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Abstract. Understanding the sources and sinks of CH4 is critical to both predicting and mitigating 

future climate change. There are large uncertainties in the global budget of atmospheric CH4, but natural 

emissions are estimated to be of a similar magnitude to total anthropogenic emissions. The largest 25 

sources of uncertainty in scaling bottom-up CH4 estimates stem from limited ground-based 

measurements and the misalignment between drivers of CH4 fluxes and current land use classifications. 

To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States 

(US) of America, a multi-scale CH4 observation network focused on CH4 flux rates, processes, and 

scaling methods is required. This can be achieved with a network of ground-based observations that are 30 

distributed based on climatic regions and landcover. To determine the gaps in physical infrastructure for 

developing this network, we need to understand the representativeness of current measurements. We 

focus here on eddy covariance (EC) flux towers because they are essential for a bottom-up framework 

that bridges the gap between point-based chamber measurements and airborne or satellite platforms, 

informing the remote sensing and modelling communities and policy decisions, all the way to IPCC 35 

reports. Using multidimensional scaling and a cluster analysis, the US was divided into 10 clusters that 

were distributed across temperature and wetness gradients. We evaluated the distance to the medoid 

condition within each cluster for research sites with EC tower infrastructure to identify the gaps in 

existing infrastructure that limit our ability to constrain the contribution of US biogenic CH4 emissions 

to the global budget. These gaps occurred across all EC flux tower networks and independently 40 

managed sites as well as in some environmental clusters. Through our analysis using climate, land 
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cover, and location variables, we have identified priority areas to target for research infrastructure to 

provide a more complete understanding of the CH4 flux potential of ecosystem types across the US. 

1 Introduction 

The 21st century is characterized by ongoing changes in Earth’s climate system that result from 45 

increasing concentrations of radiatively important trace gases in the atmosphere. Unlike the relatively 

steady increases of atmospheric CO2 and N2O, atmospheric CH4 concentrations show dynamic trends 

with a rapid increase of ~10 ppb yr-1 since 2014 (Nisbet et al., 2019a). The annual increase of 

atmospheric CH4 in 2020 was the largest on record at ~15 ppb yr-1 (Dlugokencky, 2021), despite the 

global pandemic reducing energy demand (Le Quéré et al., 2021). Increasing atmospheric CH4 50 

concentrations (Nisbet et al., 2019a) is of concern because CH4 is 34 times more effective at trapping 

heat in the atmosphere compared to an equivalent mass of CO2 over a 100-year timeframe, and accounts 

for ~42% of warming since the pre-industrial period (IPCC, 2021). These rapid increases in atmospheric 

CH4 challenge us to reach the goals of the Paris Agreement (Nisbet et al., 2019a) but also provide an 

opportunity given the relatively short atmospheric residence time (~9 years) of CH4. Understanding the 55 

sources and sinks of CH4 is therefore critical to both predicting and mitigating future climate change.  

 

There are large uncertainties in the sources and sinks of the global budget of atmospheric CH4 (Saunois 

et al., 2020; Bruhwiler et al., 2021). Methane is emitted from a variety of often co-located biogenic, 

thermogenic, and pyrogenic sources (IPCC, 2013; Nisbet et al., 2019b). Biogenic emissions are thought 60 

to be of a similar magnitude to total anthropogenic emissions, yet biogenic CH4 emissions remain the 

most uncertain source of the global CH4 budget (Saunois et al., 2020). Surface-atmosphere exchange 

from biogenic sources and sinks, the biological and environmental processes driving these fluxes (e.g., 

ebullition, aerenchyma pumping), and how CH4 sources and sinks change over space and time, 

including interannual variability (Michalak et al., 2009; Kirschke et al., 2013; Knox et al., 2019; Nisbet 65 

et al., 2019b), are not well constrained. Finally, the vast areas with relatively very small uptakes and 

emissions (e.g., deserts, grasslands, forests, water bodies) and well transport of CH4 by the lake-ocean 

water continuum (e.g., fens, stems, and rivers) have been largely understudied could contribute 

significantly to regional and global budgets (Hutchins et al, 2019; Rosentreter et al, 2021; Zhou et al, 

2021). These uncertainties hinder our ability to predict future climate change due to the complex 70 

feedbacks between biological processes (e.g., microbial production and consumption) (Sherwood et al., 

2017; Zhang et al., 2017; Oh et al., 2020), climate change (Zhang et al., 2017), and landcover change 

(Kirschke et al., 2013; Knox et al., 2019; Saunois et al., 2020).  

