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Abstract. In the low nutrient, redox stratified Lake Medard (Czechia), reductive Fe(III) dissolution outpaces sulfide generation 

from microbial sulfate reduction (MSR), and ferruginous conditions occur without quantitative sulfate depletion . The lake 

currently has marked overlapping C, N, S, Mn, and Fe, cycles occurring in the anoxic portion of the water column. This feature 

is unusual in natural stable redox stratified lacustrine systems, where at least one of these biogeochemical cycles is functionally 

diminished or undergoes minimal transformations because of the dominance of (an)other component(s). Therefore, this post-15 

mining lake has scientific value for (i) testing emerging hypotheses on how such interlinked biogeochemical cycles operate 

during transitional redox states; and (ii) to acquire insight on redox proxy signals of ferruginous sediments underlying a sulfatic 

and ferruginous water column. An isotopically constrained estimate of the rates of sulfate reduction (SRR) suggests that despite 

a high genetic potential, this respiration pathway may be limited by the rather low amounts of metabolizable organic carbon. 

This points to substrate competition exerted by iron and nitrogen respiring prokaryotes. Yet, the planktonic microbial 20 

succession across the nitrogenous and ferruginous zones also indicates genetic potential for chemolithotrophic sulfur oxidation. 

Therefore, our SRR estimates could be rather portraying high rates of anoxic sulfide oxidation to sulfate, probably accompanied 

by microbially induced disproportionation of S intermediates. Near and at the anoxic sediment–water interface, vigorous sulfur 

cycling can be fuelled by ferric and manganic particulate matter and redeposited siderite stocks. Sulfur oxidation and 

disproportionation then appear to prevent substantial stabilization of iron monosulfides as pyrite but enable the interstitia l 25 

precipitation of microcrystalline equant gypsum. This latter mineral isotopically fingerprints sulfur oxidation proceeding at 

near equilibrium with the ambient anoxic waters, whilst authigenic pyrite-sulfur displays a 38 to 27 ‰ isotopic offset from 

ambient sulfate, suggestive of incomplete MSR and an open sulfur cycling. Pyrite-sulfur fractionation decreases with increased 

reducible reactive iron in the sediment. In the absence of ferruginous coastal zones today affected by post-depositional sulfate 

fluxes, the current water column redox stratification in the post-mining Lake Medard is thought relevant for refining  30 

interpretations pertaining the onset of widespread redox stratified states across ancient nearshore depositional systems. 
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1 Introduction 

The biogeochemical reactions governing the distinctive redox structure of modern permanently stratified lakes have been 70 

studied, for the most part, in natural settings featuring relatively high dissolved iron but low sulfate concentrations (Swanner 

et al., 2020). Improved by insights from laboratory experiments (e.g., Konhauser et al., 2007; Rasmussen et al., 2015; Jiang 

and Tosca, 2019), geochemical and microbiological analyses made in such lacustrine systems have provided us with an 

empirical framework to interpret modern iron biomineralization mechanisms and, by analogy, similar processes that would 

have allocated widespread, punctual deposition of ancient iron formations in the Precambrian. 75 

Lakes that display permanent stagnation and marked redox gradients in their water column are termed meromictic. Meromictic 

lakes featuring ferruginous conditions in their water columns (i.e., [Fe2+] > [H2S/HS−] and [Fe2+] > [NO3
−/NO2

−]) are relevant 

to decipher the environmental significance of specific chemical and isotopic signals recorded in iron-rich deposits, and to 

advance paleoenvironmental interpretations of redox stratified oceans, such as those prevalent during the Precambrian 

(Canfield et al., 2018), or intermittently developed during the Phanerozoic (Crowe et al., 2008; Walter et al., 2014; Posth et 80 

al., 2014; Lambrecht et al., 2018; Canfield et al., 2018; Swanner et al., 2020 Reershemiusand Planavsky, 2021). 

Ferruginous water columns that also contain elevated dissolved sulfate concentrations are not uncommon in acidic shallow pit 

lakes (e.g., Denimal et al., 2005; Trettin et al., 2007), and have also been reported in pH neutralized post-mining lakes 

(McCullough and Schultze, 2018). Lake Medard, in NW Czechia belongs to this latter group. The newly formed lake features 

low nutrient contents (i.e., it is oligotrophic), and its temperature, redox and salinity stratified water column remains unmixed 85 

throughout the year (Fig. 2a). Given its recent water filling history—completed in 2016, and the fact that its ferruginous bottom 

waters contain up to 21 mM of dissolved sulfate (Petrash et al., 2018), this oligotrophic lake can be considered as a large-scale 

incubation experiment featuring an imbalanced sulfatic transition between aqueous ferruginous and euxinic redox states. The 

later redox state is defined by an abundance of dissolved sulfide able to titrate dissolved Fe2+ out from solution (Scholz, 2018; 

van de Velde et al., 2021). 90 

Here we combined spectroscopic analyses of the hypoxic (i.e., 2.0 to 0.2 mg·L−1 O2), nitrogenous and ferruginous, and 

ultimately anoxic (< 0.03 mg·L−1 O2) ferruginous and sulfatic bottom water column of Lake Medard. System-level processes 

that can be linked to specific planktonic prokaryote functionalities were interpreted. For this aim, isotope ratios of carbon and 

oxygen in dissolved inorganic carbon, sulfur and oxygen in dissolved sulfate, and concentration profiles of bioactive ions and 

volatile fatty acids (VFAs) were measured together with a 16S rRNA amplicon gene sequence profile. Amplicon gene 95 

sequencing informed our ecological and biogeochemical interpretations despite quantitative biases that are inherent in this type 

of data (e.g., Piwosz et al., 2020). To complement our interpretations, we also conducted mineralogical analyses and a mineral-

calibrated wet chemical speciation study of reactive Fe and Mn pools in the upper anoxic sediments. Using these data, we 

developed a mechanistic model that assesses the potential regulatory roles of prokaryotes over the geochemical gradients 

detected in the water column, and their influence over interlinked biogeochemical cycling involving reactive minerals. The 100 
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consumption and replenishment of Fe with sulfur (S), carbon (C), nitrogen (N) and manganese (Mn) across the redoxcline and 

near the anoxic sediment–water interface (SWI) are presented as a set of biogeochemical reactions. These reactions 

differentiate distinctive niches where a phylogenetically and metabolically diverse planktonic microbial community induce 

vigorous elemental recycling. 

 Our observations in this unique lake are thought relevant since analogue aqueous-level system processes would have also 275 

operated in some ancient ferruginous coastal settings. Lake Medard could therefore offer valuable information to further 

understand early diagenetic signals resulting from analogue microbial ecosystem dynamics. When preserved in the rock record, 

such signals could be elusive, and reflective, for instance, of ferruginous nearshore facies affected by continental sulfate 

delivery during shallow burial. In this regard, our research furthers understanding of the cryptic S cycle under ferruginous 

conditions unaccompanied by quantitative dissolved sulfate exhaustion.  280 

 

Figure 1. The area now occupied by the post-mining Lake Medard was previously an open cast coal mine near Sokolov, NW Czechia. 

Upon mine abandonment, the deepest parts of the open cast mine became shallow acidic pit lakes and are now the lake depocenters. 

The deeper zone of the lake now feature ferruginous and sulfate-rich aqueous conditions but the pH is circumneutral. The star 

marks the central sampling location in a recent lake imagery superimposed on the 2005 mine-pit imagery (a). The mine-pit had 285 
important fluxes of solutes linked to pyrite oxidation in exploited coal seams and their associated pyrite-bearing lithologies (b-c). 

These fluxes may still affect the hydrochemistry of the present-day lacustrine system, i.e., solutes are currently sourced from now 

submerged lithologies that also bear pH-neutralizing carbonates (Appendix A). Imagery dates 5/19/2020 (©CNES/Airbus) and 

1/1/2004 (©GEODIS Brno). Historical photographic record by courtesy of The Czech Geological Survey. 
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2 Study site 325 

Reclamation (flooding) of land occupied by the decommissioned Medard open-cast lignite mine in the Sokolov mining district 

of Karlovy Vary, northwest Czechia, led to the ca. 4.9 km2 (~60 m max. depth) post-mining Lake Medard (Fig. 1a; 50°10'41" 

N, 12°35'46" E). The lake was filled with waters diverted for reclamation purposes from the nearby Eger (Ohře) River. The 

filling of the former open-cast mine pit with river water started in 2010 and was reportedly completed by 2016 (Kovar et al., 

2016). During closure and abandonment of the former mine pit, dissolved iron, and sulfate—derived from pyrite oxidation, 330 

leached towards initially shallow ephemeral and acidic pit-lakes formed as surficial and groundwater filled the mine pit (Fig. 

1b-c). In these mining-impacted brines, metastable Fe(III)-oxyhydroxides and -oxyhydroxysulfates precipitated (Murad and 

Rojík, 2005). Runoff also affected the hydrochemistry of the ensuing shallow pit lake (Fig. 1b-c) by carrying solutes sourced 

from weathered, Miocene tuffaceous and carbonate-rich lacustrine claystones associated with the mined coal seam. These 

lithological units were described by Kříbek et al. (2017).  335 

At present, Lake Medard exhibits density, temperature, and marked redox stratification in its hypolimnion that is suboxic (0.2 

to 0.03 mg·L−1 O2) to anoxic (Fig. 2a), and ferruginous (Petrash et al., 2018). Water-rock interactions down to the underlying 

granitic basement also influences the hydrochemistry of the modern lake. Percolation and subsurface flow of meteoric water 

causes dissolution of fault-related thernadite (Na2SO4) accumulations. Thernadite dissolution and groundwater reflux introduce 

significant loads of isotopically heavy sulfate into the present-day hydrological system (Pačes and Šmejkal, 2004). Additional 340 

details on the geological framework of the area and its influence over the hydrochemistry of the post-mining lake are in 

Appendix A. 

Water column stratification was already observed by 2009, when an environmental monitoring of the shallow pit-lake formed 

after decommissioning of the dewatering wells took place (e.g., Medová et al., 2015). In the current deep post-mining lake, 

both, abiotic and microbially mediated precipitation of poorly crystalline iron minerals—i.e., amorphous ferric hydroxide 345 

(Fe(OH)3) and metastable nanocrystalline ferrihydrite (Fe2O3·(H2O)n)—occurs near the pelagic redoxcline (i.e., the redox 

transition between low dissolved oxygen and anoxic waters, Fig. 2a), from where these solid phases are exported to the SWI 

(Petrash et al., 2018). Mineral equilibrium reactions at the SWI proceed mostly within the nitrogenous to ferruginous redox 

potentials (Eh), and at a circumneutral to moderately alkaline pH. Stability diagrams showcasing the predicted stability of S 

and Fe species in the bottom waters of Lake Medard are shown in Fig. B1 (Appendix B). The stability diagrams show that the 350 

current physicochemical conditions of the bottom sulfatic waters favour colloidal Fe(III)-oxyhydroxides formation, but 

ferruginous monimolimnial waters also occur. 

3 Methods 

3.1 Water sampling and analyses 

3.1.1 Physicochemical parameter measurements and water column sampling 355 
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A water quality monitoring and profiling probe (YSI 6600 V2-2) was used—prior to sampling—to measure conductivity, 

temperature, O2 concentrations, pH, and Eh in the stratified portion of the water column of Lake Medard (from 47 to 55 m 

depth) in its central location (Fig. 1a, star). The probing resolution was 1 m above and below the O2 minimum zone and 0.5 m 

at the redoxcline. Based on the profiles, water column samples (n = 8 and 4 replicates) were collected (in November 2019) 600 

using a Ruttner sampler with a capacity of 1.7 L. Flushing/rinsing of the sampling device with distilled water (dH2O) was 

performed between samples. A total of eight samples were taken at depths 47, 48, 48.5, 49, 50, 52, 54 and 55 m. Replicate 

samples were taken at depths 47, 48.5, 50 and 54 m below the lake water surface. On aliquots of our water samples, we 

performed (i) environmental DNA (eDNA) extraction followed by MiSeq Illumina 16S rRNA gene amplicon sequencing; (ii) 

mass determinations of cations (iron, manganese, potassium, sodium, magnesium and calcium); (iii) high pressure liquid 605 

chromatography for concentrations of chlorine, sulfate, nitrate, ammonium and phosphate anions, and VFA abundances; (iv) 

measurement of dissolved inorganic carbon and methane concentrations, and (v) isotope ratio analyses of δ13C in total 

dissolved inorganic carbon and methane; and (vi) isotope ratio analyses of δ34S and δ18O values in dissolved sulfate. Details 

on these analyses follow. 

