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Abstract. Changes in soil organic carbon (SOC) stocks are a major source of uncertainty for the evolution of atmospheric 

CO2 concentration during the 21st century. They are usually simulated by models dividing SOC into conceptual pools with 

contrasted turnover times. The lack of reliable methods to initialize these models, by correctly distributing soil carbon 

amongst their kinetic pools, strongly limits the accuracy of their simulations. Here, we demonstrate that PARTYSOC, a 

machine-learning model based on Rock-Eval® thermal analysis optimally partitions the active and stable SOC pools of 20 

AMG, a simple and well validated SOC dynamics model, accounting for effects of soil management history. Furthermore, 

we found that initializing the SOC pool sizes of AMG using machine-learning strongly improves its accuracy when 

reproducing the observed SOC dynamics in nine independent French long-term agricultural experiments. Our results indicate 

that multi-compartmental models of SOC dynamics combined with a robust initialization can simulate observed SOC stock 

changes with excellent precision. We recommend exploring their potential before a new generation of models of greater 25 

complexity becomes operational. The approach proposed here can be easily implemented on soil monitoring networks, 

paving the way towards precise predictions of SOC stock changes over the next decades. 

  

https://doi.org/10.5194/bg-2021-246
Preprint. Discussion started: 23 September 2021
c© Author(s) 2021. CC BY 4.0 License.



2 

 

1 Introduction 

Soil organic carbon (SOC) plays an important role in sustaining soil functions and associated soil ecosystem services 30 

worldwide (IPCC, 2019). It is the largest terrestrial organic carbon reservoir, with the upper two meters of soil storing 2400 

Pg C, three times more carbon than the atmosphere (Jobbagy and Jackson, 2000). A mere 4 per 1000 annual decrease in SOC 

stocks (ca. 10 Gt C∙year−1) may double the global annual anthropogenic CO2 emissions, while an equivalent increase may 

compensate them (Balesdent and Arrouays, 1999). This is the concept behind the 4 per 1000 initiative (Rumpel et al., 2018) 

that aims at increasing SOC stocks to fight global warming while ensuring food security, two Sustainable Development 35 

Goals of the United Nations (UN General Assembly, 2015). This initiative and other political headway have placed the 

question of managing SOC stocks and assessing the global SOC sequestration potential at the top of political and scientific 

agendas (Vermeulen et al., 2019; FAO, 2019; Amelung et al., 2020). Despite this particular attention, the prediction of SOC 

stock changes remains very uncertain, which makes soils a major source of uncertainty for the evolution of atmospheric CO2 

concentration (Todd-Brown et al., 2014; He et al., 2016; Shi et al., 2018). 40 

 

Models of SOC dynamics can predict future SOC stock evolution by simulating carbon transfer into the soil mostly through 

plant organic matter inputs, and microbial SOC mineralization resulting in a CO2 flux from the soil to the atmosphere. They 

can have structures of various complexities reflecting our mechanistic understanding of SOC dynamics (Shi et al., 2018; Luo 

et al., 2016). However, most models dedicated to prediction, including those used in Earth System Models, have a simple 45 

structure dividing SOC into conceptual pools with contrasted turnover times (Manzoni and Porporato, 2009; He et al., 2016; 

Todd-Brown et al., 2014). These multi-compartmental models of SOC dynamics are the best option we currently have to 

foster science-based SOC preservation and sequestration actions, given the strong uncertainty of more complex models 

(Cécillon, 2021a; Dangal et al., 2021; Lee et al., 2020; Shi et al., 2018; Crowther et al., 2019). Predictions of SOC stocks 

evolution provided by such simple models are very sensitive to the initial distribution of SOC amongst the different kinetic 50 

pools (Luo et al., 2016; Smith and Falloon, 2000; Clivot et al., 2019). This makes the question of SOC kinetic pool 

partitioning a priority for improving the accuracy of multi-compartmental SOC dynamics models (Luo et al., 2016; 

Taghizadeh-Toosi et al., 2020). 

 

The most commonly used method to initialize the size of SOC kinetic pools is to run spin-up simulations until a steady-state 55 

equilibrium for SOC is reached, eventually matching the initial SOC stock measurement (Wutzler and Reichstein, 2007; 

Taghizadeh-Toosi et al., 2020). However, this method has two well-known limitations. First, climatic, SOC input, and land-

use or land-cover data extending over long time periods required by this approach are highly uncertain. Second, assuming 

steady-state equilibrium for SOC at the onset of model simulations is often unrealistic. This is due to the history of the 

simulated sites that often includes disturbances (e.g., fire), as well as previous changes in climate, land-use and soil 60 

management that prevent SOC pools with slow turnover times from being at equilibrium (Wutzler and Reichstein, 2007; 
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Herbst et al., 2018; Oberholzer et al., 2014; Poeplau et al., 2011; Clivot et al., 2019). Alternative initialization procedures are 

needed to address these issues (Wutzler and Reichstein, 2007; Bruun and Jensen, 2002; Taghizadeh-Toosi et al., 2020).  

