; Table 1) are recorded with no correspondence to thermal controls 370 
across the vent transect (Figure 4). Although, it could be considered that the low values arise from a lack of 371 
AOM within these sediments the low MI values are consistent with a high upper water column iGDGTs 372 
loading as estimated by Bentley et al. (2022).  373 

 374 
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 375 
 376 
FIGURE 2.  Down core profiles of the Cathedral Hill core iGDGTs absolute and relative lipid abundances 377 
and their generated iGDGT proxies: TEX86, RI, and MI. The pink background indicates transect intervals 378 
within zones of active GDGT lipid heterotrophy (Bentley et al., 2022). The gray background are transect 379 
regions where porewater temperatures exceeded 123 °C, marking the known upper thermal limit of life 380 
(Kashefi and Lovley, 2003). Yellow fields are zones where oil generation and hydrocarbon degradation occur 381 
(Dalzell et al., 2021).  382 
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 383 
 384 

FIGURE 3. A) Comparison of TEX86 lipid concentrations GDGT-1 (circles), -2 (squares), -3 (triangles), and 385 
Cren' (diamonds) relative to the GDGT-0. Comparison of B) TEX86, C) RI, and D) MI proxy values relative 386 
to summed iGDGTs abundances of the Cathedral Hill transect cores. Light green and pink regions indicate 387 
areas within and outside the habitable zone of life. Solid and dashed regression lines mark the total number 388 
of samples investigated for this study (n=34) and those that only reside within the habitable zone where up to 389 
94% of the archaeal lipid turnover occurs (n=22), respectively.   390 
 391 
 392 
 393 
3.2. TEX86 and reconstructed SSTs  394 
 395 
McClymont et al. (2012) reported a GDGT-based reconstructed annual SSTs of 16–18 °C from particulate 396 
organic matter collected in ambient sediment traps in the Guaymas Basin during an annual cycle from 1996–397 
1997. The reconstructed temperatures followed the calibration model for sediments outside of polar regions 398 
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proposed by Kim et al. (2010). These authors demonstrated the temperatures derived from the TEX86 399 
reconstruction were significantly lower than those produced by the closely co-varying U37

𝑘′  paleoclimate 400 
proxy, and satellite measured estimates that jointly estimated a mean annual sea surface temperature 401 
(MASST) of 23 °C. The longer 21-year (1982–2004) satellite-derived MASST is also reported to be higher 402 
at 24 °C (Herrera-Cervantes et al., 2007). Although, the sites and time frames of these surveys do not match 403 
that of the Cathedral Hill survey, they do provide context to what our reconstructed TEX86 values should 404 
record.   405 
 406 
The high sedimentation rate at Cathedral Hill has resulted in near homogenous inputs of organic matter from 407 
the upper water column across the transect area (Dalzell et al., 2021; Bentley et al., 2022). Therefore, TEX86 408 
reconstructions should produce equivalent cross-transect trends with sediment depth. Nonetheless, as with 409 
changes in the archaeal lipid concentrations, the profiles of iGDGT proxies TEX86 and RI of the transect 410 
similarly have down core trends (Figure 2; Bentley et al., 2022). For core 4, TEX86 span a narrow range of 411 
values (n=7; 0.52–0.54, avg. 0.53 ± 0.01; Figure 4A) across a period of ~ 37.5 to 75 yrs. corresponding to the 412 
depth of the cores. To a slightly lesser degree, the core top (0-2 cmbsf) across the transect also display near-413 
equal values to core 4 (n=4; 0.56–0.54; avg. 0.55 ± 0.01). These values mark a TEX86

H  reconstructed mean 414 
annual SST of 19.3–20.4 °C following the Kim et al. (2010) calibration model (Table 1).  However, the TEX86 415 
values recorded in cores 1 to 3 at Cathedral Hill have considerably larger ranges with values spanning from 416 
0.53 to 0.63 (Table 1) that systematically increase with rising porewater temperatures (R2 = 0.83; Table 1; 417 
Figure 2 and 4A). This increase is most noticeable in core 1 where the highest TEX86 values are obtained 418 
from the bottom core sediments (10–21 cmbsf; marking the non-habitable zone) where TEX86 values span 419 
0.57–0.63 (Table 1; Fig 4A) corresponding to a TEX86