3.1.2 Environmental DNA (eDNA) 610 

For each eDNA sampling depth, an aliquot of 1 L was transferred to polyethylene (PET) bottles using a hand pump connected 

to sterile a Sterifil® Aseptic System loaded with sterile cellulose nitrate Whatman® Microplus-21 ST filters (0.45 µm cutoff, 

47 mm diameter). The filters were separated from the filtrating apparatus using a pair of sterilized tweezers (70% ethanol and 

Bunsen burner) and transferred into sterile 2 mL CryoTube vials (Thermo Scientific). These were store into liquid N for 

transport to the lab, where the DNA extraction from the biomass collected on the filters took place. After each sample 615 

collection, the filtration system was rinsed 3 times with dH2O, and a new filter was carefully placed onto the system. Samples 

for rRNA gene analyses were collected from the two redox compartments of the lake: i.e., the dysoxic hypolimnion and anoxic 

monimolimnion. The rinsing water (1 L) prior to second-last sampling (52 m) was used as a control. 

3.1.3 Microbiome profile 

DNA was extracted from the water filters described above using Quick DNA Soil Microbe Kit (Zymo Research) according to 620 

the manufacturer’s instructions. A total of 11 water replicates (i.e., 47 to 54 m depth and replicates) were evaluated. The eDNA 

extracted from these samples was ≥ 6 ng as per Qubit dsDNA BR fluorometric assays (Life Technologies), and below limits 

of quantification (<L.Q.) for the control (i.e., nucleic acids <0.2 ng). DNA integrity was assessed by agarose gel (2%) 

electrophoresis. 

A two-step PCR protocol targeting the small subunit 16S rRNA gene in bacteria and archaea was conducted using the universal 625 

primer combinations 341F/806R (CCTAYGGGRBGCASCAG and GGACTACNNGGGTATCTAAT) and 519F/915R 

(CAGCCGCCGCGGTAA and GTGCTCCCCCGCCAATTCCT), respectively. The samples were sequenced on the MiSeq 

Illumina platform. The 16Ss rRNA gene amplicon datasets were analyzed with a pipeline consisting of an initial step where 
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all reads passing the standard Illumina chastity filter (PF reads) were demultiplexed according to their index sequences. Thi s 

was followed by a primer clipping step, in which the 16S target forward and reverse primer sequences for bacteria and archaea 

were identified and clipped from the starts of the raw forward and reverse reads. Only read pairs exhibiting forward and reverse 

primer overlaps were kept for merging by using FLASH 2.2.00 (Magoč and Salzberg, 2011). This yielded a total of 1,799,339 

high-quality sequence reads, with an average length―after processing―of 412 bp.  660 

Sequence features (herein described as representative operational taxonomic units, OTU) were clustered using QIIME2 

(VSEARCH cluster-features-de-novo option; Rognes et al., 2016). To assign taxonomic information to each OTU, we 

performed DC−MEGABLAST alignments of cluster-representative sequences regarding the NCBI sequence database (Release 

2019−10−10). A taxonomic assignment for each OTU was then transferred from the set of best-matching reference sequences 

(lowest common taxonomic unit of all best hits). Hereby, a sequence identity of >70% across at ≥ 80% of the representative 665 

sequence was a minimal requirement when considering reference sequences. We assigned significant tentative correspondence 

of OTUs to reference species provided that an identity threshold ≥ 97 % of the V3−V4 hypervariable region for bacteria and 

V4-V5 for archaea were meet. Further processing of OTU and taxonomic assignments (75.8% of the sequences after chimera 

detection and filtering; Edgar et al., 2011) and read abundance estimation for all detected OTU was performed using the 

QIIME2 software package (version 1.9.1, http://qiime.org/). Abundances of bacterial and archaeal taxonomic units were 670 

normalized using lineage-specific copy numbers of the relevant marker genes to improve estimates (Angly, 2014). The 

metagenomic data for this study (lengths ≥ 402 bp) were deposited in the European Nucleotide  Archive (ENA) at EMBL−EBI 

under accession number PRJEB47217. 

3.1.4 Cation concentration analyses 

For cation concentration analyses, aliquots of 15 mL were filtered using sterile high flow, 28 mm diameter, polyethersulfone 675 

(PES) filters to remove particles >0.22 µm and then placed in acid-cleaned, PET centrifuge tubes. The aliquots were acidified 

using concentrated trace metal grade HNO3. At the lab these water aliquots were digested with trace metal grade HNO3 (8 N) 

and were sent for analyses at the Pôle Spectrométrie Océan at IUEM in Brest, France. A Thermo Element2 high resolution 

inductively coupled plasma mass spectrometer set on solution mode was used. The data were calibrated against multi-element 

standards at concentrations that were measured repeatedly throughout the session. Multi-element solutions were measured at 680 

the beginning, end, and twice in the middle of the sequence and a 5 µg·L−1 standard was further repeated after every five 

samples throughout the sequence. Additionally, 5 ppb indium (In) was added directly to the 2% HNO3 diluant employed to 

prepare all standard solutions and was used to monitor signal stability and correct for instrumental drift across the session. 

Each sample and standard were bracketed by a rinse composed of the same diluant (i.e., the 2% HNO3 with In) for which data 

was also acquired to determine the method detection limit. Relative standard deviations (2σ level) were better than 0.01 wt. % 685 

for Fe and Mn, and between 0.001 and 0.002 % for other analyzed elements, e.g., K, Na, Mg, Ca, which concentrations were 

used for aqueous-mineral equilibrium modeling (Appendix A, also Supplement 1).  
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3.1.5 Ions, ammonia, and VFAs concentration analyses 

Alkalinity (i.e., the capacity of water to neutralize free hydrogen ions, H+) was measured as HCO3
−  via acidometric titration 715 

of filtered water samples. The titrations were conducted on board immediately upon sample collection by using 0.16 N sulfuric 

acid cartridges on a digital titrator (Hach). 

Ions, ammonia and VFAs concentrations were measured in filtered, unacidified water sample aliquots via high pressure liquid 

chromatography (HP-LC) at BC-CAS, České Budějovice. For these analyses we used an ICS5000 + Eluent Generator 

(Dionex), with conductivity detection application, and suppression. Analytes were separated using Dionex IonPac AS11-HC-720 

4 µm (anions, VFAs) and IonPac CS16-4 µm (ammonium) columns (2x250 mm in size). The flow rate was 0.36 mL/min; run 

time was 65 min (anions, VFAs) and 17 min for ammonium. Potassium hydroxide was the eluent for inorganic anions and 

monovalent organic acids; methanesulfonic acid was the eluent for ammonium ion detection/quantification. A combined stock 

calibration standard solution featuring environmentally relevant anions ratios was used for determining concentrations and 

was prepared from corresponding analytical-reagent grade salts. To optimize and calibrate the method for VFA analyses and 725 

determine the limits of detection, we used stock mixtures of IC grade formate, oxalate, acetate, lactate, pyruvate, and butyrate 

standards for preparing our working saline stocks solutions. Detection limits were better than 60 ppb for lactate and oxalate, 

and 200 ppb for pyruvate, formate, and acetate. Recoveries, based on standards, exceed 80 % for all analytes reported. The ion 

concentration measurements have an error (2σ) < 20 % based on replicate analyses. 

3.1.6 Dissolved (in)organic carbon and methane  730 

Aliquots of the lake water collected were immediately transferred from the sampler to pre-cleaned—i.e., three-times rinsed 

with ddH2O and oven-dried at 550 ºC, 12 mL glass exetainer septum capped vials (Labco), pre-filled with He(g) and 1mL 

NaCl oversaturated solution (40%) for CH4, or 1 mL 85% phosphoric acid for ΣCO2. On board, the vials were filled with ~11 

mL water samples using a syringe connected to 15 cm PES tube that was introduced from below into the sampler for preventing 

diffusion of atmospheric gases into the exetainer vials.  735 

A dissolved inorganic carbon (ΣCO2) concentration profile was produced using a peak area calibration curve obtained on a 

MAT253 Plus isotope ratio mass spectrometer (IR-MS; Thermo Scientific). The same instrument was used for also 

determining isotope ratios of ΣCO2 (δ13CΣCO2, δ18OΣCO2) and methane (δ13CCH4), and for a rough estimation of the CH4 

concentrations at the monimolimnion. In brief, CO2 (or CH4) is purged from the headspace of the exetainer vials, then the gas 

passes through a Nafion water trap and into a sample loop PoraPlot-Q column (0.32 mm ID) cooled in liquid N; with He as 740 

the carrier gas. The sample gases are then separated via a Carboxen PLOT 1010 (0.53 mm ID; Supelco) held at 90°C with a 

flow rate of 2.2 mL·min−1 and transferred via a Conflo IV interface to the instrument. For methane, prior to transfer to the IR-

MS, the sample is transferred via a multi-channel device to a nickel oxide conversion reactor tube with copper oxide as catalyst 

(1,000°C). The δ13C values obtained relative to CO2 working gas are then corrected for linearity and normalized to laboratory 

working standards calibrated against CO2 evolved from the international standard IAEA-603. 745 
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The concentration measurements have an error (1σ) < 4 % for ΣCO2 and < 25 % for CH4. Isotope data are expressed in delta 

notation, δ= Rsample/Rstandard − 1, where R is the mole ratio of 13C/12C or 18O/16O and reported in units per mil (‰). The δ13C data 780 

are reported vs. the Vienna Pee Dee Belemnite (V-PDB) standard. The δ18O data are reported vs. the international Vienna 

Standard Mean Ocean Water (V-SMOW) standard. The reproducibility of the δ13CDIC and δ13CCH4 measurements was better 

than ±0.05 ‰ and ±0.3 ‰ (1σ), respectively, based on replicates for reported values of the standard materials and the samples. 

Reproducibility of δ18OΣCO2 measurements is better than 0.4 ‰. DOC was analyzed in untreated samples by catalytic 

combustion at 680 °C (Shimadzu 5000A) with a detection limit of ∼0.05 mg·L−1. 785 

3.1.7 Dissolved sulfur analyses 

For measuring dissolved acid-volatile sulfur (AVS) in the monimolimnion (i.e., HS−,  intermediate sulfur species, H2S and the 

aqueous FeS clusters; Rickard & Morse, 2005), 500 mL aliquots of water samples collected at the 52-54 m depth interval were 

transferred to PET sample bottles pre-filled with 2 mL of 1 M Zn acetate, then 50 mL of 5 M NaOH were added. The combined 

concentrations of AVS bound into the ZnS precipitates were spectrophotometrically determined in an acidified solution of 790 

phenylenediamine and ferric chloride by using a Specord 210UV/Vis (Analitik). Detection limit of the method is ≥ 0.25 µM. 

As for cation analyses, the 1L aliquot of the filtered water samples were intended for sulfate S and O isotope analyses. These 

samples were acidified to a pH ~3 with 6N reagent grade HCl. Also, to oxidize and degas dissolved organic matter, we added 

6 ml of hydrogen peroxide (H2O2) 6 % and heated the samples (90 °C) until clear (i.e., 1 to 3 h). Dissolved sulfate was then 

precipitated as purified barite (BaSO4) by using a saturated BaCl2 solution. Accordingly, after heating, ~5 ml of 10 % BaCl2 795 

was added to the water samples that were then allowed to cool down overnight. An additional 1mL of BaCl2 solution was 

added the next day to ensure that all possible BaSO4 precipitated. The precipitates were then collected on pre-weighed 

membrane filters, rinsed thoroughly using deionized water, stored in plastic petri dishes, and dried in a desiccator using a 

sulfate-free desiccant, the dry BaSO4 powder was scraped into clean vials, weighted, and stored until shipped to the 

Biogéosciences Laboratory, Dijon, France, for isotope analysis. 800 

Each purified BaSO4 sample was analyzed for δ34SSO4 and δ18OSO4. Samples were measured on a Vario PYRO cube elemental 

analyzer (Elementar) in-line with an 100 IR-MS (IsoPrime) in continuous flow mode. The SO4 isotope data are expressed in 

in the δ-notation, δ ≡ Rsample/Rstandard − 1, where R is the mole ratio reported in units per mil (‰) vs. the Vienna Canyon Diablo 

Troilite (V-CDT) and V-SMOW standards for 34S/32S and 18O/16O, respectively. Analytical errors are better than ± 0.4 ‰ (2σ) 

based on replicate analyses of the international barite standard NBS-127, which was used for data correction via standard-805 

sample-standard bracketing. International standards IAEA-S-1, IAEA-S-2 and IAEA-S-3 were used for calibration with a 

cumulative reproducibility better than 0.3 ‰ (1σ).  

3.2 Sediment samples 

We also sampled the upper anoxic sediment column to a depth of ~8 cm. The mineralogy of these fine-grained sediments (silt 

to clay in size) was qualitatively and semi-quantitatively assessed via X-ray diffraction (XRD). The δ34S and δ18O of gypsum 810 
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(CaSO4·2H2O), δ13C of siderite (FeCO3), and δ34S isotope values of pyrite (FeS2) from these sediments were also measured 

and reported as described above using the delta notation, δ= Rsample/Rstandard − 1, where R is the mole ratio. Scanning electron 

microscopy aided by electron dispersive spectrometry (SEM-EDS) was used for textural analyses focused on the S- and/or Fe-900 

bearing phases. In addition, a sequential extraction scheme (after Poulton et al., 2004; Goldberg et al., 2012) was conducted to 

characterize the sedimentary partitioning of reactive Fe and Mn fractions. Details on these analyses follow. 