 

In some models of SOC dynamics, like the AMG model (Clivot et al., 2019), a default initial SOC pool size distribution is 65 

prescribed according to basic information on land-use history (i.e. long-term cropland vs. long-term grassland) (Clivot et al., 

2019). This approach does not take into account the effect of recent changes in land-use or historical soil management 

practices on SOC pool distribution. To better reflect the effect of the frequent state of non-equilibrium of SOC on its 

partitioning into conceptual kinetic pools, another approach has been proposed, relating results from SOC fractionation 

methods with SOC kinetic pool sizes (e.g., Zimmermann et al. (2007a) or Skjemstad et al. (2004) for the RothC model; 70 

Dangal et al. (2021) for the DAYCENT model). However, this approach also suffers from important drawbacks. First, SOC 

fractionation procedures are tedious and cannot be implemented on large-scale studies, though this problem may be solved 

by using soil infrared spectroscopy or environmental variables and machine-learning (Zimmermann et al., 2007b; Viscarra 

Rossel et al., 2019; Sanderman et al., 2021; Cotrufo et al., 2019; Lugato et al., 2021; Baldock et al., 2013; Barthès et al., 

2008; Lee et al., 2020; Dangal et al., 2021). Second, their reproducibility is questionable (Poeplau et al., 2013, 2018), and 75 

third, their use for initializing model SOC pool sizes has never been properly validated. A proper validation would require 

showing that (1) the size of measured SOC fractions matches the one of model kinetic pools, and that (2) simulations of SOC 

dynamics are more accurate using this initialization strategy, compared to default simulations (on independent validation 

sites while other model parameters remain constant). Reasonably good correspondence between measured or soil-

spectroscopy-estimated SOC fractions and modelled SOC conceptual pools has been reported in a number of studies, though 80 

with some notable discrepancies (Leifeld et al., 2009b; Herbst et al., 2018; Zimmermann et al., 2007a; Dangal et al., 2021). 

Conversely, the studies that attempted to initialize model SOC pool sizes using a SOC fractionation scheme generally 

reported no improvement in the accuracy of simulations of SOC dynamics compared to a default or a spin-up initialization 

approach (Leifeld et al., 2009a; Nemo et al., 2016; Cagnarini et al., 2019). Only two studies showed that an initialization 

based on a SOC fractionation scheme yielded more accurate simulations of observed SOC dynamics, but at the cost of 85 

modifying the decomposition rate of SOC kinetic pools (Skjemstad et al., 2004; Luo et al., 2014).  

 

An alternative approach using Rock-Eval® thermal analysis has recently been proposed — under the name PARTYSOC 

model — to estimate SOC kinetic pool size (Cécillon et al., 2018, 2021). PARTYSOC is a machine-learning model trained on 

Rock-Eval® data of soil samples from long-term experiments (LTEs) where the size of the centennially stable SOC fraction 90 

can be estimated (e.g., sites including a bare fallow treatment). PARTYSOC incorporates recent key elements of the new 

understanding of SOC dynamics (Dignac et al., 2017), showing that the centennially stable SOC fraction has specific 

chemical and energetical characteristics that are measurable quickly (ca. 1 h per sample) and at a reasonable cost (less than 

USD 60) using Rock-Eval®: it is thermally stable (i.e. high activation energy) and it is depleted in hydrogen (Barré et al., 

2016; Hemingway et al., 2019; Gregorich et al., 2015; Poeplau et al., 2019; Chassé et al., 2021). 95 
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In this study, we tested if the PARTYSOC machine-learning model, built on a totally independent data set from North-western 

Europe, could be used to initialize the distribution of SOC pools of the simple AMG model (Clivot et al., 2019) and improve 

the accuracy of its simulations. The default version of AMG is currently the most accurate model for reproducing the 

observed SOC stock dynamics in diverse French agricultural LTEs at the pluri-decadal scale (Martin et al., 2019). The 100 

efficient use of this model at sites covering an important pedological and climatic variability (including oceanic, continental, 

and tropical climate) provides further support to its robustness (Levavasseur et al., 2020; Farina et al., 2021; Saffih-Hdadi 

and Mary, 2008). In this model, SOC is simply divided into two pools, the “stable C (CS)” that is considered as inert at the 

time scale of the simulation and the “active C (CA)” that has a mean turnover time of a few decades. A recent study (Clivot et 

al., 2019) determined that the optimal initial proportion of CS (CS/C0) can deviate from the model’s default value (0.65 in 105 

croplands), so that a more precise initialization of the CS/C0 proportion would significantly improve AMG simulations of 