 

By far the largest source of uncertainty in scaling bottom-up CH4 estimates are in the current land use 75 

classification (LUC) products (Kirschke et al., 2013; Knox et al., 2019; Saunois et al., 2020), which are 

not designed to estimate the potential CH4 source/sink status, particularly from aquatic, wetland, and 

agricultural land cover. Aquatic ecosystems contribute significantly to global CH4 emissions, with 

emissions increasing from natural to impacted aquatic ecosystems and from coastal to freshwater 

ecosystems (Rosentreter et al., 2021). Aquatic emissions are likely to change in the future due to 80 
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urbanization, eutrophication and positive climate feedbacks, yet current wetland classifications for land 

use data products are not suitable to capture these effects. Wetland classifications are often generalized 

too broadly in current LUC schemas to accurately scale and predict CH4 flux rates and processes. Small 

changes in the delineation or characterization of LUC can result in changing the source/sink status of 

whole regions (Kirschke et al., 2013; Barkley et al., 2017; Knox et al., 2019). For wetlands these 85 

include (i) delineation of wetland area, the largest natural CH4 source, especially in regions like Alaska 

and Florida, (ii) conflation of fluxes from wetlands and fresh waters leading to double counting 

(Thornton et al., 2016), (iii) classification of saturated soils as non-wetland, possibly missing strong 

CH4 emission potential. For agricultural lands, we must also consider (iv) deforestation for agricultural 

use, which reduces the soil CH4 sink potential (Robertson et al., 2000), or (v) accurate representation of 90 

agricultural land CH4 potential when land use includes a complex mixture of ruminants feedlots, 

manure and pastures (Lassey, 2008).These large uncertainties in biogenic CH4 fluxes cannot be 

addressed with the land cover maps currently used to scale CH4 fluxes and the existing distribution of 

CH4 observation sites and types (Rosentreter et al., 2021). 

 95 

Large uncertainties in the global CH4 budget also result from limited ground-based measurements. 

When scaling bottom-up measurements to landscape and regional scales, measurements tend not to be 

sufficiently geographically distributed to capture the true spatial variation that is innate to the 

production and consumption of CH4, and are compounded by large source/sink strengths in small areas 

(e.g., periodic wetting/drying of seasonal wetlands, saturated soils) (IPCC, 2013; Knox et al., 2019; 100 

Thornton et al., 2016) and by very small source/sink strengths in very large areas. In addition, bottom-

up CH4 process-level estimates have historically been limited to short periods (<1-2 years), are 

discontinuous (grab sampling), and/or occur only during the growing season at middle and high 

latitudes (though see Groffman et al., 2006; Arndt et al., 2019 for notable exceptions). 

 105 

In addition to the current uncertainty in basic ecosystem-level CH4 processes and the way they spatially 

scale, the backdrop of climate change is also changing the rates of CH4 production and consumption, as 

well as CH4 transport pathways. For example, arctic regions are warming faster than most other regions 

of the world (Serreze and Barry, 2011), turning permafrost into wetlands and changing traditional CH4 

sinks to sources on short time scales (Chadburn et al., 2017; Schaefer, 2019; Yumashev et al., 2019). In 110 

temperate areas, higher climate-change-induced variability in precipitation (e.g., higher moisture of 

upland forested soils, prolonged droughts, etc.) results in a reduction of soil CH4 uptake and a reduced 

global CH4 sink (Ni and Groffman, 2018) Sea-level rise, which leads to the inundation of coastal 

regions turning previously dry upland environments into saturated, anoxic areas, which can in some 

cases increase CH4 production and emission rates (Lu et al., 2018).  115 

 

To understand the CH4 flux potential of natural ecosystems and agricultural lands in the United States 

of America (US), a multi-scale CH4 observation network focused on CH4 flux rates, processes, and 

scaling methods is required. This can be achieved with a network of ground-based observations whose 

distribution is based on climatic region and landcover. Eddy covariance (EC) tower observations of 120 

surface-atmosphere fluxes, which provide direct measurements for specific ecosystems year-round, can 

be strategically placed to reduce uncertainties in the current US CH4 budget. Automated static chamber 
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measurements within flux tower footprints would allow for measurements of specific sources or sinks 

within these ecosystems, such as soils or first- and second-order streams. In addition, concurrent 

measurements of CH4 concentrations will allow the scientific community to determine fluxes from local 125 

