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Abstract. Peatlands are important natural sources of atmospheric methane (CH4) emissions. The emissions are strongly influ-

enced by the diffusion of oxygen into the soil and of CH4 from the soil to the atmosphere. This diffusion, in turn, is controlled

by the structure of macropore networks. The characterization of peat pore structure and connectivity through complex network

theory approaches can give conceptual insight into how the relationship between the microscale pore space properties and CH4

emissions on a macroscopic scale is shaped. The evolution of the pore space that is connected to the atmosphere can also be5

conceptualized through a pore network modeling approach. Pore regions isolated from the atmosphere may further develop into

anaerobic pockets, which are local hotspots of CH4 production in unsaturated peat. In this study, we extracted interconnecting

macropore networks from three-dimensional X-ray micro-computed tomography (µCT) images of peat samples and evaluated

local and global connectivity metrics for the networks. We also simulated the water retention characteristics of the peat samples

using a pore network modeling approach and compared the simulation results with measured water retention characteristics.10

The results showed large differences in peat macropore structure and pore network connectivity between vertical soil layers.

The macropore space was more connected and the flow paths through the peat matrix were less tortuous near the soil surface

than at deeper depths. In addition, macroporosity, structural anisotropy, and average pore throat diameter decreased with depth.

Narrower and more winding air-filled diffusion channels may reduce the rate of gas transport as the distance from the peat layer

to the soil–air interface increases. The network analysis also suggests that both local and global network connectivity metrics,15

such as the network average clustering coefficient and closeness centrality, might serve as proxies for assessing the efficiency

of gas diffusion in air-filled pore networks. However, the applicability of the network metrics was restricted to the high-porosity

near-surface layer. The spatial extent and global continuity of the pore network and the spatial distribution of the pores may

1



be reflected in different network metrics in contrasting ways. The hysteresis of peat water content between wetting and drying

was found to affect the evolution of the volume of connected air-filled pore space in unsaturated peat. Thus, the formation of20

anaerobic pockets may occur in a smaller soil volume and methanogenesis may be slower when the peat is wetting compared

to drying conditions. This hysteretic behavior might explain the hotspots and episodic spikes of CH4 emissions, and therefore,

it should be taken into account in biogeochemical models.

1 Introduction

Peatlands are globally important modulators of hydrological and biogeochemical cycles (Gorham, 1991; Limpens et al., 2008).25

Peatlands store vast quantities of water, and they may affect flooding patterns in watersheds (Holden, 2005). A large proportion

of dissolved organic carbon in freshwater ecosystems originates from watersheds with peatlands (Kang et al., 2018; Asmala

et al., 2019). Globally, approximately 400 Pg carbon is stored as peat, which corresponds to half of the carbon currently present

in the atmosphere and a quarter or more of the total soil carbon stock (Rydin and Jeglum, 2013). Peatlands are major sources of

carbon dioxide (CO2) and methane (CH4), thereby contributing to global warming (Frolking et al., 2011; Abdalla et al., 2016;30

Leifeld et al., 2019). Management practices such as drainage and restoration affect the water table (WT) dynamics (Menberu

et al., 2016; Evans et al., 2021) and therefore the air-filled porosity and the availability of oxygen (O2) in peat (Waddington

et al., 2015; McCarter et al., 2020). This, in turn, influences CO2 and CH4 emissions, as the oxidation of organic matter to

CO2 is stimulated under oxic conditions, whereas its reduction to CH4 requires anoxic conditions.

Such anoxic conditions prevail below the WT but also in microniches – anaerobic pockets – in unsaturated soil above the35

WT (Silins and Rothwell, 1999; Deppe et al., 2010). These pockets form when the consumption of O2 exceeds the transport,

mainly diffusion of O2. If readily degradable organic carbon is also available, the anaerobic pockets may become microscale

hotspots of CH4 production (Wachinger et al., 2000; Hagedorn and Bellamy, 2011). As the peat CH4 concentration increases

above the atmospheric concentration, CH4 may diffuse through the aerobic peat layer into the atmosphere if it is not oxidized

by methanotrophic bacteria before reaching the peat surface (Whalen, 2005). Because the diffusion coefficient of CH4 in air40

is 4 orders of magnitude higher than in water (Ball and Smith, 2001), the air-filled porosity of the unsaturated zone largely

regulates the diffusional CH4 transfer in peat and therefore determines how much CH4 is oxidized before reaching the peat

surface.

Water retention characteristic is a fundamental soil property that links soil structure to water and aeration dynamics, redox

conditions, and many accompanying biogeochemical processes (Bachmann and van der Ploeg, 2002; Lepilin et al., 2019).45

Hysteresis, the difference of soil water content at a specific suction between drying and wetting conditions, also affects the

water and aeration dynamics (Poulovassilis, 1962). Soil water retention in the low suction range (0–10 kPa), which represents

the filling and emptying of macropores (Perret et al., 1999), is strongly influenced by soil structure and pore size distribution

(Hayward and Clymo, 1982; Weber et al., 2017). Soil macropores are defined as pores having an effective diameter of the order

of 100 µm or greater (Beven and Germann, 1982). Such low suction range conditions dominate in peatlands, where the WT50

is generally between 1 m and the soil surface (Sarkkola et al., 2010). This highlights the importance of macropores in peat
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soil functions (Reddy and DeLaune, 2008; McCarter et al., 2020). The total volume of macropores generally decreases with

depth because of a higher degree of decomposition in the deeper peat layers (Päivänen, 1973). Pore size distribution or the

water retention characteristic alone does not provide information about the arrangement, connections, or topology of the pores.

