
Authors would like to recognize the thoughtful comments provided by the Reviewer which led to 

several important changes in our approach. We clarified the goals of this study, we focused on 

tower infrastructure currently measuring CH4, and we better explained how we are measuring 

representativeness.  

Reviewer 1: 

This study aims to present a representative assessment of network infrastructure for improving 

our understanding of methane emissions across the US. I respectfully believe that the authors do 

not present the appropriate analysis for clearly addressing this goal. The authors present a 

relatively simple way to generate (ecological) clusters and then they list how many sites are in 

these clusters and evaluate their distance from the medoids. Arguably, the clusters were 

produced with variables that are relevant for any ecological process and they are not specifically 

designed to represent drivers of CH4 fluxes (as claimed by the authors). Representativeness is 

assessed based on the distance of the locations of the current study sites to the medoid, which is 

arguably a flawed approach as there are underlying assumptions that do not consider spatial 

heterogeneity of importance for CH4 fluxes. Finally, this study is more associated with a generic 

network representative analysis of AmeriFlux or GLEON and the authors present a lengthy 

discussion about limitations of CH4 measurements that are not directly related to the results. 

Reviewer 1 highlights the need for greater detail in the approach taken to measure 

representativeness and our overall goal. In response to this comment we increased the level of 

detail in the methods section and provide here a summarized response.  

The primary goal of this work is to determine key regions where we need CH4 infrastructure 

within the US. We do this by identifying the gaps in active research infrastructure and evaluating 

where infrastructure can be adapted to include CH4 measurements. To address this goal, we used 

a combination of climate data and dominant land cover types to guide the scientific community 

on how we can develop a distributed observing network for the US and provide a template for 

the development of similar networks in other regions. We focus here on EC flux towers because 

they are essential for a bottom-up framework that bridges the gap between point-based chamber 

measurements and airborne platforms and are therefore a useful basis for identifying gaps in the 

current network of CH4 observations. Although we initially focused on all tower infrastructure, 

we now focused on the towers measuring CH4 (n=100) and we distinguished between towers 

providing data to Ameriflux (yes =49, no = 51) and tower activity (active = 70; inactive = 30).  

 

To understand the landscape representativeness across geographic clusters, we measured 

dissimilarity (previously called distance to the medoid) based on climate and land cover type. It 

is important to note that at the ecosystem scale a tower is representative of the ecosystem type 

and the region where it is stationed (Desai, 2010; Jung et al., 2011; Xiao et al., 2012; Chu et al., 

2021); however, the landscape representativeness analysis done here uses a coarser classification 

of land cover classes that are more emblematic of regional disturbance regimes, resource 

availability, and factors that influence how ecosystems function, not the specific ecosystem type 

where the tower is situated. Chu et al., 2021 examined the land-cover composition and 



vegetation characteristics of 214 AmeriFlux tower site footprints. They found that most sites do 

not represent the dominant land-cover type of the landscape and when paired with common 

model-data integration approaches this mis-match introduces biases on the order of 4%–20% for 

EVI and 6%–20% for the dominant land cover percentage (Chu et al. 2021), making it essential 

to consider landscape characteristics in the design and evaluation of network infrastructure. 

Tower representativeness at the landscape scale is indicative of the capacity to upscale 

information by climate and the dominant ecosystems of locations within a landscape. We also 

calculate cluster representativeness by the towers’ vegetation type to understand the sampling 

intensity of each vegetation type within a cluster, which is also an essential component of scaling 

CH4 fluxes (Knox et al., 2019). In this analysis we used the reported International Geosphere-

Biosphere Programme (IGBP) vegetation type classes that are listed for each tower in the 

Ameriflux data base, where we also checked to ensure towers were currently active and 

providing data to the network.  

   

Main comments 

I strongly recommend separating the results from the discussion section. The results are very 

limited, and the discussion is beyond what is presented. Separating these sections will bring 

transparency and clarity about what was done and how is proposed to be interpreted. 

Authors agree with Reviewer 1 and have separated the results and discussion and increased the 

level of detail in both sections. 

 The authors claim that the MDA was used to define the state space into ecological clusters using 

information that is important for capturing patterns in CH4 (lines 208-225). That said, it is 

unclear how climate, ecotype and location (lat/long) are specific information relevant for CH4 

and not for any other ecological process. It seems to me that this is a generic analysis and then 

the authors are interpreting this for CH4. I respectfully believe that there is a disconnection 

between this approach and the overarching goal of the study. 