SOC dynamics. Here, we hypothesized that the SOC pool partitioning as determined by the PARTYSOC machine-learning 

(Cécillon et al., 2021, 2018) would be close to the mathematically optimal one for the AMG model, therefore, improving the 

accuracy of its SOC dynamics simulations compared to default initialization. We tested our hypothesis on 32 treatments 

from nine independent French agricultural LTEs (experiment duration from 12 to 41 years with a median of 21 years) in 110 

which the AMG optimal SOC pool partitioning could be determined by ex-post optimization and for which topsoil samples 

collected at the onset of the experiment were available (Table 1). These LTEs were croplands established in different 

pedoclimates that have experienced contrasted soil management practices and land-use histories. All available initial topsoil 

samples were analysed with Rock-Eval® and the results were used in the European version of the PARTYSOC model, 

PARTYSOCv2.0EU (Cécillon et al., 2021), to compute the centennially stable SOC proportion of each topsoil sample. 115 

 

2 Materials and methods  

2.1 Experimental sites  

This work was conducted on nine French agricultural LTEs (Supplementary Material Fig. 1). Seven LTEs including 29 

treatments were selected from the dataset presented in Clivot et al. (2019), from sites with availability of initial topsoil 120 

samples. Two additional LTEs (Colmar and Feucherolles) including a total of three treatments were obtained from the 

dataset published in Levavasseur et al. (2020), selecting control treatments without organic amendments and with available 

initial topsoil samples. Basic site and topsoil characteristics are reported in Table 1 and Supplementary Material Table 1. 

Information necessary to run AMG simulations on a total of 32 treatments (initial soil physico-chemical properties, detailed 

information on management practices and observed climatic data during all experiments) were obtained from (Clivot et al., 125 

2019) for the 29 treatments of the seven sites and from (Levavasseur et al., 2020) for the three treatments of the sites of 

Colmar and Feucherolles.  
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Table 1: Main information on the nine French agricultural long-term experiments used in this study. All sites had been croplands 

for at least 20 years before the onset of all experiments. Additional site information including climatic variability amongst sites and 

long-term history of land cover is provided in Supplementary Material Table 1.  130 

 

2.2 Archive soil samples from experimental sites 

Our final soil sample set included 181 topsoil samples. At each site the soil was sampled to include the whole ploughing 

depth (Table 1). At all sites, except Boigneville where the soil was sampled in five sublayers, the ploughing layer was 

sampled as one homogeneous layer. Of the final samples, 71 were from LTEs starting dates, 24 from intermediate dates and 135 

86 from final dates. All samples were air-dried or dried at 40 °C, sieved to < 2 mm and finely ground to < 250 μm using a 

ball mill (Retsch, Germany).  

 

2.3 Rock-Eval® analysis of archive soil samples  

All soil samples were analysed using a Rock-Eval 6® Turbo apparatus (Vinci Technologies). The samples were first 140 

pyrolyzed in an inert N2 atmosphere, then oxidized under ambient air (O2). The heating routine applied during pyrolysis was 

as described in (Disnar et al., 2003), starting with a three-minute isotherm at 200 °C followed by a heating ramp of 30 

°C∙min−1 up to 650 °C. For the oxidation step, a one-minute isotherm was kept at 300 °C and was directly followed by a 

 Auzeville Boigneville Colmar Doazit Feucherolles Grignon-

Folleville Kerbernez Mant Tartas 

Soil type 

(WRB 2014) 
Luvisol 

Haplic 

Luvisol 

Calcaric 

Cambisol  
Luvisol 

Gleyic 

Luvisol 
Luvisol Cambisol 

Dystric 

Luvisol 

Luvic 

Arenosol 

          

LTE onset 1968 1970 2000 1967 1998 1958 1978 1975 1972 

Simulated 

period 
1975–2010 1970–2011 2000–2018 1977–1989 1998–2019 1989–2008 1978–2005 1975–1992 1976–1997 

Number of 

treatments 
4 12 1 2 2 2 5 2 2 

Sampling 

dates (number 

of samples) 

1975 (4), 

2010 (8) 

1970 (29), 

1998 (10), 

2017 (32) 

2000 (4), 2018 

(6) 

1977 (4), 

1989 (4) 

1998 (8), 

2013 (8), 

2018(8) 

1989 (8), 

2008 (8) 

1978 (6), 1991 

(6), 2005 (12) 

1975 (4), 

1992 (4) 

1976 (4), 

1997 (4) 

