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Abstract. Throughout the course of their lives fish ingest food containing essential elements, including nitrogen (N), phospho-

rus (P) and iron (Fe). Some of these elements are retained in the fish body to build new biomass, which acts as a stored reservoir

of nutrients, while the rest is excreted or egested, providing a recycling flux to water. Fishing activity has modified the fish

biomass distribution worldwide and consequently may have altered fish-mediated nutrient cycling, but this possibility remains

largely unassessed, mainly due to the difficulty of estimating global fish biomass and metabolic rates. Here we quantify the5

role of commercially-targeted marine fish between 10g and 100kg (CTF 100kg
10g ) in the cycling of N, P and Fe in the global

ocean, and its change due to fishing activity, by using a global size-spectrum model of marine fish populations calibrated to

observations of fish catches. Our results show that the amount of nutrients potentially stored in the global pristine CTF 100kg
10g

biomass is generally small compared to the ambient surface nutrient concentrations but might be significant in the nutrient-poor

regions of the world: the North Atlantic for P, the oligotrophic gyres for N and the High Nutrient Low Chlorophyll (HNLC)10

regions for Fe. Similarly, the rate of nutrient removal from the ocean through fishing is globally small compared to the inputs,

but can be important locally especially for Fe in the equatorial Pacific and along the western margin of South America and

Africa. We also estimate that the cycling rate of elements through CTF 100kg
10g biomass was on the order of 3% of the primary

productivity demand for N, P and Fe globally, prior to industrial fishing. The corresponding export of nutrients by egestion of

fecal matter by CTF 100kg
10g was 2.3% (N), 3.0% (P) and 1-22% (Fe) of the total particulate export flux, and was generally more15

significant in the low-export oligotrophic tropical gyres. Our study supports a significant, direct role of the CTF 100kg
10g frac-

tion of the ichthyosphere in global nutrient cycling, most notably for Fe, which has been substantially modified by industrial

fishing. Although we were not able to estimate the roles of smaller species such as mesopelagic fish because of the sparsity of

observational data, fishing is also likely to have altered their biomass significantly through trophic cascades, with impacts on

biogeochemical cycling that could be of comparable magnitude to the changes we assess here.20

1 Introduction

Nutrient elements are used by organisms to construct the molecules they need to grow and metabolise, but are often scarce,

limiting growth rates (Moore et al., 2013; Sterner and Elser, 2002). Plankton and bacteria dominate the cycling of nutrients
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in the ocean (Sarmiento and Gruber, 2006) but an increasing number of studies recognize the contribution of animals to

biogeochemical cycles (e.g., Wilson et al., 2009; Bianchi et al., 2013; Saba et al., 2021). Locally, it has been shown that25

marine animals can significantly impact the supply and storage of nutrients with consequences for primary production (Cavan

et al., 2019; Roman et al., 2014), and interact with the cycling of elements through direct and indirect pathways (Vanni, 2002;

Atkinson et al., 2017; Allgeier et al., 2017). For instance, Leroux and Schmitz (2015) described a theoretical framework in

which animals control the flux of nutrients up the trophic chain through predation and release of waste products while also

affecting the cycling of nutrients through non-consumptive effects (e.g. prey selection and stress induced in preys). In addition,30

since animals can swim and move in the water column, they are also able to transport nutrients from one place to another, over

distances that increase with animal size (Hall et al., 2007; Vanni, 2002; Roman et al., 2014). But thus far there has been little

effort to estimate how the global fish population, which we term "ichthyosphere", influences large-scale nutrient cycling in the

ocean.

During their lifecycle, fish assimilate, store and recycle essential elements that they need to build their body tissues. This35

storage of nutrients within fish biomass is important for human nutrition as wild-caught fish globally provide essential proteins

and other micronutrients (Hicks et al., 2019). Apart from a dietary interest for humans, the reservoir of nutrients comprised

by fish biomass can play a role in ecosystem function as a nutrient stockpile, the importance of which depends on how much

nutrients are available otherwise (Allgeier et al., 2016). For example, the nutrients embedded in fish biomass are not directly

available for primary producers, which can appear as a type of competition for resources (Hjerne and Hansson, 2002). But40

at the same time, the cycling of elements by fish acts as a source of nutrients to primary producers, as fish recycle elements

through the excretion of dissolved bioavailable components.

The cycling of N and P by fish has often been studied in freshwater systems but little is known for the global ocean (Schindler

and Eby, 1997; Vanni, 2002; Vanni et al., 2006; Griffiths, 2006). For instance, McIntyre et al. (2008) showed that fish are able

to create hotspots of recycled nutrients in streams that could meet more than 75% of the algal and microbial requirement45

for N, and Allgeier et al. (2014) showed that fish are a fundamental nutrient source to coral reefs. Additionally, fish egest

particulate products that can be mineralized and enhance productivity or that can sink to depth and export elements (Davison

et al., 2013; Saba and Steinberg, 2012), so that they are no longer available for primary producers. As such, fish biomass can

act as a bank account for nutrients, depositing nutrients when fish are feeding rapidly and withdrawing nutrients to the water

column when metabolism exceeds predation. Finally, the egestion of particulate products by fish has been shown to modify the50

stoichiometry of biogenic particles, including dramatic changes of Fe:C, implying that egested material may also modify the

relative availability of nutrients through the water column (Le Mézo and Galbraith, 2020).

The amount of nutrient stored and cycled by fish can vary with different environmental and physiological factors, in space

and time (e.g., Halvorson and Small, 2016; Prabhu et al., 2016; Francis and Côté, 2018; Czamanski et al., 2011; Allgeier et al.,

2014). In addition to natural variations, anthropogenic activities, mostly fishing, modify the storage and cycling of nutrients55

by the ichthyosphere. For instance, Layman et al. (2011) and Allgeier et al. (2016) analyzed the cycling of N and P by fish in

fished and un-fished coastal sites of the Bahamas and the Caribbean, respectively. Layman et al. (2011) showed lower recycling

rates of nutrients by fish in fished sites, due to biomass reduction and habitat fragmentation. Beyond fish biomass reduction,
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Allgeier et al. (2016) stressed the role of community size structure that, influenced by fishing, also led to reduction in nutrient

storage and cycling.60

Although numerous works have identified significant local effects, little is known about the contribution of the ichthyosphere

to nutrient budgets at the global scale. Maranger et al. (2008) used global fish catch data to estimate the total removal of N

by commercial fisheries. They integrated a spatial component in their analysis by computing N removal in 58 Large Marine

Ecosystems (LMEs) and compared it to fertilizer runoff in each off these LMEs. Moreno and Haffa (2014) took a similar

approach to estimate the amount of Fe removed each year by fishing from 1950 to 2010. They also used biomass estimates65

from literature to quantify the amount of Fe in the global fish biomass, and the amount of Fe cycled by this biomass each year.

However, the total inventories and cycling rates have remained unquantified due to the lack of reliable global fish biomass and

metabolism estimates.

Recently Bianchi et al. (2021) used a dynamical global model of marine commercially-targeted fish (CTF), constrained by

observed fish catches, to estimate the total CTF biomass and cycling rates, and their distribution in the world’s oceans. Our70

study builds on Bianchi et al. (2021) by using an updated version of the model to estimate the role of CTF in the global

cycling of the three most important growth-limiting nutrients: N, P and Fe (Fig. 1). Section 2 lays out the method we use to

investigate the nutrient dynamics for the total CTF biomass for body sizes between 10 g and 100 kg, hereafter CTF 100kg
10g ,

using model simulations for both a reconstructed state prior to industrial fishing ("pristine") and a simulated global peak catch.

We then present and discuss the results as a series of relatively self-contained sections by topic. Section 3 details the total75

nutrient content in CTF 100kg
10g , Section 4 focuses on nutrient cycling rates by CTF 100kg

10g , Section 5 discusses an extension of

the CTF 100kg
10g estimates to all fish from 1g to 1000kg, and Section 6 presents the impact of fishing on CTF 100kg

10g (Fig. 1).

Section 7 concludes the paper.

2 Methods

2.1 Model description and simulations80

We used an ensemble of simulations from the BiOeconomic mArine Trophic Size-spectrum (BOATS) model (Carozza et al.,

2017), also used by Bianchi et al. (2021).