(chamber; <1 m2), ecosystem (EC flux tower; ~1 km2) and landscape scales (tower concentrations; 

~100s km2). At a larger scale, airborne observations of atmospheric concentrations can be used to 

calculate surface-atmosphere fluxes and provide greater spatial coverage than towers. However, they 

cannot resolve fine spatial details (e.g., sources) and are limited to daytime snapshots during fair 

weather, and thus cannot measure concentrations during high-latitude winter and during other times of 130 

limited visibility, such as at night-time (Chang et al., 2014; Zona et al., 2016). Likewise, satellite 

observations of total column CH4 are limited to sunlight time periods (missing night and polar winters) 

without cloud cover, require a complex modelling framework to calculate fluxes from the total column 

observations, and have large uncertainties from the tropospheric transport of CH4 (Lu et al., 2021).  

 135 

The primary goal of this work is to evaluate the representativeness of currently available ground-based 

research infrastructure to understand where gaps in CH4 data collection exist and to provide guidance on 

how the research community could direct their resources to best reduce uncertainties in the US biogenic 

CH4 budget. In addressing this goal, we will use a combination of land cover and climate data along 

with a multidimensional cluster analysis to guide the scientific community on how we can develop a 140 

distributed CH4 observing network for the US and provide a template for the development of similar 

networks in other regions. Developing a distributed network of CH4 observations will provide an 

opportunity for the scientific community to reduce uncertainties of the biogenic CH4 budget of the US 

now and into the future as anthropogenic pressures continue to alter the carbon cycle. This network will 

also provide long-term measurements to potentially track the impact of policy interventions to mitigate 145 

CH4 emissions.  

2 Methods 

2.1 Overview 

To determine the gaps in physical infrastructure for ecosystem-scale CH4 fluxes, we need to understand 

what the current tower infrastructure is capturing. We focus here on EC flux towers because they are 150 

essential for a bottom-up framework that bridges the gap between point-based chamber measurements 

and airborne platforms and are therefore a useful basis for identifying gaps in the current network of 

CH4 observations. The US AmeriFlux network of EC towers was launched in 1996 and grew from 

about 15 sites in 1997 to more than 110 active sites registered today. It was originally a network of PI-

managed sites measuring ecosystem CO2, H2O, and energy fluxes. The network was established to 155 

connect research on field sites representing major climatic and ecological biomes, including tundra, 

grasslands, savanna, crops, and coniferous, deciduous, and tropical forests. The AmeriFlux community 

tailored instrumentation to suit each unique ecosystem but now also includes towers that are a part of 

the standardized network, the National Ecological Observatory Network (NEON). AmeriFlux also 

includes tower sites from the Long-Term Ecological Research Network (LTER). In 2012, the US 160 

Department of Energy established the AmeriFlux Management Project (AMP) at Lawrence Berkeley 
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National Laboratory (LBNL) to support the broad AmeriFlux community and the AmeriFlux sites. The 

AMP standardizes, post-processes, and makes flux data available to the research community. More 

recently, flux towers began measuring CH4 (81 towers) in freshwater, coastal, upland, natural, and 

managed ecosystems. In this evaluation we included EC towers that are a part of AmeriFlux (200), 165 

NEON (47), LTER (23), and known, independent PI-managed sites (141). In addition to our analysis of 

EC sites, we also evaluated the distribution of 161 network aquatic sites across the US. The networks 

included aquatic sites in AmeriFlux, NEON, LTER and the Global Lake Ecological Observatory 

Network (GLEON). While all the towers included in the analysis measure CO2 fluxes, only a handful 

currently quantify CH4. To understand the representativeness of the current tower infrastructure, we 170 

identified variation in climate and ecosystem type, as these two factors together are characteristic of 

regional resource availability and disturbance regimes. It is important to note that typically a tower is 

representative of just the ecosystem type and the region where it is stationed (Desai, 2010; Jung et al., 

2011; Xiao et al., 2012; Chu et al., 2021); however, this representativeness analysis uses a coarser 

classification of ecosystem types that is more emblematic of regional disturbance regimes and resource 175 

availability, not the specific ecosystem type where the tower is situated. 