Crop rotation 
annual crop 

rotation 

annual crop 

rotation 

annual crop 

rotation 

maize 

monoculture 

annual crop 

rotation 

annual crop 

rotation 

silage maize 

monoculture 

(KERB_C incl. 

raygrass) 

maize 

monoculture 

maize 

monoculture 

Considered 

depth 
30 29 28 25 28 30 25 28 28 

Initial SOC 

stock (tC∙ha−1) 
34.68 42.40 45.20 26.35 43.80 55.85 81.98 38.75 45.25 

Reference 
(Colomb et 

al., 2007) 

(Dimassi et 

al., 2014) 
(Obriot, 2016) 

(Lubet et al., 

1993) 

(Noirot-

Cosson et al., 

2016) 

(Barré et al., 

2008) 

(Vertès et al., 

2007) 

(Messiga et 

al., 2010) 

(Morel et al., 

2014) 
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heating ramp of 20 °C∙min−1 until 850 °C was reached, followed by a five-minute isotherm at 850 °C (Baudin et al., 2015) 

adapted from (Behar et al., 2001)).  145 

Based on five generated Rock-Eval® thermograms, 18 parameters were calculated for each sample, and were then used as 

predictors by the random forests model. These include Total Organic Carbon (TOC; in gC∙kg soil−1) — the amount of 

organic C released during the analysis as a proportion of sample weight; Pyrolyzed organic Carbon (PC; in gC∙kg soil−1) — 

the sum of C released as CH, CO and CO2 during pyrolysis step; the ratio of PC to TOC (PC/TOC); S2 peak area (gC∙kg 

soil−1) — the hydrocarbon gas released within the range of the pyrolysis temperature ramp; the ratio of S2 to PC (S2/PC); 150 

PseudoS1 peak area (gC∙kg soil−1) — the sum of C released as CH, CO and CO2 during the first 200 seconds of pyrolysis 

(after Khedim et al., 2021); Hydrogen Index (HI; in mgHC∙gTOC−1) — the amount of hydrocarbons released as a ratio of 

TOC; the ratio of HI to Oxygen Index (HI/OIRE6) — where OIRE6 is calculated as the amount of oxygen released as CO 

and CO2 gases normalized to TOC. Finally, various temperature parameters (T70CH_PYR, T90CH_PYR, T30CO2_PYR, 

T50CO2_PYR, T70CO2_PYR, T90CO2_PYR, T70CO_OX, T50CO2_OX, T70CO2_OX, T90CO2_OX; in °C) are 155 

included in the predictors set. They describe evolution steps, namely at which temperature a specific amount (e.g. 30, 50, 70 

or 90%) of a given gas was released according to each thermogram (Cécillon et al., 2018). It is important to note that for the 

calculation of all of the above parameters, only the part of each thermogram corresponding to organic carbon was taken into 

account. For this purpose, upper temperature integration limits were set at 560 °C for the CO and CO2 pyrolysis 

thermograms, and at 611 °C for the CO2 oxidation thermograms (Cécillon et al., 2018). R scripts used for computing Rock-160 

Eval® parameters are available permanently on the Zenodo platform (Cécillon, 2021b). 

 

2.4 The PARTYSOC machine-learning model 

The most up-to-date European version of this model, calibrated on soils from North-western Europe, used in this study, is 

described in detail in (Cécillon et al., 2021). This model uses the 18 above-mentioned Rock-Eval® thermal analysis 165 

parameters as predictors and estimates the centennially stable SOC proportion in a topsoil sample. The model consists of a 

trained non-parametric machine learning algorithm, using the random forests approach to estimate centennially stable SOC 

proportions in unknown topsoils from centred and scaled Rock-Eval® parameters. In this study the obtained centennially 

stable SOC proportion of each topsoil sample, was converted to centennially stable SOC content by multiplying the 

predicted proportion by the total SOC content. The PARTYSOCv2.0EU model, permanently available on Zenodo (Cécillon, 170 

2021b), was used without any adaptation. 
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2.5 The AMG model of soil organic carbon dynamics 

The AMG model (Andriulo et al., 1999) was developed based on the two-compartment SOC model proposed by Hénin and 175 

Dupuis (Henin and Dupuis, 1945). It is characterized by a simple structure consisting of three carbon pools: fresh organic 

matter, and two SOC fractions, an active and a stable pool (Supplementary Material Fig. 2). The model allows transfer of 

carbon from the fresh organic matter pool either to the atmosphere through microbial mineralization or into the active pool. 