2.1.1 The model

BOATS provides a global, size-based numerical simulation of commercially-targeted marine organisms (including molluscs

and crustaceans, here collectively termed "fish") by coupling an ecological module with a fishery economics module (Carozza85

et al., 2016, 2017). The ecological model is based on processes derived from macro-ecological theory (Carozza et al., 2016),

parameterized through a Bayesian Monte Carlo approach that optimizes model performance by minimizing the discrepancy

between observed and simulated catch and biomass for globally-distributed LMEs (Carozza et al., 2017). Modeled fish are

divided into 3 "super-species" groups defined by the asymptotic mass of fish: small (0.3 kg), medium (8.5 kg) and large (100
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Figure 1. The ichthyosphere role in global nutrient cycling. The diagram schematically indicates the cycling of nutrients (N, P and Fe)

through the global fish biomass (solid arrow), the nutrients contained within the biomass, and the removal of nutrients from the ocean

through fishing (dashed arrow). fin and fout are the fluxes in and out of the global fish biomass, respectively. E indicates excretion (release

of dissolved compounds) and F indicates egestion (release of solid feces).

kg). Individual sizes are binned logarithmically into 30 mass classes ranging from 10 g to 100 kg, with all three size groups90

starting at 10 g (Carozza et al., 2016). The three groups are not intended to represent the entire marine ecosystem, but rather

the sum of all species that have been commercially harvested (and are therefore accounted for in harvest records and stock

assessments, which are used to constrain the model). The underlying philosophy of the model is that, although these very

diverse species differ widely in their biological strategies, all are competing for food energy ultimately provided by the fixation

of organic carbon through photosynthesis (which has been shown to limit fish harvests (Chassot et al., 2010; Stock et al.,95

2017)), while inhabiting the same environment, which therefore makes them subject to the same basic ecological constraints.

The constraints we apply in the model are the impacts of water temperature on growth, mortality, and phytoplankton size, and

net primary production. Although this biologically ‘coarse-grained’ approach precludes resolution of species-level dynamics,

it is solidly-founded in bioenergetic principles, and is well-suited to providing a global view of the entire ecosystem on long

timescales, given that it is likely to be relatively robust under any changes in the distribution, abundance or evolution of100

commercial stocks under historical fishing pressure (Guiet et al., 2020). Figure 2 provides a schematic overview of the model

structure.

The BOATS model was deliberately developed to represent marine organisms over the size range most heavily targeted by

fisheries, since this is the range for which fisheries data can offer useful constraints on the ecosystem function (Carozza et al.,

2016, 2017). The starting point of 10 g coincides roughly with the weight of mature anchovy (approximately 11 cm in length105
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Figure 2. Schematic overview of the BOATS model. The red, green, and black arrows indicate dependencies of model components on

external forcings. The top panel indicates the energetic limits of growth as a function of fish size, while the bottom panel illustrates the three

size spectra of fish groups (for simplicity only the large group is represented), their internal dynamics, and link to economics via harvest and

the interactive effort.

according to Pauly and Tsukayama (1984)), while above 100 kg the growing significance of mammals in the ocean makes a

strictly ectothermic model less capable of capturing the full marine animal community (Hatton et al., 2021).

Fishing effort and catch are computed assuming open-access dynamics and based on the Gordon-Schaefer fishery economics

model (Gordon, 1954; Schaefer, 1954) with increasing catchability over time due to technological progress (Galbraith et al.,

2017).110

The model represents fish on a two-dimensional grid, i.e. longitude and latitude, which is divided in regular 1° x 1° grid cells.

Thus, the model does not resolve the vertical dimension, but sums all ecosystem productivity and biomass within the water

column at each horizontal point. Given that the model does not resolve interactions in space between individuals, this reduction

in dimensionality does not - on its own - introduce any bias. The model is forced by monthly climatologies of observed net

primary production and surface ocean temperature (Dunne et al., 2007).115

Galbraith et al. (2019) hypothesizes that fish growth is reduced under iron scarcity in the wild, and demonstrates that the

implementation of a simple form of iron limitation of fish in BOATS improves the simulated fish catch in oceanic regions

known to have low iron concentrations. We thus used a different version of the model from Bianchi et al. (2021) that includes

an Fe limitation of fish growth, using surface nitrate concentrations as a proxy for iron limitation as described in Galbraith

et al. (2019).120

2.1.2 Simulations

We use the parameter sets selected in Bianchi et al. (2021) to run our updated Fe-limited model version. Briefly, from the Monte

Carlo ensemble of 10,000 simulations, Bianchi et al. (2021) selected the parameter combinations (31 in total) that best match the
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historical catch maxima across LMEs as reconstructed by the Sea Around Us Project (SAUP) (Pauly and Zeller, 2016), while

simultaneously falling within the acceptable bounds for the catch:biomass ratio as constrained by stock estimates (Ricard et al.,125

2012). We then perform simulations with our Fe-limited verision of the model using these 31 model parameter combinations.

Each simulation includes 200 years without catch to estimate pristine biomass at equilibrium, followed by 220 years with

fishing driven by the only increase of the catchability of biomass at 7%.y−1 to reproduce the historical progression of the global

fishery (Galbraith et al., 2017). The simulations slighlty underestimate the observed LME catch peak of ∼ 110Mt.y−1 and

the variation between LME peaks corresponds to observation with a squared Pearson product-moment correlation coefficient130

r2 = 0.42, p− value < 10−9, when averaged across all ensemble members (Supp. Figs. A1 and A2). More details on the

observational constraints and on the Monte Carlo approach used here can be found in Bianchi et al. (2021). From the 31

simulations of the ensemble, we analyze the global biomass and cycling rates at pristine state and at the time of the global peak

catch.

2.2 Nutrient content of fish135

To estimate the quantity of a nutrient X stored in fish biomass, we convert our modeled biomass estimates from wet weight to

carbon (C) weight and multiply by an average mass ratio of nutrient to carbon, X:C. Prior work has suggested that body nutrient

concentration of fish may be affected by several factors such as body size, ontogeny, species, sex, diet, temperature or water

nutrient concentration (e.g., Halvorson and Small, 2016; Prabhu et al., 2016; Allgeier et al., 2017), with species appearing to be

the most important factor (Allgeier et al., 2020). Among these factors, our model could potentially account for change during140

ontogeny as organisms grow in size, but analysis of the available data (see supplement) shows little to no systematic variation

of specific nutrient content with size. We thus assumed constant nutrient proportions throughout food webs.

Although the model implicitly includes molluscs and crustaceans, they represent only a small proportion of the commercial

catch between 10g and 100kg (from SAU data invertebrates comprised about <14% of total catch). Additionally, the mea-

sured nutrient content of molluscs and crustaceans falls within the uncertainty range around the mean value for fish (Supp.145

Tables A2-A3). As a result, we did not attempt to account for invertebrates separately, but applied the fish nutrient ratios to all

CTF 100kg
10g biomass. The Fe content of fish is poorly constrained (few whole body measurements), so we rather use the 95%

confidence-interval from available data, which ranges between 10 and 200 µmolFe/molC (Galbraith et al., 2019).

2.3 Nutrient cycling by fish150

First, we define the terms we use by considering the fate of a nutrient element when ingested by an individual fish (Fig. 3a). A

fish i ingests a mass flux of a nutrient, Ii (e.g. gN.d−1), of which a fraction α (between 0 and 1) is absorbed across the gut to

produce an absorption flux,Ai, while the remainder is egested in the form of feces, Fi = (1−α)Ii (Fig.3). Note that absorption

efficiency here is defined as the difference between ingestion and egestion. Published estimates of absorption efficiencies of

fish are listed in Table 1. A fraction of the element absorbed across the fish gut is then used for growth and reproduction,155

Gi = γAi = γαIi, where γ is the somatic assimilation efficiency. The trophic efficiency, τ , is commonly defined as the ratio
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Table 1. Mean nutrient content in fish, zooplankton and phytoplankton, and mean absorption efficiencies (A) of N, P and Fe for fish used in

this study.