2.2 Climate and dominant land cover types 

We used the National Land Cover Database (NLCD; www.mrlc.gov) to create a land cover layer for the 

contiguous US (Jin et al., 2019). The NLCD has a 30-m resolution with a 16-class legend based on a 

modified Anderson Level II classification system. We reclassified the NLCD into 8 major ecotypes 180 

(water, developed, barren, forest, scrub, herbaceous, crop, and wetland). Where the NLCD was not 

available (Alaska, Hawaii, and Puerto Rico), we used the Moderate Resolution Imaging 

Spectroradiometer (MODIS; 1 km) Land Cover (type 5 - vegetation functional types) for vegetation 

functional type (MCD12Q1.006) (Sulla-Menashe and Friedl, 2018), which was also reclassified to the 8 

major ecotypes (Table 1). The crop ecotype was expanded to non-irrigated and irrigated classes using 185 

agricultural information from the US Department of Agriculture's CropScape and Cropland Data layer 

(Boryan et al., 2011), and the wetland class was expanded using information from the US Fish and 

Wildlife Service’s National Wetland Inventory. Expanded wetland classes were emergent coastal, 

emergent freshwater and forest freshwater) (Wilen and Bates, 1995). Climate data were obtained from 

DAYMET (Thornton et al., 2017). We used five climate variables to characterize the climatic 190 

conditions across the US: annual mean daily minimum, daily average, and daily maximum temperature, 

annual total precipitation, and mean annual daily vapor pressure deficit from 2010-2020. Understanding 

that these patterns are changing with climate change, we chose a shorter time period than the commonly 

used 30-year climate normal to better represent current conditions (Bessembinder et al., 2021). All 

spatial layers (ecotype and climate) were resampled to match the DAYMET climate data (1-km), and all 195 

pre-processing was done in R version 4.0.4 (R Core Team, 2021) with the raster package (Hijmans, 

2021). This approach allowed us to create a land cover layer of the dominant ecotypes at 1 km 

resolution that was expanded in categories of interest for CH4. The land cover and climate layers were 

chosen to represent the primary environmental conditions that are often indicative of a combination of 

resource availability and disturbance regimes.  200 
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Table 1: Ecotype and data source used in analysis. The blended land cover product comprises the National Land Cover Database 

(NLCD) and Moderate Resolution Imaging Spectroradiometer (MODIS). The crop category is enhanced with CropScape and the 

wetland category with the National Wetland Inventory (NWI) to identify areas dominated by ecotypes with expected CH4 source 

potential. 205 

Ecotype Expanded Ecotypes Data Source 

Water NA NLCD, MODIS 

Developed 

Barren 

Forest 

Scrub 

Herbaceous 

Crop Crops-non irrigated NLCD, Crop Layer 

Crops-irrigated NLCD, Crop Layer 

Wetlands Emergent Coastal NLCD, MODIS, NWI 

Emergent Freshwater 

Forested Freshwater  

 

2.3 Defining the state space of the US. 

Climate, ecotype, and location (latitude/longitude) were used in a multivariate distance analysis 

(Venables and Ripley, 2002; Ripley, 2007; Cox and Cox, 2008) to define the state space of the US (all 

50 states & Puerto Rico) and divide it into ecological clusters using information that is important for 210 

capturing continental patterns in CH4. The purpose of this analysis is to identify the interrelatedness of 

all ecological components—biotic, abiotic, terrestrial, and aquatic within a dynamic landscape (Ippoliti 

et al., 2019). We included location (latitude/longitude) to incorporate the interaction between climate, 

ecotypes, and most importantly, seasonality. We used multidimensional scaling (MDS) to condense the 

ecotype, climate, and location information (ecotype, five climate variables, and location) for the US 215 

down to two dimensions using the MASS package in R (Venables and Ripley, 2002). We subsampled 

the US (n = 20,000 1-km pixels) randomly, maintaining the distribution of ecotypes and climate for the 

MDS analysis. We measured the correlation between the ecotypes, climate layers, and locations 

(latitude/longitude) using the envfit function in the library vegan in R (Oksanen, 2016). This was 

followed by a cluster analysis to determine the optimal number of clusters using the library cluster in R, 220 

which partitions data around medoids (PAM algorithm), using the Gower dissimilarity matrix (Gower, 