Organic carbon from the active pool is also subject to mineralization, forming a second direct flux of CO2 from the soil into 

the atmosphere. SOM decomposition follows first order kinetics with a rate defined by the coefficient of mineralization k 180 

(year−1), controlled by climatic conditions and soil characteristics. The h coefficient controls the yield of crop residues 

transformation into active carbon and depends on the type of fresh organic matter. No carbon exchange with the stable SOC 

pool is possible since it is considered inert and remains unchanged over the simulation period (here from 12 to 41 years; see 

Table 1). Considering the stable SOC pool as mathematically inert at this time scale is in line with consistent observations of 

a significant pluri-decadal persistent SOC fraction in long-term bare fallows and C3-C4 vegetation change chronosequences 185 

(Barré et al., 2010; Balesdent et al., 2018). 

The AMG model can be mathematically described by two simple equations (Clivot et al., 2019):  

 

𝑄𝐶 = 𝑄𝐶𝑆 + 𝑄𝐶𝐴 ,           (1) 

𝑑𝑄𝐶𝐴

𝑑𝑡
= ∑ 𝑚𝑖𝑖 ℎ𝑖 −  𝑘 ∙ 𝑄𝐶𝐴 ,          (2) 190 

 

where QC is the total SOC stock (t∙ha−1), QCS is the stable SOC stock (t∙ha−1) defined as a fraction of initial SOC stock QC0 

(s. Sect. 2.6) constant for a specific treatment, QCA is the active SOC stock (t∙ha−1), t is the time in years, mi is the annual C 

input from organic residue i (t∙ha−1∙yr−1), h is a coefficient representing the fraction of C inputs which is incorporated in 

SOM after 1 year related to the type of organic residue, and k is the mineralization rate constant associated with the active C 195 

pool (yr−1).  

 

The AMG parameters (h and k) have been determined by experimental results (Clivot et al., 2019). This approach differs 

from most multi-compartmental SOC dynamics models for which decay rates of slower pools were calibrated indirectly, 

assuming an equilibrium state for SOC (Wutzler and Reichstein, 2007). The simple structure of the AMG model and the 200 

experimental determination of its decomposition rates make it less susceptible to the problem of equifinality compared to 

other multi-compartmental models of SOC dynamics (Clivot et al., 2019; Luo et al., 2016). Furthermore, AMG has been 

validated with δ13C tracer data of long term alternative sequences of C4 and C3 crops (Mary et al., 2020). 

 

The version of AMG used in this study was AMGv2, described in detail in (Clivot et al., 2019). Input data necessary to run 205 

simulations of SOC stocks with AMG include crop type, annual crop yields and information regarding management of crop 
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residues. These are used to compute annual aboveground and belowground C inputs from plants, here according to the 

method proposed by (Bolinder et al., 2007) and adapted by (Clivot et al., 2019). The coefficient of mineralization k (year−1) 

is calculated according to soil characteristics (clay and carbonate contents, pH and C:N ratio) and climatic conditions (mean 

annual temperature, precipitation and potential evapotranspiration) (Clivot et al., 2019). 210 

 

2.6 Soil organic carbon pool partitioning in the AMG model 

2.6.1 Default CS/C0 initialization 

Two default values can be used for initialization of SOC pool distribution in AMG, depending on land-use history before the 

onset of simulations. The initial proportion of the stable SOC pool equals 0.65 for sites with a long-term arable land-use 215 

history. Former long-term grassland sites are expected to have lower CS/C0 and the value of 0.40 was used in previous 

studies (Saffih-Hdadi and Mary, 2008; Clivot et al., 2019). Since all sites used in this study had been under arable land for at 

least 20 years before the onset of the experiment, a default value of 0.65 was used.  

2.6.2 Rock-Eval®-based initialization of CS/C0  

After obtaining predictions of the centennially stable SOC proportion for individual topsoil samples using the 220 

PARTYSOCv2.0EU statistical model, these values were averaged per site. For this step, only initial topsoil samples collected at 

the LTE’s onset were used. The site mean was then used to initialize simulations of SOC stocks for the various treatments of 

every site (the site standard deviation is reported on Fig. 1 and in Supplementary Material Table 2). Supported by the evident 

common land-use history shared by the multiple treatments of each site before the onset of simulations and as the SOC 

stocks and centennially stable SOC content were very homogeneous amongst each site, we also performed simulations of 225 

treatments for which soil samples from the onset of the LTE were not available. In these cases, we considered that the 

centennially stable SOC proportion of the treatment was equal to the mean proportion of the respective site (Supplementary 

Material Table 1 and 2). 