H  reconstructed SST change of 3.1 °C marking a range 420 
from 21.8 to 24.9 °C (Table 1). The fundamental driver for the proxy’s is likely influenced by the archaeal 421 
community composition that is responding to their exposure to in situ vent fluid temperatures (Figure 4).  422 
 423 
Two mechanisms are considered for the observed proxy variations. The first is that progressive ring-loss due 424 
to carbon-carbon bond cleavage of pentacyclic rings moieties by exposure to the sharp geothermal gradient 425 
acts to systematically attenuate the iGDGT lipid pool. Hydrous pyrolysis experiments conducted by Schouten 426 
et al. (2004) demonstrated that at extreme temperatures (ca. >160 °C), TEX86 values become negatively 427 
impacted by the preferential destruction of polycyclic GDGTs. Such losses produce progressively lower ratio 428 
values. Although, the transect sediment porewaters do not reach the pyrolytic temperatures of the Schouten 429 
et al. (2004) experiment, they are high enough to generate hydrocarbons (Dalzell et al., 2021) and 430 
thermochemically degrade iGDGTs in the hottest regions of the transect they are also more long-lived than 431 
what is produced from a laboratory experiment. However, the observed stratigraphic TEX86 trends do not 432 
match those of predicted ring loss as the values increase rather than decrease in relation to elevated porewater 433 
condition.  Nonetheless, the thermochemical oxidative loss of GDGTs and its effect on the TEX86 ratio is 434 
further explored below (section 3.4). 435 
 436 
The second mechanism is that subsurface microbial communities donate enough core GDGTs to overprint 437 
the detrital signal source. The RI (Figure 4B) values were similarly compared to recorded porewater 438 
temperatures to better interpret the TEX86 trends and to ensure that the Cathedral Hill reconstructed 439 
temperatures are influenced by the subsurface microbial community. In this regard, RI is used to monitor the 440 
adaptive response of an archaeal community at the hydrothermal vent site. Lipid cyclization is an adaptive 441 
response to changing environmental temperature or acidity in which an archaeon increases its rigidity by 442 
decreasing the fluidity and permeability of its cellular membrane that, therefore, also further regulates the 443 
flow of solutes and nutrients in and out of the cell (Gliozzi et al., 1983; De Rosa and Gambacorta, 1988; Uda 444 
et al., 2001; Schouten et al., 2002; Macalady et al., 2004; Boyd et al., 2013). Both cores 1 and 2 have RI 445 
values highly correlated to temperature (R2 = 0.87 and 0.75, respectively) consistent with heat stress adaption. 446 
This same was also observed in the Guaymas Basin by Schouten et al. (2003) who reported an increase in the 447 
RI of core lipid GDGTs with in situ temperature. As such, a significant proportion of the measured iGDGTs 448 
likely emanates from archaeal communities living in the shallow sediments of Cathedral Hill. As such, the 449 
lipid cyclization pattern may reflect stratigraphically discrete thermophilic to hyperthermophilic communities 450 
that are selectively adapted to more extreme temperature conditions (see Bentley et al., 2022 for further 451 
discussion on the lipid-based taxonomic make-up of the vent site). 452 
 453 
 454 
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FIGURE 4. Cross plots of A) TEX86, B) RI, and C) MI, iGDGT proxies versus porewater temperature. 

TEX86
𝐻 reconstructed MASSTs are based on Kim et al. (2010). Blue field indicates MI values for normal 

marine conditions (Zang et al., 2011).  

 

 

