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Data assimilaiton is important for improving our underestanding of Earth system via combining 

models with data. The booming of satellite data provide the chance to constrain large scale 

Earth system processes and can give us a more accurate estimate of land surface variables 

(LSVs). In this paper, the authors discussed the possibility of assimilating VOD into the land 

surface model (LSM) together with soil moisture. This is a good starting point, as pointed out 

by the authors, because the LSMs need a better constraint with more observations. 

We thank the referee #2 for her/his positive comments about our work. Responses to 

comments and subsequent changes are detailed below. 

 

Comment 2.1: 

After reading this work, I admit that the data assimilation algorithm and the experiments 

conducted with LDAS-Monde is reasonable, but the only thing I am not convinced is the replace 

of LAI with VOD. This paper made the assumption mainly based on Kumar et al. (2019) with 

showed VOD can be seen linear with LAI. But we need to keep in mind that Kumar et al. (2019) 

also pointed out that VOD is different from LAI. The authors also showed in Fig.2. From a 

modeler's perspective, I feel this is too bold to do so and use this data for assimilation. Because 

this looks more like a forced matching of VOD to LAI. Some other papers (e.g. Rodríguez-

Fernández et al., 2018) have pointed out that VOD contained both information about LAI and 

biomass, and the assimilation of VOD together with soil moisture has been successfully 

conducted in the Carbon Cycle Data Assimilation System (CCDAS) by Scholze et al. (2019). So 

I think the simulation of VOD by LSM is already possible. Therefore I do not agree that the re-

scaling of VOD to LAI is due to the lack of model representation on VOD. 

Response 2.1: 

Your primary concern is regarding the seasonal linear re-scaling technique to match VOD 

to LAI, and the subsequent assimilation of the re-scaled VOD. In this research, the 

seasonal linear re-scaling is a statistical generalization, but it is also a method that has 

been nearly identically performed in Kumar et al. (2020). This article advances the same 

methodology by applying it to LDAS-Monde. A novelty with respect to the work of Kumar 

is that this assimilation directly impacts the model root-zone soil moisture layers (1-

100cm), which is a unique capability of LDAS-Monde so far. The authors do fully 

acknowledge that VOD is not LAI. This is why a complex seasonal rescaling had to be 

performed to obtain a proxy of LAI from VOD. We realize that writing “linear rescaling” 

or “linearly rescaled” can be misleading. This has been corrected in a revised version of 

the paper, noting that it is a seasonal linear re-scaling. It is also true that VOD observations 

may convey other information such as biomass as demonstrated in Fig. 8 of Rodríguez-

Fernández et al. (2018), and by Scholze et al. (2019). However, the latter studies used L-

band VOD (from SMOS), while in this study X-band VOD is used. The L-band allows a 

much better penetration of the microwave signal through vegetation than at X-band. As a 

result, the latter is mainly sensitive to the leaf biomass while SMOS VOD data are mostly 

related to the wood biomass in forested areas. Teubner et al. (2021) showed that while X-



band VOD correlates well with in situ FLUXNET observations of GPP, L-band VOD is 

poorly correlated to GPP over either low of high vegetation types. The better GPP-VOD 

correlation at X-band could be explained by a better sensitivity of X-band VOD to the leaf 

biomass. In the analysis of the X-band VOD vs. LAI relationship, we have found that 

overall, there is a link between the two variables, as also shown in previous literature. This 

is an argument for seasonally rescaling X-band VOD. Additionally, while it may be 

possible to directly assimilate L-band VOD in CCDAS as performed by Scholze et al. 

(2019), this is not possible in LDAS-Monde, as the NIT version of ISBA now used in LDAS-

Monde does not simulates the wood biomass capable of simulating VOD, nor changes in 

specific leaf area (SLA), that would be needed to simulate VOD. Moreover, studies have 

shown that VOD may be sensitive to rainwater interception by leaves (e.g. Saleh et al. 

2006). The ISBA model is able to simulate interception but as far as we know, there is no 

simple way to simulate the physical interception effect on VOD. It is for this reason that a 

statistical re-scaling of VOD towards an LAI proxy was pursued. As described in the 

discussion section, these results will be used to pave the way towards more efficient 

assimilation of level 1 observations using machine learning techniques. 

This discussion will be added to Section 4.1.: 

“In the comparison of VOD and LAI before linear re-scaling, it is immediately apparent 

that vegetation type plays a large role in their relationship. These values seen and 

described in the results seem to indicate that heavily forested regions have only weak 

correlations between VOD and LAI observations. Saatchi et al. (2011) demonstrates that 

L-band satellite radar estimations of above ground biomass (AGB) are strongly impacted 

by forest structure, and Mialon et al. (2020) shows poor correlations between L-band VOD 

and estimated AGB over heavily forested areas of the Northern hemisphere. Additionally, 

RodríguezFernández et al. (2018) and Scholze et al. (2019) found that L-band VOD 

conveys large amounts of information relative to AGB, primarily related to wood biomass 

in forested areas. Teubner et al. (2021) found that while X-band VOD correlates well with 

in situ FLUXNET observations of GPP, L-band VOD is poorly correlated to GPP over 

either low of high vegetation types. In this research, the improvements to GPP from the 

assimilation of X-band VOD can be explained by a better sensitivity of X-band VOD to 

the leaf biomass.” 