We made changes to the introduction and methods to clarify our objectives. The primary goal of 

this work is to identify the gaps in active research infrastructure by evaluating the location of 

ground-based research infrastructure that is and can be adapted to measure CH4. This would  

provide guidance on how the research community could direct their resources to ensure the US 

can develop biogenic CH4 budgets by targeting gaps in infrastructure.  In addressing this goal, 

we used a combination of climate data and dominant land cover types along with a 

multidimensional cluster analysis to guide the scientific community on how we can develop a 

distributed observing network for the US and provide a template for the development of similar 

networks in other regions. Below we discuss in detail how we accomplished this goal. 

 

  

Lines 236-245 – This section of the methods is unclear. Furthermore, I do not think that regions 

more similar to the medoid are more representative within given cluster, it may only mean that 

these regions are more similar to what the medoid is and have nothing to do with real 

representativeness. The authors assume that the medoid is more representative of the cluster but I 

https://paperpile.com/c/kWh1k8/xGBQ
https://paperpile.com/c/kWh1k8/kkrC


think this is a misleading mathematical interpretation that is carried into interpretations of 

ecoregions and their representativeness. This issue is reflected in how the authors assess 

representativeness of 411 towers as they compare with their distance to the medoid under the 

(arguably) incorrect assumption that the closer to the medoid is better and that there is no 

relevant variability that is important for the representativeness of CH4 fluxes across a specific 

cluster. 

Below we clarify what the medoid is and we adjusted how we measured tower representativeness 

of clusters  in our work. The cluster analysis uses the k-medoids algorithm, which partitions data 

into k groups or clusters. Each cluster was represented by one of the data points in the cluster 

named the cluster medoid. The medioid has the lowest average dissimilarity between it and all 

other objects in the cluster. The medoid can be considered a representative example of the 

members of that cluster. The k-medoids algorithm requires the user to specify k, the number of 

clusters to be generated. A useful approach to determine the optimal number of clusters is the 

silhouette method. We fit an increasing number of clusters from 2 to 20 to construct a silhouette 

plot and choose the number of clusters that maximized the average silhouette width. Once we 

determined the number of clusters and the medoid of the cluster, we calculated the dissimilarity 

between every location within the cluster to the medoid to create a measure of how different each 

location was from the medoid condition of each cluster. We utilized the pointDistance function 

in the raster package, which provided a unit-less relative measure of dissimilarity that was 

determined by measuring the difference between the first and second dimensions produced by 

the isoMDS of each point in a cluster to the dimensions of the medioid. This analysis was 

repeated 10 times to ensure that the 20,000 pixel subsample would produce similar results in the 

dimensions and clustering. For simplicity, we show the results of the first analysis.  

Climate, ecotype, and location (latitude/longitude) were used in a multivariate distance analysis 

to define the state space of the US (all 50 states & Puerto Rico) at the landscape scale and divide 

it into ecological clusters using information that is important for capturing continental patterns in 

biogeochemical cycles. Once we created a dissimilarity matrix,  we used multidimensional 

scaling  (MDS) to generate a two-dimensional ordination showing landscape dissimilarity with 

the MASS package in R (Venables WNRipley, 2002). The MDS makes it possible to evaluate 

dissimilarity in two dimensions, which is essential to our goal to evaluate representativeness.  

Knowing that regional patterns in climate and land cover will be important for scaling CH4 to the 

regional and national scale, we divided the US into clusters to evaluate representativeness. This 

cluster analysis also allowed us to summarize our results within a geographical context, an 

approach that has been used to delineate spatial sampling domains, to assess the spatial 

representativeness of networks, and to suggest arrangements of study sites (Sulkava et al. 2011; 

Kumar et al. 2016). Once clusters were defined we utilized the pointDistance function in the 

raster package, which provided a unit-less relative measure of dissimilarity that was determined 

by measuring the difference between the first and second dimensions produced by the isoMDS of 

each point in a cluster to the dimensions of the medioid.  

 

https://paperpile.com/c/kWh1k8/eWt9
https://paperpile.com/c/kWh1k8/lXAh+I8TY
https://paperpile.com/c/kWh1k8/lXAh+I8TY


To understand representative of current CH4 infrastructure, we defined clusters (Sulkava et al. 