3.3. Lipid signal sourcing       455 

To evaluate the sources of measured archaeal lipids, CL and IPLTEX86 (the ratio applied to IPLs that contain 456 
equivalent core lipids) indices were compared as signal responses from their respective pools of living and 457 
dead cellular debris (Figure 5). For cores 1, 2, and 3 the 1G-iGDGT IPLTEX86 measures are positively 458 
correlated with temperature (R2 = 0.46, 0.74, and 0.66, respectively; Figure 5A). In this regard, 1G-iGDGT 459 
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IPLTEX86 ratio appears to be largely influenced by in situ porewater temperatures as well as may by the 460 
archaeal community ecology of the vent system.  Factors such as community composition and adaptation 461 
may further impact the IPLTEX86 ratio as the rates of changes between cores 1–3 are not the same. Similar to 462 
the CLTEX86 values, the IPLTEX86 is not correlated to their summed TEX86 lipid abundances (Figure 5B). Such 463 
a condition is largely consistent with the living lipid pool being modified by the archaeal community’s 464 
response to thermal stress and not by subsequent thermal-oxidative transformation occurring shortly after cell 465 
death.   466 
The IPL and CL lipids of transect samples can be further grouped into three clusters (A, B, C), suggesting a 467 
mixed signal for the sourcing of archaeal GDGTs from both the living and dead pools of archaea (Figure 5C) 468 
closely tracking temperature. In this plot, we assume that clusters falling on the 1:1 line indicate the living 469 
biota can equally contribute to the dead pool of total recovered GDGTs. Those off-axis contribute either less 470 
or more to one or the other lipid pool. The three clusters mark unique thermal zones within the transect area 471 
with cluster A being composed of the ambient core 2 to 4 seafloor surface samples; cluster B marking a mix 472 
of intermediate temperature samples from all cores; and cluster C being composed of high temperatures 473 
samples. The lipid groups likely mark distinct archaeal communities. As cluster B resides on the 1:1 line, the 474 
TEX86 core lipids likely have a mix of detrital and in situ inputs. Cluster C, however, appears likely dominated 475 
by in situ lipid production. The thermal zonation and equivalent directionality of the resulting ratios (i.e., both 476 
CL and IPLTEX86 ratios increase with porewater temperature) further supports overprinting of the original 477 
CLTEX86 sea surface signal by the ocean bottom sediment archaeal community as a mechanism for the 478 
observed CLTEX86 trends.   479 
 480 
Collectively, these results suggest the source of the archaeal CLs measured in the TEX86 and RI indices 481 
progressively become more dominated by subsurface microbial communities adapted to the hotter 482 
hydrothermal vent fluids. Our results also indicate that in select natural environments, such as hydrothermal 483 
vent complexes, the TEX86 SST-proxy may entirely record ocean bottom sediment porewater temperatures. 484 
To our knowledge, a clear case of overprinting to this level has not yet been demonstrated.   485 
 486 
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 487 

FIGURE 5. Cross plots of 1G-iGDGTs IPLTEX86 versus (A) porewater temperatures and (B) the 

concentration of 1G-iGDGTs in the sediments. C) TEX86 proxy of core GDGTs vs 1G-GDGTs. Clusters A–

C may represent different archeal communities that are providing varying inputs of iGDGT to the core GDGT 

lipid pool. The dotted trendline is the partial least square regression of the complete core lipid TEX86 data set. 

The solid line marks the 1:1 CL to IPL proxy correspondence indicating both allochthonous and 

autochthonous sources contribute equally to the core GDGT lipid pool. 

 

 

3.4. TEX86 overprint corrections  488 

The measured TEX86 (MTEX86) value of the Cathedral Hill sediments is herein considered to be a weighted 489 
sum of a sea surface TEX86 (SSTEX86) value acquired from lipids sourced in the upper water column that is 490 
further modified by a component of the deeper water column sourced core lipids (WCTEX86) as well as by 491 
additions of archaeal lipids from the benthic and subsurface microbial communities (SedTEX86). These ratio 492 
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loadings are collectively also potentially further modified by diagenetic influences in the ocean bottom 493 
sediments. Over the cumulative sediment burial period and in consideration of the measured porewater 494 
temperatures of the Cathedral Hill push core sediments, these influences include the selective loss of lipids 495 
by their binding into protokerogen (K) and by potential changes due to the loss of lipid by turnover (φ; section 496 
3.1). Additional catagenetic effects from thermochemical alteration of lipids (θ) may also attenuate the sum 497 
of sedimentary core lipids by their exposure to high temperature vent fluids. Collectively, these effects are 498 
considered to form the following relationship:  499 
 500 

                        (3) 501 
 502 
where a, b, and c, are measured scaling parameters for lipid loading and φ, K, and θ are diagenetic and 503 
catagenetic alteration parameters. Solving for SSTEX86: 504 
 505 