2.6.3 Ex-post optimization of CS/C0  

Following a least squares optimization approach, the best fit on observed SOC time series was obtained and the required 230 

initial SOC pool partitioning was estimated accordingly for each site (Clivot et al., 2019). In sites where long-term 

monitoring data were available, the model was adapted to simultaneously match the observed evolution of C, C3 and C4 

stocks (determined using 13C stable isotope measurements; Clivot et al., 2019) for a given treatment. 
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2.7 Statistics 235 

The fit between PARTYSOC predictions of centennially stable SOC proportion and ex-post optimized CS/C0 was assessed by 

a linear regression model. The same approach was applied for the evaluation of the agreement between centennially stable 

SOC content and AMG ex-post optimized CS content of initial samples. The evaluation of the performance of the AMG 

model, for the different SOC pool partitioning initialization methods, was also based on simple linear regressions between 

simulated and observed SOC stock values. Statistical terms used to express the strength and the statistical significance of the 240 

relationships were the coefficient of determination (R2), and the associated probability value (p-value). Prediction bias and 

model error were expressed as mean difference (BIAS), and relative mean square error (RMSE). The relative root mean 

square error (RRMSE) and the normalized root mean square error (NRMSE) were used to compare the error of different data 

sets (with a different range of predictions) (Smith et al., 1996; Wallach, 2006; Otto et al., 2018). 

𝑅2 = (
∑ ((𝑂𝑖−�̅�)∙(𝑆𝑖−�̅�))𝑛

𝑖=1

√∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1 ∙√∑ (𝑆𝑖−𝑆̅)2𝑛

𝑖=1

)

2

,          (3) 245 

𝐵𝐼𝐴𝑆 =  
1

𝑛
 ∑ (𝑆𝑖 − 𝑂𝑖)𝑛

𝑖=1 ,          (4) 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑆𝑖 − 𝑂𝑖)

2𝑛
𝑖=1 ,          (5) 

𝑅𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

�̅�
,            (6) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑂𝑚𝑎𝑥−𝑂𝑚𝑖𝑛
,           (7) 

 250 

where: O and S are the observed and simulated values, n is the number of observations, �̅�  and 𝑆̅  are the means of 

observations and simulations, respectively, and Omax and Omin are the maximum and the minimum value observed. 

The observed and simulated total SOC stock change dQC was calculated as follows for each treatment: 

 

𝑑𝑄𝐶𝑜𝑏𝑠 =  𝑄𝐶𝑜𝑏𝑠,𝑡2
− 𝑄𝐶𝑜𝑏𝑠,𝑡1

,          (8) 255 

𝑑𝑄𝐶𝑠𝑖𝑚 =  𝑄𝐶𝑠𝑖𝑚,𝑡2
− 𝑄𝐶𝑜𝑏𝑠,𝑡1

,          (9) 

 

where QCobs is the observed SOC stock at time t, QCsim is the SOC stock at time t simulated with AMG, t1 indicates the start 

and t2 the end of simulation period. 

All data processing and statistical analyses were performed within the “R” programming environment (version 3.4.2) (R 260 

Core Team, 2017). For plotting, packages ggpmisc (Aphalo, 2016), reshape2 (Wickham, 2007) and ggplot2 (Wickham, 

2016) were used. 
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3 Results 

3.1 Accurate soil organic carbon pool partitioning 

Centennially stable SOC proportion values were predicted by the PARTYSOC machine learning model (Cécillon et al., 2021) 265 

using Rock-Eval® data measured on initial topsoil samples. The mean value for each independent site was plotted against 

the CS/C0 proportion as determined by AMG ex-post optimization (Fig. 1). The initial centennially stable SOC proportion 

values predicted with PARTYSOC ranged from 0.44 to 0.74, with a mean value of 0.59, whereas optimal ex-post estimations 

of AMG CS/C0 covered almost the same range, from 0.45 to 0.74, with a mean value of 0.61. The two approaches were 

strongly correlated (R2 = 0.63, significant at the p < 0.05 level), with a linear regression slope close to 1 (a = 0.9) and 270 

intercept close to 0 (b = 0.04), showing an unbiased relationship between Rock-Eval® estimated centennially stable SOC 

proportion and the AMG ex-post optimized CS/C0. Although a slight discrepancy was observed for higher CS/C0 values, the 

results validate our hypothesis showing that centennially stable SOC proportion determined by Rock-Eval® thermal analysis 

and the PARTYSOC machine-learning model built on fully independent data provides a good estimate of the optimal CS/C0 

proportion of the AMG model for unrelated French agricultural soils. When expressed as content (g C∙kg soil−1), the fit 275 

between the Rock-Eval®-based predictions of the centennially stable SOC determined on initial topsoil samples and the ex-

post optimized CS values was excellent (R² = 0.95; Supplementary Material Fig. 3; optimal Cs ranged from 4.37 to 12.75 g 

C∙kg soil−1 across the nine sites). Furthermore, the method appears to be reliable since additional Rock-Eval® measurements 

on topsoil samples from intermediate and final dates of the LTEs showed that the PARTYSOC predictions of the centennially 

stable SOC content remained remarkably constant during the experimental period at most sites (Supplementary Material Fig. 280 

4). 
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Figure 1: Performance of the PARTYSOC model to predict the centennially stable SOC proportion compared to the AMG ex-post 300 
optimized stable SOC proportion. Points represent site-mean values based on initial topsoil samples from nine independent French 

long-term experiments. Statistics refer to the linear regression between x and y values (blue solid line). Horizontal error bars show 

the uncertainty associated with the optimal CS/C0, calculated as the standard deviation of treatment-wise optimized CS/C0 value. 