1971; Huang, 1997; Podani, 1999; Ahmad and Dey, 2007; Harikumar and Pv, 2015). We fit an 

increasing number of clusters from 2 to 20 to construct a silhouette plot and choose the number of 

clusters that maximizes the average silhouette width to determine an optimal number of clusters. This 

approach finds the optimal number of clusters and places a representative cell at the center of each 225 

cluster, called the medoid. Once we determined the medoid of the cluster, we measured the difference 

between every location within the cluster to the medoid to understand the distance, or how 

representative each location was from the medoid condition of each cluster. This approach provides a 
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unit-less relative measure of representativeness between a location defined as the medoid of each cluster 

and every other location within that cluster. Although studies of this nature often define 230 

representativeness relative to a research site (Pallandt et al., 2021), this study identified positions within 

the landscape that are more representative of the medoid condition of the cluster and measured the 

distance from this medoid to understand how representative any location within a cluster is to the 

medoid condition.  

 235 

To extrapolate the cluster and distance layers across the entire US beyond the 20,000-pixel subsample, 

we fit a Random Forest model with the package randomForest (Liaw and Wiener, 2002) to model the 

first and second MDS dimension using the ecotype and climate layers as predictors. We then created a 

Random Forest model of the cluster layer using the first and second dimension as the explanatory 

variables. All models were then projected spatially to produce a spatially explicit cluster layer and a 240 

distance to medoid layer beyond the 20,000 sample points that we used in the MDS analysis. Regions 

more similar to the medoid were considered more representative within their given cluster. A major 

assumption of this approach is that the medoid is more representative of the cluster than locations that 

are less similar. At the same time, to understand the variation within a cluster, it is essential to capture 

the distribution of distances from the medoid. This approach of defining the medoid of a cluster and 245 

measuring the distance to the medoid for each location in space allows us to understand 

representativeness of the location to the rest of the cluster.  

 

We extracted the cluster and distance to the medoid for 411 reported towers to evaluate the 

representativeness of tower infrastructure across the US. This was done first for all EC tower 250 

infrastructure to capture the representativeness of all EC infrastructure and then just for tower 

infrastructure measuring CH4 (n = 94). We then repeated this analysis for the 161 aquatic sites included 

in our study. We show the type of sites measured within clusters and we extract the cluster for each site 

and the distance to the medoid to evaluate the representativeness of aquatic network infrastructure. We 

recognize that different measurements are made in these networks, and few of these sites are making 255 

continuous measurements of CH4 and other greenhouse gases.  

3 Results and Discussion 

3.1 Defining the state space of the US 

 The US was divided into 10 clusters (Figure 1) that were distributed across temperature and wetness 

gradients (Table 2). Latitude (R2 = 0.95; p <0.001), mean annual temperature (R2 = 0.84; p <0.001), 260 

maximum temperature (R2 = 0.83; p <0.001), vapor pressure deficit (R2 = 0.83; p <0.001), minimum 

temperature (R2 = 0.82; p <0.001), longitude (R2 = 0.63; p <0.001) had strong effects on clustering, 

whereas precipitation (R2 = 0.10; p <0.001), and ecotype (R2 = 0.03; p <0.001) showed low correlations. 

The coldest zones were in Alaska and included clusters Na and Nb. Cool to temperate clusters in the 

midwestern and western US include clusters NW, W, and NEa. Temperate clusters extend from the 265 

midwestern to the eastern US and include clusters NEb and Ea. Warm regions were distributed across 

clusters Eb, SW and SE. Dry clusters (Na, SW, W, & Nb) were distributed across the western US and 

Alaska, and wet clusters (Ea, Eb, and SE) are in the south-eastern US and Hawaii. Individual clusters 
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represent 7-16% of the US each by area (Table 2) with cluster NW as the largest cluster in the pacific 

northwest, and the smallest cluster being cluster Nb in the northern half of Alaska. We found the size of 270 

the cluster is not correlated to the number of towers when all towers are included in the analysis but was 

slightly negatively correlated with the number of EC towers that include CH4 measurements (Figure 2).  
 

Figure 1: (a) Multidimensional scaling across the United States (US) into ten clusters using ecotype (Table1), climate, and location 275 
(lat/long). (b) Spatial distribution of the identified clusters.  
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Table 2: Ecotype, climate, and number of towers of 10 clusters in the US. Percent coverage (% Cov) is the area occupied by dominant 280 
ecotypes. We also show the total number of eddy covariance (EC) towers, the number of EC towers measuring CH4, and the number 

of aquatic network (AQ) research sites in each cluster. 