                      (4) 506 
 507 
In this regard, a portion of the archaeal community from the upper water column, presumably initially sourced 508 
of IPLs, and an additional community inhabiting the ocean floor sediments were assumed to eventually die 509 
with their respective IPLs gradually hydrolyze, joining the CL pool where they further contribute to the 510 
observed MTEX86 value. For this study, no data was collected to calculate bWCTEX86 and its potential impact 511 
on MTEX86 cannot be further considered in this study.  However, it is highly likely, given the longer residence 512 
times for glycosidic-based headgroups of the identified archaeal IPLs and their relatively short settling time 513 
through the water column (Lengger et al., 2012; Xie et al., 2013) that a component of this lipid source was 514 
already mixed with the SedTEX86 contribution. For this study, SedTEX86 is an IPLTEX86 ratio based on detected 515 
1G-GDGT-1, -2, -3, Cren' and 2G-GDGT-1, -2, as present in the original paleoclimate proxy (Table 1; Figure 516 
6). Testing the removal of 2G-GDGTs lipids, which have a low absolute concentration (<2 µg g-1 sed.) and 517 
shallow stratigraphic zones of occurrence (section 3.1; Table S2), yielded a negligible <1 °C change in the 518 
summed average reconstructed SST.  519 
 520 
The c(d0-n) measured scaling parameter was calculated as  521 
 522 

       5) 523 
 524 
using the summed concentrations of 1G- and 2G-GDGTs that have the potential to become converted to 525 
cGDGTs by progressive burial diagenesis and d0-n marking the range of sampled sediment depths, with 0 526 
being the 0-2cmbsf core top and n the deepest point of sediment burial. These intervals are divided by the 527 
water column input of TEX86 lipids ([GDGTs CL-TEX86 lipids]0-2cm) estimated to be 120 µg g-1 sed. based on their 528 
average measured concentration across the four-core transect. The function assumes the surface sediment 529 
does not hydrolyze its IPL-GDGTs to CLs (Table 2). When applied to Eq. 4 and further excluding φ, K, and 530 
θ, the SS+WCTEX86

H  reconstructed SSTs average 19.68 ±0.79 °C (Table 2; Figure 6A) with the total samples 531 
having an unchanging depth profile that mirrors the range of values measured in the ambient sediments of 532 
core 4 (Figure 2).  533 
 534 
The selective lipid removal by diagenetic and catagenetic processes theoretically may also affect the TEX86 535 
value; however, their perspective impact on the directionality and magnitude of the ratio are difficult to predict 536 
and equally hard to discretely measure. Although the loss of GDGTs to protokerogen formation could 537 
potentially impact the ratio, it was shown to be a negligible sink for the lipids (Bentley et al., 2022). As such, 538 
the K parameter in Eqs. 3 and 4 was therefore assigned a 0 value. Due to the high geothermal gradient at 539 
Cathedral Hill, some of the transect push core sediments resided within zones of active catagenesis (Fig. 2; 540 
Dalzell et al., 2021). The degradation rates of each TEX86 lipid were independently measured for the four 541 
push cores (Eq. 2; Fig. S2). As the abundance of both CLs and IPLs differentially decreases through the 542 
various core sediment profiles with turnover rates that appear to be constrained by porewater temperature 543 
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changes (section 3.1), the degradation rates must also record the effects of thermochemical oxidative 544 
weathering (Fig. 3B).  In this case, φ and θ are treated as grouped parameters. To determine if individual lipid 545 
classes were selectively removed during degradation, the variance (s2) of the rate change as measured from 546 
its respective regression slope (i.e. mlogk') from the TEX86 lipids (Figure S2; Table S4 from Eq. 2) were 547 
calculated.  For the Cathedral Hill transect, the calculated mlogk' s2 is 0.20, which is due to accelerated 548 
degradation rates for higher ring lipids, GDGT-3 and Cren', in samples from cores 1 and 2, where high vent 549 
temperatures resulted in hydrocarbon generation of the sediments (Dalzell et al., 2021). A weighing function 550 
for the degree of lipid class selectivity during turnover is proposed:  551 
 552 