Macropores form a complex network, where the individual macropores can be open and connected, dead-ended, or isolated55

(Rezanezhad et al., 2016). The topology and structure of the network therefore regulates water, solute, and gas transport and,

ultimately, biogeochemical processes in peat (see McCarter et al., 2020). Dead-ended and disconnected pores can block the gas

transfer between peat and the atmosphere and promote the formation of anaerobic pockets above the WT (Knorr et al., 2009;

Estop-Aragonés et al., 2012). Thus far, the role of anaerobic pockets in the CH4 processes has been neglected in simulation

models (e.g., Fan et al., 2014), mainly because the pore network is difficult to characterize experimentally.60

Pore characteristics have been earlier described by pore size distribution derived from the water retention characteristic

(Laine-Kaulio, 2011; Weber et al., 2017; Lepilin et al., 2019) or by tortuosity indices derived from air permeability measure-

ments (Laurén, 1997), both methods assuming homogeneous and isotropic soil structure (Beckwith et al., 2003). However, the

CH4 production and transport cannot be fully understood without considering the three-dimensional (3D) pore network struc-

tures in peat. X-ray imagery and complex network theory provide a very promising yet unstudied approach for describing these65

structures and their effect on soil gas transport properties and mechanisms. X-ray micro-computed tomography (µCT) allows

an explicit description of pore structure with resolution extending to micrometer scale (Perret et al., 1999; Blunt et al., 2013;

Rezanezhad et al., 2016). Total porosity and pore size distributions can be determined directly from 3D images (Larsbo et al.,

2014), and when the extracted pore space is represented as a 3D network of pores and pore throats, more detailed information

about pore connections and topology can be obtained (Gostick, 2017). Methods of complex network theory are widely used70

for quantifying multi-scale connectivity and transport processes in real-world networks (Newman, 2003). Network concepts

such as clustering, centrality, tortuosity, isolation, and path lengths can be used to characterize the macropore network from

the anaerobic pocket formation viewpoint. This may be a key in explaining the observed hotspots and episodic spikes of CH4

flux, which are particularly difficult to explain in the current CH4 models (e.g., Xu et al., 2016).

The aims of this study were (1) to introduce the µCT and complex network theory methods to analyze the characteristics of75

macropores and their networks in peat, (2) to evaluate the network structure and characteristics from the viewpoint of formation

of isolated pore space, (3) to assess the capability of complex network theory metrics to describe the physical structure of peat

pore space, and (4) to qualitatively evaluate the potential to utilize the characteristics and metrics for characterizing gas transfer,

CH4 processes, and anaerobic pocket formation in peat.

2 Materials and methods80

2.1 Field sampling

Peat samples were collected from Lettosuo, which is a drained forested peatland site in southern Finland. The site was drained

in 1969 with open ditch drains arranged in 40 m spacing. The study site belongs to the Integrated Carbon Observation System

(ICOS), and it is located in Tammela, southern Finland (60◦ 38’ N, 23◦ 57’ E). The mean annual temperature and precipitation
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are 4.6 ◦C and 627 mm, respectively (Pirinen et al., 2012). The soil type is histosol dominated by Carex peat. The site was85

originally a mesotrophic fen classified as an herb-rich tall sedge birch-pine fen (Laine and Vasander, 1996). The dominating

tree species, with a mean height of 20 m, are Scots pine (Pinus sylvestris L.) and Downy birch (Betula pubenscens Ehrh.)

with an understory composed of Norway spruce (Picea abies Karst.). The stand volume is 230 m3 ha−1 with a density of

2200 stems ha−1. The ground vegetation is composed of dwarf shrubs with a coverage of 4 % (Vaccinium myrtillus L., V.

vitis-idaea L.) and herbs (coverage 10.6 %) such as Dryopteris carthusiana (Vill.) H.P. Fuchs and Trientalis europaea L. The90

moss layer is patchy and dominated by Pleurozium schreberi (Brid.) Mitt., Dicranum majus Turner, and D. polysetum Sw. In

addition, Sphagnum girgensohnii Russow, S. russowii Warnst., and S. angustifolium (C.E.O. Jensen ex Russow) C.E.O. Jensen

are present in moist patches. A detailed site description is available in Koskinen et al. (2014) and Bhuiyan et al. (2017).

Undisturbed peat samples were extracted into acrylic cylinders (diameter 50 mm, height 50 mm) using a sharp knife and

scissors. The samples were collected from seven randomly located pits and three different depths (0–5 cm, 20–25 cm and 40–95

45 cm, hereinafter referred to as top, middle, and bottom layer, respectively). First, a 50–60 cm deep pit, with an undisturbed

vertical face, was dug, and then the profile depth was measured with a ruler. Vertically oriented peat samples were extracted

along the pit face paying attention to maintaining the undisturbed peat structure. The peat samples were located into plastic

bags and transported to the laboratory, where the water retention measurement was started immediately.

2.2 Measurement of water retention and air-filled porosity100

The water retention characteristics of the cylindrical peat samples were measured in the laboratory using a pressure plate

apparatus (Hillel, 1998). The samples were saturated with water, weighed, and placed into the pressure plate apparatus. The

volumetric water content (θ, m3 m−3) was then allowed to stabilize in the pressure plate apparatus under external pressures of

1, 3, 6, and 10 kPa for 1 week at each pressure level. These pressure levels are equivalent to soil matric potentials (Ψ) of −1,

−3, −6, and −10 kPa. The sample mass (MΨ, kg) was determined after each pressure level. At the end of the experiment, the105

height and diameter of the sample were measured to determine the shrinkage, and then the samples were sent to µCT imaging

(see Sect. 2.3). After the imaging, the peat samples were dried at 105 ◦C for 72 h to obtain the dry mass (Ms) of the sample.