3.2.1 Sampling 

Replicate sediment cores (~16 cm in length) were collected with a messenger-activated gravity corer attached to 20 cm-long 

polycarbonate tubes (5 cm in diameter). The cores were immediately sealed upon retrieval with butyl rubber stoppers, 905 

preserving about 3 cm of anoxic lake water. The head water showed no signs of oxidation (i.e., no reddish hue observed) upon 

transport—within ~6 h from collection—to the lab. The sediment pile was extruded and sectioned each 2 cm. Surfaces of the 

silty clayey sediment in contact with the core liner were scrapped to remove potential contamination from the lake water and 

to minimize smearing effects. The sediment subsamples were rapidly frozen using liquid N and then stored at −18 ºC until 

freeze-dried. We interrogated the upper part of the sediment pile to a depth of 8 cm (i.e., 4 replicate samples). 910 

3.2.2 Mineralogy 

The mineralogy of the sediment was determined, semi-quantitatively, via X-ray diffraction (XRD). Powder XRD data were 

collected on a D8 Advance powder diffractometer (Bruker) with a Lynx Eye XE detector, under a Bragg-Brentano geometry 

and Cu K1 radiation (λ=1.5405 Å). Collection in the 2Θ range 4−80° was performed using 0.015° step-size increments and 0.8 

s collection time per step size. Qualitative phase analyses were performed by comparison with diffraction patterns from the 915 

PDF-2 database. A semi-quantitative phase analysis was performed by the Rietveld refinement method (Post & Bish, 1989), 

as implemented in the computer code Topas 5 (Bruker). The crystal structure of the mineral phases used for refinement were 

obtained from the Inorganic Crystal Structure Database (ICSD) database. During Rietveld refinement, only the scale factors, 

unit-cell parameters, and size of coherent-diffracting domains were refined. A correction for preferred orientation was applied 

for selected mineral phases (i.e., K-feldspar, mica, gypsum). 920 

The abundance of sedimentary Fe- and Mn-bearing phases was established by applying a sequential extraction scheme aiming 

to quantify the contribution of the operationally defined reactive pool capable of reacting after reductive dissolution with 

sulfide (after Poulton and Canfield, 2005). The wet chemical extraction scheme was applied to liberate (i) the fraction of total 

acid volatile sulfur (AVS) in the sediment, which might consist of mackinawite, a portion of greigite, and an usually unknown, 

yet typically negligible fraction of pyrite (Rickard and Morse, 2005); and (ii) chromium reducible sulfur (CRS), consisting 925 

primarily in pyrite but also in the sediment intermediate sulfur compounds (Canfield et al., 1986). AVS was extracted with 

cold concentrated HCl for 2 h. Then, the resulting hydrogen sulfide concentration (i.e., between 0.004 and 0.036 wt. %) was 

precipitated as Ag2S by using a 0.3 M AgNO3 solution. Subsequently, CRS was liberated using a hot and acidic 1.0 M CrCl2 

solution (Canfield et al., 1986). The resulting H2S was trapped as Ag2S. Mass balance after gravimetric quantification was 
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used to calculate the amount of AVS and CRS. Concentration analyses of Fe and Mn dissolved in each of these extracts were 

conducted via ICP-MS measurements (Xseries II, Thermo Scientific) at the Department of Environmental Geosciences, Czech 955 

University of Life Sciences, Prague. 

3.2.3 Sedimentary geochemistry and stable S, O and C isotope analyses 

Aliquots of the sediment samples were analyzed for total S (Stot) concentration using a CS analyzer (ELTRA GmbH). The 

detection limit was 0.01 wt. % for Stot. The relative errors using the reference material (CRM 7001) was ± 2 % for Stot.  

Total S for δ34S determination was extracted in the form of BaSO4 from the sediments. To evaluate the S and sulfate-O isotope 960 

ratios of gypsum (δ34Sgy), first the heavy mineral fraction of the samples, which includes pyrite, was excluded by using 1,1,2,2-

tetrabromethane (ρ= 2.95). The gypsum was then dissolved in ddH2O to extract sulfate. The free sulfate obtained was 

precipitated as BaSO4 as described above (Sect. 3.1.7). The BaSO4 was then converted to SO2 by direct decomposition mixed 

with V2O5 and SiO2 powder and combusted at 1000 °C under vacuum (10−2-10−3 mbar); mass spectroscopic measurements of 

the evolved SO2 were conducted on a Finnigan MAT 251 IR-MS dedicated to S isotope determinations. The results are 965 

expressed in delta notation and reported against the V-CDT and V-SMOW standards. The accuracy of the measurements was 

checked by also measuring international standards; reproducibility was better than 0.2 ‰. 

The IR-MS used to evaluate the isotope ratios of dissolved sulfate in the waters at the Biogéosciences Laboratory, Dijon, 

France, was used to evaluate the δ34S of the pyrite in the upper anoxic sediments. Prior to analyses, an AVS/CRS wet chemical 

extraction scheme alike the one described above was applied. After centrifugation, the Ag2S precipitate was washed several 970 

times with ddH2O and oven-dried at 50 °C for 48 h. The pyrite δ34S measurements were performed on SO2 molecules via 

combustion of ~500 mg of silver sulfide homogeneously mixed with an equal amount of WO3 using a Vario PYRO cube 

(Elementar GmbH) connected online via an open split device to the IR-MS. International standards (IAEA-S-1, IAEA-S-2, 

IAEA-S-3) were used for calibration. Isotope results are reported in the delta notation against the V-CDT standard. Analytical 

reproducibility was better than 0.5 ‰ based on replicates for standard materials and samples.   975 

The isotope ratios of carbonate in the sediment fraction were evaluated—after removal of organic carbon with H2O2, by 

implementing the method described by Rosenbaum and Sheppard (1986). These were measured using a Delta V mass 

spectrometer Thermo Fisher Scientific) coupled with an EA-1108 elemental analyzer (Fisons). The same instrument was used 

for measuring the sediment δ13Corg. For this purpose, the samples where finely milled, place in tin (Sn) capsules, and oxidized 

to CO2 at 1040°C in the elemental analyzer. The reproducibility of the isotope measurements for organic C was better than 980 

±0.12 ‰, and better than ± 0.1 ‰ for both carbon and oxygen isotopes of siderite. For siderite, the accuracy of the measurement 

was monitored by analyses of the IAEA NBS-18 (δ13C= −5.014 ‰, δ18O= −23.2 ‰) and two in-house standards; the long-

term reproducibility is better than 0.05 ‰ for δ13C and 0.1 ‰ for δ18O. 
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3.2.4 Textural features 

For SEM of the sediments, we either used a Mira 3GMU scanning electron microscope (TESCAN) combined with a 1010 

NordlysNano electron back-scattering diffraction (EBSD) system for semi-quantitative chemical petrography, or a Magellan 

400 (FEI) for higher resolution imaging in secondary electron mode. 

4 Results and discussion 

4.1 Bottom water column stratification and dissolved oxygen levels 

Physicochemical parameters measured in the dysoxic to anoxic waters at the time of sampling are shown in Fig. 2a. Profiling 1015 

of these parameters was consistent with several previous and 

subsequent probe monitoring measurements in the meromictic 

post-mining lake (e.g., Petrash et al., 2018). The pH in the 

hypolimnion was ~8.2 and decreased moderately downwards, 

reaching 7.4 ± 0.2 units near the anoxic SWI. Simultaneous 1020 

reactions involving dissolution, anoxic re-oxidation and 

(re)precipitation of reactive minerals could be responsible of this 

moderate pH decrease (see Soetaert et al., 2007). These reactions 

are considered in subsequent sections of this work. 

Conductivity exhibited a steep gradient at ca. 48 m depth that 1025 

flattens with increasing depth. Temperature increased gradually 

towards the bottom. The zone in the water column where these 

gradients concur is referred to as the hypolimnion. Increased 

conductivities within the hypolimnion of post-mining lakes, such 

as examined here, could result from the legacy of the former mine 1030 

drainage and/or from groundwater inflow (e.g., Denimal et al., 

2005; Schultze et al., 2010).  

Figure 2. Physicochemical parameters in the dysoxic to anoxic waters 

of Lake Medard in its central sampling location, which has a maximum 

depth of 56 m (a), and concentrations range of acetate, formate and 1035 
oxalate quantified in the dysoxic (n= 4; <48 depth) and anoxic (n= 3; 

54-55 m depth) waters of Lake Medard (b). The arrow shows the 

redoxcline’s depth at the time of sampling. 

Salinity was estimated by using the measured conductivity values (after Hambright et al., 1994). It increased three-fold from 

the hypolimnion downwards (Fig. 2a). This could result from recharge of groundwater carrying high loads of dissolved salts, 1040 

and/or from the lack of mixing of the legacy mine-impacted pit lake waters with those now comprising the mixolimnion. The 
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temperature gradient, on the other hand, is a consequence of limited seasonal vertical heat exchange between the density 

stratified water column and the mixolimnion (Boehrer and Schultze, 2008). 

Molecular oxygen (O2) from the mixolimnion cannot be replenished below the density and thermally stratified bottom waters, 

and O2 dropped rapidly within the 48 to 49 m depth-interval of the water column from about 8.1 to ~0.2 mg·L−1, and the 

deepest part of the lake is anoxic (Fig. 2a). At this level, the Eh shifts from >100 mV at the lower mixolimnion to negative 1060 

values down to ≤ −230 mV near the SWI. The dysoxic, nitrogenous zone of the water column are referred to as the 

hypolimnion, it contains a sharp redox boundary zone being referred to as the redoxcline. Below the redoxcline lies the 

monimolimnion which becomes anoxic (ferruginous) towards the SWI (Fig. 2a). 

The hydrochemically different monimolimnion persists in the deepest depressions of the lakebed throughout the year; although 

with slight variations in the monitored Eh and pH ranges that could be accompanied by minor (±1 m) shifts in the vertical 1065 

position of the redoxcline. In this study, we focused on the central part of the lake as it exhibited the broadest Eh range in its 

bottom water column (Fig. 2a). Details on the eastern and western sampling locations are available in a descriptive study by 

Petrash et al. (2018). Short-lived changes in redox potential of about 150 mV in the bottom water column were recently 

considered by Umbría-Salinas et al. (2021). These changes have effects on water column speciation (Fig. B1, Appendix B), 

and affect the partitioning of several redox sensitive metals that bind to reactive iron phases in the upper sediments (Umbría-1070 

Salinas et al. 2021, for details). 

4.2 Dissolved carbon concentrations and δ13C isotope values 

4.2.1 Dissolved organic carbon (DOC) 

The average of measured DOC concentrations in the waters sampled is 1,050 ± 500 µM. This range of values was higher than 

observed in the bottom waters of meromictic lakes such as Matano (< 100 µM; Crowe et al., 2008), or Pavin (300 ± 100 µM; 1075 

Viollier et al., 1995). DOC is generally comprised of relatively high molecular weight organic compounds (not quantified 

here), such as cellular exudates from alive and senescent planktonic microorganisms (e.g., algae, protists, bacteria) and their 

degradation products. Probably also present in solution soluble humic substances (HSs) derived from the biological breakdown 

of refractory organic matter (e.g., lignite particles) in the sediment (Petrash et al., 2018). VFAs are linear short-chain aliphatic 

mono-carboxylate compounds produced during anaerobic degradation of the organic compounds referred above. They serve 1080 

as C sources and electron donors for planktonic microbial heterotrophy and were therefore quantified here. VFAs in the bottom 

waters were at nanomolar concentrations that are reflective of the general scarcity of labile organic substrates . A six- to ten-

fold increase in concentrations of acetate, oxalate, and formate occurred towards the increasingly saline and O2-depleted 

waters. Concentrations of lactate, propionate, and butyrate could be detected at similar nanomolar magnitudes in the 

mixolimnion (not shown), but in the monimolimnion these VFAs were exhausted, i.e., below <L.Q.  1085 
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4.2.2 Total dissolved inorganic carbon  

The concentrations of total dissolved inorganic carbon (i.e., ΣCO2 = H2CO3 + HCO3
− + CO3

2−) ranged from 1.9 to 9.8 mM and 

increased downwards (Fig 3a). This parameter positively correlated with alkalinity, which ranged from 1.8 to 2.9 meq·L−1. 

Total dissolved inorganic carbon exhibited lower δ13C values at the anoxic monimolimnion and [ΣCO2] were inversely 

correlated with the δ13C values (Table 1, cf. Figs. 3a-b). The δ13C values are in the range +0.2 to −4.1 and were directly 1305 

correlated with the dissolved sulfate concentrations [SO4
2−] (Table 1), and [SO4

2−] and [ΣCO2] were inversely correlated too 

(Fig. 3b-c). From these observations, an increased ΣCO2 to alkalinity ratio is consistent with heterotrophy exceeding gross 

primary production (for example from chemo- and photo-autotrophy). But admixture of the lake’s monimolimnion with 

groundwater carrying geogenic CO2 could also alter the ΣCO2 / alkalinity balance. A contribution of organically derived CO2 

is evident―as per δ13C data, yet it could be argued that in the monimolimnion, sulfate reduction has only a moderate impact 1310 

on alkalinity generation. Although speculative, it is possible that microbial sulfate reduction (MSR) is responsible for the 

observed lactate depletion. Therefore, the complete (to CO2) and incomplete (to acetate) oxidation of lactate by MSR could be 

a factor contributing to the slight decrease in pH in the monimolimnion (see Gallagher et al., 2012). 

