Authors would like to recognize the thoughtful comments provided by the Reviewer which led to
several important changes in our approach. We clarified the goals of this study, we focused on
tower infrastructure currently measuring CHa, and we better explained how we are measuring
representativeness.

Reviewer 1:

This study aims to present a representative assessment of network infrastructure for improving
our understanding of methane emissions across the US. | respectfully believe that the authors do
not present the appropriate analysis for clearly addressing this goal. The authors present a
relatively simple way to generate (ecological) clusters and then they list how many sites are in
these clusters and evaluate their distance from the medoids. Arguably, the clusters were
produced with variables that are relevant for any ecological process and they are not specifically
designed to represent drivers of CH4 fluxes (as claimed by the authors). Representativeness is
assessed based on the distance of the locations of the current study sites to the medoid, which is
arguably a flawed approach as there are underlying assumptions that do not consider spatial
heterogeneity of importance for CH4 fluxes. Finally, this study is more associated with a generic
network representative analysis of AmeriFlux or GLEON and the authors present a lengthy
discussion about limitations of CH4 measurements that are not directly related to the results.

Reviewer 1 highlights the need for greater detail in the approach taken to measure
representativeness and our overall goal. In response to this comment we increased the level of
detail in the methods section and provide here a summarized response.

The primary goal of this work is to determine key regions where we need CHa infrastructure
within the US. We do this by identifying the gaps in active research infrastructure and evaluating
where infrastructure can be adapted to include CH4 measurements. To address this goal, we used
a combination of climate data and dominant land cover types to guide the scientific community
on how we can develop a distributed observing network for the US and provide a template for
the development of similar networks in other regions. We focus here on EC flux towers because
they are essential for a bottom-up framework that bridges the gap between point-based chamber
measurements and airborne platforms and are therefore a useful basis for identifying gaps in the
current network of CHa observations. Although we initially focused on all tower infrastructure,
we now focused on the towers measuring CH4 (n=100) and we distinguished between towers
providing data to Ameriflux (yes =49, no = 51) and tower activity (active = 70; inactive = 30).

To understand the landscape representativeness across geographic clusters, we measured
dissimilarity (previously called distance to the medoid) based on climate and land cover type. It
is important to note that at the ecosystem scale a tower is representative of the ecosystem type
and the region where it is stationed (Desai, 2010; Jung et al., 2011; Xiao et al., 2012; Chu et al.,
2021); however, the landscape representativeness analysis done here uses a coarser classification
of land cover classes that are more emblematic of regional disturbance regimes, resource
availability, and factors that influence how ecosystems function, not the specific ecosystem type
where the tower is situated. Chu et al., 2021 examined the land-cover composition and



vegetation characteristics of 214 AmeriFlux tower site footprints. They found that most sites do
not represent the dominant land-cover type of the landscape and when paired with common
model-data integration approaches this mis-match introduces biases on the order of 4%-20% for
EVI and 6%—20% for the dominant land cover percentage (Chu et al. 2021), making it essential
to consider landscape characteristics in the design and evaluation of network infrastructure.
Tower representativeness at the landscape scale is indicative of the capacity to upscale
information by climate and the dominant ecosystems of locations within a landscape. We also
calculate cluster representativeness by the towers’ vegetation type to understand the sampling
intensity of each vegetation type within a cluster, which is also an essential component of scaling
CHa fluxes (Knox et al., 2019). In this analysis we used the reported International Geosphere-
Biosphere Programme (IGBP) vegetation type classes that are listed for each tower in the
Ameriflux data base, where we also checked to ensure towers were currently active and
providing data to the network.

Main comments

| strongly recommend separating the results from the discussion section. The results are very
limited, and the discussion is beyond what is presented. Separating these sections will bring
transparency and clarity about what was done and how is proposed to be interpreted.

Authors agree with Reviewer 1 and have separated the results and discussion and increased the
level of detail in both sections.