The bulk density (ρb, kg m−3) of the sample was determined from the dry mass and the volume of the sample in the saturated

state (Vsat, m3). The volumetric water content θ was calculated at each matric potential in relation to the saturated volume of

the sample as110

θ =
(MΨ−Ms)/ρw

Vsat
(1)

where ρw (kg m−3) is water density. Total porosity f (m3 m−3) was calculated as

f = 1− ρb

ρs
(2)

where the particle density ρs was assumed to have the value of 1500 kg m−3 (Redding and Devito, 2006). Air-filled porosity

fa was determined at each matric potential as the difference of total porosity and the respective volumetric water content.115
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Water retention properties were also characterized using the van Genuchten model (van Genuchten, 1980)

θ = θr +
(θs− θr)

[1 + (α|Ψ|)n]1/(1−n)
(3)

where θr is the residual water content, θs is the saturated water content, and α and n are empirical fitting parameters. The

fitting was performed for the average values of θ of the seven samples from each depth by applying the Levenberg–Marquardt

algorithm in SciPy (Virtanen et al., 2020). Because the pressure range used in the water retention measurements was rather120

narrow and therefore inadequate for a proper fit, the fitting procedure was simplified by setting the saturated water content to

equal the total porosity and setting the residual water content to zero as suggested by Weiss et al. (1998).

2.3 Three-dimensional µCT imaging

In short, X-ray micro-computed tomography involves taking two-dimensional X-ray photographs of an object from multiple

angles and then using a filtered back-projection algorithm to reconstruct the 3D volume of the sample. With the method it is125

possible to get information about the internal structure of the sample noninvasively and to visualize the sample and assess its

structural characteristics quantitatively. For example in soil studies, it is possible to determine the pore characteristics (porosity

and pore size distribution), grain size distribution, and moisture distribution inside the sample (Taina et al., 2008; Helliwell

et al., 2013).

Soil samples (see Sect. 2.1) were scanned in the micro-CT laboratory in the University of Helsinki with the GE Phoenix130

Nanotom system. The final voxel (cubic 3D image element) size after reconstruction was 50 µm, and the data were stored in an

unsigned 16-bit integer representation. The size of the resulting 3D images was 1142 by 1142 by 1152 voxels. Some darkening

was observed in many of the images near the top and bottom of the cylindrical samples, which may have resulted from defects

in µCT image reconstruction.

2.4 Image processing135

In the µCT image preprocessing stage, the 16-bit 3D grayscale images were converted to 3D binary images that represent the

void and solid volumes of the samples. In this context, solid volume stands for the volume occupied by water or organic matter.

The conversion was done using the Python image processing packages SciPy ndimage (Virtanen et al., 2020) and scikit-image

(van der Walt et al., 2014) and the image analysis toolkit PoreSpy (Gostick et al., 2019).

First, the 3D grayscale images were straightened through rotation and cropped to a size of 1000 by 1000 by 1000 voxels. A140

cylindrical peat volume (height 1000 voxels, diameter 1000 voxels) excluding the acrylic cylinder was separated using PoreSpy.

Before noise filtering and binary segmentation, the 16-bit images were linearly mapped to an unsigned 8-bit representation.

The 16-bit to 8-bit mapping interval was selected for each image by visual inspection of the grayscale histogram so that the

long, shallow tails of the intensity distribution, which were mainly generated by noise, were removed. The resulting 8-bit

grayscale images were then filtered for noise reduction with a 3D median filter with a radius of 2 voxels (Fig. 1a). The intensity145

contrast between air-filled regions and the regions containing water or organic matter in the images was often rather low (Fig.

1b). Furthermore, not all the grayscale histograms were bimodal so that the intensity values for void and solid regions could
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Figure 1. (a) Vertical slice of a 6003-voxel section of the noise-filtered X-ray micro-computed tomography image of one of the 40–45 cm

peat samples. (b) Histogram of the grayscale intensities of the corresponding noise-filtered cylindrical 8-bit image with a height and diameter

of 1000 voxels. (c) Vertical slice of the binary image resulted from solid–void segmentation. White region denotes solid material (water and

organic matter) and black regions denote void space (air). (d) Division of void space into individual pore regions.

not be readily distinguished from the intensity distributions. The segmentation of images into void and solid volumes was

performed using the widely utilized Otsu’s global thresholding method (Otsu, 1979) (Fig. 1c). Finally, isolated solid volumes

were removed from the binary images using a method for finding disconnected voxels in PoreSpy.150

2.5 Pore network extraction

Pore networks were extracted from the binarized 10003-voxel images using a marked-based watershed segmentation method

(Gostick, 2017) available in PoreSpy (Figs. 1d and 2). The extraction method has been designed to have good performance

also for materials with a high porosity. It generates the topology of the pore network by dividing the void space into individual

pore regions and determining the locations of pore throats, that is, the two-dimensional interfaces between adjacent pores,155

and the connections between the pores. The method facilitates the subsequent determination of pore network geometry, which

includes, for example, pore volumes, pore-to-pore distances, and throat diameters. Feature resolution is generally about twice

the voxel size in µCT imaging (Stock, 2008), implying that the size of the smallest distinguishable feature was 100 µm.