2011) and measured the dissimilarity between each location in a cluster to the medoid. We 

extracted the cluster and dissimilarity for all active tower sites measuring CH4  that were 

distributed across the US and  measured the tower cluster representativeness as the percent 

overlap between the range of dissimilarity sampled by the infrastructure (r cluster) divided by the 

range of dissimilarity observed in the entire cluster (r;  Eq. 1).  

 

TR cluster = (r cluster/ r)*100           Eq. 1 

 

We recognize that it is essential to capture the distribution of dissimilarity across an entire cluster 

to upscale ecosystem measurements. We also report the sampling intensity of the major 

ecosystem types within the cluster and report the ecosystem  representativeness (R IGBP) by the 

IGBP vegetation types of the towers (Eq. 2).  

 

TR IGBP = (rIGBP / r)*100          Eq. 2 

 

This approach allows the evaluation of representativeness that is not based on a specific research 

site, but on the dissimilarity of a location to other locations in the landscape and we use the 

range, which is indicative of a capacity to scale within a cluster. 

 

Please note, previously we measure representativeness by looking at the frequency of towers and 

comparing the distribution of dissimilarity (distance to the medoid) of tower locations to the 

distribution for the entire cluster. We have updated this approach by focusing on the range in 

dissimilarity. 

 

Figure 2 – Are these regressions statistically significant? I doubt that that Fig2a is significant and 

Fig2b needs to be tested. If there is no statistical significance, please remove the line as it is a 

misleading graphic.  

We originally included the regression lines to show (a) the lack of trend and (b) the trend 

between the % coverage of clusters and the frequenquency of towers within clusters for all tower 

infrastructure and infrastructure measuring CH4. We removed this figure, as we no longer 

include all EC towers in this analysis and just focus on active CH4 infrastructure.  

 Lines 298-307- Are these 411 towers actually active? It will be important to disclaim how many 

are active or if this is a network analysis of historical sites. Furthermore, not all sites may be 

relevant or would have equal weights for our understanding of CH4 fluxes. Sites were originally 

installed to measured CO2 and H2O fluxes but arguably they may not be relevant for regional 

CH4 fluxes. This question is not addressed in this study but is critical for assessment of the 

representativeness of a CH4 network. 

We initially included all tower infrastructure to garner widespread support for instrumenting all 

towers. In response to Reviewer comments we focus this analysis on the towers measuring CH4 

(n=100) only and we distinguish between towers providing data to Ameriflux (yes =49, no = 51) 

https://paperpile.com/c/kWh1k8/lXAh
https://paperpile.com/c/kWh1k8/lXAh


and tower activity (active = 70; inactive = 30).  There were 70 active EC towers measuring CH4 

distributed across forest (3 towers), grasslands (4 towers), shrublands (1),  agriculture (19 

towers), wetland (37 towers), barren (2 towers), and aquatic (4 towers) IGBP vegetation classes. 

Less than half of the active towers (43%) were providing data to the community through 

Ameriflux, limiting the development of CH4 derived products. For this reason, we will first focus 

this analysis on the active towers providing data to Ameriflux. Although CH4 EC tower 

infrastructure was not a part of a single organized network designed to be representative of the 

climate, landscape, and dominant IGBP vegetation classes that exist within the US, EC tower 

infrastructure that was providing data to Ameriflux was distributed across 8 of the 10 clusters 

(Table 3), with clusters NW and SE without any active towers providing data to the community. 

Tower representativeness of clusters range from 0 to 88%. The greatest TR cluster was for Eb and 

NEa and the lowest TR cluster was for NW and SE which had no towers.  TR cluster  was poor 

(<50%) for most clusters and high coverage was not associated with a higher frequency of 

towers. A high TR cluster representativeness was found in clusters where towers were dispersed 

across IGBP vegetation classes and where towers in wetlands, forests, or the arctic tundra 

(barren) were distributed across the state space of the cluster. Most clusters were substantially 

under-sampled (Table 3, Figure 4c) due to an insufficient number of towers measuring CH4 and 

poor distribution across the cluster.  

 

Figure 4. The range of dissimilarity for clusters, active CH4 towers providing CH4 data to 

Ameriflux, all active CH4 towers, and for NEON towers. 

 

Table 4. The R cluster for CH4 towers that are active and providing data to Ameriflux, the R 

cluster for all active CH4 towers and the R cluster for all active towers in addition to NEON 

towers.  