 

Table 1. Measured concentrations and isotopic ratios in the O2 depleted bottom water column of the central sampling location (from 1315 
47 to 55 m depth below the surface), Lake Medard. 

Depth  

(m)  
pH  
  

Eh  

(mV)  

O2  
[mg·L−

1]  

Cond.  
(µS·cm−

1)  

ƩCO2
#  [CH4]  [NO3

−]  [NH4
+]  [Fe+2]  PO4

−3  [Mn+2]  [SO4
2−]  

mM  
δ13C(a)   

(‰)V-

PDB
  

δ18O(b)   

(‰)V−P

DB
  

  µM 
δ13C(c) 

(‰)V−PDB 
[µM] mM  

δ34S(d)   
(‰)V-CDT

  
δ18O(e)

  

(‰)V-SMOW 
 

47  8.1  85.9  8.0  1394  n.d.  n.d.  n.d.    n.d. n.d.  
23.8  

± 0.5  
3.4  

± 0.4  
<0.07 <1.78  

0.3 

± 0.01 
6.0  

± 0.8  
10.9  

± 0.1  
2.4  

± 0.1  
 

48  8.1  88.4  8.0  1409  
1.9  

±0.1  
+0.2  

± 0.05  
13.2  

± 0.2  
  n.d. n.d.  

24.5  

± 0.5  
5.2  

± 0.5 
<0.07 

9.1  

± 1.8  
0.4 

± 0.01 

5.9   

± 0.8  
13.5  

± 0.07  
2.6  

± 0.1  
 

48.5  7.8  -36.4  3.7  3143  
3.5  

±0.2  
−0.1  13.1    n.d. n.d.  

26.0  

± 0.5  
15.4 

± 0.5  
<0.07 

1.0  

± 0.2  
19.9 

± 0.4 
8.3  

± 0.8 
11.3  

± 0.03  
2.4  

± 0.4  
 

49  7.8  
−145.

1  
0.9  4871  

7.5  

±0.1  
−2.1  

± 0.03  
14.2  

± 0.1  
  n.d. n.d.  

19.8  

± 1.2  
34.5  

± 9.3 
<0.07 

3.8  

± 0.8  
20.1 

± 0.4 
9.6   

± 1.6  
11.5  

± 0.1  
3.9  

± 0.1  
 

50  7.7  
−159.

9  
0.1  5197  

5.9  

±0.1  
−2.7  

± 0.1  
12.7  

± 0.4  
  

3.0  

± 0.6 
−68.0  

17.5  

± 1.2  
68.7  

± 9.3 
22.8 

± 0.4 
10.1  

± 1.0  
30.6 

± 0.5 
12.8   

± 1.6  
12.1  

± 0.1  
3.5  

± 0.3  
 

52  7.7  
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The CO2 source flux at the lake floor was estimated using a two-component mixing model that considers the δ13C values in 
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= −27.9 ± 0.1 ‰, n=6), and those of (bi)carbonate ions derived from the dissolution of carbonate phases near the SWI and 

below (Table 1). For the latter, a minor contribution of ΣCO2 evolved from the oxidation of methane (mean δ13CCH4 ≈ −67 ‰; 

Table 1) might also be possible and was considered. This methane diffuses throughout the anoxic sediments to the bottom 

water column. To account for the reactive C of the sedimentary carbonates, we used the δ13C mean values in the anoxic 1400 

sediments (+6.4 ± 0.3 ‰), which is within the range reported for carbonates in the lignite-associated lithologies (δ13C range: 

+1.7 to +13.4 ‰; median = +9.8 ‰; Šmejkal, 1978, 1984). Our sediment’s δ13C mean value likely fingerprints siderite, which 

was the only carbonate phase detected via XRD. Yet, other relatively more soluble carbonate phases, such as dolomite and 

calcite, might be present in small proportions at the lake floor because they occur with siderite in the claystone sediment source. 

These would account for only ≤ 0.2 wt. % (i.e., the L.Q. of our semi-quantitative XRD analyses). The range of estimated 1405 

isotopic C values of the CO2 flux from the sediments to the water column is between −3.0 and −4.2 ‰ (Fig. 3d). The 

contributions of CO2 derived from OM degradation, carbonate mineral dissolution and any plausible methanotrophic activity 

thus produces isotopic C values in the lake bottom water’s ΣCO2 that match those of the magmatic-derived CO2 emissions 

(Weinlich et al., 1999; Dupalová et al., 2012). 

Figure 3. Depth−dependent variation in total 1410 
dissolved inorganic carbon (ΣCO2) (a) and its δ13C 

(b) in the oxygen depleted bottom water column of 

Lake Medard (centre). Background grey colour 

code as in Fig. 2. There is negative correlation (R2 = 

0.883) between the δ13C values and dissolved SO4
2− 1415 

concentrations (c). A Keeling-style plot (ΣCO2 vs. 

δ13CΣCO2) was used to deduce the isotopic C 

signature of the combined CO2 flux at the sediment 

water interface, i.e., the intercept (d). 

The mixing factor in a simple linear mixing 1420 

model was calculated after Phillips and Gregg 

(2001). Accordingly, it could be established that 

dissolution of sedimentary carbonates contributes 

70 ± 5 % of the dissolved inorganic carbon, with 

the remaining fraction being CO2 from organic 1425 

matter heterotrophy (35 to 25 %). The influence 

of isotopically light CO2 derived from the 

oxidation of diffused methane is negligible, and 

any contribution of CO2 from the magmatic 

source cannot be estimated because of the similar 1430 

isotopic values. The implication for 

environmental/early diagenetic interpretations of this approach is that if siderite is formed in the lake sediments, it displays a 

significant δ13C offset (i.e., between +9.1 and +10.9 ‰) from the values of the ΣCO2 reservoir of the lake’s floor. Alternatively, 
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siderite could rather be a re-deposited mineral sourced from the Miocene claystone lithology that provided detrital material to 

the mine spoils and modern lake system. We will revisit siderite under Sect. 4.6.1. 

4.3 Nitrogen, iron and sulfur species in water column with functional annotations on the planktonic prokaryote 1445 

community 

4.3.1 Nitrogen species transformations and the N-utilizing prokaryotes 

Dissolved nitrate (NO3
−) concentrations across the dysoxic hypolimnion were approximately 25 µM and decrease about 28 % 

towards the anoxic monimolimnion. This decrease is accompanied by an increase in ammonium from 16 µM to up to 142 µM 

(Table 1; Fig. 4a). Similar behaviour of reactive N species were described in other ferruginous water columns (e.g., Michiels 1450 

et al., 2017; Lambrecht et al., 2018).  

 

Figure 4. Measured dissolved concentrations of nitrate and ammonia (a), manganous manganese and ferrous iron (b), and (c) sulfate 

in the bottom water column of Lake Medard (centre). Background grey colour code as in Fig. 2. 

The relative abundance of 16S rRNA gene sequences that can be ascribed to N-utilizing planktonic prokaryotes indicates that 1455 

Nitrosomonas-like species (95 to 98 % gen similarity) are in the dysoxic hypolimnion at a low normalized abundance which 

increases at the redoxcline. Here Nitrosomonas-like species may conduct the first and rate-limiting step in nitrification, i.e., 

NH3 oxidation (Lehtovirta-Morley, 2018). The second nitrification step, nitrite oxidation to NO3
−, could be exerted 
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predominantly by species exhibiting similarity (98% gene sequence) to Ca. Nitrotoga (98 % gene sequence similarity). Ca. 

Nitrotoga was detected in all our samples but exhibited a higher normalized abundance (up to 9 %) at the redoxcline (Fig. 5a).  

Among the relatively abundant, NH3-oxidizing microbes detected is an archaeon related to Nitrosarchaeum koreense (97-98 

% gen similarity). This archaeon appears to thrive better in the ferruginous waters below the redoxcline (Fig. 5a, also 1560 

Supplement 2). Its distribution across the redox gradient is at odds with the fact that N. koreense has been previously suggested 

to be an aerobe (Jung et al., 2018). Similarly,  members of the Candidatus Nitrosocaldaceae family (similarity 78-82 % in 387 

bp) appeared to be present in the anoxic zone of the water column, despite the best studied member of this family, Ca. 

Nitrosocaldus, being reported as displaying an aerobic lifestyle (de la Torre et al., 2008). The archaeal family has 

heterogeneous metabolic capabilities and is capable of oxidizing ammonia to nitrite (Luo et al., 2021). Our observation could 1565 

make the case for niche differentiation linked to high loads of dissolved metal concentrations conferring a competitive 

advantage to these archaea (e.g., Gwak et al., 2019). Alternatively, the NH3-oxidizing archaea detected predominantly in the 

ferruginous waters possess a yet to be explored tolerance to anoxia (see Mußmann et al., 2011). For instance, Ca. Nitrosocaldus 

encodes a pyruvate:ferredoxin oxidoreductase that is rather uncommon among aerobic ammonia oxidizers (Daebeler et al., 

2018), but it is encoded by most anaerobes capable to catalyze the decarboxylation of pyruvate to form acetyl-coenzyme A 1570 

(Chabrière et al., 1999). 

The maximal relative abundance of an Azospira-like microorganism (95 % similarity) coincides with the peak of relative 

abundance of members of the Gallionellacea family at 49 to 50 m depth (Fig. 5a, Supplement 2). Like Gallionella spp., 

Azospira also possess dissimilatory N and Fe-based metabolisms capable of yielding dinitrogen (N2)(Mattes et al., 2013). N2 

production probably accounts for a fraction of the apparent nitrogen loss observed when the dissolved reactive NH4
+ and NO3

− 1575 

levels are compared across their counter gradients (Table 1; Fig. 5a). Nitrite (NO2
−), an intermediate between NO3

− and NH4
+, 

can also accumulate. Yet concentration profiles of such intermediate remain to be accurately resolved in the increasingly saline 

(high chlorine) bottom water column of Lake Medard. 

Comparison of the gradients of abundances of the N-utilizing prokaryotes with the gradients of other bioactive species is 

presented in Fig. 4. This suggests that while metabolizing nitrogen the prokaryote community also impacts the cycles of Fe 1580 

and S  (e.g., Jewell et al., 2016, 2017; Starke et al., 2017). These cycles in the aqueous system under consideration are likely 

interlinked throughout microbial mediation in the generalized Reactions (1–3), but note that intermediate NO2
− may as well 

act as a relevant Fe(II) oxidant in this O2-depleted system (Klueglein et al., 2014): 

10Fe2+ + 2NO3
− + 24H2O → 10Fe(OH)3 + N2 + 18H+     (1) 

NO3
−+ 8Fe2+ + 21H2O→ NH4

+ + 8Fe(OH)3 + 14H+    (2) 1585 

5HS− + 8NO3
− → 5SO4

2− + 4N2 + 3OH− + H2O    (3) 

Reaction 1 proceeds mixotrophically, usually requiring a favourable organic co-substrate, whereas reactions 2 and 3 likely 

proceed under the influence of chemolithotrophic Fe(II) and/or S oxidizing nitrate reducers. Due to energetic considerations, 

these microorganisms are known for having metabolic advantages under ferruginous conditions over solely denitrifying 
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organisms (see Robertson and Thamdrup, 2017). Reaction 3 is known to proceed at rather low sulfide levels (Brunet and 1680 

Garcia-Gil, 1996; Barnard and Russo, 2009), such as those characterizing the monimolimnion of our study site (≤ 0.3 M). 

In the following section, to further investigate details on the microbial ecology of the bottom ferruginous waters of Lake 

Medard, we consider the concentration profiles of dissolved Fe and Mn along the redoxcline. Concentrations of these dissolved 

metals are operationally defined as the combined ionic and colloidal fractions that passed the 0.22 µm cut-off of membrane 

filters. By co-evaluating the dissolved Fe and Mn concentration trends we pursue further insight on the mechanism procuring 1685 

and/or consuming these metals in the stratified water column (Davidson, 1993). A 16S rRNA gene abundance profile of known 

iron-utilizing prokaryotes also permitted inferences on what members of the microbial community could be exerting a direct 

dissimilatory (catabolic), or indirect (via electron transfer) control over the concentration trends of these metals across the 

redox gradient. 

Figure 5. Normalized abundance of nitrogen, iron, and sulfur-1690 
utilizing prokaryotes in the bottom water column of Lake 

Medard (centre). Sequences were classified based on best 

BLAST hit results, and putative nitrogen (a), iron (b) and sulfur 

(c) metabolizing bacteria were identified based on phylogenetic 

affiliations. Normalization is with regard to total amplicon reads 1695 
in each sample. Grey background colours here indicate redox 

stratified niches and are based on Eh profile depicted in Fig. 2. 