2.6 Pore geometry

The size of a pore was characterized by its volume, which was determined by counting the number of voxels in an individual160

pore region. The diameter of a pore was defined as the diameter of the largest sphere that fits inside the pore region. Similarly,

the throat diameter was defined as the diameter of the largest circle that fits inside the throat region. Further, the equivalent

pore diameter, defined as the diameter of a sphere with the same volume as the pore, was used in pore size classification in

the study. Because the centroids of adjacent pores and the centroid of the throat between them were usually not collinear, the

distance d between adjacent pores was determined as the sum of the distances between the centroids of each pore (p1 and p2,165

respectively) and the centroid of the throat (t): d(p1,p2) = d(p1,t) + d(t,p2).
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Figure 2. (a) 6003-voxel (27 cm3) cubic central region of the binary image generated from the X-ray micro-computed tomography image

of one of the peat samples from the depth of 40–45 cm. Gray region denotes solid material (water and organic matter) and black regions

denote void space (air). (b) Largest cluster of interconnected pores, or a pore network, extracted from the cubic image. The presentation of

the network follows stick-and-ball geometry: pores are depicted as blue spheres, and throats are gray straight cylinders between connected

pores.

2.7 Image and network analyses

2.7.1 Image and network porosity

The porosities of the binary images were calculated using the cylindrical sections of the 10003-voxel binary images. In the

calculations, it was assumed that the sample surfaces had been in level with the ends of the acrylic cylinder in the initial,170

saturated state. The image porosities were determined as the ratios of the number of void voxels to the number of total voxels

in the cropped image section covering the inner space of the cylinder. It was thus assumed that the shrinkage of the peat sample

resulted in the displacement of air-filled void space within the sample into the space between the sample and the walls of the

cylinder at −10 kPa matric potential, which ensured that the effect of shrinkage was included in the calculation.

The extracted pore system can be partitioned into clusters of interconnected pores and a set of isolated individual pores.175

The largest of these clusters, which is assumed to be the only one that extends through the applied sample domain, is defined

as the pore network. The total pore system, including also smaller pore clusters and isolated pores, is thereafter referred to as

total pore space. Network porosity is defined as the ratio of the sum of the volumes of individual pores in the network to the

total volume of the applied sample domain. The volume of the total pore space is slightly smaller than the volume of the void

space of the corresponding section of the binary image because the network extraction algorithm tends to discard some of the180

smallest isolated pores especially adjacent to the borders of the image domain.

2.7.2 Water retention simulation

Water retention simulation was performed employing the algorithm for drainage percolation in the open-source pore network

modeling package OpenPNM (Gostick et al., 2016). In the algorithm, a pore network is initially filled with a defending fluid

(water). An invading fluid (air) enters the network through inlets located in a specified boundary region of the network and185
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gradually replaces the defending fluid under increasing external pressure as in a porosimetry experiment. Fluid invasion is

access-limited, which means that the invading fluid can only enter the throats that are directly connected to the inlet. The

pressure P needed to force the invading fluid to penetrate a throat and enter the adjoining pore is determined by the Washburn

equation as

P =−4γ cosβ

D
(4)190

where γ is the interfacial tension between the invading and defending phases (0.72 mN m−1 for an air–water interface), β

is the contact angle of the invading fluid, and D is the diameter of the throat. The contact angle was assumed to be 180◦ in

the simulations, which gave the maximum limit of the throat entry pressure. The entry pressures corresponding to different

contact angles can be readily estimated because the Washburn equation is linear with respect to cos(β). The air-filled porosity

at each external pressure can be calculated as the volume fraction of air-filled pores. Water imbibition was simulated with the195

percolation algorithm by using site percolation, in which fluid invasion pressure is controlled by pore diameters instead of

throat diameters.

The network domain size used in the water retention simulations had to be as close to the total sample size as possible so

that comparison with the measured retention curves would be reasonable. Thus, only 100 voxels, representing 5 mm slices,

were excluded from the top and bottom of the sample images in order to exclude the roughness of the sample surfaces and200

the influence of decreased grayscale intensity near the horizontal image boundaries on solid–void classification. The network

domain was determined to be 40 mm in height, and it included the whole cylindrical region in the horizontal direction. Because

of a slight vertical shrinkage in some of the top layer samples, the height of the network domain was decreased to 30 or 35 mm

as needed. The resulting image was then divided into four regions of similar shape with horizontal dimensions of 500 by 500

voxels. A separate pore network was extracted for each of these image regions with PoreSpy. Water retention simulations for205

the four subnetworks were performed using the same pressure steps in each simulation. The combined air-filled porosities at

each pressure step were then calculated to represent the water retention characteristic in the total cylindrical network domain

with a height of 800 voxels and a diameter of 1000 voxels. The maximum external pressure applied in the simulations, 2.88

kPa, was determined by the minimum throat diameter, which was 100 µm.

2.7.3 Network metrics210

In addition to the effects of the vertical shrinkage, horizontal shrinkage created continuous void space between the sample and

the cylinder walls in most of the sample images. In order to exclude those excess void regions, a centered cubic subregion

with a side length of 600 voxels (30 mm), hereafter referred to as a subsample, was selected from each sample image for

the analysis of pore size distribution and connectivity. Hence, the results characterized better the actual inner structure of a

sample. The largest connected pore cluster, or the pore network, extracted from the cubic subregion was used in the network215

connectivity analyses. The selection of only the largest cluster was justifiable because it contained on average more than 80

% of the total pore system volume and was the only cluster that extended through the network domain from top to bottom in
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each pore system. In order to determine the air-filled volume fraction of a pore network at different external pressures, we also

performed drainage and imbibition percolation simulations for the cubic-domain networks.