Cluster CH4 

Towers  

(Data Providing) 

CH4 Towers 

(All) 

NEON Towers 

 

Na 3.0 34.9 35.5 

NW - 0.1 26.3 

NEb 19.8 60.6 65.9 

Ea 0.01 63.1 89.4 

Eb 88.1 88.1 88.1 

SW 2.0 3.3 17.3 

W 0.01 0.01 38.8 

NEa 79.3 79.3 79.3 

Nb 21.3 21.3 21.3 

SE - 23.6 50.8 

 

There were important gains in TR cluster when considering all CH4 towers regardless of if they 

were providing data to Ameriflux (Table 4 and Figure 4). The clusters with substantial gains in 

representativeness (> 10%) include Na, NEb, Ea, and the SE.  The TR cluster of the NW, Ea, SW, 

W, and the SE would be enhanced by more than 10% with the addition of CH4 instrumentation at 

NEON sites.  

  

Lines 305-307 – I respectfully do not think that assessing the distance to a medoid is a good 

assessment of representativeness. If so, then we should place a few towers in these medoids and 

we will have a perfect representativeness for each cluster. We also know that clusters have 

similar ecological characteristics but there is much more diversity and heterogeneity that is not 

captured within a medoid. The last sentence of this paragraph is misleading as it implies that 

towers must be placed in the medoids that were calculated with generic variables that arguably 

are not specific for CH4 fluxes (as they are generic for any ecological process). Similar 

arguments can be done for the analysis and discussion presented in section 3.3. I respectfully do 

not think this is the proper way to assess representativeness of places where we need to be 

measuring CH4 fluxes. 

We agree that although the medoid would be a good area to place towers within, to really 

enhance cluster representativeness towers need to be placed across the range of dissimilarity 

observed. We made changes to the text and included  new estimates of tower representativeness 

to the cluster and for IGBP representativeness within a cluster.  

Although CH4 EC tower infrastructure was not a part of a single organized network designed to 

be representative of the climate, landscape, and dominant IGBP vegetation classes that exist 

within the US, EC tower infrastructure that was providing data to Ameriflux was distributed 

across 8 of the 10 clusters (Table 3), with clusters NW and SE without any active towers 

providing data to the community. Tower representativeness of clusters range from 0 to 88%. The 

greatest TR cluster was for Eb and NEa and the lowest TR cluster was for NW and SE which had no 

towers.  TR cluster  was poor (<50%) for most clusters and high coverage was not associated with a 



higher frequency of towers. A high TR cluster representativeness was found in clusters where 

towers were dispersed across IGBP vegetation classes and where towers in wetlands, forests, or 

the arctic tundra (barren) were distributed across the state space of the cluster. Most clusters were 

substantially under-sampled (Table 3) due to an insufficient number of towers measuring CH4 

and poor distribution across the cluster.  

 

The representativeness of IGBP vegetation types within clusters was poor for all vegetation 

types, excluding forests in the NEa. TR IGBP ranged from 0 to 79% and wetlands were the only 

IGBP class to be sampled across 8 clusters. Ideally, IGBP classes should be distributed both 

within and across clusters but there was not a single cluster with all 7 IGBP classes (forest, 

scrub, aquatic ecosystems, crops, wetlands, barren tundra, and grasslands).  

 

Table 3. The total number of eddy covariance (EC) towers measuring CH4 and providing 

data to Ameriflux. The tower frequency by dominant landscape type, the total cluster 

representativeness, and cluster representativeness by major ecosystem types are shown. For 

R cluster and R ecosystem values of 0.01 were assigned where a single tower is present. 

Clust

er 

EC 

CH4  

 Tower Frequency by Dominant 

Landscape Ecotype 

TR cluster 

(%)  

 TRIGBP (%) 

Fore

st 

Scru

b 

Her

b 

Crop Wet Urba

n 

Barre

n 

AQ Fore

st 

Scru

b 

A

Q 

Crop Wet Barre

n 

Gras

s 

Na 4 2 1 - - 1 - - - 3.0 0.01 0.01 - - 0.02 - - 

NW - - - - - - - - - - - - - - - - - 

NEb 2 1 - - 1 - - - - 19.8 - - - 0.01 0.01 - - 

Ea 1 - - - - 1 - - - 0.01 - - - - 0.01 - - 

Eb 3 - - - 1 2 - - - 88 - - - 0.01 42.1 - - 

SW 7 - - 1 3 2 - 1 - 2.0 - - - 0.14 2.0 - 0.01 

W 1 - - - - - - - 1 0.01 - - - - 0.01 - - 

NEa 7 4 - - - 3 - - - 79.3 79.3 - 0.0

2 

- 13.4 - - 

Nb 8 - 2 4 - 2 - - - 21.3 - - 0.0

1 

- 21.3 6.3 0.01 

SE - - - - - - - - - - - - - - - - - 

 