Sequences were deposited in the European Nucleotide Archive 

(ENA) EMBL-EBI (PRJEB47217). 

4.3.2 Dissolved divalent manganese and iron and the Fe-1700 

utilizing prokaryotes 

Dissolved manganese concentrations ([Mn]) peaked at about 

50 m-depth (Table 1). Below this depth, [Mn] showed a 

steady decrease (Fig. 4b). This trend indicates that in the 

water column the 50-m depth acts as a point source of Mn(II) 1705 

(Davison, 1993). Divalent iron is also present at a similar 

concentration magnitude at this depth (Fig. 4b, Table 1), and 

it can readily act as a reductant of most particulate Mn(IV) 

settling down from the mixolimnion (Lovley and Phillips, 

1988; Myers and Nealson, 1988), Reaction (4): 1710 

2Fe2+ + MnO2 + 1.5H2O → Fe2O3·0.5H2O + Mn2+ + 2H+

     (4) 

Accordingly, a substantial fraction of the Fe(II) diffusing 

upwards from the monimolimnion could be re-oxidized or 

cycled back to Fe(III) within the peak zone of Mn(IV)‐reduction at 50 m-depth (Fig. 4b). Mn(II) yielded during iron oxidation 1715 
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can then be transported both upwards and downwards away from the 50 m-depth source point by eddy diffusion (Fig. 4b; 

Davidson, 1993). The internal bottom water column cycling of iron also reflects on the concentration gradient of dissolved 1750 

phosphate (Table 1). Solubilization of this oxyanion is thought to be regulated by reduction of its particulate Fe(III) sinks. 

Upward diffusion, however, allows for dissolved phosphate to be re-complexed back onto ferrihydrite-like phases that 

precipitate above the redoxcline, where its concentrations decrease (Table 1).  

Contrary to Mn, dissolved Fe concentration ([Fe]) increased steadily downwards, and its global maximum is reached at about 

54 m-depth in the monimolimnion (Table 1). Immediately below this depth, [Fe] decreases by about 14 %. This decrease can 1755 

be consistently observed in other anoxic zones of the lake (Petrash et al., 2018), and hints to Fe(II) and reduced S co-

precipitation as metastable acid volatile monosulfide (FeS; e.g., mackinawite). The dissimilar distribution of divalent Fe and 

Mn in the bottom water column (Fig 4b) reflected reductive dissolution being much more effective for the sinking manganic 

particulate than for ferric particulate matter. 

Our planktonic prokaryote analysis showed that above the redoxcline the relative abundance and taxonomic richness of known 1760 

iron-respiring prokaryotes were low and dominated by species closely related to the β-Protebacterium Rhodoferax (99-100 % 

gene similarity) (Fig. 5b, Supplement 2). Other sequences that can be functionally affiliated to Fe(III)-reduction in the dysoxic 

hypolimnion included a bacterium with between 92 and 100 % gen similarity to unclassified Pseudomonas spp. (Fig. 5b). 

Bioutilization of manganese by Pseudomonas species—both in oxidation and reduction reactions—has been reported (e.g., 

Tebo et al., 2005; Geszvain et al., 2011; Lovley, 2013; Wright et al., 2018). Other bacteria that may influence the aqueous 1765 

manganese cycling to indirectly affect that of dissolved iron belong to the family Hyphomicrobiaceae (e.g., Northup et al., 

2003; Spilde, et al., 2005). Three OTUs with significant homology to purportedly Mn(II)-oxidizing members of the family 

(Hyphomicrobium hollandicum, H. sp. KC-IT-W2, and Devosia sp.) exhibited maximal relative abundances above the 

redoxcline, but were notably absent from deeper monimolimnial waters (Supplement 2).  

As previously mentioned, we detected a sharp increase in the relative number of microaerophilic Fe(II)-oxidizing Gallionella 1770 

species at the redoxcline and immediately below it. They accounted for up to ~24 % of the total normalized gene reads (Fig. 

5b). The increase in relative abundance of Gallionella spp. coincided with an increase in sequences related to Sideroxydans 

spp. (Fig. 5b). These latter microaerophiles can also use Fe(II) as an energy source for chemolithotrophic growth with CO2 as 

the sole carbon source (Emerson and Moyer, 1997). Other different physiological groups of putative Fe(II)-oxidizing 

microorganisms detected above and near-redoxcline samples included anoxygenic phototrophic and nitrate-reducing species 1775 

(Magnetospirillum and Ferrigenium; Fig. 5b, Supplement 2), and Azospira-like species (Khalifa et al., 2018; Mattes et al., 

2013; Dziuba et al., 2016). 

Prokaryotes that can adapt their metabolic strategies to the less pronounced geochemical gradients prevailing at the 

monimolimnion became predominant below the redoxcline. Among them is a bacterium distantly related (89 % identity in 399 

bp) to Candidatus Magnetobacterium (after Lin et al., 2014), which relative abundance substantially increases at the 50-m 1780 

depth (Fig 5b). At this level, our gene sequence reads also included an OTU closely related to Georgfuchsia toluolica, a strictly 
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anaerobic β-Proteobacterium capable of degrading aromatic compounds with either Fe(III) or NO3
− as electron acceptors 1890 

(Weelink et al., 2009). HSs derived from lignite degradation contain abundant aromatic compounds (Wang et al., 2017). 

Towards the SWI, important members of the Fe−respiring community were those from the family Geobacteracea, which can 

use insoluble Fe(III) and/or Mn(IV) as electron acceptors, and acetate, formate, alcohols, aromatics, and dihydrogen (H2) as 

electron donors (Weber et al., 2006; Lovely and Holmes, 2021). The abundance of Geobacter species peaked around the 

maximum of Fe(III) reduction within the monimolimnion, at about 54 m depth. Here, acetate availability is also relatively high 1895 

(Fig. 2b). The relative proportion of Geobacter spp. increased in parallel with that of their phylogenetically associated 

Pelobacter propionicus, which is a fermentative acetogen that can only indirectly mediate Fe(III) reduction. A possible 

ecological interaction between P. propionicus and Geobacter species at the interface of redox boundaries in sedimentary 

environments has been already reported by Holmes et al. (2007) and Butler et al. (2009). 

4.3.3 Dissolved sulfate and the S-utilizing prokaryotes 1900 

The dissolved sulfate concentration ([SO4
2−]) changed at the redoxcline, where it increased from 6.0 to 16.8 mM (Fig. 4c). At 

the lower monimolimnion, a decrease in [SO4
2−] coincided with a decrease of [Fe(II)] (Table 1, Fig. 4b-c). In the lower 

monimolimnion, we detected an increase in the number of taxonomic groups and relative abundances of known sulfate reducers 

(Fig. 5c). Their by-product sulfide, however, does not accumulate in the ambient waters ([H2S + HS−] ≤ 0.30 µM). The lack 

of substantial dissolved sulfide towards the SWI and the similar hydrochemical responses of both Fe(II) and [SO4
2−] could be 1905 

considered circumstantial evidence for FeS precipitation, with another being δ56Fe values that increased across the redoxcline 

and towards the SWI (Petrash et al., 2022). Additional insight on this and other mechanisms of sulfate turnover operating in 

the water column was sought by evaluating the distribution of S-utilizing prokaryotes. 

Our 16S rRNA gene analyses (Fig. 5c; also Supplement 2) revealed a rather low number of taxonomic groups of sulfur-

respiring bacteria at the dysoxic hypolimnion. Here OTU assignments show mostly a few uncultured members of the newly 1910 

proposed order Desulfobulbales of the phylum Desulfobacterota (previously δ-Proteobacteria, Waite et al., 2020; Ward et al., 

2021))(Fig. 5c). Some species within Desulfobulbales require intermediate S or thiosulfate for heterotrophic growth but can 

also gain energy from pyruvate fermentation (Flores et al., 2012). Desulfobulbus spp. can perform dissimilatory sulfate 

reduction via the incomplete oxidation of lactate, but D. propionicus is known for efficiently conducting disproportionation of 

elemental sulfur (Lovley and Phillips, 1994). Pyruvate, as lactate, was found below our detection limits across the bottom 1915 

water column; where sequences distantly related to D. propionicus (91 % similarity in 428bp) appeared to be particularly 

abundant (Fig. 5c; Supplement 2). Probably important for the microbial sulfur cycling at this level of the water column is also 

a γ-Proteobacterium from the order Chromatiales that has 92 % gene identity in 424 bp to Thioalkalivibrio paradoxus (Fig. 

5c). T. paradoxus is a chemolithoautotrophic sulfur-oxidizing bacterium that can use both reduced and intermediate S 

compounds for C fixation (Berben et al., 2015).  1920 

There were gene sequences that could be confidently ascribed to the facultative S-utilizing autotroph Sulfuritalea 

hydrogenivorans (3 OTUs with ≥ 97 % identity in 424 bp) at the redoxcline. The abundance of S. hydrogenivorans increased 
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in parallel to a decrease in the T. paradoxus-like bacterium, which suggests that the latter may be at a disadvantage and limited 

by organic C fixation under the specific hydrochemical conditions prevailing at the redoxcline. Such conditions may include, 

for instance, an abundance of aqueous intermediate S species. Under such conditions, S. hydrogenivorans can outcompete the 

T. paradoxus-like bacterium by oxidizing, under denitrifying conditions, either thiosulfate, S0 and/or H2 for C fixation (Kojima 1950 

and Fukui, 2011; Kojima et al., 2014).  

At the redoxcline, the relative abundance of the species distantly related to fully sequenced Desulfobulbales also increased to 

~1.7 % (Fig. 5c). Below the redoxcline, our genomic data revealed successional development of a more diverse sulfur-respiring 

bacterial population (Fig. 5c). This was dominated by many relatively rare taxa and a few abundant lineages (Supplement 2), 

and with a punctuated dominance of species distantly related to Desulfobacca acetoxidans (90 % identity in 432 bp). D. 1955 

acetoxidans oxidizes acetate using either sulfate, sulfite (SO3
2–) or thiosulfate (S2O3

2−) as electron acceptors, but not S0 (Oude 

Elferink et al., 1999). The D. acetoxidans-like prokaryote first appeared at 49 m depth but became dominant towards the SWI, 

together with Desulfomonile-related species (96% identity in 432 bp). Desulfomonile-related species could be also responsible 

for the previously noticed pyruvate depletion, but here they may be also thriving chemolithoautotrophically with S2O3
2− as 

terminal electron acceptor (DeWeerd et al., 1990; Sun et al., 2001). Other prokaryotes probably gain energy out of intermediate 1960 

S disproportionation in the anoxic monimolimnion. These may include uncultured species distantly related to 

Desulfatibacillum and Dissulfurirhabdus (2 OTUs with 87 % identity in 428 bp). The presence of the genus Sulfitobacter 

across the aqueous redox gradient and into the monimolimnion (Fig. 5c) points to a continuous genetic potential for 

chemolithotrophic sulfur oxidation across the entire bottom water column. 

4.4 δ34S and δ18O isotope values of dissolved sulfate 1965 

4.4.1 A proxy for disproportionation  

Water column δ18OSO4 values ranged from +2.0 to +4.0 ‰, with corresponding δ34SSO4 values ranging between +10.9 and +13.4 

‰ (Table 1, Fig. 6a-b). The depth profiles of these isotopes in the water column reveal that dissolved sulfate in the anoxic 

monimolimnion is enriched in 18O (Fig. 6a-b) relative to the dysoxic waters. Despite the moderate decrease in [SO4
2−] towards 

the SWI (Fig. 4c) no significant sulfur isotope fractionation was registered. The δ34SSO4 values were only weakly correlated 1970 

with [SO4
2−] (R2 = 0.16).  

The ambient bottom waters had a narrow δ18OH2O range of values: −6.1 to −6.7 ‰. This is consistent with ongoing meteoric 

water-rock interactions and rather limited evaporation effects (cf. Noseck et al., 2004; Pačes and Šmejkal, 2004; Dupalová et 

al., 2012). By applying the expression first proposed by Taylor et al. (1984) to relate the δ18O values of dissolved SO4
2− and 

those of ambient waters, we deduced that the oxygen isotope effect (18εSO4-amb. wat.) in our bottom waters ranged between +9.3 1975 

and +10.7 ‰. This range was calculated under the assumption that equilibrium of oxygen isotope exchange between cell-

internal sulfur compounds and ambient water dominates over kinetic oxygen isotope fractionation (Fritz et al., 1989; Brunner 

et al., 2005). The estimated 18εSO4-amb. wat. is within the range experimentally derived by Brunner et al. (2005) while using 
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similarly 18O-depleted ambient waters. It is also within the range observed in studies of S disproportionation reactions generally 

proceeding under anoxic conditions (e.g., Böttcher, Thamdrup and Vennemann 2001, Böttcher et al., 2005). Yet, it is lower 

than 18εSO4-amb. wat. values reported by Bottrell and Newton (2006) in biotic experiments with excess reactive Fe(III) species—

i.e., +16.1 to +17.5 ‰. Therefore, our 18εSO4-amb. wat. could result from the superimposition of the isotope signals of sulfate 

reduction, sulfide re-oxidation and intermediate sulfur disproportionation. It follows that the sulfur disproportionation in the 2020 

bottom waters of Lake Medard most likely results from multiple biologically mediated reactions involving not only reactive 

iron, but also reducible Mn stocks in the sediments (Böttcher, Thamdrup, and Vennemann, 2001). As further discussed below, 

the anoxic sediments contain a low—i.e., compared with Fe(III)-counterparts—yet still measurable abundance of Mn(IV) 

(Table 2).  