We used the network analysis package NetworkX (Hagberg et al., 2008) for the estimation of network connectivity metrics.220

The pore coordination number (the degree of a node in graph theory) gives the number of connections to an individual pore,

or in other words, the number of throats emanating from a pore. The local clustering coefficient of a pore A is defined as the

probability that two pores that are connected to A are also connected to each other. The network average clustering coefficient,

the average of all local clustering coefficients (Watts and Strogatz, 1998), can be considered as the probability that two adjacent

pores of a random pore are connected to each other. The closeness centrality of a pore is defined as the reciprocal of the average225

of the shortest path lengths from the pore to every other pore in the network (Freeman, 1978). The calculated pore-to-pore

distances were used as the edge weights in the calculation of the path lengths. The closeness centrality of the pore network was

calculated as the average value of the closeness centralities of all the pores. A high network closeness centrality indicates that

the overall global connectivity of the pore network is fairly high (van der Linden et al., 2019).

Geometrical tortuosity and betweenness centrality are, respectively, network measures related to the transport properties of230

a spatial network in a certain direction and as a whole. To characterize properties related to the connectivity through the peat

pore network between the opposite surfaces of the network domain, artificial boundary pores were added to the pore network

to represent the interfaces at the surfaces of the samples using PoreSpy.

The geometrical tortuosity or path length tortuosity of a pore network is defined as the average value of the ratio of the

lengths of the shortest paths between each pair of pores located at the opposite boundaries of the network domain to the235

straight-line distance between the opposite boundary planes (Lindquist et al., 1996; Clennell, 1997). In the calculation of

geometrical tortuosity, the shortest paths between boundary pores were determined using Dijkstra’s algorithm. Geometrical

tortuosity was determined separately for the vertical and for the horizontal direction. Both perpendicular horizontal directions

were included in the calculation of horizontal geometrical tortuosity.

The betweenness centrality of a pore A is generally defined as the ratio of the number of shortest paths between all the240

pairs of pores in the network that traverse A to the total number of the pairs of pores that do not include A (Freeman, 1977).

In this study, we also defined and quantified the top–bottom betweenness centrality by including only the shortest paths that

connected the top boundary pores with the bottom boundary pores. As with closeness centrality, the betweenness centrality of

a pore network was determined as the average value over the pores. A high network betweenness centrality suggests that the

shortest paths through a network tend to be governed by a relatively small number of different routes (van der Linden et al.,245

2019). In order to save calculation time, every tenth pore was used in the estimation of the network average closeness centrality,

betweenness centrality, and geometrical tortuosity in networks with more than 8000 pores.

2.8 Statistics

We applied a one-way analysis of variance (ANOVA) followed by Tukey’s pairwise multiple comparison test to determine

the possible influence of depth on the water retention characteristics, pore sizes, and calculated network metrics. If residual250

normality or variance homogeneity could not be assumed, a nonparametric Kruskal–Wallis test followed by Dunn’s pairwise
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multiple comparison test or Welch’s ANOVA followed by Games–Howell pairwise multiple comparison test, respectively,

were applied instead. A paired sample t-test was applied to analyze the difference between vertical and horizontal geometrical

tortuosity. The statistical analyses were conducted with the statistical function module in SciPy and the Python packages

statsmodels (Seabold and Perktold, 2010), scikit_posthocs (Terpilowski, 2019), and hypothetical (Schlegel, 2020).255

3 Results

3.1 Air-filled porosity

The void fractions of the µCT images were generally somewhat smaller than the measured air-filled porosities of the samples

(Fig. 3). The discrepancy was highest in the middle layer samples. The measured vertical shrinkage of the samples at−10 kPa

matric potential decreased with depth, being on average 6.3 % in the top layer samples, 3.7 % in the middle layer samples, and260

2.3 % in the bottom layer samples.

The pore network generation process reduced the volumes of the pore networks in comparison to the void volumes of the

corresponding image sections, which was reflected as a further source of discrepancy in the water retention simulations. The

total pore space volumes within the cylindrical network domains were 0.4–2.4 %, 1.4–9.7 %, and 1.9–6.6 % smaller than

the void space volumes in the corresponding image sections of the top, middle, and bottom layer samples, respectively. The265

network volumes, on the other hand, were 0.2–3.0 %, 6.3–35.1 %, and 6.6–27.8 % smaller than the total pore space volumes,

as some of the void space consisting of small, isolated void regions was omitted during network extraction. The pore networks

were the only connected pore clusters that extended vertically through the network domain in each pore system.

3.2 Water retention and air invasion dynamics

The total porosity of the peat samples differed significantly between sampling depths (Welch’s ANOVA, F (2,10.56) = 7.83,270

p= 0.008), but the differences were generally rather small (Table 1). The between-sample variation in porosity was highest in

the top layer. Also, the water retention characteristics differed significantly between depths (ANOVA or Kruskal–Wallis test,

p < 0.05, Table 1). Water content in all studied matric potentials was clearly lowest in the top layer and highest in the deepest

studied peat layer.