The authors claim that the MDA was used to define the state space into ecological clusters using
information that is important for capturing patterns in CH4 (lines 208-225). That said, it is
unclear how climate, ecotype and location (lat/long) are specific information relevant for CH4
and not for any other ecological process. It seems to me that this is a generic analysis and then
the authors are interpreting this for CH4. | respectfully believe that there is a disconnection
between this approach and the overarching goal of the study.

We made changes to the introduction and methods to clarify our objectives. The primary goal of
this work is to identify the gaps in active research infrastructure by evaluating the location of
ground-based research infrastructure that is and can be adapted to measure CH4. This would
provide guidance on how the research community could direct their resources to ensure the US
can develop biogenic CH4 budgets by targeting gaps in infrastructure. In addressing this goal,
we used a combination of climate data and dominant land cover types along with a
multidimensional cluster analysis to guide the scientific community on how we can develop a
distributed observing network for the US and provide a template for the development of similar
networks in other regions. Below we discuss in detail how we accomplished this goal.

Lines 236-245 — This section of the methods is unclear. Furthermore, | do not think that regions
more similar to the medoid are more representative within given cluster, it may only mean that
these regions are more similar to what the medoid is and have nothing to do with real
representativeness. The authors assume that the medoid is more representative of the cluster but I
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think this is a misleading mathematical interpretation that is carried into interpretations of
ecoregions and their representativeness. This issue is reflected in how the authors assess
representativeness of 411 towers as they compare with their distance to the medoid under the
(arguably) incorrect assumption that the closer to the medoid is better and that there is no
relevant variability that is important for the representativeness of CH4 fluxes across a specific
cluster.

Below we clarify what the medoid is and we adjusted how we measured tower representativeness
of clusters in our work. The cluster analysis uses the k-medoids algorithm, which partitions data
into k groups or clusters. Each cluster was represented by one of the data points in the cluster
named the cluster medoid. The medioid has the lowest average dissimilarity between it and all
other objects in the cluster. The medoid can be considered a representative example of the
members of that cluster. The k-medoids algorithm requires the user to specify k, the number of
clusters to be generated. A useful approach to determine the optimal number of clusters is the
silhouette method. We fit an increasing number of clusters from 2 to 20 to construct a silhouette
plot and choose the number of clusters that maximized the average silhouette width. Once we
determined the number of clusters and the medoid of the cluster, we calculated the dissimilarity
between every location within the cluster to the medoid to create a measure of how different each
location was from the medoid condition of each cluster. We utilized the pointDistance function
in the raster package, which provided a unit-less relative measure of dissimilarity that was
determined by measuring the difference between the first and second dimensions produced by
the isoMDS of each point in a cluster to the dimensions of the medioid. This analysis was
repeated 10 times to ensure that the 20,000 pixel subsample would produce similar results in the
dimensions and clustering. For simplicity, we show the results of the first analysis.

Climate, ecotype, and location (latitude/longitude) were used in a multivariate distance analysis
to define the state space of the US (all 50 states & Puerto Rico) at the landscape scale and divide
it into ecological clusters using information that is important for capturing continental patterns in
biogeochemical cycles. Once we created a dissimilarity matrix, we used multidimensional
scaling (MDS) to generate a two-dimensional ordination showing landscape dissimilarity with
the MASS package in R (Venables WNRipley, 2002). The MDS makes it possible to evaluate
dissimilarity in two dimensions, which is essential to our goal to evaluate representativeness.
Knowing that regional patterns in climate and land cover will be important for scaling CHa to the
regional and national scale, we divided the US into clusters to evaluate representativeness. This
cluster analysis also allowed us to summarize our results within a geographical context, an
approach that has been used to delineate spatial sampling domains, to assess the spatial
representativeness of networks, and to suggest arrangements of study sites (Sulkava et al. 2011;
Kumar et al. 2016). Once clusters were defined we utilized the pointDistance function in the
raster package, which provided a unit-less relative measure of dissimilarity that was determined
by measuring the difference between the first and second dimensions produced by the isoMDS of
each point in a cluster to the dimensions of the medioid.
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To understand representative of current CH4 infrastructure, we defined clusters (Sulkava et al.
2011) and measured the dissimilarity between each location in a cluster to the medoid. We
extracted the cluster and dissimilarity for all active tower sites measuring CH4 that were
distributed across the US and measured the tower cluster representativeness as the percent
overlap between the range of dissimilarity sampled by the infrastructure (r ciuster) divided by the
range of dissimilarity observed in the entire cluster (r; Eqg. 1).