% N in ww % P in ww
C/N

(molC/molN)

C/P

(molC/molP)

Fe:C

(µmolFe/molC)

Fish

Global ± std (range) a2.8± 0.4 a0.6± 0.2 a4.6 (3.4-6.4) a49 (29-82) c,e21 (10-200)

Zooplankton

Global± std

(range or Fe-poor/Fe-rich, low/high)
b1.4± 0.3 b0.14± 0.04 a4.7 (2.9-7.7) a140 (84-231) c30.6 (8.2/85, 4.1/248)

Phytoplankton

Global (Fe-poor/Fe-rich, low/high) From relationships in Galbraith and Martiny (2015) (Eqs. 4) f60.5 (c5/92, f2.13/258)

C N P Fe

Fish mean absorption efficiency (A) a0.88 a,b0.86 a,b0.71 d0.24

Data from aCzamanski et al. (2011) (% converted back to wet weight using a 25% dry weight in wet weight (Galbraith et al., 2019), geometric mean, P absorption efficiency

is computed from the linear regression between predator and prey C/P ratio), bSchindler and Eby (1997), cGalbraith et al. (2019), dThodesen et al. (2001), ePrabhu et al.

(2016), f Moore et al. (2013). "ww" is for wet weight, Fe-poor and Fe-rich refer to the conditions in which the organisms lived, low/high are the low and high estimates from

gathered data in Galbraith et al. (2019). Standard deviations are the arithmetic standard deviations, associated with the arithmetic mean. Ratio mean values are geometric

means and the ranges are the 95% confidence interval, except for fish Fe:C for which the range is estimated from Galbraith et al. (2019).

of the production of new biomass to the ingestion rate, and is equal to γα. The remainder is used for maintenance and excreted

back to the water; Ei = (1− γ)αIi (Fig. 3a,b). We define the cycling rate of a nutrient through the fish as Ii −Gi = Ei +Fi,

which can be thought of as the biologically-processed outputs of the fish.

Based on these terms, we follow Bianchi et al. (2021) to estimate the total flux of carbon through the CTF 100kg
10g based on the160

community average τ and growth rates Gi(C) of all simulated fish within the size spectrum. We calculate the ingestion for

each fish within the size bins by dividing Gi(C) by τ(C) (which is 0.17 when averaged across the ensemble). We then subtract

the growth Gi(C), to arrive at the carbon cycling rate, and sum over all fish (Fig. 3b). We note that, at steady state for the

community level there is no net growth since new production is balanced by predation, but by subtracting Gi(C) we ensure

that there is no double-counting of internal cycling within the simulated size spectrum through predation on simulated fish.165

Because the model mean predator-prey mass ratio for the ensemble is 0.6 104, there is very little predation within the resolved

size spectrum (there are only four orders of magnitude across the smallest to the largest size bin), so that the subtraction of

Gi(C) could lead to a small systematic underestimate in our cycling estimates. However, we also consider that predation by

large predators not resolved by the model, including very large fish, marine mammals or birds, will cause a portion of the

resolved fish growth to be cycled by other organisms outside of the CTF 100kg
10g . Any consequent underestimate is therefore170

likely to be significantly less than the value of τ(C) (i.e. significantly less than 17%).
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Figure 3. Schematic of the flow of elements a) within an individual and b) through the size-spectrum. I = ingestion, G = growth and

reproduction, A = absorption, E = excretion, F = egestion (feces), α = absorption efficiency, i.e. assimilation efficiency net of egestion, γ =

somatic assimilation efficiency, i.e assimilation allocated to growth, fin = flux entering the spectrum, fout = flux going out of the spectrum

Thus, our carbon cycling rate equation for CTF 100kg
10g is given by the output flux equation:

fout(C) =
∑
i

(Ii(C)−Gi(C)) =
∑
i

(Ei(C)+Fi(C)) = fin(C)−
∑
i

(Gi(C)) (1)

We can then use the input rate of carbon to the fish population, fin(C), to calculate the cycling terms for any nutrient element

based on the stoichiometry of the ingested organic matter and element-specific absorption. We do so by taking the nutrient X175

to carbon mass ratio within the prey, (X : C)prey, and the absorption efficiency of nutrient X, αX , to compute:

fin(X) = fin(C)(X : C)prey ; E(X) =
∑
i

(αXIi(X)−Gi(X)) ; F (X) = fin(X)(1−αX) (2)

where fin(X) is the ingestion flux of nutrient X into all fish, and E(X) and F(X) are the excreted and egested fluxes of nutrient

X, respectively, for all fish.

Note that we separate the ingested fraction, I, and egested fraction, F, using a constant mean absorption coefficient for each180

nutrient, αX (Table 1).

As indicated by eq.2, the cycling rate we calculate for an element X will be proportional to the average value of (X : C)prey .
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To maintain tractability, we assumed that zooplankton provide a representative indication of the stoichiometry of the fish

food source and we used mean zooplankton N and P nutrient content to compute the cycling of these elements through the

fish biomass (Table 1). For zooplankton Fe content, spatial variability appears to be more important than for N and P, given185

significant differences between Fe-rich and Fe-poor regions (Table 1, Galbraith et al. (2019)). In order to be thorough, we

computed Fe cycling in three different ways based on the various computation of the Fe:C distribution of zooplankton: 1) we

used a mean Fe:C in zooplankton of 30.6 µmolFe/molC, 2) we used a spatial variation between Fe-rich and Fe-poor regions and

used the Fe:C mean values in Fe-poor and Fe-rich regions, respectively, from Table 1, 3) we used the same spatial variation, but

with the low and high Fe:C estimates of zooplankton from Table 1. For the spatial variations of Fe:C, we assumed that Fe-poor190

conditions are encountered in HNLC regions, which are determined by a concentration of surface nitrate [NO−
3 ] larger than

5mmolN.m−3. In order to take into account the gradient between these regions, we locally weighted zooplankton Fe content

using a Michaelis-Menten function:

(Fe : C)zoo = (Fe : C)Fe−richormax
zoo +((Fe : C)Fe−pooror low

zoo − (Fe : C)Fe−richorhigh
zoo )

[NO−
3 ]surf

5+ [NO−
3 ]surf

(3)

2.4 Primary producers demand, nutrient concentrations, export and atmospheric deposition195

We compare the nutrient cycling by fish to the nutrient demand by primary producers, in order to provide a rough characteri-

zation of its magnitude. We use an averaged satellite-based primary productivity (PP) (Dunne et al., 2007) to compute the PP

demand for N, P and Fe. We predict the C:P and C:N ratios in phytoplankton using empirical relationships with PO3−
4 and

NO−
3 surface concentrations as described in Galbraith and Martiny (2015):

(N : C)phyto = 12.5%+3%
[NO−

3 ]surf

0.32+ [NO−
3 ]surf

; (P : C)phyto = 0.6%+0.69%[PO3−
4 ]surf (4)200

where nutrient concentrations are in µmol/L.

Similarly to zooplankton, the Fe:C of phytoplankton is computed by allowing variation in stoichiometric ratios between the

mean value found in Fe-poor conditions and the mean value found in Fe-rich conditions, or between the high and low phyto-

plankton Fe:C estimates (Table 1), using a Michaelis-Menten equation analogous to equation 3.

We then use the phytoplankton nutrient ratios to compute the export of nutrients from a satellite-based estimate of total C205

export (Dunne et al., 2007).

We use the World Ocean Atlas observed PO3−
4 and NO−

3 water concentrations (Locarnini et al., 2010), and dissolved Fe

concentrations simulated by the biogeochemical model TOPAZ2 (Dunne et al., 2013) to compare the fish biomass nutrient

content to the surface ocean ambient concentrations of nutrients, and to compute the stoichiometric ratios (e.g. in eq.4). The

TOPAZ2 model represents the cycles of different elements from carbon to calcite and Fe with 30 different tracers and the210

dynamics of three groups of phytoplankton. Surface concentrations are computed using the 2002-2019 annual mean euphotic

depth from MODIS-Aqua (2018).

Finally, we compare the rate of nutrients removal by fishing at the time of global peak catch to current atmospheric deposition

fields of soluble N (Brahney et al., 2015) and Fe (Mahowald et al., 2009) (Supp. Fig. B1). The catch rate and its spatial
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distribution are simulation by the coupled economic-ecological model, and systematically differs from the actual historical215

peak in that the model ensemble simulates higher catch rates in the open ocean than observed.

3 Fish biomass: a living pool of nutrients

Our results show that the nutrients contained within CTF 100kg
10g biomass represent a non-negligible proportion of the ambient

dissolved concentrations in areas where these concentrations in seawater are low and/or where CTF 100kg
10g biomass is high.