 

Lines 381-390 – The authors assume that uncertainty is associated to poor data coverage, but this 

is never assessed. This paragraph essentially calls for more locations for measurements away 

from the medoid which will imply that representativeness (based on the method proposed by the 

authors) will be lower, as sites are away from the medoid. This is confusing and I strongly 

encourage the authors to revise the methods and the interpretation of the results. 

We agree that changes in the methods and results are warranted to focus on the goals of this 

study and to clarify how representativeness is quantified. We also put the methods used in this 

study in the context of  those used in other efforts to assess the representativeness of networks 



and infrastructure for current and future applications (Kumar et al. 2016; Lovett et al. 2007; 

Jongman et al. 2017; Villarreal et al. 2018; Chu et al. 2021; Novick et al. 2018). 

Representativeness studies discern when, where, and at what frequency networks are measuring 

ecological processes (Baldocchi et al. 2012; Jongman et al. 2017; Vaughan et al. 2001; Villarreal 

et al. 2018). Representativeness of research infrastructure is often described in terms of the 

extent to which the measurements collected at any given location and time represent the 

conditions at any other location and time, and this is often driven by ecological and climatic 

conditions (Sulkava et al. 2011; Chu et al. 2021). Representativeness is also measured across a 

landscape and studies have evaluated how tower infrastructure captures the variability observed 

within landscapes. All of these approaches are with the goal of understanding the 

representativeness of the measurements for a broader landscape, which is critical for upscaling 

point measurements to regional and global scales. Assessments inform the scientific community 

on how to increase their utility and are often designed to support network design, upscaling, and 

bias estimation (Chen et al. 2011; Ciais et al. 2014; Jongman et al. 2017; Schimel and Keller 

2015; Villarreal et al. 2018; Kumar et al. 2016). There have been many attempts to assess the 

representativeness of existing flux tower networks for various purposes. To date, no study has 

focused on CH4 infrastructure across the US, though many studies have used clustering and 

ecoregions (Sulkava et al. 2011; Hargrove et al. 2003), dissimilarity (Yang et al. 2008), and 

distance measures (Hargrove et al. 2003; Yang et al. 2008; He et al. 2015; Hoffman et al. 2013) 

on climatic (Novick et al. 2018) and vegetation type structure and function (Chu et al. 2021).  

To understand representative of current CH4 infrastructure, we defined clusters (Sulkava et al. 

2011) and measured the dissimilarity between each location in a cluster to the medoid. We 

extracted the cluster and dissimilarity for all active tower sites measuring CH4  that were 

distributed across the US and  measured the tower cluster representativeness as the percent 

overlap between the range of dissimilarity sampled by the infrastructure (r cluster) divided by the 

range of dissimilarity observed in the entire cluster (r;  Eq. 1).  

 

This approach allows us to identify key regions where we need CH4 infrastructure within the US. 

We agree that this analysis does not capture the heterogeneity of the conditions that drive CH4 

fluxes at the ecosystem scale. It is designed to evaluate the sampling intensity of research sites at 

the landscape scale. In the design of a network, this course resolution influences the capacity to 

scale ecosystem level results to the landscape, region, and to the national level, which is required 

for the development of budgets and emission strategies. 

 

Lines 293-402 – This is a similar paragraph where the authors discuss about uncertainty from a 

narrative, but this was never quantified in the formal representativeness analysis presented in this 

study. This paragraph and most of the discussion section is an expert opinion and is not directly 

related to the analyses presented.   