Vertical error bars represent the prediction error of the centennially stable SOC proportion values, calculated as the standard 

deviation of the PARTYSOC model predictions on initial topsoil samples. 305 
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3.2 More accurate soil organic carbon simulations 

In a second step, we investigated if a Rock-Eval®-based initialization of the SOC pool partitioning could improve the 

accuracy of SOC stock simulations of the AMG model. To do so, we compared SOC stock simulations obtained with three 

different initializations. We first ran AMG using the default initialization method for the SOC pool partitioning (CS/C0 = 310 

0.65 since all LTEs were under cropland for at least two decades before their onset; Table 1). Then, we ran AMG 

simulations using the Rock-Eval®-based initialization method by defining CS/C0 as the site-mean centennially stable SOC 

proportion determined by the PARTYSOC model. Finally, we ran AMG using the ex-post optimization method to initialize the 

SOC pool partitioning for each site. For all three initialization procedures, the simulated SOC stock change between the 

initial and last sampling date for each treatment of each site was plotted against the measured SOC stock change (Fig. 2a–c). 315 

Observed SOC stock change ranged from +6 to −24 t C∙ha−1 for the 32 treatments. In spite of a rather good mean agreement 

(RMSE = 5.95 t C∙ha−1), the AMG model initialized with the default procedure provided predictions of SOC stock change 

rather far from what was observed in two out of nine LTEs (Fig. 2a). Using the Rock-Eval®-based initialization method 

improved AMG simulations compared to the default method, bringing them much closer to the observed SOC stock changes 

(RMSE = 3.60 t C∙ha−1; Fig. 2a, b). Rock-Eval®-based initialization of AMG resulted to unbiased simulations (BIAS = 0.06 320 

t C∙ha−1) and a strong decrease in the mean error of prediction. Unsurprisingly, AMG initialized using ex-post optimized 

CS/C0 proportions predicted SOC stock changes very close to the observed ones (RMSE = 2.12 t C∙ha−1; Fig. 2c). AMG 

simulations from ex-post optimized and Rock-Eval®-based initializations were remarkably comparable (Fig. 2b, c). The 

SOC stock simulations produced with AMG for each independent treatment are presented in Supplementary Material Fig. 5. 

 325 
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Figure 2: Observed vs. simulated change in SOC stocks between the initial and final date of 32 treatments from nine French long-

term experiments. The three panels show the performance of the AMG model for three different initialization approaches. Initial 

SOC kinetic pool sizes were defined using a, the default value for cropland (CS/C0 = 0.65), b, the centennially stable SOC 

proportion predicted by the PARTYSOC model and c, the AMG ex-post optimized CS/C0 proportion. Statistics refer to the linear 330 
regression between x and y values (blue solid line). Points represent the values for the 32 treatments for which AMG simulations 

were run. 
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It is noteworthy that the Rock-Eval®-based initialization improved the fit between observed and simulated SOC stock 335 

change, compared to AMG default initialization, especially for treatments that experienced the greatest SOC stock loss (Fig. 

2a, b). In treatments that experienced no SOC stock change or a slight increase in SOC stock, the Rock-Eval®-based 

initialization did not improve the simulations but resulted in highly reliable predictions, similarly to AMG default or 

optimized initialization methods (Fig. 2a–c). This is likely explained by the history of land cover and soil management 

practices of the different sites. Sites presenting treatments with no change or a slight increase in SOC stocks were 340 

predominantly sites with a long cropland history (e.g. site of Boigneville; Supplementary Material Table 1), for which the 

default AMG CS/C0 value of 0.65 is nearly optimal. Conversely, the two sites, Kerbernez and Tartas, where the ex-post 

optimized CS/C0 values were far below the default value (Fig. 1) have a more complex history of land use and soil 

management practices. The site of Kerbernez is a former grassland (during the first half of the 20 th century; Supplementary 

Material Table 1) that was converted into a cropland two decades before the implementation of its arable LTE, in 1958. The 345 

site of Tartas was cultivated for a longer time before the LTE onset, however it was turned to grassland for a period in the 

19th century (Supplementary Material Table 1) and received applications of poultry manure for several years before the LTE 

began. In these two sites, characterized by an optimal AMG CS/C0 much lower than the default value, the PARTYSOC 

machine-learning model based on Rock-Eval® predicted values very close to the optimal CS/C0 values (Fig. 1). 