The highest amounts of N, P and Fe in the pristine fish biomass are located in the most productive regions along the coasts,220

where most simulated fish biomass occurs (Fig. 4a). Globally, the estimated pristine biomass of CTF 100kg
10g , which represents

2.5±0.8 Gt of wet biomass, contains 69±31 Tg of N, 15±14 Tg of P and 0.012−0.23 Tg of Fe, of which about half is found

in the Large Marine Ecosystems (LMEs) (Table 2). Note that, in our computations, fish biomass is the only term that varies

spatially since the nutrient contents of fish, (X:C), are held globally constant (see Methods section).

225

The N content of CTF 100kg
10g biomass is locally on the same order of magnitude as ambient surface NO−

3 concentrations,

exceeding 50% of [NO−
3 ] in the oligotrophic gyres where nutrient concentrations are low, and in coastal shelves where large

fish biomass accumulates prior to industrial fishing (Fig. 4b, Table 2). The amount of P in CTF 100kg
10g biomass represents a high

proportion of available PO3−
4 in the North Atlantic ocean, which is relatively P-poor, exceeding 30% in some areas (Fig. 4b).

The ratio also exceeds 20% in the western North Pacific and in a few locations such as in the Arabian sea. CTF 100kg
10g biomass230

stores much higher Fe compared to dissolved surface concentrations in the highly productive subtropical front waters of the

North Pacific, North Atlantic, and Southern Oceans, with relative values exceeding 50% for the high-end estimate (Fig. 4d).

Despite low surface Fe concentrations in the Southern Ocean, the proportion in CTF 100kg
10g is particularly low due to the low

modeled fish biomass, while in the tropical Atlantic the input of Fe from dust greatly overwhelms the iron in fish (Mahowald

et al., 2009; Myriokefalitakis et al., 2016).235

In summary, the storage of nutrients by CTF 100kg
10g biomass can be quite significant, compared to the dissolved nutrient in-

ventory of the euphotic zone, but only where ambient dissolved nutrient concentrations are low and/or fish biomass is high. In

these areas,CTF 100kg
10g biomass could be expected to have a greater potential as a source (if stored nutrients are made available)

or a sink (if the nutrients cannot be used by primary producers) of nutrients.

3.1 Comparison to previous estimates240

Our estimates for the N and Fe contents of the ichthyosphere differ from previous studies to some degree, which can be

explained by differences in the estimates of global fish biomass and/or uncertainty regarding fish nutrient contents (we were

not able to find prior estimates for P).

The amount of N stored within the global fish biomass has been previously estimated to be about 23 Tg (Allgeier et al., 2017)1,

1It seems that there is a typo in Allgeier et al. (2017). Their estimate is based on Jennings et al. (2008)’s wet biomass estimate of 9 108 tons of fish and

they used a 2.6% of N in fish, thus the total N harvest should be 23.4 Tg and not 233.4 Tg
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µgFe/m2
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a) Pristine nutrient content

Pristine N content/ [NO3]

Pristine P content/ [PO4]

Pristine Fe content/ [dFe]

Figure 4. Modeled commercial pristine fish biomass mean nutrient content and relative to surface nutrient concentrations. a) P content

(mmolP/m2), N content (mmolN/m2) and Fe content (low and high estimates, µmolFe/m2) of the global pristine CTF 100kg
10g biomass and,

b) N content relative to surface NO−
3 concentrations (%), c) P content relative to surface PO3−

4 concentrations (%), and d) Fe content (low

and high estimates) relative to modeled surface dissolved Fe (%) from the TOPAZ model (Dunne et al., 2013). All surface concentrations

are integrated over the 2002-2019 annual mean euphotic depth (MODIS-Aqua, 2018). The N, P and Fe content of fish are represented on a

single map given that we used a globally constant nutrient ratio for each element, so that all spatial variation is caused by fish biomass.

which is about 66% less than our global pristine estimate of 68.7± 30.5 TgN (Table 2). Their computation is based on an245

estimation of fish biomass of 0.9 Gt (Jennings et al., 2008) while our ensemble pristine CTF 100kg
10g biomass is 2.5± 0.8 Gt

(a smaller biomass estimate than that of Bianchi et al. (2021) due to Fe-limitation of fish), a difference of biomass of 64%.

Additionally, we used a mean N content of 2.8%, slightly higher than their value of 2.6%, because we used measurements

made only on wild fish and did not try to account for all the catch diversity in organisms. To reflect this uncertainty, we indicate

the species-related uncertainty around the mean value we use, ±0.4%, which covers the value used in Maranger et al. (2008),250

for our calculations in Tables 2 and 4.

For Fe, Moreno and Haffa (2014) estimated that the global fish biomass stored between 0.07 and 0.7 Tg, which is a roughly

threefold higher than our range of 0.012-0.23 Tg of Fe (Table 1). To compute these values, Moreno and Haffa (2014) used an

estimated fish biomass of 0.9-2 Gt, which is lower than our modeled estimate of 2.5 Gt for commercially-targeted fish only due

to a conservative maximum estimation (Wilson et al., 2009). However, they used a range of Fe:C values, 0.073-0.324 gFe per255
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Table 2. Table of values in LMEs from the model ensemble simulations in the pristine state and at the global peak catch. This table contains

integrated values of: nutrient content inCTF 100kg
10g biomass (Tg) and the ratio of nutrient content inCTF 100kg

10g biomass with surface nutrient

concentrations (%).

N P Fe (low estimate) Fe (high estimate)

Content (Tg)

Pristine
Global 68.7± 30.5 14.9± 13.6 (1.2± 0.4)10−2 0.23± 0.07

LME 37.4± 17.2 8.1± 7.5 (6.3± 2.1)10−3 0.13± 0.04

At global peak catch
Global 26.2± 14.7 5.7± 5.8 (4.4± 1.9)10−3 (8.8± 3.8)10−2

LME 9.8± 5.4 2.2± 2.2 (1.6± 0.7)10−3 (3.3± 1.4)10−2

Content/Surface concentration (%)

Pristine
Global 21.7± 9.6 7.1± 6.5 0.50± 0.16 9.9± 3.1

LME 73.6± 33.8 24.3± 22.5 1.4± 0.5 27.6± 8.7

At global peak catch
Global 7.9± 4.4 2.3± 2.4 0.17± 0.07 3.4± 1.5

LME 19.1± 10.5 5.4± 5.4 0.29± 0.13 5.7± 2.4

kg of wet weight (ww) for ray-finned fish, that is about 3-12 times larger than our 10-200 µmolFe/molC range, equivalent to

0.006-0.12 gFe/kgww (assuming 12.5% C in ww). We are more confident in our compilation of Fe:C values, which is updated,

more complete, and only based on peer-reviewed studies (Galbraith et al., 2019). Nonetheless, the differences highlighted here,

and the large range of estimates (low-high values) highlight the large uncertainty on the Fe content of whole fish and the great

need for more measurements in this domain.260

Note that our modeled estimates are likely to be more reliable in LMEs since fish biomass in these regions is better constrained

by fish catch data.

3.2 Nutrient content variations in fish

Many factors contribute to variations of fish body nutrient concentrations, which we cannot model explicitly but instead capture

within our uncertainty estimates. Among the different influencing factors, fish species is important, for instance bony fish265

contain larger quantities of P compared to other fishes (El-Sabaawi et al., 2016). Species can also vary in terms of the size of

storage components (e.g., Czamanski et al., 2011) and the number and size of bones if vertebrates, which generally increases

with adult size (Sterner and Elser, 2002). Variations in body nutrient contents can also be explained by sex and life stage, e.g.

decreased Fe body content occurs in female rainbow trout during sexual maturation (Shearer, 1984), though these would tend

to average out at the population level. Studies have also shown that ontogeny may affect nutrient content, for example juveniles270

have less P than adults (Pilati and Vanni, 2007) while Fe content varies throughout the life cycle of salmon (Shearer et al.,

1994).