Cluster Dominant Ecotypes  

(% Cov) 

Climate  % 

Cov 

 

EC  

EC 

CH4  

AQ 

sites 
Forest Scrub Herb Crop Wet      

Na 27 39 4 0 2 Cold-cool (Dry) 11 14 6 8 

NW 28 33 23 7 0.3 Cool-Temperate (Mild) 16 42 10 10 

NEb 24 0.4 9 34 2 Temperate (Mild-Wet) 10 62 9 25 

Ea 39 1 8 24 2 Temperate (Wet) 9 52 5 20 

Eb 38 4 10 15 7 Warm (Wet) 8 30 9 9 

SW 3 59 17 8 0.2 Warm (dry) 9 59 20 10 

W 19 43 21 7 0.1 Cool-Temperate (Dry) 12 35 3 7 

NEa 27 2 6 24 8 Cool-Temperate (Mild-Wet) 9 50 17 27 

Nb 9 52 16 0 0.4 Cold (Dry) 7 24 9 18 

SE 19 19 8 8 10 Hot (Wet) 9 44 6 27 

 

 

Figure 2: Percent coverage for each cluster versus the number of EC towers in a cluster for (a) all towers and (b) towers with CH4. 285 
Lines denote linear trends.  

  

The distance from the cluster medoid ranged from 0.01 to 0.33 (Figure 3). The mean distance was 0.04, 

and most areas within a cluster were less than or equal to the mean. Southern Alaska (cluster Na), 

Hawaii (clusters SE and Eb), Florida (cluster SE), Puerto Rico (cluster SE), and the northeast (cluster 290 

NEa) had greater distances to the medoids. 
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Figure 3. Distance to the cluster medoid represented spatially.  Inset: the distributions of distances across all clusters shown in a 

histogram, in which the line denotes the mean distance across all clusters. 295 

 

3.2 Representativeness of Existing Tower Infrastructure and CH4 Tower Infrastructure 

There are currently 411 reported EC towers distributed across forest (136 towers), agriculture (105 

towers), wetland (69 towers), scrub (93 towers), and herbaceous (92 towers) ecotypes. Although most 

EC tower infrastructure was not a part of a single organized network designed to be representative of 300 

the climate and dominant land cover classes that exist within the US, EC tower infrastructure was 

distributed across all 10 clusters and across observed distances to the medoid for clusters NEb, Ea, SW, 

and SE (Table 1, Figure 4). Distance to the medoid coverage was lacking for clusters Na, W, and Nb, 

and currently clusters Na, W, Eb, and Nb are substantially under sampled (Figure 4c). The number of 

aquatic and cropland EC towers across clusters is also lacking. There is an insufficient number of 305 

towers measuring CH4, and the distribution of these sites across distance to the medoid is poor for all 

clusters.  
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Figure 4: (a) Multidimensional scaling dimensions of the CH4 tower infrastructure of the United States. (b) The distribution of 

distance from the medoid for CH4 tower infrastructure. (c) The distribution of distance to the medoid for the US (black), for tower 310 
infrastructure (red), and EC tower infrastructure with CH4 (cyan) by cluster.  

 

Gaps in existing EC tower infrastructure limit our ability to constrain the contribution of US CH4 

emissions or uptakes to the global budget. These gaps occurred across all networks and independently 

managed sites as well as in some environmental clusters. The largest gaps in representation occurred for 315 

sites with CH4 measurements and in aquatic sites. These gaps in representation have been pointed out in 

numerous investigations of CH4 flux dynamics and budgets as a part of global CH4 studies (Saunois et 

al., 2020) and FLUXNET CH4 flux syntheses (Knox et al., 2019; Delwiche et al., 2021). In fact, the call 

for more measurements of CH4 from natural sites is not new (Matthews and Fung, 1987; Bartlett and 

Harriss, 1993; Dlugokencky et al., 2011; Nisbet et al., 2014) and has been touted as necessary to lower 320 

the uncertainty of the CH4 budget from natural ecosystems (Peltola et al., 2019), which is among the 

largest uncertainty in the global CH4 budget (Saunois et al., 2020). There is a strong need for a 

continental CH4 observatory to aid in reducing uncertainties in the natural sources and sinks of this 

potent greenhouse gas.  