 350 

4 Discussion 

Our study demonstrates that the PARTYSOC method based on Rock-Eval® thermal analysis (Cécillon et al., 2018, 2021) can 

estimate the initial SOC pool partitioning of the AMG model of SOC dynamics while improving its accuracy in a series of 

diverse and independent French LTEs. Contrary to previous studies (Skjemstad et al., 2004; Luo et al., 2014), no 

modifications of the decomposition rate of SOC kinetic pools were necessary to improve model predictions. The PARTYSOC 355 

initialization method never severely affected the model simulations while it strongly improved them at sites where SOC 

stocks were far from an equilibrium state due to historical changes in soil management or land use. Areas with past changes 

in land use and soil management represent a large yet poorly known part of arable land in France and Europe (Fuchs et al., 

2015; Erb et al., 2017) where SOC stocks and slow-cycling SOC pools are far from equilibrium (Wutzler and Reichstein, 

2007; Herbst et al., 2018; Clivot et al., 2019; Taghizadeh-Toosi et al., 2020). Therefore, by accounting for these legacy 360 

effects of site history on SOC pool partitioning, the Rock-Eval®-based initialization of the AMG model should result in 

more accurate simulations of SOC dynamics at a national or continental scale. 

 

Our findings combined with results reported in recent ensemble modelling studies (Martin et al., 2019; Farina et al., 2021), 

suggest that despite its simple structure and when properly initialized (e.g., using the PARTYSOC model) the AMG model is 365 

unsurpassed for predicting observed SOC stock changes in French agricultural LTEs, and is amongst the best available 
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modelling frameworks of SOC dynamics in European arable land. Our results demonstrate that there is still potential to 

increase the accuracy of simple multi-compartmental models of SOC dynamics, bringing their simulations very close to the 

observed values of SOC stock changes. Developing other Rock-Eval®-based initialization methods specifically designed to 

match the carbon pool design of other multi-compartmental SOC dynamics models such as RothC (Coleman et al., 1997) is a 370 

promising research area. More generally, we recommend that the potential of multi-compartmental SOC dynamics models 

be fully explored and exploited by soil biogeochemists before a new generation of models of increased complexity becomes 

operational (Lehmann et al., 2020; Shi et al., 2018; Crowther et al., 2019; Cécillon, 2021a; Dangal et al., 2021; Lee et al., 

2020). The low prediction error of the AMG model when its SOC pool distribution is initialized with the Rock-Eval®-based 

method even challenges the ability of more complex modelling approaches to achieve better performance, given the 375 

uncertainty on observed values of SOC stock changes (Schrumpf et al., 2011). 

 

The continental or worldwide implementation of the AMG model with the Rock-Eval®-based initialization of SOC pools 

distribution will require additional work. First, the PARTYSOC machine-learning model (Cécillon et al., 2018, 2021) will 

have to be validated on a wider range of pedoclimates. This method initially built on LTEs coming from North-western 380 

Europe (Cécillon et al., 2018), has now been successfully extended to new soil types and a new climate (tropical) (Cécillon 

et al., 2021). The good agreement between optimal AMG CS/C0 values and PARTYSOC predictions reported here suggests 

that most agricultural LTEs with accurate AMG simulations could be used as reference sites for the PARTYSOC model, 

lifting an important technical limitation to its geographical expansion (Cécillon et al., 2021). Second, the improved accuracy 

of model simulations using a Rock-Eval®-based initialization will also have to be demonstrated for a wider pedoclimatic 385 

range (i.e. worldwide LTEs; such as those referenced by the International Soil Carbon Network (Nave et al., 2015)). Third, 

Rock-Eval® data from the new application areas will be required. Rock-Eval® is a high-throughput technique that is well 

adapted to the analysis of large soil sample sets provided by large-scale soil monitoring programs. We recommend 

implementing Rock-Eval® measurements in national and continental soil monitoring networks. 

 390 

5 Cocnlusions 

Combining Rock-Eval® thermal analysis with the PARTYSOC machine-learning model should be considered as an emerging 

key approach with demonstrated ability to improve the accuracy of simulations of SOC dynamics, complementary to other 

SOC cycling proxies (Bailey et al., 2018; Wiesmeier et al., 2019). The progressive large-scale delivery of these 

complementary data related to SOC dynamics will strengthen model predictions of SOC stock changes at the national to 395 

global scale, necessary for implementing efficient climate change mitigation policies (FAO, 2020). 
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Code availability  
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