The variation of air-filled porosity between samples was largest in the top layer and smallest in the bottom layer (Fig. 4). The275

difference in the between-sample variation between depths was most pronounced under −1 kPa and −3 kPa matric potential

conditions. The air-filled porosities derived from measurements and pore network simulations were rather coherent at different

matric potentials for some of the samples, but considerable variation existed in the difference between measurement-based and

simulated values in many samples at all depths. In the pore network simulations, the external pressure range extended only to

about 3 kPa, which corresponds to the minimum throat diameter of 100 µm detected in the µCT imaging. In the samples with280

no notable shrinkage in any direction, such as top layer samples 3, 6, and 7 and the middle layer sample 7, the percolation

simulation matched the measured air-filled porosity values well at both −1 kPa and −3 kPa matric potentials. The hysteresis
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Figure 3. Measurement-derived (determined by subtracting the volumetric water content from total porosity) and image-derived (determined

as the fraction of void voxels in binarized µCT image) air-filled porosities of all the cylindrical peat samples from different depths at −10

kPa matric potential.

Table 1. Means and standard deviations for the bulk density (ρs, kg m−3), total porosity (f ), and volumetric water content (θ) of the peat

samples at different matric potentials and the fitted van Genuchten water retention parameters α (cm−1) and n. Different letters indicate

significant difference between depths (p < 0.05).

ρs f θ(−1 kPa) θ(−3 kPa) θ(−6 kPa) θ(−10 kPa) α n

0–5 cm 140±29ab 0.907±0.019ab 0.604±0.121a 0.551±0.116a 0.479±0.112a 0.403±0.100a 0.43 1.21

20–25 cm 152±14a 0.898±0.009a 0.779±0.040ab 0.755±0.049ab 0.696±0.058b 0.638±0.053b 0.22 1.10

40–45 cm 125±9b 0.917±0.006b 0.888±0.016b 0.860±0.025b 0.786±0.039b 0.733±0.044b 0.017 1.26

p 0.008 0.008 < 0.001 < 0.001 < 0.001 < 0.001

testa Welch Welch Kruskal Kruskal ANOVA ANOVA

aANOVA: F-test and Tukey’s test; Welch: Welch’s F-test and Games–Howell test; Kruskal: Kruskal–Wallis test and Dunn’s test.

effect is clearly seen in the drainage–imbibition simulations (Fig. 5). The air-filled porosity at a certain matric potential was

higher during water imbibition than during drainage.
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Figure 4. Measurement-derived (square markers with dotted connecting lines) air-filled porosities of peat samples from (a) 0–5 cm, (b)

20–25 cm, and (c) 40–45 cm depths at different matric potentials and the corresponding simulated air invasion curves (solid lines). Air-

filled porosity was determined by subtracting the measured volumetric water content from total porosity. The measurement-derived air-filled

porosities at −0.1 kPa are set to 0 in the plots, which corresponds to the initial state of the water retention simulation.
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Figure 5. Simulated drainage and imbibition curves for selected peat samples from (a) 0–5 cm, (b) 20–25 cm and (c) 40–45 cm depths and

the corresponding measured air-filled porosity values.

3.3 Pore and throat size distributions285

The pore sizes of the connected pore networks obtained from the 6003-voxel subregions of the peat sample images ranged from

4× 10−4 mm3 to 75 mm3, which corresponds to an equivalent diameter range of 0.09 mm to 5.2 mm (Fig. 6a). The median

pore size of the top layer networks (median equivalent diameter 0.66± 0.06 mm) was significantly larger than that of the

middle (0.58± 0.01 mm) and bottom (0.59± 0.02 mm) layer networks (Kruskal–Wallis test, H(2) = 9.67, p= 0.008). Also,

the between-sample variation in pore size distribution was substantially higher in the top layer (the medians of the equivalent290

diameters 0.579–0.765 mm) than in the deeper layers (medians 0.573–0.589 mm and 0.565–0.617 mm in the middle and

bottom layers, respectively). The maximum pore sizes were generally highest in the top layer networks, but large pores also

existed in some of the bottom layer networks (Fig. 6c-e). A larger total volume of a pore network was related to a larger average

pore size in the top layer networks but not in the deeper layer networks.
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Figure 6. Pore size characteristics of the 6003-voxel domain pore networks from the sampling depths of 0–5 cm, 20–25 cm and 40–45 cm.

(a) Combined histograms of the probability density functions of pore size. (b) Combined cumulative relative frequency histograms of throat

diameters. (c–e) Cumulative volume distribution of each pore network in relation to pore equivalent diameter.

The throats with the smallest detectable diameter (100 µm) were the most abundant at all depths, and the fraction of wider295

throats decreased with depth (Fig 6b). However, the difference between the mean throat diameters at different depths was

marginally nonsignificant (ANOVA, F (2,18) = 2.82, p= 0.09).

3.4 Network porosity and connectivity metrics

The porosity of the pore network and all the pore network metrics differed significantly among depths (ANOVA or Kruskal–

Wallis test, p < 0.05, Fig. 7). Network porosity and connectivity were clearly highest in the top layer. The connected pore300

networks did not extend over the whole cubic network domain in most of the middle and bottom layer subsamples and in one

of the top layer subsamples, which decreased the obtained network porosity. All the network metrics of the top layer differed

significantly from those of the deeper layers (p < 0.05), whereas no significant difference was observed between the middle

and bottom layer subsamples.