Thank you for this comment, we made changes to the text throughout to better connect the 

discussion to the goals of this work. While we are interested in reducing uncertainties in CH4 

budgets and models, we refocused the discussion on evaluating the strengths and limitations of 

existing measurement infrastructure and the critical need for strategic augmentation to provide 

the most valuable information toward reducing uncertainties in future large-scale budget 

https://paperpile.com/c/1IIhiW/sNX5+eSED+jzyx+KU65+XQVd+wR0W
https://paperpile.com/c/1IIhiW/sNX5+eSED+jzyx+KU65+XQVd+wR0W
https://paperpile.com/c/1IIhiW/SNXa+jzyx+Wcnw+KU65
https://paperpile.com/c/1IIhiW/SNXa+jzyx+Wcnw+KU65
https://paperpile.com/c/kWh1k8/lXAh+xGBQ
https://paperpile.com/c/1IIhiW/Q2Sc+7lqW+jzyx+bKWK+KU65+sNX5
https://paperpile.com/c/1IIhiW/Q2Sc+7lqW+jzyx+bKWK+KU65+sNX5
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estimations. Our analysis complements previous studies based on climatic or vegetation 

characteristics (Hargrove et al. 2003; Yang et al. 2008; Villarreal et al. 2018), and identifies 

regions within the US where gaps are limiting the development of upscaling techniques. To 

accurately understand the impact of climate and land cover change on biogenic CH4 emissions, 

we need a long-term, calibrated, and strategic continental-scale CH4 observatory network. 

Current gaps in existing measurement infrastructure limit our ability to capture the spatial and 

temporal variation of biogenic CH4 fluxes and therefore limit our ability to predict future CH4 

emissions. Maps of potential CH4 emissions require land cover classification targeted at land 

cover types like wetlands that are important sources of CH4 to the atmosphere. Aquatic 

ecosystems like streams and lakes as well as coastal ecosystems are significant and variable 

sources of CH4 not well studied on a long-term basis. Through our analysis using climate, land 

cover, and location variables, we have identified priority areas to enhance research infrastructure 

to provide a more complete understanding of the CH4 flux potential of ecosystem types in the 

US. For EC tower locations, dissimilarity coverage was lacking for clusters Na, W, and Nb, and 

currently clusters Na, W, Eb, and Nb are substantially under sampled. All aquatic sites are under 

sampled within each cluster. An enhanced network would allow for us to monitor both the 

response of CH4 fluxes to climate and land use change as well as the impact of future policy 

interventions and mitigation strategies.  

 There are three related studies that assess the representativeness of the AmeriFlux network that 

may be of interest for the authors. 

Chu, H., X. Luo, Z. Ouyang, W. S. Chan, S. Dengel, S. C. Biraud, M. S. Torn, S. Metzger, J. 

Kumar, M. A. Arain, T. J. Arkebauer, D. Baldocchi, C. Bernacchi, D. Billesbach, T. A. Black, P. 

D. Blanken, G. Bohrer, R. Bracho, S. Brown, N. A. Brunsell, J. Chen, X. Chen, K. Clark, A. R. 

Desai, T. Duman, D. Durden, S. Fares, I. Forbrich, J. A. Gamon, C. M. Gough, T. Griffis, M. 

Helbig, D. Hollinger, E. Humphreys, H. Ikawa, H. Iwata, Y. Ju, J. F. Knowles, S. H. Knox, H. 

Kobayashi, T. Kolb, B. Law, X. Lee, M. Litvak, H. Liu, J. W. Munger, A. Noormets, K. Novick, 

S. F. Oberbauer, W. Oechel, P. Oikawa, S. A. Papuga, E. Pendall, P. Prajapati, J. Prueger, W. L. 

Quinton, A. D. Richardson, E. S. Russell, R. L. Scott, G. Starr, R. Staebler, P. C. Stoy, E. Stuart-

Haëntjens, O. Sonnentag, R. C. Sullivan, A. Suyker, M. Ueyama, R. Vargas, J. D. Wood, and D. 

Zona. 2021. Representativeness of Eddy-Covariance flux footprints for areas surrounding 

AmeriFlux sites. Agricultural and Forest Meteorology 301-302:108350. 

Thank you for this comment. We agree that the work of Chu et al., 2021 is relevant to our goals 

and provides an important analysis of EC tower footprint-to-target-area mismatch. He showed 

that few eddy-covariance sites are located in a truly homogeneous landscapes when considering 

climate and land cover characteristics . Mis-match is limiting model-data integration approaches 

and introducing biases on the order of 4%–20% for EVI and 6%–20% for the dominant land 

cover percentage.  

https://paperpile.com/c/kWh1k8/4VDA+Famw+5Bsl


We considered the results of their analysis, which support the evaluation of dominant land cover 

types in the evaluation of representativeness. Chu et al., 2021 chose land cover type as the 

categorical characteristic because it is commonly used in modeling and upscaling studies. The 

land cover products used in this study include the 2001–2016 United States National Land Cover 

Dataset products (NLCD; https://www.mrlc.gov/)and 2010 Land Cover of Canada 

(https://open.canada.ca/). We used similar products as Chu etal., 2021, improved to provide more 

detail on aquatic systems due to their importance for CH4. It is important that towers are 

representative of the landscapes they exist within, and this work proposed a simple 

representativeness index based on their evaluations that can be used as a guide to identify site-

periods suitable for specific applications and to provide general guidance for data use. 