TR cluster = (I cluster/ 1)*100 Eq. 1

We recognize that it is essential to capture the distribution of dissimilarity across an entire cluster
to upscale ecosystem measurements. We also report the sampling intensity of the major
ecosystem types within the cluster and report the ecosystem representativeness (R icsp) by the
IGBP vegetation types of the towers (Eg. 2).

TR 1e8p = (ncep/ r)*100 Eq. 2

This approach allows the evaluation of representativeness that is not based on a specific research
site, but on the dissimilarity of a location to other locations in the landscape and we use the
range, which is indicative of a capacity to scale within a cluster.

Please note, previously we measure representativeness by looking at the frequency of towers and
comparing the distribution of dissimilarity (distance to the medoid) of tower locations to the
distribution for the entire cluster. We have updated this approach by focusing on the range in
dissimilarity.

Figure 2 — Are these regressions statistically significant? | doubt that that Fig2a is significant and
Fig2b needs to be tested. If there is no statistical significance, please remove the line as it is a
misleading graphic.

We originally included the regression lines to show (a) the lack of trend and (b) the trend
between the % coverage of clusters and the frequenquency of towers within clusters for all tower
infrastructure and infrastructure measuring CH4. We removed this figure, as we no longer
include all EC towers in this analysis and just focus on active CH4 infrastructure.

Lines 298-307- Are these 411 towers actually active? It will be important to disclaim how many
are active or if this is a network analysis of historical sites. Furthermore, not all sites may be
relevant or would have equal weights for our understanding of CH4 fluxes. Sites were originally
installed to measured CO2 and H20 fluxes but arguably they may not be relevant for regional
CH4 fluxes. This question is not addressed in this study but is critical for assessment of the
representativeness of a CH4 network.

We initially included all tower infrastructure to garner widespread support for instrumenting all
towers. In response to Reviewer comments we focus this analysis on the towers measuring CH4
(n=100) only and we distinguish between towers providing data to Ameriflux (yes =49, no = 51)
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and tower activity (active = 70; inactive = 30). There were 70 active EC towers measuring CH4
distributed across forest (3 towers), grasslands (4 towers), shrublands (1), agriculture (19
towers), wetland (37 towers), barren (2 towers), and aquatic (4 towers) IGBP vegetation classes.
Less than half of the active towers (43%) were providing data to the community through
Ameriflux, limiting the development of CHa4 derived products. For this reason, we will first focus
this analysis on the active towers providing data to Ameriflux. Although CH4 EC tower
infrastructure was not a part of a single organized network designed to be representative of the
climate, landscape, and dominant IGBP vegetation classes that exist within the US, EC tower
infrastructure that was providing data to Ameriflux was distributed across 8 of the 10 clusters
(Table 3), with clusters NW and SE without any active towers providing data to the community.
Tower representativeness of clusters range from 0 to 88%. The greatest TR ciuster Was for Eb and
NEa and the lowest TR ciuster was for NW and SE which had no towers. TR ciuster Was poor
(<50%) for most clusters and high coverage was not associated with a higher frequency of
towers. A high TR custer representativeness was found in clusters where towers were dispersed
across IGBP vegetation classes and where towers in wetlands, forests, or the arctic tundra
(barren) were distributed across the state space of the cluster. Most clusters were substantially
under-sampled (Table 3, Figure 4c) due to an insufficient number of towers measuring CH4 and
poor distribution across the cluster.
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Figure 4. The range of dissimilarity for clusters, active CHa4 towers providing CH4 data to
Ameriflux, all active CHa towers, and for NEON towers.
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Table 4. The R custer for CH4 towers that are active and providing data to Ameriflux, the R
custer for all active CHa4 towers and the R custer for all active towers in addition to NEON
towers.