Because our model uses size to differentiate between fish, we analyzed aquatic animal body nutrient and body size data from
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Vanni et al. (2017) for any existing relationship between size and nutrient content. We found no relationship between body

N content and size, and only a weak but significant relationship between body P and size (Supp. Fig. C1). In this data set,275

the changes of P content with size seem to be more related to the difference between vertebrates and invertebrates, and to be

significant for benthic organisms more than pelagic organisms. A recent study as indeed showed that the taxonomic identity

is prominent in driving nutrient content variations compared to size (Allgeier et al., 2020). In addition, Hjerne and Hansson

(2002) found no significant changes in the N and P content of fish with species (sprat and herring), fish size, seasons or different

areas of the Baltic Sea, as did Griffiths (2006) for the P content of different fish species in lakes. The scant available data for280

Fe, does not allow us to draw conclusions on the variations in Fe content with size.

Although nutrient ratios show many fascinating variations between species, these are small relative to variations of fish biomass

density in the ocean. Thus, most of the spatial variations of the nutrient content of fish are likely to be due to variations in fish

abundance rather species assemblages, and the uncertainty related to nutrient ratios is likely to be small compared to the

uncertainty on fish biomass.285

4 Nutrient cycling by the commercial fish biomass

Because they are capable of large-scale movement and alter the stoichiometry of particles, fish can have impacts on nutrient

cycling that differ from single-celled heterotrophic plankton. In this section, we gauge the potential scale of these impacts by

estimating the rates at which fish cycle nutrients, what fraction of primary productivity (PP) this cycling represents, and how

much it can contribute to the export of nutrients from the euphotic zone as sinking egested materials. Note that this is intended290

only to illustrate the potential magnitude, which could be built upon with coupled fish biogeochemistry modeling.

The global cycling, i.e. excretion plus egestion, of nutrients by the pristine CTF 100kg
10g biomass represents about 210± 113

Tg of N per year, 15.6± 8.0 Tg of P per year and 0.12-0.77 Tg of Fe per year, of which about half is in the LMEs (Table

3). Like nutrient storage, modeled cycling by fish is larger where the biomass is higher (Fig. 5 and Supp. Fig. D1). The three

different ways of computing Fe cycling by the commercial fish biomass show similar spatial patterns, but Fe cycling is larger295

when using the weighted spatial variation between the low and high Fe:C estimates in zooplankton (Fig. 5). The spatially

weighted computations suggest the possibility that Fe cycling by CTF 100kg
10g might be reduced in HNLC regions (principally

in the Southern Ocean and the subarctic Pacific Ocean).

4.1 Nutrient cycling by commercial fish relative to primary production

The modeled N cycling by pristine CTF 100kg
10g biomass contributes on average to 2.2± 1.2% of the N demand of primary pro-300

ducers (PP) in LMEs (Table 3), and generally accounts for less than 5% of the demand, except in some coastal areas where it

can be as high as 14% (Fig. 6a). Similarly, the modeled pristine P cycling by CTF 100kg
10g represents 1.2% of the total P demand

in the LMEs (Table 3), less than 4% of the global P demand with a larger contribution in the North and equatorial Atlantic

coastal regions, and larger than 6% contributions in some coastal areas (Fig. 6b). The high-end estimate of the Fe cycling by

CTF 100kg
10g relative to PP demand for Fe is slightly more significant than the ratios for N and P, as it represents up to 13% of305
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Figure 5. Iron cycling by CTF 100kg
10g biomass computed using a) a mean Fe:C in zooplankton, b) a spatial variation between zooplankton

Fe:C mean values in Fe-poor and Fe-rich areas and based on [NO3] concentrations, and c) the same spatial variation but using the low and

high estimates of zooplankton Fe:C from data. (For more details see Methods)

the PP demand for Fe in some coastal areas, and less than 10% everywhere else (Fig. 6e).

Our global estimates are broadly consistent with the order of magnitude influence of fish estimated by prior local studies. For

all the coral reefs in the ocean, Allgeier et al. (2014) estimated that the total fish community supply about 1.2 Tg of N per year,

which is about 0.6% of our global pristine estimate (0.8% compared to global cycling at peak catch), or 1.2% of the LMEs

pristine estimate (2.1% of our N cycling by CTF 100kg
10g biomass at global peak catch) (Table 3)). This is consistent with the310

fact that coral reefs cover about 255000-600000 km2 (Spalding and Grenfell, 1997), which is about 0.4-0.8% of the LMEs

area. Hernández-León et al. (2008) estimated that zooplankton supply about 1780 TgN/yr worldwide, representing 12-23% of

the requirements of phytoplankton and bacteria. This estimated zooplankton cycling is about 11 times our modeled recycling

rate by the pristine CTF 100kg
10g biomass and 6-12 times what CTF 100kg

10g cycling could provide for primary producers. Given
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that the biomass distribution of all marine organisms has a slope of 0 (Hatton et al., 2021),(Supp. Fig. E1), and assuming that315

zooplankton mass ranges over 12 orders of magnitude, zooplankton biomass would be expected to be roughly 3 times the

biomass of the total fish biomass in the 10 g to 100 kg size range. In addition, due to their higher metabolic and ingestion rates

(Maldonado et al., 2016; Griffiths, 2006), zooplankton cycling rates are likely to be much higher than fish cycling rates, also

exemplified by our modeled cycling size spectrum which has a negative slope (Supp. Fig. E2). McIntyre et al. (2008) showed

that fish excretion can be important in supplying N and P to primary producers when conditions of high fish biomass and high320

PP demand or low ambient nutrient concentrations are combined, and when nutrient inputs from anthropogenic sources are

low. Our results indeed suggest an increased contribution of fish cycling when these conditions are combined. However, the

strength of this contribution also depends on the timing between the release of nutrients by fish and the primary producers

demand for these nutrients.

325

Figure 6. Total nutrient cycling and egestion relative to export. Ratio (%) between the amount of nutrients cycled by the modeled pristine

global CTF 100kg
10g biomass and estimated primary producers demand for a) N and b) P, ratios of the modeled amount of nutrient egested by

the pristine CTF 100kg
10g biomass and export at the base of the euphotic zone of c) N and d) P, and high-end estimate of the ratio (%) between

the modeled amount of e) Fe cycled by the modeled pristine global CTF 100kg
10g biomass and estimated primary producers Fe demand, and

f) Fe egested by the pristine CTF 100kg
10g biomass and Fe export at the base of the euphotic zone. The high-end estimates are obtained using

Fe cycling computed from the weighted spatial variation between the low and high Fe:C values of zooplankton, and the weighted spatial

variation between the averaged Fe:C ratios of phytoplankton in Fe-poor and Fe-rich conditions.
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For Fe, CTF 100kg
10g cycling represents a more important fraction of the PP demand compared to N and P, but large uncer-

tainties remain in its computation. At the global scale, Moreno and Haffa (2014) estimated that the amount of Fe excreted

by the commercial marine fish biomass ranged between 0.4-1.5 TgFe per year. Our modeled estimate range of 0.12-0.77

TgFe/yr, based on the high and low estimates (Fig. 6e and Supp. Fig.D2), is lower but overlapping. The difference can in part

be attributed to the lower Fe:C values we used for zooplankton (Table 1), and highlights the uncertainty on the Fe cycling330

computation (Fig. 5). In the Southern Ocean, whales have been shown to contribute to a maximum of 0.2-0.3% of the phy-

toplankton demand for Fe in a pre-whaling ecosystem and no more than 0.03-0.04% in a post-whaling ecosystem, making

their contribution negligible compared to that of zooplankton (>70% for microzooplankton only) (Maldonado et al., 2016).

With a modeled contribution of about 0.05-0.5% of the phytoplankton demand for Fe in the Southern Ocean, modeled pristine

CTF 100kg
10g cycling coherently might be able to sustain a larger part of primary productivity than the current whale population,335

but still far less than zooplankton as discussed before for N cycling.