  φ+θ = 1/MTEX86
0.2         (6) 553 

 554 
When applied to Eq. 4, the corrected data series produces an average transect SS+WCTEX86

H  reconstructed SST 555 
of 23.66 ±0.59 °C with a near-zero partial least squares regression slope (Table 2; Figure 6B). As these 556 
modeled values are within the 23–24 °C obtained for the 21-year (1982–2004) satellite-derived MASST data 557 
for the Guaymas Basin region (Herrera-Cervantes et al., 2007). Based on these calculations, nearly all MTEX86 558 
attenuation can be attributed to sediment microbial overprinting coupled to diagenetic and catagenetic loss of 559 
lipids consistent with prior observations at Guaymas Basin (Schouten et al., 2003; Zhang et al., 2011). The 560 
high degree of influence this has on the TEX86 proxy is striking given that the upper water flux of GDGTs at 561 
Cathedral Hill is estimated to represents up to 93% of the total intact polar and core GDGT lipid pool within 562 
these sediments. Although, this study demonstrates the benthic microbial community can influence TEX86 563 
values in anomalous, end-member environments; the above model has not yet been tested across conventional 564 
ocean shelf environments. 565 
 566 
 567 
 568 
 569 
 570 
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 571 
 572 
 573 
FIGURE 6. Reconstructed combined SSTEX86 and SSTs WCTEX86from Eq. 4 (A) with and (B) without φ, K, 574 
and θ scaling parameters compared to measured porewater temperatures. Colored circles indicate recorded 575 
values from the four push cores. MTEX86 values are plotted for reference (open black diamonds). Blue field 576 
is the 23–24 °C range observed for the 21-year (1982–2004) satellite-derived MASST data (Herrera-577 
Cervantes et al., 2007).   578 
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Table 2. Reconstructed sea surface temperatures. 579 
 580 

 

 

Sample 

 

 

Depth 

(cmbsf) 

Porewater 

Temp. 

(°C) 

t 

Time 

(yrs.) 

MTEX86 

(Measured 

iGDGT 

TEX86) 

𝐓𝐄𝐗𝟖𝟔
𝐇  

Reconstructed 

SST 

(°C) 

TEX86 

1G- & 2G-

GDGT 

IPLs 

(µg g-1) 

Cumulative 

1G- & 2G-

GDGTs 

Loading with 

Depth (µg g-1) 

SedTEX86 

(i.e. 1G- & 

2G-GDGT 

IPLTEX86) 

c(d0-n) 

Cumulative 

Weighted IPL 

Loading (Eq. 5) 