Cluster CHa CHas Towers NEON Towers
Towers (Al
(Data Providing)
Na 3.0 34.9 35.5
NW - 0.1 26.3
NEb 19.8 60.6 65.9
Ea 0.01 63.1 89.4
Eb 88.1 88.1 88.1
SW 2.0 3.3 17.3
W 0.01 0.01 38.8
NEa 79.3 79.3 79.3
Nb 21.3 21.3 21.3
SE - 23.6 50.8

There were important gains in TR cuuster When considering all CH4 towers regardless of if they
were providing data to Ameriflux (Table 4 and Figure 4). The clusters with substantial gains in
representativeness (> 10%) include Na, NEb, Ea, and the SE. The TR cuuster Of the NW, Ea, SW,
W, and the SE would be enhanced by more than 10% with the addition of CH4 instrumentation at
NEON sites.

Lines 305-307 — I respectfully do not think that assessing the distance to a medoid is a good
assessment of representativeness. If so, then we should place a few towers in these medoids and
we will have a perfect representativeness for each cluster. We also know that clusters have
similar ecological characteristics but there is much more diversity and heterogeneity that is not
captured within a medoid. The last sentence of this paragraph is misleading as it implies that
towers must be placed in the medoids that were calculated with generic variables that arguably
are not specific for CH4 fluxes (as they are generic for any ecological process). Similar
arguments can be done for the analysis and discussion presented in section 3.3. | respectfully do
not think this is the proper way to assess representativeness of places where we need to be
measuring CH4 fluxes.

We agree that although the medoid would be a good area to place towers within, to really
enhance cluster representativeness towers need to be placed across the range of dissimilarity
observed. We made changes to the text and included new estimates of tower representativeness
to the cluster and for IGBP representativeness within a cluster.

Although CH4 EC tower infrastructure was not a part of a single organized network designed to
be representative of the climate, landscape, and dominant IGBP vegetation classes that exist
within the US, EC tower infrastructure that was providing data to Ameriflux was distributed
across 8 of the 10 clusters (Table 3), with clusters NW and SE without any active towers
providing data to the community. Tower representativeness of clusters range from 0 to 88%. The
greatest TR ciuster Was for Eb and NEa and the lowest TR ciuster Was for NW and SE which had no
towers. TR cuuster Was poor (<50%) for most clusters and high coverage was not associated with a



higher frequency of towers. A high TR custer representativeness was found in clusters where
towers were dispersed across IGBP vegetation classes and where towers in wetlands, forests, or
the arctic tundra (barren) were distributed across the state space of the cluster. Most clusters were
substantially under-sampled (Table 3) due to an insufficient number of towers measuring CH4
and poor distribution across the cluster.

The representativeness of IGBP vegetation types within clusters was poor for all vegetation
types, excluding forests in the NEa. TR ieep ranged from 0 to 79% and wetlands were the only
IGBP class to be sampled across 8 clusters. Ideally, IGBP classes should be distributed both
within and across clusters but there was not a single cluster with all 7 IGBP classes (forest,

scrub, aquatic ecosystems, crops, wetlands, barren tundra, and grasslands).

Table 3. The total number of eddy covariance (EC) towers measuring CH4 and providing
data to Ameriflux. The tower frequency by dominant landscape type, the total cluster
representativeness, and cluster representativeness by major ecosystem types are shown. For
R cluster and R ecosystem Values of 0.01 were assigned where a single tower is present.