A microbially mediated/induced sulfur disproportionation mechanism that considers reactive iron forms present in the 2025 

sediments, also involves Mn(IV,III) reduction, and is consistent with formation of FeS in the monimolimnion can then be 

described (Reactions 5–7, after Thamdrup et al., 1993; Böttcher and Thamdrup, 2001): 

3S0 + 2FeOOH → SO4
2− + 2FeS + 2H+     (5) 

4S0 + 4H2O + 3FeCO3 → SO4
2− +3FeS + 2H+ + 3H2CO3   (6) 

3S0 + Mn3O4 + 2H+ → SO4
2− +2HS− + 3Mn2+    (7) 2030 

Although not shown in the rather simplified reaction set listed above, S0 may well be a different intermediate sulfur species 

such as thiosulfate and/or sulfite (e.g., Holmkvist et al., 2011). The intracellular isotope exchange of sulfite with anoxic ambient 

waters has been proven to produce an oxidized SO4
2− product that is enriched in 18O relative to precursory thiosulfate and/or 

sulfite. This enrichment displays only a minor change, if any, in its corresponding S isotope composition (e.g., Böttcher et al., 

2005; Johnston et al., 2014; Bertran et al., 2020; see Table 1). In line with this assertion, at the monimolimnion there is 2035 

negligible sulfur isotope fractionation accompanying the recorded fractionation of oxygen isotope. Yet, our data recorded a 

small, but significant reverse sulfur isotope effect (+2.2 ‰) at the upper hypolimnion (Fig. 6a: 48 m depth). This isotope effect 

could be ascribed either to abiotic or biotic oxidation processes of intermediate S species occurring at that level of the water 

column (see Zerkle et al., 2016, their table 1).  

4.4.2 Insights on intermediate sulfur oxidation  2040 

A cross-plot of the δ34SSO4 vs. δ18OSO4 values along the redoxcline as well as those of all the possible geogenic sources of 

sulfate entering the lake system (see also Appendix B: Fig. B2) is shown in Fig. 6c. Analysis shows that the δ34SSO4 values of 

the redox stratified Lake Medard fingerprint a mixed geogenic-sulfate source. Fig. 6d offers further detail and linear regressions 

of the covariation in the δ34SSO4 vs. δ18OSO4 cross-plot. The slopes of such linear regressions can be used to roughly estimate 

sulfate reduction rates (SRR; after Böttcher, Thamdrup, and Vennemann, 2001; Brunner et al., 2005, among others). For 2045 

assessing our SRR, it is reasonable to assume that the initial S and O isotope composition linked to dissolved sulfate was within 
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the range of the modern nearby acidic drainage (i.e., +2.9 ± 0.1 ‰ for δ34SSO4 and 0.0 ± 0.5 ‰ for δ18OSO4), and similar to the 

initial composition of sulfate in the pit-lake prior to reclamation/flooding (Fig. B2, Appendix B). The residual isotope 2130 

composition would then be that of dissolved sulfate in the bottom anoxic waters.  

In agreement with the lack of accumulation of sulfide in the monimolimnion, our SRR estimation is consistent with slow gross 

but not net SO4
2− reduction (see Böttcher et al., 2004). The SRR is apparently slower at the monimolimnion (i.e., higher slope) 

than in the hypolimnion. This is at odds, however, with the higher taxonomic abundance of sulfate reducers that we detected 

near the SWI (Fig. 5c). The decrease in dissolved sulfate concentration (Table 1) does not lower the slope of the linear 2135 

regression. It means that the sulfur isotope ratio of dissolved sulfate evolves slower relative to corresponding change in oxygen 

isotope ratio. This result is likely due to sulfate regeneration through microbial sulfide oxidation; with oxygen isotope exchange 

with ambient water occurring via an intracellular oxidation step of intermediate sulfur (Böttcher et al., 2005;  Bertran et al., 

2020). Under the low organic substrate availability characterizing the bottom waters examined here (Fig. 2b), sulfate reducers 

capable of disproportionation (e.g., bacteria from the order Desulfobulbales) can maintain intracellular concentrations of 2140 

sulfite. This manifested geochemically as the rapid change in water column δ18OSO4 (Böttcher et al., 2005; Antler et al., 2013). 

Figure 6. The bottom water column δ18OSO4 and 

δ34SSO4 values (a-b). Grey background colour code 

as in Fig. 2. Also, a cross-plot of these values in the 

water column vs. those of all possible sources of 2145 
dissolved SO4

2− to the modern lacustrine system (c). 

The coupled sulfur and oxygen isotope-constrained 

slopes of the linear regressions provide a rough 

estimation of the SRR. The regressions considered 

the δ18OSO4 and δ34SSO4 of the acidic drainage as the 2150 
initial isotope composition of dissolved sulfate 

immediately after flooding (see text for details). 

4.5 Insights from solid phase analyses 

4.5.1 Semi-quantitative X-ray diffraction  

XRD analyses of the anoxic sediments show that 2155 

most detrital minerals were sourced from the 

Miocene claystone lithology (Appendix A). 

These detrital phases include kaolinite, quartz, K-

feldspar, the TiO2 polymorphs rutile and anatase, 

and analcime (NaAlSi₂O₆·H₂O). Minor 2160 

constituents of the anoxic lake sediments that can 

also be quantified include gypsum, siderite, and 

pyrite. Gypsum and siderite were in similar 

abundances in the upper anoxic sediments (~3 to 

4 wt. %), whereas pyrite accounts for a maximum 2165 
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of 0.5 wt. % of their total mineralogy (Fig. 7a). Given that the diffraction peaks of major and minor mineral sediment 

constituents mask those of Fe(III)- and Mn(IV)-oxyhydroxides, the abundances of these reactive phases were determined 

through a sequential extraction scheme that also targets Fe(II)- and Mn(II)-bearing carbonates. 

4.5.2 Sequential extractions of reactive iron  2185 

The relative concentrations of highly reactive Fe-bearing species (FeHR) in the upper anoxic sediment pile are displayed in 

Figure 7b. The FeHR sediment pool is defined as that capable of reacting (upon reductive dissolution) with dissolved sulfide to 

precipitate metastable FeS, which can later be stabilized to pyrite (Canfield and Berner, 1987; Canfield, 1989). We also report 

here Fe(II) bound to the pyrite fraction (Fepy), and the total iron (FeT) in the sediments (Poulton and Canfield, 2005).  

Our FeHR was dominated by poorly crystalline phases (Feh), such as ferrihydrite and/or lepidocrocite (γ-FeOOH). These FeHR 2190 

mineral fractions were followed in abundance by that of Fe(II)-bearing carbonates (FeC) (Fig. 7b, Table 2). A significant 

increase in the FeC is observed with increasing depth (Fig. 7b). This may be indicative of partial dissolution of some Fe(II)-

bearing carbonates at the SWI, or the result of soluble Fe(II) binding reactive Fe-carbonates deeper into the sedimentary pile. 

To clarify on this matter, we discuss the petrographic features and C isotope values of siderite in Sect. 4.6.1 

Absolute Fe(III) concentrations ascribed to Feh phases increase towards the bottom of our 8 cm depth core but their abundance, 2195 

relative to total iron, decreases downwards (Table 2). The extraction step for Feh also extracts Fe(II) bound to monosulfides 

(Kostka et al., 1995; Scholz and Neumann, 2007). These metastable phases yielded ≤ 0.04 wt. % according to our acid volatile 

sulfur (AVS) extraction. However, possible rapid oxidation of AVS particles during sampling of the sediments makes it 

challenging to assess their actual abundance and mineralogy (Schoonen, 2004). It thus appears then that the Feh abundance at 

the top of the sediments (Fig. 7b) is mostly comprised of poorly crystalline oxyhydroxide.  2200 

The iron extracted from crystalline Fe(III)-bearing phases (such as goethite) increased from 2.7 ± 0.4 % in the first 6 cm to up 

to 17.8 % of the FeT at the 6 to 8 cm interval (Table 2). Fe concentrations bound to pyrite (Table 2, Fig. 7b) constituted up to 

~21 % of the FeT in the upper sediments (i.e., ~0.8 bulk wt. %), and showed a general downwards decreasing trend contrasting 

with that of that of crystalline Fe(III)-bearing phases. From these observations, the 0 to 6 cm depth interval is confidently 

considered as recent anoxic lake deposition, whilst below 6 cm are sediments that were deposited in the shallow pit lake now 2205 

undergoing alteration under the redox dynamics of the present-day lacustrine system. 

The FePy/FeHR ratio in the 8 cm long sediment profile accounts for the extent to which the Fe pool was pyritized. The ratio is 

< 0.35 and decreases downwards (Table 2). When considering that the corresponding FeHR/FeT ratios were consistently ≥ 0.71, 

the results from our sequential extraction scheme applied to iron are consistent with a persistent ferruginous but not euxinic 

redox state of the now anoxic sediments (Poulton and Canfield, 2011). Variability of Fepy/FeHR and FeHR/FeT with depth of the 2210 

sediments reflects the redox dynamics after flooding and establishment of a chemically distinct monimolimnion. 

From combining results from FeHR partitioning in the sediments (Table 2) and the dissolved Mn(II) and Fe(II) concentration 

trends (Fig. 4b), we can now strengthen an earlier deduction that Fe(II) sourced from reductive dissolution processes in the 

upper sediments diffuses upwards, where it rapidly reacts with residual O2 in the vicinity of the redoxcline to form metastable 
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Fe(III)-bearing particulate phases. Most of the iron in such amorphous to nanocrystalline ferrihydrite-like aggregates are 

deposited on the lake’s anoxic floor. From the anoxic floor iron is resolubilized back into the monimolimnion, yet a fraction 

of it stabilizes upon burial as goethite (α-FeOOH) or is bound to the surfaces of reactive carbonates. Another fraction is 

pyritized through reactions involving elemental sulfur and/or polysulfide near the SWI (Fig. 7b) (Shoonen, 2004 for details). 2240 

Indeed, we observed that in the upper sediment the partitioning of the reactive iron into these minerals can be swiftly altered 

by short-lived variations (± 150 mV) in the redox potential of the bottom water column. Variations in the relative proportions 

of reactive iron minerals also control the distribution of siderophile redox sensitive elements in the sediment pile (Umbria 

Salinas et al., 2021). 

Table 2. Partitioning of reactive iron and manganese species in the lacustrine sediments (0−8 cm depth). 2245 

 Depth  

(cm)  

FeHR 

FeT 
FeHR/ 

FeT 

Fepy/ 

FeHR   

MnHR 

MnT 
Exch.  Fe(II)CO3  

Poorly cryst. 

Feox  

Cryst. 

Feox  
Fe(II)py  Exch.  Mn(II)CO3  

Poorly cryst.  

Mnox  

Cryst.   

Mnox  
Mn(II)py  

0−2  
14.7  

±2.4  

283.2  

±45.3  

302.8  

±48.3  

29.6  

±4.7  

189.9  

±3.6  

1024.4 

±6.2  0.80  0.23  

1.0  

±0.1  

18.9  

±1.5  

3.6  

±0.3  ≤ 0.15  ≤ 0.02  

23.7 

±0.4  

2−4   
20.3  

±3.2  

294.7  

±47.2  

308.6  

±49.4  

33.7  

±5.4  

224.6  

±2.4  

1067 

±10.5  0.83  0.25  

3.8  

±0.3  

9.4  

±0.8  

3.3  

±0.3  ≤ 0.16  ≤ 0.03  

13.2 

±0.2  

4−6   
28.8  

±4.6  

365.7  

±58.5  

263.6  

±42.2  

21.5  

±21.5 

128.9  

±2.9  

1142 

±10.9 0.71  0.16  

2.7  

±0.2  

11.6  

±0.9  

2.8  

±0.2  ≤ 0.13  ≤ 0.03  

14.8 

±0.2 

6−8   
24.4  

±3.9  

689.3  

±110.3  

335.7  

±53.7  

373.7 

±59.8 

117.9  

±4.2  

2097 

±22.8  0.73  0.08  

1.2  

±0.3  

7.3  

±0.6  

1.9  

±0.2  ≤ 0.17  ≤ 0.02  

9.5  

±0.1  

# Sediment density is estimated in 2.71 g·L−1 with a porosity of 40 %; error of the measurement (n=4) is ± 16% [Fe] and ± 8% [Mn];  in µmol·cm−3. 