The vertical geometrical tortuosity was significantly higher than the horizontal geometrical tortuosity in the top layer net-305

works (mean difference 0.10; two-tailed paired sample t-test, t(6) = 3.67, p= 0.01), but no significant difference was found at

the deeper layers. Furthermore, the variation of geometrical tortuosity in the vertical direction was slightly higher than in the

horizontal direction (Fig. 7h,i). In the top layer, vertical geometrical tortuosity decreased with increasing network average co-

ordination number, clustering coefficient, and closeness centrality and increased with increasing network average betweenness

centrality, but the behavior was very different and inconsistent in deeper layers (Table 2).310
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Figure 7. Boxplots of properties and metrics of pore networks generated from peat samples from different depths (n= 4 for vertical geo-

metrical tortuosity and top–bottom betweenness centrality at 20–25 cm, otherwise n= 7). (a) Porosity of the pore networks; (b) number of

pores in the networks; (c) network average coordination number; (d) network average clustering coefficient; (e) network average closeness

centrality; (f) network average betweenness centrality; (g) average betweenness centrality for paths between top and bottom boundary pores;

(h) average geometrical tortuosity of the network in the vertical direction; (i) average geometrical tortuosity of the network in the horizontal

direction. Boxes indicate the interquartile range, whiskers extend at most 1.5 times the interquartile range from the first and from the third

quartile, and the blue line shows the median. Letters not shared across depths represent significantly different means via the pairwise compar-

ison tests (p < 0.05). Kruskal–Wallis test and Dunn’s post hoc test were used for coordination number and clustering coefficient, otherwise

ANOVA and Tukey’s post hoc test were applied.

Table 2. Correlation coefficients between vertical geometrical tortuosity and different network connectivity metrics for pore networks at

different depths. The coefficients are shown in italics if the relationship is not significant (p > 0.05).

Coordination number Clustering coefficient Closeness centrality Betweenness centrality n

0–5 cm −0.89 −0.91 −0.69 0.42 7

20–25 cm 0.79 0.52 0.12 −0.97 4

40–45 cm 0.07 0.31 −0.26 −0.10 7

The total volume of the connected pore space increased as a function of the number of pores in the network, but the variation

was higher in the top layer subsamples than in the middle and bottom layer subsamples (Fig. 8a). Pore sizes tended to increase

with increasing porosity in the top layer subsamples, whereas this connection was not found for the deeper layers. The network

average coordination number, characterizing local network connectivity, increased with increasing porosity in the top layer

subsamples, in which the connected pore space was rather evenly distributed in the network domain (Fig. 8b). In the middle315

and bottom layer networks, the correlation between the coordination number and porosity was slightly weaker. The network

average clustering coefficient also increased with increasing coordination number in all the studied layers (Fig. 8c).
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Figure 8. Linear relationships among selected pore network properties and average pore network connectivity metrics.

The network average closeness centrality increased with increasing coordination number in the top layer except for the sub-

sample with smaller network dimensions and largely also in deeper layers (Fig 8d). By contrast, high local network connectivity

indicated a low betweenness centrality especially in the top and bottom layers (Fig. 8e). The connected pore cluster extended320

from the top to the bottom face of the network domain only in four out of the seven middle layer subsamples. Vertical geomet-

rical tortuosity and top–bottom betweenness centrality could thus not be determined for the remaining three networks.A higher

network porosity indicated a lower vertical tortuosity in the top layer networks (Fig. 8f). By contrast, the middle and bottom

layer networks showed high variation in vertical tortuosity in relation to network porosity. Horizontal and vertical geometrical

tortuosity were strongly correlated in the top layer networks, in which the spatial distributions of the pores within the networks325
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Figure 9. Volume fractions of air-filled pore networks of total peat macropore space at external pressures of (a) 0.2 kPa, (b) 0.3 kPa, (c)

0.4 kPa, (d) 0.5 kPa, (e) 0.75 kPa, (f) 1.0 kPa, (g) 2.0 kPa, and (h) 3.0 kPa in drainage and imbibition simulations (n= 7 in 0–5 cm and

40–45 cm, n= 5 in drainage and n= 6 in imbibition in 20–25 cm). Boxes indicate the interquartile range, whiskers extend at most 1.5 times

the interquartile range from the first and from the third quartile, and the blue line shows the median.

were rather uniform (Fig. 8g). In the deeper layers, horizontal and vertical tortuosity were unrelated. Also, vertical geometrical

tortuosity and top–bottom betweenness centrality were rather well correlated in the top layer but not in deeper layers (Fig. 8h).

3.5 Air-filled volume fraction

Figure 9 describes the volume fraction of the connected, air-filled pore network of the total pore space at different external

pressures. Values less than 1 indicate that a part of the pore space has been isolated from the surrounding volume and O2330

supply has ceased. Eventually, the isolation can lead to the formation of an anaerobic pocket. The volume fraction of the

connected network was calculated for both imbibition (wetting) and drainage (drying). In imbibition, half of the network

remained connected at 0.5 kPa in all layers, whereas in the drainage simulation this required 1 kPa in the top layer and 3 kPa

in the middle and bottom layers. The layers behaved rather similarly in imbibition, but in drainage there were clear differences

between the layers.335

The fraction of the total pore network volume of the total pore space volume, which corresponds to the volume fraction at an

external pressure of 3 kPa (Fig. 9h), was largest in the top layer subsamples, extending from 93.6 % to 99.9 %. In the deeper

subsamples, 7.4 to 51.9 % of the total pore space was disconnected from the largest pore cluster. Thus, a significant fraction of

macropore space was inactive in the drainage and imbibition simulations in the deeper layer subsamples, which indicates an

even larger pore volume available for anaerobic pocket formation.340
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4 Discussion