Clust| EC Tower Frequency by Dominant TR cluster TRicsp (%0)
er |CHs Landscape Ecotype (%)
Fore[Scru|Her [Crop|Wet|Urba|Barre |AQ Fore|Scru| A |Crop|Wet|Barre |Gras
st b [ Db n n st b [Q n S
Na | 4 2 1 - - |1 - - - 3.0 0.01(0.01(f-] - 1002 - -
NEb | 2 1 - - 1| - - - - 19.8 - - [-{0.01]0.01] - -
Ea | 1 - - - - |1 - - - 0.01 - - |- - 10.01] - -
Eb | 3 - - -1 ]2 - - - 88 - - | -10.01]42.1| - -
SW | 7 - - 113 ]2 - 1 - 2.0 - - [ -10.1472.0 - 0.01
w 1 - - - -] - - - 1 0.01 - - |- - 0.0 - -
NEa| 7 4 - - - |3 - - - 793 |79.3| - |0.0f - |134| - -
2
Nb [ 8 - 2 |4 -2 - - - 21.3 - - 10.0] - |21.3| 6.3 |0.01
1

Lines 381-390 — The authors assume that uncertainty is associated to poor data coverage, but this

is never assessed. This paragraph essentially calls for more locations for measurements away

from the medoid which will imply that representativeness (based on the method proposed by the
authors) will be lower, as sites are away from the medoid. This is confusing and I strongly
encourage the authors to revise the methods and the interpretation of the results.

We agree that changes in the methods and results are warranted to focus on the goals of this
study and to clarify how representativeness is quantified. We also put the methods used in this
study in the context of those used in other efforts to assess the representativeness of networks




and infrastructure for current and future applications (Kumar et al. 2016; Lovett et al. 2007;
Jongman et al. 2017; Villarreal et al. 2018; Chu et al. 2021; Novick et al. 2018).
Representativeness studies discern when, where, and at what frequency networks are measuring
ecological processes (Baldocchi et al. 2012; Jongman et al. 2017; Vaughan et al. 2001; Villarreal
et al. 2018). Representativeness of research infrastructure is often described in terms of the
extent to which the measurements collected at any given location and time represent the
conditions at any other location and time, and this is often driven by ecological and climatic
conditions (Sulkava et al. 2011; Chu et al. 2021). Representativeness is also measured across a
landscape and studies have evaluated how tower infrastructure captures the variability observed
within landscapes. All of these approaches are with the goal of understanding the
representativeness of the measurements for a broader landscape, which is critical for upscaling
point measurements to regional and global scales. Assessments inform the scientific community
on how to increase their utility and are often designed to support network design, upscaling, and
bias estimation (Chen et al. 2011; Ciais et al. 2014; Jongman et al. 2017; Schimel and Keller
2015; Villarreal et al. 2018; Kumar et al. 2016). There have been many attempts to assess the
representativeness of existing flux tower networks for various purposes. To date, no study has
focused on CHa4 infrastructure across the US, though many studies have used clustering and
ecoregions (Sulkava et al. 2011; Hargrove et al. 2003), dissimilarity (Yang et al. 2008), and
distance measures (Hargrove et al. 2003; Yang et al. 2008; He et al. 2015; Hoffman et al. 2013)
on climatic (Novick et al. 2018) and vegetation type structure and function (Chu et al. 2021).

To understand representative of current CHa infrastructure, we defined clusters (Sulkava et al.
2011) and measured the dissimilarity between each location in a cluster to the medoid. We
extracted the cluster and dissimilarity for all active tower sites measuring CH4 that were
distributed across the US and measured the tower cluster representativeness as the percent
overlap between the range of dissimilarity sampled by the infrastructure (r ciuster) divided by the
range of dissimilarity observed in the entire cluster (r; Eqg. 1).

This approach allows us to identify key regions where we need CHa infrastructure within the US.
We agree that this analysis does not capture the heterogeneity of the conditions that drive CH4
fluxes at the ecosystem scale. It is designed to evaluate the sampling intensity of research sites at
the landscape scale. In the design of a network, this course resolution influences the capacity to
scale ecosystem level results to the landscape, region, and to the national level, which is required
for the development of budgets and emission strategies.

Lines 293-402 — This is a similar paragraph where the authors discuss about uncertainty from a
narrative, but this was never quantified in the formal representativeness analysis presented in this
study. This paragraph and most of the discussion section is an expert opinion and is not directly
related to the analyses presented.