4.5.3 Sequential extractions of reactive Mn−bearing phases 

Results from our extraction scheme applied to Mn (i.e., after Slomp et al., 1997; Van Der Zee and Van Raaphorst, 2004) show 

that the MnHR pool in the anoxic sediment was dominated by Mn(II)-bearing carbonates (MnC) (Fig. 7c, Table 2). The 

carbonates were relatively more abundant at the SWI but in contrast to FeC, showed no clearly defined concentration trend in 2250 

the upper sediments (Table 2, Fig. 7b-c). A declining trend downwards is clear for the proportions of easily reducible Mn(IV)-

bound to poorly crystalline phases, such as δ-MnO2. These were extracted by diluted HCl (Fig.7c, Table 2) (Slomp et al., 

1997). Reducible Mn associated with more crystalline oxyhydroxide forms are extracted by dithionite (Canfield et al., 1993), 

but concentrations of this fraction might be sourced from crystalline Fe(III)-oxyhydroxides that can either sorb Mn(II) or 

structurally incorporate Mn(III) (Namgung et al., 2020). Irrespective of its source, the highly crystalline Mn-bearing fraction 2255 

in our sediment comprises ≤ 0.2 wt. % of MnT (Table 2). The concentrations of Mn(II) bound to sulfides accounted for ≤ 0.03 

wt. % of the total Mn extracted (Fig. 7c, Table 2). From the analyses of the partitioning of reactive Mn species, we can thus 

confirm that under the anoxic conditions currently prevailing in the bottom waters and SWI of Lake Medard, a minor, yet still 

important fraction of reducible MnHR can be exported from the water column, and can participate, together with the reactive 

forms of iron, into the internal cycle of S (e.g., Reaction 7).  2260 
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Figure 7. Mineralogical analyses of the upper sediment (0 to 8 

cm depth), the semi-quantitative XRD data (a) shows that the 

sediments are dominated by aluminosilicates and contain 

pyrite, gypsum, and siderite. Results from sequential extraction 

of iron (b) and manganese (c) portray changes in partitioning 2280 
of these metals in reactive oxyhydroxide, carbonate and sulfide 

solid phases with increasing sediment depth. SEM-EDX of 

rhombohedral siderite in the 0−4 (d) and 4−8 cm sediment 

depth intervals (e). This carbonate mineral displayed corroded 

surfaces near the SWI. The texture of microcrystalline equant 2285 
gypsum (f) and truncated octahedral microcrystalline pyrite (g) 

are also shown (see text for details). 

4.6 Insights from siderite, gypsum, and pyrite 

analyses 

4.6.1 Siderite 2290 

Siderite accounts for up to 3.5 wt. % of the total 

mineralogy of the anoxic lacustrine sediment where it 

occurs as dispersed fine crystalline rhombohedra. 

Siderite displays corroded surfaces towards the SWI. 

This textural feature cannot be observed in crystals at the 2295 

4 to 8 cm depth interval (Fig. 7d-e). This is consistent 

with results from the sequential iron extraction scheme 

(see above) indicative of Fe-carbonate likely undergoing 

recrystallization and/or growth in the deeper part of the 

examined sediment pile, but partial dissolution towards 2300 

the SWI and despite its low supersaturation in the 

monimolimnion (Ωsid. = log IAP · (log KSP)−1 = 1.1; 

Supplement 1). 

The siderite is enriched in 13C by around +9 ‰ (mean 

δ13C value of siderite is +6.4 ± 0.3 ‰) relative to ΣCO2 2305 

of the bottom water column (Table 1). The mean δ13C 

value of the mineral is, however, within the range of δ13C 

isotope values reported by Šmejkal (1978) for carbonates 

of the Cypris claystone. Also, the mean δ18O values 

(+25.7 ± 1.7 ‰) of siderite are within the range observed in Miocene claystone’ carbonates which, in addition to siderite are 2310 

comprised also of dolomite and calcite (Šmejkal, 1978, 1984). From combining the average isotopic values and textural 

features of siderite in our anoxic sediments, the mineral can then be considered a seeded (detrital) phase also sourced from the 
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claystones. Siderite seeds were probably redeposited first in the mine spoils and then in the floor of the post-mining lake, 

together with aluminosilicates and other major and minor mineral phases, during the lake’s flooding stage (2008-2016), or 

thereafter. 

4.6.2 Gypsum 

Gypsum has a relative abundance of ca. 3 wt. %. It displays a microcrystalline {010}-dominated platy shape (Fig. 7f). This is 2330 

an equilibrium morphology corresponding to a rather low supersaturation (e.g., Simon et al., 1965; van der Voort and Hartman, 

1991; Massaro et al., 2010; Rodríguez-Ruiz et al., 2011). This soluble mineral is not thermodynamically predicted by the 

aqueous-mineral equilibrium modeling of the monimolimnion water (i.e., Ωgy = -2.3; Supplement 1). However, a low saturation 

state (0 < Ωgy < 1) that would allow for gypsum formation must exist in the upper sediment pore spaces, for instance, where 

Ca+2 ion activities are locally being increased by carbonate dissolution. 2335 

Gypsum precipitation under low saturation states can probably occur as the result of short-lived, climatically constrained 

changes in the precipitation-dissolution environment of the upper sediment pile (see Umbria-Salinas et al., 2021). The isotope 

values of the sulfate moiety in the authigenic gypsum (δ34Sgy and δ18Ogy) provide further insight on the significance of this 

phase within the internal sulfur cycle and early diagenetic context of the system under consideration. The δ34Sgy isotope values 

ranged from −13.9 and −9.6 ‰. Accordingly, gypsum shows 34S-depletion of −17.8 to −11.6 ‰ relative to dissolved SO4
2− in 2340 

the ambient anoxic waters (Table 1). The δ18Ogy values range from +5.1 to +6.3 ‰ (V-SMOW). In consequence, the sulfate in 

gypsum is 18O enriched by +1.4 to +2.6 ‰ as compared with the mean δ18OSO4 of the monimolimnion (Table 1). This magnitude 

of isotope 18O enrichment of gypsum-sulfate appears consistent with the range observed when sulfate is derived from pyrite 

that is oxidized by ferric iron in aqueous anaerobic experiments (e.g., Taylor et al., 1984b; Toran and Harris, 1989; Balci et 

al., 2007). 2345 

A net O2 neutral reaction that also accounts for (i) significant iron sulfide oxidation, (ii) the localized presence of corroded 

siderite in the upper sediment, (iii) involves chemolithoautotrophic fixation of CO2, and (iv) produces an isotopically light 

gypsum-sulfate could therefore be written (Reaction 8): 

3Fe32S + 3CaCO3 + FeCO3 + 14H2O → 4FeOOH + 3Ca32SO4·2H2O + 4CH2O    (8) 

Reaction 7 assumes that the acidity produced by the oxidation of pyrite and its precursors is neutralized by a 3:1 dissolution 2350 

of calcium to iron carbonate phases in the upper anoxic sediments. The Ca2+ ions released by carbonate dissolution can then 

co-precipitate with the porewater SO4
2− ions to form gypsum. The mineral is 34S-depleted as compared to sulfate dissolved in 

the monimolimnion, but it reflects the δ18O signature of the ambient anoxic water. 

4.6.3 Pyrite 

Pyrite accounted for ≤ 0.5 wt. % of the total XRD-estimated mineralogy of the sediments and occurs as finely dispersed single 2355 

octahedral crystals that are up to 2 µm in size, and exhibit {111} and {100} truncations (Fig. 7g). This morphology is often 
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seen to develop under sulfide-limited conditions in synthetic experiments (e.g., Barnard and Russo, 2009). From the 

morphology of pyrite and because its δ34S isotope values differ considerably from those of weathered pyrite in the coal seams-

associated lithology (Bouška et al., 1997; Appendix B: Fig B2), this mineral is more probably authigenic in origin. It must 

have formed locally within the anoxic sediments at low supersaturation, and with nucleation itself depleting the availability of 

reactants (i.e., S2− species) required for further nuclei formation (Rickard and Morse, 2005). Thus, its dispersed, fine crystalline 2395 

occurrence. 

The δ34S isotope values of the finely dispersed pyrite crystals are operationally defined as those of the bulk sediment chromium-

reducible sulfide (CRS) pool (Canfield et al., 1986). In the upper anoxic sediments, this CRS pool became 34S-enriched with 

depth. Accordingly, in the 0 to 4 cm-depth pyrite has δ34SCRS isotope values of −34.7 ± 0.4 ‰. At 4 to 8 cm sediment depth, 

however, it is relatively 34S-enriched (δ34SCRS = −23.9 ± 0.9 ‰).  2400 

Pyrite captures the isotopic signature of dissolved sulfide in its local precipitation environment, and at and near the SWI this 

mineral appears to have recorded an isotopic offset (
34εCRS-SO4) of around 38 ‰ relative to the δ34SSO4 of the monimolimnion. 

This magnitude of apparent fractionation could be ascribed to incomplete microbial sulfate reduction, with an additional open 

system oxidative sulfur cycling (Johnston et al., 2005, Zerkle et al., 2016), and it may point to our biogenic pyrite results from 

the activity of bacteria capable of fully oxidizing the organic substrates scarcely available (Canfield, 2001; Brüchert, 2004). 2405 

This explains the observed depletion of lactate and pyruvate at this depth in the water column. Limited microbial sulfate 

reduction is consistent with the fact that pyrite in the lacustrine sediments precipitates without triggering sulfate exhaustion 

(Scholz, 2018; Canfield, 2001)  

Approximately 10 ‰ 34S isotope enrichment in authigenic pyrite at the bottom of our section hints to an additional heavy CRS 

formation mechanism being more active deeper within the anoxic sediment pile. It could also be the case that the δ34SSO4 values 2410 

in porewaters in equilibrium with the heavier pyrite are evolved because of variable fractionations associated with MSR 

(Canfield, 2001; Brüchert, 2004). The δ34S values of pyrite from the lower part of the cores also exhibit a narrower difference 

when compared with those of coexisting authigenic gypsum as shown in Fig. B2 (Appendix B). We can attribute these results 

to a greater abundance of highly reactive Feh phases capable of oxidizing monosulfide (Table 2) in the lower part of the cores 

investigated. 2415 

The CRS pool also includes the sediment’ S0 fraction (Canfield et al., 1986), and given that S0 derived from the 

chemolithotrophic oxidation of sulfide is relatively 34S-enriched (e.g., Zerkle et al., 2016; Pellerin et al., 2019), we suggest that 

34S enrichment in gypsum at the bottom sediments fingerprints isotopically heavier S0 comprising that evolved CRS pool. This 

interpretation is not only consistent with the decreased proportions of FePy in the lower part of the sediment pile (Table 2), but 

also with microbial disproportionation-induced fractionations (e.g., Canfield, 2001, 2003; Böttcher et al., 2005; Pellerin et al., 2420 

2019). 
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4.7 The imbalanced aqueous redox system in Lake Medard: synthesis 

The newly formed Lake Medard has overlapping S, N, Fe, and C cycles occurring in the anoxic portion of the water column. 

This is unusual in natural, redox stabilized meromictic lakes where at least one of these cycles is functionally diminished or 

undergoes minimal redox transformations. Alternation of two bistable states could be the case in natural aqueous systems that 

can be rendered ferruginous, and this alternation is largerly controlled by shifting in the prevailing trophic state. Accordingly, 2450 

ferruginous conditions occur in low productivity, organic-poor systems; whilst euxinic conditions would dominate in high 

productivity, organic-rich systems where production of sulfide depletes dissolved sulfate and may out titrate dissolved iron 

(van de Velde et al., 2021; Antler et al., 2019).  

The redox stratified Lake Medard demonstrates that ferruginous conditions can develop without substantial sulfate 

consumption (see Scholz, 2018, and references therein). Our geochemical model on this imbalanced redox system confers a 2455 

major role to a planktonic prokaryote community that is, to some extent, compartmentalized in the bottom water column, 

where it mediates in the interlinked C, N, S, and Fe and Mn species transformations occurring across the redoxcline (Fig. 8). 

These transformations involve a cryptic sulfur cycle with generation and consumption of sulfur intermediates, and exert also 

an influence on the concentration gradients of other dissolved bioactive species, such as phosphate. The internal P cycling 

occurring below the redoxcline (Fig. 8) can in fact render oligotrophic the entire water column (Petrash et al., 2018).  2460 

Towards the hypolimnion, particulate matter formation involves a microaerophilic iron oxidizers/ nitrate reducer community 

(e.g., Gallionellacea). These members of the community promote a continuous amorphous iron aggregate precipitation and 

export down to the ferruginous SWI, where these aggregates stabilize and/or are reductively dissolved by iron reducers (e.g., 

Geobacter spp.). In the sediment, stocks of pre-existing siderite, and recently stabilized oxyhydroxides fuel anaerobic oxidation 

and disproportionation of by-product sulfide from MSR. In consequence, the coupled stable oxygen and sulfur isotope-based 2465 

SRR estimate indicates no net sulfate reduction, despite an increased genetic potential for this pathway, as deducted from 16S 

rRNA gene analysis, and concomitant evidence for dissolved SO4
2− consumption likely involving metastable FeS formation 

in the monimolimnion. We are furthering the study of the interplay between Fe and S cycles in the O2-depleted water column 

by bridging our δ34S data with δ56Fe measurements. The combined results support an active vigorous co-recycling of these 

elements below the redoxcline (Petrash et al., 2022). Accordingly, an increase in the relative proportion of dissolved 56Fe near 2470 

the lakebed (δ56Fe = +0.12 ± 0.05 ‰) can be ascribed to precipitation of monosulfides, whilst precipitation of oxyhydroxides 

at the redoxcline leads to depletion of 56Fe  (δ56Fe = −1.77 ± 0.03) in the residual Fe(II) (cf. Busigny et al., 2014). 