 325 

One reason for gaps in CH4 flux tower infrastructure may be the lag in technological capability behind 

that of CO2 fluxes. CH4 gas analyzers with sufficient measurement frequency for EC were not common 

before the late 1990s and early 2000s (Shurpali et al., 1993; Billesbach et al., 1998; Rinne et al., 2007), 

and the number of commercial options has expanded only more recently (Peltola et al., 2013; Niemitz et 
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al, 2018; Burba et al, 2019, 2021). Therefore, as the flux tower infrastructure for measuring CH4 has 330 

expanded, decisions on the locations of measurement sites have largely been tied to CO2 and water 

vapor exchange research (Baldocchi, 2014) and to the availability of the grid power and suitable 

infrastructure (McDermitt et al, 2011). In addition to technological limitations, the environments where 

we expect CH4 fluxes to be highest complicates considerations for where best to place instrumentation. 

Large sources of natural biogenic CH4 can sometimes originate from small, heterogeneous components 335 

within a landscape, such as patchy wetlands within an otherwise upland forested region, causing the 

area to be a net source of CH4 (Desai et al., 2015). In contrast, some systems covering large areas that 

are known to be important CH4 sources, such as Arctic tundra ecosystems and shallow lakes (Wik et al., 

2016; Elder et al., 2020), are simply remote and difficult to instrument. Finally, vast areas of land have 

been traditionally thought to have a negligible CH4 emission or consumption rates, although these can 340 

get significant when multiplied by the area. Evidence of this can be seen in our analysis where clusters 

Na, W, and Nb are some of the most poorly represented clusters, corresponding to Alaska (Na & Nb) 

and the Rocky Mountains (W), where more rugged and remote areas exist. One limitation of this study 

is that a non-negligible portion of the existing CH4 measurements, including both towers and chambers, 

is positioned not where CH4 sources or sinks are but where the grid power is available to run such 345 

measurements. Positioning on the margins of the ecosystems may results in partial captures of uptakes 

and emissions.  Our analysis does not account for this factor due to lack of coherent information 

available at individual site level.   

3.3 Representativeness of Existing Aquatic Network Research Sites 

There were 161 aquatic network sites that were distributed across the US (Table 3 and Figure 5). These 350 

sites occur in all 10 clusters, with lakes and wetlands most frequently represented. Compared to EC 

tower sites, there were fewer aquatic sites, and these sites were representative of the cluster medoids 

and not the variation within a cluster, for all clusters except cluster SE The mean distance to the medoid 

for aquatic network sites was 0.04, matching the mean distance for the US. In cluster SE, aquatic 

network sites were further from the cluster medoid, and there were no sites similar to the medoid within 355 

this cluster. Although all clusters have a coastline, only clusters Neb, Nb, and SE have coastal aquatic 

network sites, making this class the least sampled of aquatic network sites.   
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Table 3: The number of aquatic network sites distributed across aquatic ecosystems in the US by cluster.  

Cluster AQ sites Ponds/ 

Lakes 

Streams/ 

Rivers 

Wetlands Coastal 

Na 8 1 2 5 0 

NW 10 2 6 2 0 

Neb 25 14 2 8 1 

Ea 20 3 7 10 0 

Eb 9 2 3 4 0 

SW 10 0 2 8 0 

W 7 1 5 1 0 

NEa 27 19 1 7 0 

Nb 18 2 2 13 1 

SE 27 5 5 15 2 

 360 

 

Figure 5: (a) Multidimensional scaling dimensions of the aquatic network sites in the United States (US). (b)The distribution of 

distance from the medoid for aquatic network sites. (c) The distribution of distance to the medoid for the US (black) and aquatic 

networks sites (red) by cluster.  
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Of particular concern is the lack of representation we found in aquatic network habitats (including 365 

wetlands) given that they are responsible for roughly half of total global CH4 emissions from 

anthropogenic and natural sources (Rosentreter et al., 2021). In fact, our analysis found only a few of 

each type of aquatic site within each cluster, and many clusters with no coastal sites. A continental 

methane observation network would prioritize the construction of sites in aquatic ecosystems in order to 

fill these measurement gaps, particularly in coastal areas given the many proposed remediation 370 

strategies for reducing CH4 emissions from coastal wetlands (Kroeger et al., 2017). As with terrestrial 

ecosystems, technological and logistical challenges may help explain the gaps in monitoring CH4 

emissions from aquatic areas. Some aquatic ecosystems call for specialized approaches such as floating 

chambers, given that they are not often conducive to EC tower measurements, particularly smaller 

bodies of water or aquatic areas situated within forests that may not meet proper boundary layer and 375 

turbulence conditions. Further, aquatic ecosystems also have highly variable CH4 flux rates due to 

different transport pathways including diffusion, production and transport in vegetation (Lai, 2009; 

Maier et al., 2018), and ebullition (Joyce and Jewell, 2003) that efflux CH4 at different frequencies and 

rates, and partitioning between these processes can be difficult (Wik et al., 2016; Iwata et al., 2018). 