Thank you for this comment, we made changes to the text throughout to better connect the
discussion to the goals of this work. While we are interested in reducing uncertainties in CH4
budgets and models, we refocused the discussion on evaluating the strengths and limitations of
existing measurement infrastructure and the critical need for strategic augmentation to provide
the most valuable information toward reducing uncertainties in future large-scale budget
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estimations. Our analysis complements previous studies based on climatic or vegetation
characteristics (Hargrove et al. 2003; Yang et al. 2008; Villarreal et al. 2018), and identifies
regions within the US where gaps are limiting the development of upscaling techniques. To
accurately understand the impact of climate and land cover change on biogenic CH4 emissions,
we need a long-term, calibrated, and strategic continental-scale CH4 observatory network.
Current gaps in existing measurement infrastructure limit our ability to capture the spatial and
temporal variation of biogenic CH4 fluxes and therefore limit our ability to predict future CH4
emissions. Maps of potential CH4 emissions require land cover classification targeted at land
cover types like wetlands that are important sources of CH4 to the atmosphere. Aquatic
ecosystems like streams and lakes as well as coastal ecosystems are significant and variable
sources of CHa not well studied on a long-term basis. Through our analysis using climate, land
cover, and location variables, we have identified priority areas to enhance research infrastructure
to provide a more complete understanding of the CH4 flux potential of ecosystem types in the
US. For EC tower locations, dissimilarity coverage was lacking for clusters Na, W, and Nb, and
currently clusters Na, W, Eb, and Nb are substantially under sampled. All aquatic sites are under
sampled within each cluster. An enhanced network would allow for us to monitor both the
response of CHa4 fluxes to climate and land use change as well as the impact of future policy
interventions and mitigation strategies.

There are three related studies that assess the representativeness of the AmeriFlux network that
may be of interest for the authors.

Chu, H., X. Luo, Z. Ouyang, W. S. Chan, S. Dengel, S. C. Biraud, M. S. Torn, S. Metzger, J.
Kumar, M. A. Arain, T. J. Arkebauer, D. Baldocchi, C. Bernacchi, D. Billesbach, T. A. Black, P.
D. Blanken, G. Bohrer, R. Bracho, S. Brown, N. A. Brunsell, J. Chen, X. Chen, K. Clark, A. R.
Desai, T. Duman, D. Durden, S. Fares, 1. Forbrich, J. A. Gamon, C. M. Gough, T. Griffis, M.
Helbig, D. Hollinger, E. Humphreys, H. Ikawa, H. lwata, Y. Ju, J. F. Knowles, S. H. Knox, H.
Kobayashi, T. Kolb, B. Law, X. Lee, M. Litvak, H. Liu, J. W. Munger, A. Noormets, K. Novick,
S. F. Oberbauer, W. Oechel, P. Oikawa, S. A. Papuga, E. Pendall, P. Prajapati, J. Prueger, W. L.
Quinton, A. D. Richardson, E. S. Russell, R. L. Scott, G. Starr, R. Staebler, P. C. Stoy, E. Stuart-
Haéntjens, O. Sonnentag, R. C. Sullivan, A. Suyker, M. Ueyama, R. Vargas, J. D. Wood, and D.
Zona. 2021. Representativeness of Eddy-Covariance flux footprints for areas surrounding
AmeriFlux sites. Agricultural and Forest Meteorology 301-302:108350.

Thank you for this comment. We agree that the work of Chu et al., 2021 is relevant to our goals
and provides an important analysis of EC tower footprint-to-target-area mismatch. He showed
that few eddy-covariance sites are located in a truly homogeneous landscapes when considering
climate and land cover characteristics . Mis-match is limiting model-data integration approaches
and introducing biases on the order of 4%-20% for EVI and 6%—20% for the dominant land
cover percentage.
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We considered the results of their analysis, which support the evaluation of dominant land cover
types in the evaluation of representativeness. Chu et al., 2021 chose land cover type as the
categorical characteristic because it is commonly used in modeling and upscaling studies. The
land cover products used in this study include the 2001-2016 United States National Land Cover
Dataset products (NLCD; https://www.mrlc.gov/)and 2010 Land Cover of Canada
(https://open.canada.ca/). We used similar products as Chu etal., 2021, improved to provide more
detail on aquatic systems due to their importance for CHa. It is important that towers are
representative of the landscapes they exist within, and this work proposed a simple
representativeness index based on their evaluations that can be used as a guide to identify site-
periods suitable for specific applications and to provide general guidance for data use.