The δ34SCRS values in the upper part of the sediment pile were consistent with incipient and incomplete MSR-induced 

fractionation, yet MSR is not accompanied by dissolved sulfate depletion because of a low organic substrate availability and 

due to bioenergetic considerations given by the presence of dissimilatory iron reducers and an abundance of Fe(III) substrates. 2475 

Importantly, the δ34SCRS of the CRS pool at the lower sediment pile likely incorporates 34S from intermediate sulfur. Finally, 

acidity generated by anaerobic S oxidation reactions proceeding near and at the SWI is neutralized by partial carbonate 

dissolution, which in turn provides Ca2+ ions for interstitial microcrystalline gypsum precipitation. This gypsum’s δ34S values 
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fingerprint intermediate sulfur disproportionation. Redeposited siderite, although experiencing dissolution at the SWI, may be 

undergoing recrystallization and growth below ~4 cm sediment–depth, such as evidenced by increase FeC contents and the 

absence of corroded siderite crystal surfaces in the lower part of the sedimentary section examined here. 

 

 2625 

Figure 8. Scheme summarizing the speciation and stable isotopes ranges of sulfur-bearing phases (pyrite, S0: CRS; gypsum: GYP) 

and siderite: SID) and the biogeochemical cycling mechanisms likely operating in the redox stratified Lake Medard and its SWI. 

(Background colours as in Fig. 2) The prokaryote groups depicted represent nitrate-, iron- and sulfur-utilizing species identified via 

16S gene amplicon sequencing (see text for details). 

4.8 Relevance for deep time palaeoceanographic and/or diagenetic interpretations 2630 

The current lake system provides the opportunity to investigate biogeochemical controls active under a transitional state 

between nitrogenous and sulfidic conditions. This state cannot be observed in the scarce examples of redox stratified euxinic 

marine basins existing today (i.e., Black Sea, Cariaco Basin; Meyer and Kump, 2008) nor in the few natural mesotrophic to 

eutrophic ferruginous lakes presumedly analogues to ancient redox stratified oceans (see Koeksoy et al., 2015). Similar 

transitional redox states would have been more prevalent at times with decreased Phanerozoic seawater sulfate concentrations 2635 

and diminished shuttling of Fe(II) to sediments. Together these factors would have enabled more widespread ferruginous 

conditions (Reershemius and Planavsky, 2021) that transiently encompassed the water column of Mesozoic epicontinental 

seas (Petrash et al., 2016; Bauer et al., 2022). Therefore, the link between the biogeochemical controls operating in the water 

column of our study site and the mineral equilibrium conditions prevailing near and at its anoxic SWI may also be relevant fo r 

studying elusive shallow burial diagenetic signals developed in fluid-buffered sediments. Also, to unravel overprinting of 2640 

redox proxies in carbonates altered in movable redox stratified coastal aquifers (Petrash et al., 2021).  
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In deeper geological time, the increased delivery of continental sulfate to Precambrian sediments containing not only iron 

oxyhydroxides but also siderite, probably triggered early diagenetic reactions similar to those reported here (e.g., Bachan and 

Kump, 2015). Comparable diagenetic hydrochemical conditions would have arisen as well when transgressions of basinal 2665 

ferruginous seawater affected evaporitic facies buried by coastal progradation. In this scenario, the low preservation potential 

of gypsum would have hindered direct interpretations of any possible isotopic offset recorded by its more stable replacive 

phases (e.g., silicified dolomite).  

Although gypsum is rarely preserved in Proterozoic shallow-marine successions (but see Blättler et al., 2018), pseudomorphic 

carbonates after this mineral are volumetrically important in many Precambrian peritidal facies. In such facies, primary gypsum 2670 

was often replaced by a metastable early diagenetic phase (e.g., Philippot et al., 2009). In a modern thrombolite-forming 

environment, Petrash et al. (2012) describes an early replacement process of gypsum that involves initial replacement by 

metastable aragonite. This produces Sr carbonate signals in pseudomorphic calcite replacing aragonite that depart from the Sr 

content of the ambient water, and, by analogy, can disguise an ancient primary gypsum mineralogy. Similarly to Sr, the 

structurally substituted sulfate in the carbonate lattice (CAS) of peritidal carbonates (i.e., as a putative proxy for contemporary 2675 

Proterozoic seawater sulfate) can also be altered early during diagenesis, and exhibit isotope signals incompatible with those 

of coexisting pyrite (Blättler et al., 2020). The δ34S values of these phases—if formed contemporaneously—shall be expected 

to approach one each other as per the low dissolved sulfate levels generally ascribed to Proterozoic open oceans (e.g., < 400 

µM, Fakhraee et al., 2019). An explanation for such a discrepancy is that the CAS and pyrite S isotope proxies recorded the 

pore fluid signal of diagenetically evolved sulfate in Precambrian (e.g., Rennie and Turchyn, 2014; Li et al., 2015), and some 2680 

Phanerozoic evaporitic/ stromatolitic facies (e.g., Thomazo et al., 2019). Conversely, a similar inconsistency could arise when 

early diagenesis ensued transient out-of-equilibrium water column conditions equivalent to those currently prevailing in Lake 

Medard, where dissolved Fe2+ is the dominant redox species, substantial dissolved and solid phase sulfate are present, and the 

sediment stocks of FeHR buffer dissolved sulfide accumulation whilst dissolution of Miocene carbonates buffers the system 

with regard to acidity generated by oxidative reactions. 2685 

5. Conclusions 

We investigated biomineralization reactions occurring, and prokaryotes thriving in the ferruginous and sulfate-rich water 

column of a post-mining lake. For this purpose, we considered the pools and fluxes of iron, manganese, carbon, nitrogen, and 

sulfur in the bottom redox stratified water column and upper reactive sediments (Fig. 8). Discrete spectroscopic datasets were 

combined with a 16S rRNA gene-aided inference of the planktonic prokaryote community structure to unravel the mechanisms 2690 

procuring and/or consuming bioactive nitrogen, iron, and sulfur species in the redox stratified ecosystem. Integration of these 

datasets provides evidence for niche differentiation, but despite marked redox gradients in the water column, we observed a 

sustained genetic potential for anoxygenic sulfide oxidation and intermediate sulfur disproportionation. The processes were 

further substantiated by using sulfate S and O isotope systematics. Microbe-mineral interactions near the anoxic sediment–
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water interface modulate the aqueous equilibrium of both reactive authigenic and redeposited Fe- and Mn-bearing phases. A 

vigorous anoxic sulfide oxidation pathway is coupled to the reduction and solubilization of the ferric and manganic particulate 

stocks of the lacustrine sediment (Fig. 8).  

Dissolved sulfate need not to be quantitatively depleted for the establishment of ferruginous conditions in the water column. 

The aqueous system-scale reactions currently proceeding in the redox stratified water column and upper anoxic sediments of 2700 

Lake Medard are relevant for describing transient redox imbalanced stages between nitrogenous and ferruginous conditions 

that developed in water columns of ancient nearshore marine settings featuring decreased but not exhausted sulfate levels. 

These could have produced some of the conflicting isotope signatures often described for coexisting phases of interest as 

peleoredox proxies, e.g., carbonates and sulfides. The effects in the geochemical record of analogue imbalanced states are yet 

to be fully accounted for. This research effort has implications for untangling the deep time palaeoceanographic redox structure 2705 

of continental margins. We anticipate that further studies in the ferruginous artificial lacustrine system targeted here can 

provide a more complete picture depicting processes recorded by conflicting proxies in several key, well-preserved 

Precambrian shallow marine facies. 

Appendix A. Geological background  

The northwest Bohemia (Czechia) region was an intracontinental basin comprised of peatlands, isolated ephemeral lakes and 2710 

peat bogs by the Late Eocene. This lowland landscape developed and expanded in association with subsidence in the Eger rift 

(Dèzes et al., 2004). By the Oligocene, the lowlands extended over an area >1,000 km2 along the Sokolov and Most basins 

(Matys Grygar et al., 2014). Thus, organic-rich peatlands now encompass lignite seams that correlate across the Czech-

Germany boundary and toward Polish Silesia. The extended wetlands along the Eger continental rift turned, by the beginning 

of the Miocene into a large playa lake affected by exhalative hydrothermal inputs (Pačes and Šmejkal, 2004) and, episodically, 2715 

by alkaline volcanism (Ulrych et al., 2011). Deposits on this paleolake represent the last interval of the syn-rift sedimentation 

and consist of on 70–120 m thick carbonate-rich, kaolinitic coal-bearing claystone with several horizons of tuff material. These 

deposits are lithostratigraphically referred to as the Cypris Formation (Kříbek et al., 1998, 2017,), and now outcrop in elevated 

areas of the Sokolov Mining District, where they overlie the coal seams that were exploited to exhaustion in the former Medard 

open-cast mine. Percolation of waters from the Miocene paleolake produced epithermal mineral salt deposits. Efflorescences 2720 

of thernadite (Na2SO4) are associated with fluid flow along faults and fractures (Šmejkal, 1978). Modern hydrological 

processes, including groundwater infiltration (Rapantova et al., 2012, Kovar et al., 2016), thus introduce dissolved sulfate (and 

iron) into the modern hydrological system (Pačes and Šmejkal, 2004). A 3-year monitoring survey (2007-2010) of dissolved 

sulfate and iron concentrations in the watershed now occupied by the post-mining lake (Supplement 3) explain spatial (and 

temporal) concentration variabilities seen as concentrations of these ions are measured and compared across the lake’s bottom 2725 

waters. For example, western Medard has a consistently higher Fe(II) contents matching the dissolved iron gradients observed 

in the watershed. As could be expected, dissolved sulfate increase towards the east (Petrash et al., 2018).  
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The Miocene Cypris claystone  and quaternary alluvions comprised of material derived from this unit, function as the main 

source of sediments to the modern post-mining lacustrine system. The mineral assemblage of the stratigraphic unit includes 

kaolinite, K-feldspar, quartz, rutile and anatase, and gypsum. It also contains analcime (NaAlSi2O6), weathered pyrite, and 2735 

carbonates (calcite, Fe-dolomite, and siderite), and greigite (Fe3S4) (Murad and Rojík, 2003, 2005).  

Organic matter content in the Cypris claystone exhibits variability that recorded discontinuous development of widespread 

anoxia across the paleolake, accompanied also by shifts in salinity and alkalinity. This paleoenvironmental setting promoted 

lacustrine authigenic carbonate deposition (Kříbek et al., 2017). Overall, the authigenic mineral assemblage, elemental 

concentration trends, and the heavy O and S isotopic signatures of secondary sulfate minerals of the Cypris claystone (Fig.  B2, 2740 

Appendix B) indicate precipitation in a large saline playa paleolake in which the oxidative weathering of sulfides, volcanic 

exhalations, and meteoric water-rock interactions imparted a major geochemical imprint that is superimposed to that of the 

episodic changes in the paleolake’s redox conditions (Šmejkal, 1978; Pačes & Šmejkal, 2004). A compilation of the δ34S of 

the sulfate sourced largely from the Miocene claystone is shown in Figure B2 (Appendix B). As discussed in the main text, 

dissolved sulfate of the modern redox stratified Lake Medard’s waters fingerprint these sources. 2745 

Appendix B. Figures B1 and B2 

Figure B1. Pourbaix diagrams of the thermodynamically 

stable Fe and S phases in the  bottom waters of Lake 

Medard at the time of sampling (black dots). Modeling 

results of Eh-pH parameters measured at a time when the 2750 
redoxcline shifted downwards and the mean 

monimolimnion Eh  transiently changes from < −200 mV 

to −80 mV are also shown (crosses). Variation of these 

physicochemical parameters coincide with seasonal 

hydrological dynamics of the local watershed, and its 2755 
effects over groundwater influx. Seasonal, short-lived 

shifts of conditions at the monimolimnic ferruginous 

waters favour Fe(III)-oxyhydroxide precipitation. 

 

Figure B2. A comparison of the ranges of reported δ34S 2760 
values of potential sources of oxidized sulfur to Lake 

Medard (after Šmejkal 1978; Krs et al., 1990 for greigite), 

the ranges of sulfate-rich bottom water column and 

authigenic gypsum and pyrite in the upper anoxic sediments 

(this work) are also shown (filled boxes). 2765 
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