 380 

Uncertainties in large-scale CH4 budgets is also related to poor data coverage in measurements focused 

on the soil sink of CH4. This uncertainty is due to the lack of distributed infrastructure resulting in small 

uptake rates assumed to occur over extensive areas of upland ecosystems (Smith et al., 2000). 

Increasing understanding of upland ecosystem CH4 biogeochemistry suggests that crude scaling 

methods for soil CH4 uptake may be insufficient (Covey and Megonigal, 2019). It is therefore essential 385 

that research sites are distributed both within and across clusters to capture the high variability of CH4 

sources and sinks to understand and spatially scale fluxes, and utilize the methods appropriate for 

measurements of such small quantities (e.g., chambers) with sufficient resolution. To do this, 

infrastructure must be deployed along the variation of distances from the medoid in order to capture the 

variation within a cluster.  390 

 

The current LUC contributes additional uncertainty to the CH4 budget, particularly the classification of 

inland waters and wetlands. Both these ecosystem types are heterogeneous across the landscape and can 

be ephemeral, challenging our ability to scale CH4 fluxes across space and over time.  Increased 

attention has been given to creating more accurate and finer scale maps of aquatic ecosystems, which 395 

should help improve estimates of CH4 fluxes (Hondula et al., 2021). However, these classifications may 

still result in double-counting or under-counting given the apparent ephemeral conditions like variable 

inundation or tide levels (Parker et al., 2018). Inundation and moisture status are often used as a proxy 

for the redox state in soils to decide the sink or source state of ecosystems, which is also difficult to map 

over a regional scale, especially at scales fine enough to be meaningful in upscaling (Chu et al., 2021). 400 

The creation of a CH4 potential map with a spatial resolution detailed enough to account for smaller 

lakes and ponds (<1 km) would help to better constrain and model CH4 emissions (Zhang et al., 2021). 

 

Besides the lack of spatial representation, CH4 flux research often only lasts a few years at a time due to 

most sites being primarily operated by individual investigators with time-limited research grants. Our 405 

study includes towers that were identified based on records of sites from various networks and 
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investigators, but that does not mean that all sites listed and used in the analysis are currently 

operational or have up to date and continuous data. The absence of long-term data streams can create 

issues in constraining CH4 budgets in that interannual variability across ecosystems and space cannot be 

accounted for, which is particularly important given ongoing changes in the climate system. In order to 410 

enable more accurate and constrained estimates of CH4 from natural ecosystems, a long-term and 

targeted observatory network is necessary to capture spatial and temporal variation. 

4 Conclusions 

Evaluating the strengths and limitations of existing measurement infrastructure is critical for strategic 

augmentation to provide the most valuable information toward reducing uncertainties in future large-415 

scale budget estimations. To accurately understand the impact of climate and land cover change on 

biogenic CH4 emissions, we need a long-term, calibrated, and strategic continental-scale CH4 

observatory network. Current gaps in existing measurement infrastructure limit our ability to capture the 

spatial and temporal variations of biogenic CH4 fluxes and therefore limit our ability to predict future 

CH4 emissions. Maps of potential CH4 emissions require land cover classification targeted at land cover 420 

types like wetlands that are important sources of CH4 to the atmosphere. Aquatic ecosystems like 

streams and lakes as well as coastal ecosystems are significant and variable sources of CH4 not well 

studied on a long-term basis. Through our analysis using climate, land cover, and location variables, we 

have identified priority areas to enhance research infrastructure to provide a more complete 

understanding of the CH4 flux potential of ecosystem types in the US. For EC tower locations, distance 425 

to the medoid coverage was lacking for clusters Na, W, and Nb, and currently clusters Na, W, Eb, and 

Nb are substantially under sampled. All aquatic sites are under sampled within each cluster. An 

enhanced network would allow for us to monitor both the response of CH4 fluxes to climate and land 

use change as well as the impact of future policy interventions and mitigation strategies.  

 430 
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