Finally, fish movements also allow the transport of nutrients laterally in the ocean, constituting a sink of nutrients where the

fish forage and a source of nutrients where the fish excrete, egest or die (Vanni et al., 2013; Francis and Côté, 2018), an effect

we do not explicitly include here.340

4.2 Nutrient export by feces

Our results show that fish fecal material has the potential to affect the distribution of nutrients within the water column,

especially in regions of low export intensity. Egested nutrients are integrated into fecal pellets that sink out of the surface layer

and are recycled at greater depths than if bound to smaller particles (Wotton and Malmqvist, 2001; Turner, 2015), especially

fish fecal pellets that can sink faster and deeper than marine snow and phytodetritus (Saba and Steinberg, 2012). Figure 6c-d,f345

quantifies how much CTF 100kg
10g egestion may contribute to the export of N, P and Fe to depth using the mean absorption

efficiencies in Table 1 and assuming exported nutrient ratios, without fish, are on average equal to those of phytoplankton. For

all the nutrients, CTF 100kg
10g -mediated export accounts for a larger part of the export in the warm, low export regions of the

world oceans, i.e. the tropical gyres, where it can contribute up to 50% of the exported Fe for the high-end estimate (Fig. 6f),

6% of the exported N and 10% of the exported P (Fig. 6c,d). Globally, modeled pristine CTF 100kg
10g biomass egests 29.4±15.9350

Tg of N, 4.5± 2.3 Tg of P and 0.009-0.59 Tg of Fe each year, which on average roughly accounts for 2.3± 1.2%, 3.0± 1.5%

and 1.1-22% of the export of N, P and Fe, respectively, out of the euphotic zone (Table 3).

These results are in agreement with Davison et al. (2013) who showed that the contribution of mesopelagic fish to the carbon

export (via respiration, excretion, egestion and death) is higher in regions where the total export is small. However, Davison

et al. (2013) also showed that locally, in the California Current, the active transport of C by mesopelagic fish alone, which we do355

not model, represents about 15-17% of the total carbon export at depth. In their modeling study, Aumont et al. (2018) estimated

that, globally, diurnal vertical migration of epipelagic organisms (all migrating fish and zooplankton) contributes to the flux of

carbon to depth of about 18% of the passive flux. Fish egesting and respiring at depth transport significant amounts of carbon,
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Table 3. Table of values from the model ensemble simulations in the pristine state and at the global peak catch at both the global scale and

in LMEs. This table contains integrated values of: the amount of nutrient cycled by the CTF 100kg
10g biomass (Tg/yr), the ratio of this cycling

with the global primary producers demand for these nutrients (%), the amount of nutrient egested by the CTF 100kg
10g biomass (Tg/yr) and its

ratio with the exported nutrient quantities (%).

N P Fe (low estimate) Fe (high estimate)

Total Cycling (Tg/yr)

Pristine
Global 210± 113 15.6± 8.0 0.12± 0.25 0.77± 0.19

LME 101± 55 7.5± 3.9 0.06± 0.12 0.36± 0.09

At global peak catch
Global 145± 88 10.8± 6.3 0.08± 0.18 0.56± 0.17

LME 56± 35 4.2± 2.5 0.03± 0.07 0.21± 0.07

Cycling/PP demand (%)

Pristine
Global 1.5± 0.83 0.91± 0.47 0.16± 0.33 2.7± 0.66

LME 2.2± 1.2 1.2± 0.6 0.26± 0.53 4.0± 1.0

At global peak catch
Global 1.2± 0.75 0.76± 0.44 0.12± 0.26 2.2± 0.68

LME 1.5± 0.9 0.85± 0.5 0.15± 0.33 2.6± 0.8

Egestion (Tg/yr)

Pristine
Global 29.4± 15.9 4.5± 2.3 (9.1± 18.9)10−2 0.59± 0.14

LME 14.1± 12.3 2.2± 1.1 (4.4± 9.1)10−2 (2.7± 0.7)10−1

At global peak catch
Global 20.4± 12.3 3.1± 1.8 (6.3± 13.5)10−2 0.42± 0.13

LME 7.8± 4.9 1.2± 0.7 (2.4± 5.2)10−2 (1.6± 0.5)10−1

Egestion/Export (%)

Pristine
Global 2.3± 1.2 3.0± 1.5 1.1± 2.3 21.7± 5.3

LME 2.1± 1.1 2.6± 1.3 1.1± 2.3 20.1± 5.0

At global peak catch
Global 2.1± 1.2 2.7± 1.6 1.0± 2.1 19.5± 6.0

LME 1.6± 1.0 2.1± 1.2 0.8± 1.7 15.7± 5.0

and thus also transfers nutrients from the surface to deeper layers, a process that would have increased the contribution of fish

to the export of nutrient if represented in the model.360

More than the fish contribution to total export, their effect on particles may be most relevant for stoichiometric changes,

especially for Fe. Indeed, since the absorption efficiency of Fe is smaller than that of C, the Fe:C in feces will be greater

than in the ingested particles, and exported fecal material will have a greater Fe:C than biogenic sinking particles made of

phytoplankton aggregates or dead organisms (Le Mézo and Galbraith, 2020). This is potentially important for mesopelagic
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organisms feeding on sinking material in light of the possible Fe limitation of marine animals (Le Mézo and Galbraith, 2020;365

Galbraith et al., 2019).

5 Extended size-spectrum and total fish biomass

Until now we have considered CTF 100kg
10g as represented explicitly by the BOATS model, which ignores non-commercially

targeted fish as well as the small and large ends of the fish size range. We provide a rough estimate of how the total fish biomass

within a more inclusive marine size-spectrum spanning 1g larvae to 106g sharks (F 1000kg
1g ) would compare to our estimates in370

two steps. First, we take the Bianchi et al. (2021) estimate that the CTF 100kg
10g is supported by roughly half of the total primary

production that could be available to this size range (best estimate 58%), from which we calculate that if the non-commercial

fraction were included the total biomass estimate would be about 5.2 Gt. We then consider that the expanded size range in-

cludes 6 orders of magnitude compared to the 4 orders of magnitude of the standard BOATS size range. In BOATS, the size

spectrum of abundance has a slope of about -1, giving the biomass size spectrum a slope of 0 (Supp. Fig. E1) consistent with375

the observed Sheldon spectrum (Hatton et al., 2021). Thus, by extension, we estimate that the biomass contains about 1.5

times (6 orders of magnitude versus 4 orders of magnitude) more biomass, giving a total of 7.8 Gt of wet biomass. Overall, we

estimate that F 1000kg
1g exceeds CTF 100kg

10g by a factor of 3.1.

The extended size spectrum contains more biomass, but it also contains more small fish than the standard size range of380

BOATS, a combination that would change the cycling rates of the total fish biomass. Since smaller fish are shown to have

higher cycling rates than large ones (Clarke and Johnston, 1999), we expect higher cycling of nutrients by the extended size

spectrum than would be implied by the larger biomass alone. In the pristine ocean modeled here by BOATS, the C cycling

rates decrease with size following a slope of −0.37molC.m−2.g−1 (Supp. Fig. E2). Based on this slope, and the biomass

slope of 0, we would expect that the CTF 1000kg
1g would have cycled about 2.4 times more C in the pristine ocean compared385

to the CTF 100kg
10g , with the 1g-10g size range cycling 40% more C than the rest of the spectrum combined. Taken all together,

the total cycling by F 1000kg
1g would have been a factor of 4.8 greater than the CTF 100kg

10g rates discussed throughout the paper

above. Assuming the additional organisms eat prey with similar body nutrient contents as the organisms already modeled, all

of the nutrient cycling rates presented above would be increased proportionally.

6 Fish catch: anthropogenic extraction of nutrients from the ocean390

As fishing activity represents a direct removal of nutrients from the ocean, we estimated how much nutrients were extracted at

the global peak catch and how these extraction rates would compare to nutrient inputs to the ocean. Globally, we estimate that

modeled fishing activity removes 5.4± 0.7 TgN.yr−1, 1.2± 0.3 TgP.yr−1 and 0.09− 1.8 1010gFe.yr−1 from the ocean at

the time of global peak catch, of which a little less than 50% in LMEs (Table 4). Although our model is calibrated to agree

reasonably well with observed catch maxima in LMEs over the years 1950 to 2010 (Pauly and Zeller, 2016; Bianchi et al.,395
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2021), the total catch varies between ensemble members and tends to be overestimated in the open ocean, even with the Fe-

limitation we added in this study, for reasons that remain unclear. In addition, the catch estimate we present is at the time of the

global peak catch in idealized simulations, rather than being historically accurate. Consequently, the simulated average catch

at global peak (196.2± 57 Tg wet weight) is higher than the peak catch estimated from fishery observations (130± 65 Tg), so

our estimates may exceed actual wild capture extractions by 50%, with the most significant overestimates in the open ocean400

(see Bianchi et al. (2021) for more details).

low high

Nutrients extraction rates

Figure 7. Distribution of the modeled amount of N (gN/m2/yr), P (gP/m2/yr) and Fe (µgFe/m2/yr) extracted from the ocean at the time of

the global peak catch. The two colorbars for Fe represent the low and high estimates based on the 95% confidence interval for Fe:C values

in fish (10-200 µmolFe/molC).