Novick, K. A., J. A. Biederman, A. R. Desai, M. E. Litvak, D. J. P. Moore, R. L. Scott, and M. S.
Torn. 2018. The AmeriFlux network: A coalition of the willing. Agricultural and Forest
Meteorology 249:444-456.

Novick et al., 2018 is another great and relevant synthesis study that laid the foundation for our
work. Novick et al. 2018, discusses representativeness in reference to the climate (MAT and
MAP) of towers, noting the degree of overlap in network infrastructure. This overlap makes it
possible to subsample from the AmeriFlux database to form site-clusters that experience similar
climate conditions but different land cover types, enabling the disentangling of effects of climate
and vegetation on fluxes. The dissimilarity measure across clusters is used here to measure the
variation across clusters and we are interested in current CH4 infrastructure in this landscape.

Villarreal, S., M. Guevara, D. Alcaraz-Segura, N. A. Brunsell, D. Hayes, H. W. Loescher, and R.
Vargas. 2018. Ecosystem functional diversity and the representativeness of environmental
networks across the conterminous United States. Agricultural and Forest Meteorology 262:423—
43while we used the dominant landscape Icc.

Villarreal et al., 2018 assess the representativeness of AmeriFlux and NEON based on ecosystem
functional diversity characterized by 64 EFT categories across CONUS. Their EFT analysis
defined the prominent EFT for a location (EFTmode) and measured representativeness based on
a) the number of different EFT categories (EFTmode) represented by each network, b)
representativeness of the EFT inter-annual variability (EFTint; number of unique EFTs within
each pixel during years 2001-2014), and c) the spatial representation of EFTmode and EFTint
based on a maximum entropy approach (i.e., spatial functional heterogeneity).

We included these studies and more to put this work in the broader context of representative
studies. “There is a pressing need to design different scientific approaches to assess the
representativeness of networks and infrastructure for current and future applications (Kumar et
al. 2016; Lovett et al. 2007; Jongman et al. 2017; Villarreal et al. 2018; Chu et al. 2021; Novick
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et al. 2018). Representativeness studies discern when, where, and at what frequency networks are
measuring ecological processes (Baldocchi et al. 2012; Jongman et al. 2017; Vaughan et al.
2001; Villarreal et al. 2018). Representativeness of research infrastructure is often described in
terms of the extent to which the measurements collected at any given location and time represent
the conditions at any other location and time, and this is often driven by ecological and climatic
conditions (Sulkava et al. 2011; Chu et al. 2021). Representativeness is also measured across a
landscape and studies have evaluated how tower infrastructure captures the variability observed
within landscapes. All of these approaches are with the goal of understanding the
representativeness of the measurements for a broader landscape, which is critical for upscaling
point measurements to regional and global scales. Assessments inform the scientific community
on how to increase their utility and are often designed to support network design, upscaling, and
bias estimation (Chen et al. 2011; Ciais et al. 2014; Jongman et al. 2017; Schimel and Keller
2015; Villarreal et al. 2018; Kumar et al. 2016). There have been many attempts to assess the
representativeness of existing flux tower networks for various purposes. To date, no study has
focused on CH4 infrastructure across the US, though many studies have used clustering and
ecoregions (Sulkava et al. 2011; Hargrove et al. 2003), dissimilarity (Yang et al. 2008), and
distance measures (Hargrove et al. 2003; Yang et al. 2008; He et al. 2015; Hoffman et al. 2013)
on climatic (Novick et al. 2018) and vegetation type structure and function (Chu et al. 2021).”
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	Figure 4. The range of dissimilarity for clusters, active CH4 towers providing CH4 data to Ameriflux, all active CH4 towers, and for NEON towers.