Core 1 (0-2cm) 1 19 10 0.56 21.2 4.80 0 0.58 0.00 

Core 1 (2-4cm) 3 67 20 0.58 22.6 3.41 4.80 0.58 0.04 

Core 1 (4-6cm) 5 85 30 0.58 22.3 1.29 8.21 0.55 0.07 

Core 1 (6-8cm) 7 105 40 0.58 22.2 1.14 9.50 0.57 0.08 

Core 1 (8-10cm) 9 117 50 0.59 22.9 1.41 10.64 0.72 0.09 

Core 1 (10-12cm) 11 125 60 0.57 21.8 0.76 12.05 0.70 0.10 

Core 1 (12-15cm) 13 135 70 0.61 23.8 0.72 12.81 0.69 0.11 

Core 1 (15-18cm) 17 145 80 0.61 23.9 0.00 13.53 0.69* 0.11* 

Core 1 (18-21cm) 20 153 90 0.63 24.9 0.00 13.53 0.69* 0.11* 

Avg.    0.59 22.84     

Std. Dev.    0.02 1.16     

Core 2 (0-2cm) 1 11 10 0.55 20.6 4.33 0 0.49 0.00 

Core 2 (2-4cm) 3 22 20 0.54 20.4 1.80 4.33 0.57 0.04 

Core 2 (4-6cm) 5 20 30 0.54 20.5 0.76 6.13 0.60 0.05 

Core 2 (6-8cm) 7 47 40 0.56 21.5 1.31 6.89 0.73 0.06 

Core 2 (8-10cm) 9 60 50 0.58 22.3 0.88 8.20 0.70 0.07 

Core 2 (10-12cm) 11 73 60 0.57 22.0 0.92 9.08 0.68 0.08 

Core 2 (12-15cm) 13 87 70 0.57 21.8 0.40 10.00 0.73 0.08 

Core 2 (15-18cm) 17 105 80 0.58 22.6 0.00 10.40 0.73* 0.09 

ore 2 (18-21cm) 20 125 90 0.59 22.7 0.00 10.40 0.73* 0.09* 

Avg.    0.56 21.61     

Std. Dev.    0.02 0.91     

Core 3 (0-2cm) 1 3.2 10 0.54 20.2 3.51 0 0.56 0.03 

Core 3 (2-4cm) 3 8 20 0.53 19.9 1.79 3.51 0.51 0.01 

Core 3 (4-6cm) 5 15 30 0.53 19.9 1.45 5.30 0.57 0.01 

Core 3 (6-8cm) 7 26 40 0.54 20.3 1.77 6.74 0.55 0.01 

Core 3 (8-10cm) 9 34 50 0.53 19.9 1.70 8.51 0.61 0.01 

Core 3 (10-12cm) 11 43 60 0.54 20.3 2.16 10.21 0.71 0.02 

Core 3 (12-15cm) 13 54 70 0.56 21.4 2.52 12.37 0.69 0.02 

Core 3 (15-18cm) 17 66 80 0.55 20.9 4.72 14.89 0.73 0.04 

Core3 (18-21cm) 20 80 90 0.57 21.6 2.10 19.61 0.65 0.02 

Avg.    0.54 20.50     

Std. Dev.    0.01 0.67     

Core 4 (0-2cm) 1 2 10 0.54 20.4 2.43 0 0.54 0.02 

Core 4 (2-4cm) 3 8 20 0.53 20.0 1.75 2.43 0.44 0.01 

Core 4 (4-6cm) 5 16 30 0.54 20.2 2.15 4.18 0.49 0.02 
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Core 4 (6-8cm) 7 18 40 0.52 19.3 1.76 6.34 0.47 0.01 

Core 4 (8-10cm) 9 21 50 0.53 19.9 0.44 8.09 - - 

Core 4 (10-12cm) 11 23 60 0.53 19.8 2.20 8.54 - - 

Core 4 (12-15cm) 13 25 70 0.53 19.7 0.00 10.74 - - 

Avg.    0.53 19.90     

Std. Dev.    0.01 0.34     

Cumulative Avg.     19.68     

Cumulative Std. 

Dev. 
    0.79     

 
* Marks inherited values from the above sediment horizon.
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Table 2. Reconstructed sea surface temperatures (continued). 

 

 

 

Sample 

 

 

 Eq. 4 excluding φ+θ+K Eq. 4 including φ+θ+K 

SS+WCTEX86 (MTEX86 - 

c(d0-n)*SedTEX86) 

SS+WC𝐓𝐄𝐗𝟖𝟔
𝐇

 

(after Kim et 

al., 2010) 

SS+WC𝐓𝐄𝐗𝟖𝟔
𝐇  

Reconstructed 

SST (°C) 

φ+θ 

(Eq. 6) 

 (where s2 = 0.20;  

Table S4) 

SS+WCTEX86 

 

SS+WC𝐓𝐄𝐗𝟖𝟔
𝐇  

Reconstructed SST 

(°C) 

(after Kim et al., 2010) 