6.1 Nitrogen

Our estimate of N extraction from the CTF 100kg
10g catch is consistent with previous computations, and the differences mostly

reflects the fish biomass estimates. For example, using catch data, Maranger et al. (2008) estimated the amount of N returned to

land via fishing in LMEs to be about 0.9 TgN/yr in the 60’s and 2.3 TgN/yr in 2000. Our estimate of the N content of fish catch405

at global peak catch in LMEs is 2.8±0.4 Tg of N per year, which is slightly larger than Maranger et al. (2008) 2000’s estimate.

Allgeier et al. (2017) also estimated the amount of N globally harvested to be about 2.072 Tg of N per year using Maranger

et al. (2008)’s 2.6% N content and the FAO catch data. The FAO data only contains reported catches and consequently is lower

than the SAUP data used in Maranger et al. (2008) and used to calibrate BOATS, which explains part of the difference.

Our study framework allows to spatially compare extracted nutrients to nutrient inputs, which was not the case in previous410

work. For N, even though N extraction by fishing can be significant locally compared to N deposition at the surface, N extraction

is negligible compared to the other sources of N to the surface layers. Figure 8a compares the amount of N extracted by fishing

to the modeled soluble atmospheric N deposition from Brahney et al. (2015). Globally, fishing removal of N is smaller than

current modeled atmospheric deposition of soluble N, with the higher values, up to more than 60% of the N deposition, in the

southern equatorial Pacific, along the western margins of Africa and South America and in the Arabian Sea, where catch is415

high and deposition is low (Supp. Fig. B1). However, most of N supply to the surface ocean occurs through vertical diffusion
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and mixing of the upper layers (Sarmiento and Gruber, 2006), which likely accentuates the fact that N extraction by fishing is

insignificant at the global scale.

6.2 Phosphorus

Similarly to N, our estimate of P extraction by fishing is coherent with previous work and shows that it is very small compared420

to inputs of P to the ocean and resupply from vertical mixing and diffusion in the water column. We estimate that the amount

of P removed by fishing at the global scale amounts to 1.2± 0.3 TgP/yr, of which 0.6± 0.2 TgP/yr occur in the LMEs (Table

4). Huang et al. (2020) estimated that wild and aquaculture fisheries, including finfish, crustaceans and molluscs, represented

1.1 Tg of P in 2016, which is superficially similar to our estimate. However, our estimated catch of 196.2± 57 Tg of wet

weight, is larger than the global amount of catch they used of 169 Tg, even though they considered aquaculture in addition to425

wild captures. Our catch estimate at global peak catch overestimates the high seas catch as discussed at the beginning of this

section and inBianchi et al. (2021). Additionally, our estimate is solely based on fish P content (Table 1), which may slightly

overestimate the amount of P extracted by fishing activity since crustaceans and molluscs have lower P content than finfish

(Huang et al., 2020).

Contrary to N, the modeled removal of P from harvest would largely exceeds the atmospheric deposition of soluble P as P430

inputs to the ocean mostly occur through riverine inputs (Table 4). Consequently, catch transfers P from the ocean to land

where as P supply to the ocean is mostly occurring in the coastal areas, with possible impacts on the P budget of the open

ocean (Huang et al., 2020). But similarly to N, vertical diffusion and mixing of the upper layers supplies P to the surface ocean

in quantities that most likely render P extraction by fishing relatively insignificant.

6.3 Iron435

Fe extraction by fishing activity is within the range of previous estimates but large uncertainties remain due to uncertainty re-

garding the Fe:C of fish. Moreno and Haffa (2014) investigated the extent to which commercial catch has globally translocated

Fe from the ocean to land. They estimated the global rate of translocation of Fe to be between 0.007 and 0.03 Tg in 2010. Our

modeled global range of Fe removal is about 0.0009−0.018 TgFe/yr. Our lower estimated values can once again be explained

by the difference in the Fe:C ratios used for fish. Even though our estimate is lower, it shows that locally Fe extraction can440

be significant compared to Fe inputs from dust deposition. Although the high-end estimate of Fe extracted is globally small

relative to modeled soluble Fe deposition from Mahowald et al. (2009), it reaches values larger than 100% in the coastal eastern

equatorial Pacific and in some other coastal areas such as Western South Africa, Northern Europe and Canada (Fig. 8b), where

modeled Fe deposition is small and harvest is high (Supp. Fig. B1). Contrary to N and P, Fe has a much shorter residence time

and thus is subjects to local perturbations, among which Fe extraction by fishing could be important.445
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Table 4. Table of values in LMEs from the model ensemble simulations in the pristine state and at the global peak catch. This table contains

integrated values of: the amount of nutrients removed by fishing in LMEs (Tg/yr) and the ranges of values of the global nutrients inputs to

the ocean from the literature (Tg/yr).

N P Fe (low estimate) Fe (high estimate)

Catch (Tg/yr)

Global 5.4± 0.7 1.2± 0.3 9.110−4 1.810−2

LMEs 2.8± 0.4 0.6± 0.2 (4.7)10−4 (9.3)10−3

Global inputs to the ocean (Tg/yr) N P Fe

Soluble depostion 16− 63a,c,e,h,j 0.1− 0.5a,b,c,d,i,j 0.6− 13.4b,c,f,g,k

Rivers 80h 0.93− 48i 0.08− 0.09k

N2 fixation 140h - -

Iceberg melting - - 0.09− 0.1k

aBrahney et al. (2015), bMahowald et al. (2009), cOkin et al. (2011), dMyriokefalitakis et al. (2016), eFowler et al. (2013), f Ito (2015) , gWang et al. (2015),
h Gruber and Galloway (2008), iBenitez-Nelson (2000) , jKanakidou et al. (2012), kMoreno and Haffa (2014)

6.4 Local and time-dependent nutrient budgets

Nutrient budgets are subject to perturbations in space and in time that can modify the relative strength of the nutrient extraction

by fishing activity. Some local nutrient budgets have been investigated to compare the amount of nutrient extracted by fishing

to the nutrient loads (e.g. Hjerne and Hansson (2002)). If we were to do similar budgets, at the global scale, assuming all P

inputs come from rivers and atmospheric deposition, which represents 48.5 TgP/yr (Table 4 and B1), then the extracted P flux450

represents 2.5% of the global input flux (1.2% over the LMEs). For N, global catch represents about 2% of the combined N

inputs from atmospheric deposition (49.6 TgN/yr), rivers (80 TgN/yr) and N2-fixation (140 TgN/yr) (Tables 4 and B1).

Note that fish extracted from a given area may have foraged elsewhere, especially large fish able to undertake long-distance

migrations like tuna, salmon or sharks (e.g., Afonso et al., 2017; Gresh et al., 2000). Consequently, the ratios between extracted

nutrients and nutrient deposition may be over- or under-estimated, thus over- or under-estimating the role of fishing as a local455

sink of nutrients (Vanni et al., 2013). In addition, the relative timing of fishing effort along with phytoplankton growth, nutrient

input seasonality and residence times may also modify the importance of fishing activity as a sink of nutrients (e.g., Francis

and Côté, 2018; Vanni et al., 2006).

6.5 Reductions in nutrient cycling caused by fishing

Fishing has had a dramatic influence on nutrient cycling by CTF 100kg
10g , as it has permanently removed a large amount of460

biomass, especially in the large size classes. In our ensemble of simulations, the cycling rates decrease by about 30% for the

three elements considered at the time of the global peak catch (Table 3), due to the global reduction in fish biomass of about

60%. Since large fish are heavily targeted by fisheries, the size-spectrum of CTF appears truncated at larger size class at the
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Figure 8. Ratio (%) between simulated extracted nutrients and current aeolian soluble nutrients inputs at the surface of the ocean for a) N

and b) Fe. "low" and "high" refer to the use of 10 µmolFe/molC or 200 µmolFe/molC in fish, respectively.

time of the global peak catch compared to a pristine state (Supp. Fig. E1). This reduction of the mean community size enhances

the cycling of elements as smaller animals tend to have higher metabolic rates (e.g. Schmitz et al., 2010; Vanni, 2002), so that465

the reduction in overall cycling rate is roughly half the reduction of biomass.