Novick, K. A., J. A. Biederman, A. R. Desai, M. E. Litvak, D. J. P. Moore, R. L. Scott, and M. S. 

Torn. 2018. The AmeriFlux network: A coalition of the willing. Agricultural and Forest 

Meteorology 249:444–456. 

Novick et al., 2018 is another great and relevant synthesis study that laid the foundation for our 

work. Novick et al. 2018, discusses representativeness in reference to the climate (MAT and 

MAP) of towers, noting the degree of overlap in network infrastructure. This overlap makes it 

possible to subsample from the AmeriFlux database to form site-clusters that experience similar 

climate conditions but different land cover types, enabling the disentangling of effects of climate 

and vegetation on fluxes. The dissimilarity measure across clusters is used here to measure the 

variation across clusters and we are interested in current CH4 infrastructure in this landscape.  

Villarreal, S., M. Guevara, D. Alcaraz-Segura, N. A. Brunsell, D. Hayes, H. W. Loescher, and R. 

Vargas. 2018. Ecosystem functional diversity and the representativeness of environmental 

networks across the conterminous United States. Agricultural and Forest Meteorology 262:423–

43while we used the dominant landscape lcc. 

Villarreal et al., 2018 assess the representativeness of AmeriFlux and NEON based on ecosystem 

functional diversity characterized by 64 EFT categories across CONUS. Their EFT analysis 

defined the prominent EFT for a location (EFTmode) and measured representativeness based on 

a) the number of different EFT categories (EFTmode) represented by each network, b) 

representativeness of the EFT inter-annual variability (EFTint; number of unique EFTs within 

each pixel during years 2001–2014), and c) the spatial representation of EFTmode and EFTint 

based on a maximum entropy approach (i.e., spatial functional heterogeneity). 

 

We included these studies and more to put this work in the broader context of representative 

studies. “There is a pressing need to design different scientific approaches to assess the 

representativeness of networks and infrastructure for current and future applications (Kumar et 

al. 2016; Lovett et al. 2007; Jongman et al. 2017; Villarreal et al. 2018; Chu et al. 2021; Novick 
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et al. 2018). Representativeness studies discern when, where, and at what frequency networks are 

measuring ecological processes (Baldocchi et al. 2012; Jongman et al. 2017; Vaughan et al. 

2001; Villarreal et al. 2018). Representativeness of research infrastructure is often described in 

terms of the extent to which the measurements collected at any given location and time represent 

the conditions at any other location and time, and this is often driven by ecological and climatic 

conditions (Sulkava et al. 2011; Chu et al. 2021). Representativeness is also measured across a 

landscape and studies have evaluated how tower infrastructure captures the variability observed 

within landscapes. All of these approaches are with the goal of understanding the 

representativeness of the measurements for a broader landscape, which is critical for upscaling 

point measurements to regional and global scales. Assessments inform the scientific community 

on how to increase their utility and are often designed to support network design, upscaling, and 

bias estimation (Chen et al. 2011; Ciais et al. 2014; Jongman et al. 2017; Schimel and Keller 

2015; Villarreal et al. 2018; Kumar et al. 2016). There have been many attempts to assess the 

representativeness of existing flux tower networks for various purposes. To date, no study has 

focused on CH4 infrastructure across the US, though many studies have used clustering and 

ecoregions (Sulkava et al. 2011; Hargrove et al. 2003), dissimilarity (Yang et al. 2008), and 

distance measures (Hargrove et al. 2003; Yang et al. 2008; He et al. 2015; Hoffman et al. 2013) 

on climatic (Novick et al. 2018) and vegetation type structure and function (Chu et al. 2021).” 
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	Figure 4. The range of dissimilarity for clusters, active CH4 towers providing CH4 data to Ameriflux, all active CH4 towers, and for NEON towers.