Core 1 (0-2cm) 0.56 -0.25 21.2 1.12 0.63 24.7 

Core 1 (2-4cm) 0.56 -0.25 21.4 1.12 0.63 24.9 

Core 1 (4-6cm) 0.54 -0.27 20.3 1.13 0.62 24.2 

Core 1 (6-8cm) 0.53 -0.27 19.8 1.13 0.61 23.9 

Core 1 (8-10cm) 0.52 -0.28 19.5 1.14 0.61 23.7 

Core 1 (10-12cm) 0.50 -0.30 17.9 1.15 0.58 22.6 

Core 1 (12-15cm) 0.53 -0.27 20.0 1.13 0.62 24.2 

Core 1 (15-18cm) 0.53 -0.27 19.8 1.13 0.61 24.1 

Core 1 (18-21cm) 0.55 -0.26 21.0 1.13 0.63 25.0 

Avg. 0.54 -0.27 20.10 1.13 0.61 24.14 

Std. Dev. 0.02 0.02 1.08 0.01 0.02 0.75 

Core 2 (0-2cm) 0.55 -0.26 20.6 1.13 0.62 24.2 

Core 2 (2-4cm) 0.52 -0.28 19.2 1.14 0.60 23.3 

Core 2 (4-6cm) 0.51 -0.29 18.7 1.14 0.59 22.9 

Core 2 (6-8cm) 0.52 -0.28 19.3 1.14 0.60 23.4 

Core 2 (8-10cm) 0.53 -0.28 19.7 1.14 0.61 23.8 

Core 2 (10-12cm) 0.52 -0.28 19.1 1.14 0.60 23.4 

Core 2 (12-15cm) 0.51 -0.29 18.5 1.14 0.59 23.0 

Core 2 (15-18cm) 0.52 -0.28 19.2 1.14 0.60 23.5 

Core 2 (18-21cm) 0.52 -0.28 19.3 1.14 0.60 23.6 

Avg. 0.52 -0.28 19.32 1.14 0.60 23.47 

Std. Dev. 0.01 0.01 0.60 0.00 0.01 0.40 

Core 3 (0-2cm) 0.52 -0.28 19.4 1.14 0.60 23.3 

Core 3 (2-4cm) 0.52 -0.28 19.4 1.14 0.60 23.3 

Core 3 (4-6cm) 0.53 -0.28 19.5 1.14 0.60 23.4 

Core 3 (6-8cm) 0.53 -0.27 19.9 1.13 0.60 23.6 

Core 3 (8-10cm) 0.52 -0.28 19.4 1.14 0.60 23.3 

Core 3 (10-12cm) 0.53 -0.28 19.6 1.14 0.60 23.5 

Core 3 (12-15cm) 0.55 -0.26 20.7 1.13 0.62 24.3 

Core 3 (15-18cm) 0.52 -0.28 19.3 1.14 0.60 23.4 

Core3 (18-21cm) 0.55 -0.26 21.0 1.13 0.62 24.6 

Avg. 0.53 -0.27 19.79 1.14 0.60 23.64 

Std. Dev. 0.01 0.01 0.62 0.00 0.01 0.49 

Core 4 (0-2cm) 0.53 -0.27 19.8 1.13 0.60 23.6 

Core 4 (2-4cm) 0.53 -0.28 19.7 1.14 0.60 23.4 
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Core 4 (4-6cm) 0.53 -0.28 19.8 1.14 0.60 23.5 

Core 4 (6-8cm) 0.52 -0.29 19.0 1.14 0.59 22.9 

Core 4 (8-10cm) - - - - - - 

Core 4 (10-12cm) - - - - - - 

Core 4 (12-15cm) - - - - - - 

Avg. 0.53 -0.28 19.51 1.07 0.60 23.38 

Std. Dev. 0.01 0.01 0.38 0.00 0.01 0.31 

Cumulative Avg.   19.68   23.66 

Cumulative Std. Dev.   0.79   0.59 

 581 
 582 
 583 

4. Conclusions 584 

In this study, we demonstrate a pronounce overprint of cGDGTs sourced from the ocean floor sedimentary 585 
archaeal community at the Cathedral Hill vent site in Guaymas Basin. The overprint is marked by lipids with 586 
more cyclized ring moieties marking an adaptive response by archaea to rigidify the cellular membranes 587 
against localized heat stress. This in turn has resulted in the commonly used TEX86 paleoclimate proxy to 588 
partially record advecting porewaters temperatures. As the vast majority of cGDGTs in these sediments is 589 
sourced from the overlying water column, the impact on the TEX86 ratio is further the product of rapid lipid 590 
turnover rates and diagenetic and catagenetic alteration processes potentially unique to the hydrothermal 591 
system. Together, these factors resulted in absolute TEX86

H  temperature offsets of up to 4 °C based on 592 
calibrations closely suited to the latitudinal position of Guaymas Basin. To untangle the impact of these 593 
coupled drivers on the TEX86 proxy, we further present a method to correct the overprints by both the water 594 
column and subsurface archaeal community using IPLs extracted from both of these sources. Although, we 595 
have not been able to test this model with lipid inputs from the overlying water column, we have demonstrated 596 
its effectiveness at removing sediment sourced overprints, which may not be unique to hydrothermal systems. 597 
This approach should be capable of being extended to all near-surface marine sediment systems and may 598 
improve the quality of calibration models or climate reconstructions that are based on modern TEX86 599 
measures.   600 
 601 
 602 
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