Finally, as the size classes below 10g are not resolved (Fig. 2) we are not able to account for biomass changes that fishing

might induces through trophic cascades, or how it reverberates up to fish through food supply (Dupont et al., submitted), which

has the potential to further modify fish-mediated nutrient cycling.

7 Conclusions470

In this study, we estimate the amount of N, P and Fe contained in and cycled by the global CTF 100kg
10g biomass, both in its

pristine state and at the time of the global peak catch. The overall contribution of this commercial ichthyosphere to oceanic

nutrient cycling is relatively small, but is more significant in regions of low ambient nutrient concentrations, high fish biomass

and low export production. The industrial fish catch generally represents a small extraction of nutrients globally compared to

external inputs, though it removes significant amount of P from the open ocean compared to external inputs (mainly riverine).475

In general, local cycling of N and P by fish is less significant than Fe cycling by fish because N and P are resupplied glob-
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ally through large-scale circulation processes, while Fe cycling is more local and susceptible to perturbations through rapid

scavenging for example. In addition, poor absorption of Fe by fish leads to an enrichment of the Fe content of fecal matter.

Globally, nutrient cycling by the modeled CTF 100kg
10g biomass is small compared to primary producers demand for these

nutrients. The highest contributions are found close to the coasts where fish biomass and productivity demand are high. Fish480

egestion of nutrients via faecal pellets is likely to comprise the largest fraction of the sinking flux in regions of low export pro-

duction, i.e. the subtropical gyres. Fecal pellets may also significantly impact the stoichiometry of sinking particles, especially

for Fe, with consequences for mesopelagic organisms.

Our study provides a first global glimpse of nutrient cycling by the ichthyosphere. Although the contribution of CTF 100kg
10g

simulated by our model tends to be on the order of only a few percent of total surface nutrient budgets and fluxes, we estimate485

that these would be a factor of 3 or more larger for the 1 g to 1000 kg range, including all fish. Furthermore, the role of

fish in shaping the ecosystem processes through top-down pressure on their prey may be of similar or greater magnitude

than the quantities estimates here (Frank et al., 2005; Baum and Worm, 2009; Hessen and Kaartvedt, 2014; Kavanagh and

Galbraith, 2018). Fish can also be highly relevant at the local scale, for example by changing the vertical distribution of Fe

in the water column as mentioned above, and as highlighted by many studies on fish in coral reefs. Unresolved factors, such490

as fish migrations, would alter our results and the sensitivity of fish-mediated nutrient cycling to warming and deoxygenation

due to climate change (e.g., Lefort et al., 2015; Lotze et al., 2019). There remains much to be learned about the role of fish in

global nutrient cycling.
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Appendix A: Model-data comparison

The Bayesian Monte Carlo approach was not performed for the updated model with Fe limitation that we use in this study.495

Instead, we took the 31 combinations of selected parameters from the Monte Carlo approach on the standard version of the

model performed in Bianchi et al. (2021) and run 31 simulations with the updated Fe-limited version of the model. The

Fe limitation decrease global fish biomass slightly (Galbraith et al., 2019) so that we underestimate the global LME peak

catch of ∼ 110Mt.yr−1 (Fig. A1). The comparison of modeled versus observed peak catch across LMEs gives an r2 of 0.42

(p− value < 10−9) for the ensemble average, while the ensemble meber with the best fit to observations has an r2 of 0.57500

(p− value < 10−9) (Fig.A2)(Bianchi et al., 2021).
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Figure A1. Modeled fish catch from the 31 simulations of the ensemble from 1950 to 2010s compared to SAUP reconstructed catch data.
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Figure A2. Comparison between LMEs maximum catch from data and from the model ensemble in the ensemble of simulations with no Fe

limitation and in the ensemble of simulations with Fe limitation. Each number represents one LME.
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Appendix B: Global values and nutrient inputs to the ocean

a) Soluble N deposition 

b) Soluble P deposition 

c) Soluble Fe deposition

gN/m2/yr

gP/m2/yr

gFe/m2/yr

Figure B1. Modeled deposition fields of soluble a) N (gN/m2/yr), b) P (gP/m2/yr) and c) Fe (gFe/m2/yr) used to make Figure 8. N and P

fields are from Brahney et al. (2015), Fe field is from Mahowald et al. (2009).
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Table B1. Inputs of nutrients to the ocean.

Sources (Tg/yr) N P Fe Reference Comment

Atmospheric deposition 63 0.32 0.36 Okin et al. (2011)

- 0.17 - Myriokefalitakis et al. (2016) bioavailable P

29.4 - - Fowler et al. (2013)

- - 13.4 Ito (2015)

- - 8.4 Wang et al. (2015) With Anthropogenic input

50 - - Gruber and Galloway (2008) NO−
3 and NH+

4

- 0.31 - Benitez-Nelson (2000) pre-anthropogenic, soluble reactive P

16 (6.4) 0.35 (0.02) - Kanakidou et al. (2012) organic soluble (anthropogenic contribution)

36.6 - - Kanakidou et al. (2012) Total inorganic N

- 0.24 ( 0.034) - Mahowald et al. (2009) Inorganic P (anthropogenic contribution)

- - 0.6-2 Moreno and Haffa (2014)

Rivers - 0.93-4.7 - Benitez-Nelson (2000) pre-anthropogenic

- 23-48 - Benitez-Nelson (2000) Total with anthropogenic

80 - - Gruber and Galloway (2008)

- - 0.08-0.09 Moreno and Haffa (2014)

N2 fixation 140 - - Gruber and Galloway (2008)

Iceberg melting - - 0.09-0.1 Moreno and Haffa (2014)
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Appendix C: Body nutrient content versus body size

Table 1 :  Coefficients from the linear regressions of body N ad body P content 
against body mass of vertebrates and invertebrates. Data from Vanni et al., 2017.

Nitrogen Phosphorus

Intercept Slope R p-value Intercept Slope R p-value

All 9.9 0.08 0.07 4.3e-5** 2.4 0.42 0.58 3.4e-299**

Invertebrate

All 9.3 -0.07 -0.05 0.0138* 1.3 0.12 0.34 4.2e-63**

Pelagic 8.0 -0.37 -0.25 6.1e-24** 0.9 0.01 0.04 0.113

Benthic 10.2 0.07 0.05 0.207 1.7 0.43 0.66 3.3e-87**

Vertebrate

All 10.4 -0.41 -0.29 2e-21** 3.2 0.37 0.29 8.4e-22**

Pelagic 11.4 0.27 0.26 0.058 2.7 0.04 0.05 0.74

Benthic 10.3 -0.58 -0.39 3.6e-37** 3.3 0.45 0.34 4.0e-28**

Figure C1. Body N (% of dry weight) and body P (% of dry weight), as a function of body mass (log(g)) for pelagic (purple) and benthic

(blue) invertebrates and for pelagic (orange) and benthic (red) vertebrates. Regression lines for each type of organisms are shown in the same

color. The dashed black line is the global regression line. Regression coefficients are given in the underneath table. Data from Vanni et al.

(2017).
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Appendix D: Cycling of N and P, Fe cycling computations versus PP demand for Fe

Pristine N and P cycling

Figure D1. N and P cycling prior to industrial fishing.

Figure D2. Fe cycling divided by phytoplankton demand for Fe. Columns distinguish the Fe cycling computation: left = using a mean Fe:C

in zooplankton, middle = using a linear interpolation between the zooplankton mean Fe:C in Fe-rich and in Fe-poor conditions, right = using

a linear interpolation between the zooplankton low Fe:C and high Fe:C estimates, interpolations are based on nitrate concentrations as a

proxy for HNLC/non-HNLC areas. Lines distinguish the Fe demand of phytoplankton computation: top = linear interpolation between mean

Fe:C values in Fe-rich and Fe-poor conditions, bottom = linear interpolation between low and high Fe:C estimates (Table 1).
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Appendix E: Size-spectrum of abundance, biomass and C cycling505

Abundance vs body mass, pristine and with harvest
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Figure E1. Size-spectrum of modeledCTF 100kg
10g abundance a) in the pristine state and b) at global peak catch, and size-spectrum of modeled

CTF 100kg
10g biomass c) in the pristine state and d) at global peak catch
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Figure E2. Size spectrum of modeled CTF 100kg
10g C cycling a) in the pristine state and b) at global peak catch.
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