We will include the following references: 

Kumar, S. V., Holmes, T. R., Bindlish, R., de Jeu, R., and Peters-Lidard, C.: Assimilation 

of vegetation optical depth retrievals from passive microwave radiometry, Hydrol. Earth 

Syst. Sci., 24, 3431–3450, https://doi.org/10.5194/hess-24-3431-2020, 2020. 

Rodríguez-Fernández,N. J., Mialon, A., Mermoz, S., Bouvet, A., Richaume, P., Al Bitar, 

A., et al.: An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets:High 

sensitivity of L-VOD to above-ground biomass in Africa, Biogeosciences, 15, 4627–4645. 

https://doi.org/10.5194/bg-15-4627-2018, 2018, 

Saleh, K., Wigneron, J.-P., de Rosnay, P., Calvet, J.-C., Kerr, Y., Waldteufel, P., 

Escorihuela, M.J.: Impact of rain interception by vegetation and mulch on the L-band 

https://doi.org/10.5194/hess-24-3431-2020
https://doi.org/10.5194/bg-15-4627-2018


emission of natural grass, Remote Sens. Env., 101, 127-139, 

https://doi.org/10.1016/j.rse.2005.12.004, 2006. 

Scholze, M., Kaminski, T., Knorr, W., Voßbeck, M., Wu, M., Ferrazzoli, P., et al.: Mean 

European carbon sink over 2010–2015 estimated by simultaneous assimilation of 

atmospheric CO2, soil moisture, and vegetation optical depth, Geophysical Research 

Letters, 46, https://doi.org/10.1029/2019GL085725, 2019, 

Teubner, I. E., Forkel, M., Wild, B., Mösinger, L., and Dorigo, W.: Impact of temperature 

and water availability on microwave-derived gross primary production, Biogeosciences, 

18, 3285–3308, https://doi.org/10.5194/bg-18-3285-2021, 2021. 

 

Comment 2.2: Therefore, I do not think this paper can be published in its current shape, unless 

the authors solve the problems in simulating VOD by the LSM. Before doing that, I do not think 

the detailed comments on the context is helpful for the authors, even I made some from my side. 

Response 2.2:  

In order to avoid misunderstandings, we will emphasize that assimilation in  LDAS-

Monde differs from the assimilation in CCDAS. While the objective of CCDAS is to 

constrain model parameters values, LDAS-Monde consists of sequentially assimilating 

observations in order to constrain the day-to-day trajectory of the ISBA state variables, 

without changing model parameter values. Although being an uncalibrated model, ISBA 

performs as well as other state-of-the-art models in intercomparison experiments (e.g. Fig. 

B2 in Friedlingstein et al. 2020), even without assimilation. In order to improve the paper, 

we propose rewording parts of the discussion section to better describe the shortcomings 

of the re-scaling methodology, and how it is leading to more efficient assimilation of 

microwave level 1 observations in future studies. 

The following has been added in section 4.1: 

“While direct assimilation of VOD may be possible in some data assimilation systems 

(such as L-band VOD in CCDAS, as performed by Scholze et al. (2019)), this is not 

possible in LDAS-Monde, as the NIT version of ISBA simulates neither wood biomass nor 

specific leaf area (SLA), both necessary for simulating VOD. Additionally, the objective of 

VOD data assimilation in CCDAS is to constrain certain model parameters, while the 

objective of assimilating re-scaled X-band VOD in LDAS-Monde is to sequentially 

assimilate observations in order to constrain the day-to-day trajectory of the ISBA state 

variables, without changing model parameter values. Although ISBA is an uncalibrated 

model, it performs as well as other state-of-the-art models in inter-comparison 

experiments (e.g. Fig. B2 in Friedlingstein et al. (2020)), even without assimilation. 

Moreover, studies have shown that VOD may be sensitive to rainwater interception by 

leaves (e.g. Saleh et al. (2006)). The ISBA model is able to simulate interception, but there 

is no simple way to simulate the physical interception effect on VOD. It is for this reason 

that a statistical re-scaling of VOD towards an LAI proxy was pursued.” 

We will include the following reference: 

https://doi.org/10.1016/j.rse.2005.12.004
https://doi.org/10.1029/2019GL085725
https://doi.org/10.5194/bg-18-3285-2021


Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., 

Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le Quéré, C., Canadell, J. G., Ciais, P., 

Jackson, R. B., Alin, S., Aragão, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, 

M., Benoit-Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, 

L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T., Gehlen, M., Gilfillan, D., 

Gkritzalis, T., Gregor, L., Gruber, N., Harris, I., Hartung, K., Haverd, V., Houghton, R. 

A., Ilyina, T., Jain, A. K., Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., 

Landschützer, P., Lefèvre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi, D., Marland, 

G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, 

T., Palmer, P. I., Pierrot, D., Poulter, B., Resplandy, L., Robertson, E., Rödenbeck, C., 

Schwinger, J., Séférian, R., Skjelvan, I., Smith, A. J. P., Sutton, A. J., Tanhua, T., Tans, P. 

P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., 

Watson, A. J., Willis, D., Wiltshire, A. J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon 

Budget 2020, Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-

2020, 2020. 
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