4.1 Evaluation of image and network analysis in macropore characterization

The combination of X-ray tomography, image analysis, and network analysis provides detailed information on pore structures,

connections, and topology that cannot be obtained through traditional laboratory methods. These properties determine gas

exchange in peat and are therefore essential in regulating biological activity. One of the aims of our study was to evaluate the345

applicability of image analysis and network extraction methods to peat structure characterization. Overall, the image-derived

porosities and the simulated water retention characteristics corresponded rather well with the laboratory measurements given

the limitations imposed by the applied imaging resolution. The smallest pore diameter detectable in the µCT imaging was

100 µm, corresponding to a matric suction of approximately 3 kPa. This resolution is sufficient for accurately describing

diffusional gas transport in peat soils, where matric suction typically remains low and pores smaller than 100 µm are generally350

water-filled. By comparison, macropores have been found to dominate water and solute transport in peat (McCarter et al.,

2020), and a similar resolution is also considered adequate for simulating hydrological transport processes in water-saturated

peat (Gharedaghloo et al., 2018).

Good performance of image segmentation is a crucial prerequisite for a successful application of µCT image analysis and

subsequent quantitative analysis tools (Iassonov et al., 2009). The binary segmentation stage succeeded fairly well in our study.355

The sample void fractions obtained through µCT image analysis were in good agreement with the respective air-filled porosities

derived from laboratory measurements (Fig. 3). The slightly lower values obtained from µCT image analysis likely resulted

from the limited feature resolution of the images. The matric potential of the soil during µCT imaging (−10 kPa) corresponds

to the pressure needed to penetrate a pore with a diameter of approximately 30 µm, whereas the minimum dimension of a

detectable void in the images was 100 µm. The number of air-filled pores with diameters between 30 and 100 µm may have360

been largest in the middle layer samples, which showed the largest offset between the two measurement methods. In addition,

the low intensity contrast between air and water or organic matter in the µCT images obscured the determination of the

boundaries of the air-filled regions. Generally, this may have had either an increasing or a decreasing effect on the determined

air-filled volume. For example, the global solid–void classification method seems to have overestimated the void volume in

some of the images of the top layer samples. Further, the darkening of the µCT images due to image reconstruction defects365

near the top and bottom of the sample increased the void fraction slightly in all binary images because the darkened areas were

falsely classified as void space at the binary segmentation stage.

The pore network extraction stage introduced another level of complication in macropore volume characterization. The

porosities of the networks used in the water retention simulations were further diminished with respect to the corresponding

image porosities, especially in deeper layers. The main reason for this was that a considerable fraction of pore space was dis-370

connected from the active pore network, especially in some of the middle and bottom layer samples. This was because narrower

void connections may have not been detectable in the images, which may have resulted in some pore clusters or individual

pores becoming isolated from the main connected cluster. In addition, some of the reduction of pore space connectivity and of
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the total, combined volume of connected pore space resulted from the division of the total network domain into four discrete

regions.375

The shrinkage behavior of peat further obscured the determination of network porosity. In the networks with a centered cubic

domain, the average porosity was slightly lower in the middle layer subsamples than in the bottom layer subsamples (Fig. 7a),

while the opposite was the case in the larger-domain cylindrical networks (Fig. 4). In addition to the spatial heterogeneity of

air-filled porosity within the samples, the difference can be explained by the variation of horizontal shrinkage between depths.

Higher shrinkage in the middle layer samples decreased the air-filled porosity of the samples, which was reflected in the air-380

filled porosity of the cubic network domain, which did not include the void region between the shrunk sample and the cylinder

walls.

Peat shrinkage also affected the results of the water retention simulations. Ideally, the simulated air-filled porosity at the

maximum external pressure should have been close to the corresponding measured air-filled porosity at −3 kPa matric po-

tential, which corresponds to the minimum detectable pore throat dimension in the images (Fig. 4). However, because of the385

limited image resolution, the constructed pore geometry may not totally represent the actual void space geometry under the

conditions of −3 kPa or higher matric potentials because the shrinking of the samples may have resulted in a decrease in void

space. Thus, a fraction of the pore throats that were air-filled a −3 kPa matric potential may have shrunk so that they were

not detectable in the µCT images constructed at −10 kPa matric potential. This may have generated disconnected pore space

and decreased the total volume of the extracted pore network. Also, shrinkage may have decreased the dimensions of the pore390

space so that a higher external pressure was needed for air invasion in the simulations. Conversely, the horizontal shrinkage of

some of the samples created continuous void space near the cylinder wall at −10 kPa matric potential, and thus the extracted

pore network contained pore space that had presumably not been present at higher matric potential conditions.

4.2 Network connectivity metrics related to peat structure and gas transport

Van der Linden et al. (2016) highlights the need for multiscale measures of pore space topology and connectivity and the395

relationship of these descriptors to macroscopic transport processes in a porous medium, such as peat. Geometrical tortuosity

is a structural characteristic of a porous medium (Clennell, 1997). It gives an estimate of the average path length through a

pore network in a specified direction, which is a direct proxy for network transport efficiency. Therefore, it can be used as a

benchmark measure of the applicability of different network metrics to characterize the transport properties of a network and

to estimate the efficiency of macroscopic transfer processes in a network. We compared several kinds of network metrics with400

the gas transfer capacity estimated by geometrical tortuosity. The pore coordination number and the clustering coefficient were

used to characterize the local connectivity of a pore network, whereas closeness centrality and betweenness centrality were used

to describe connectivity in the network scale. Furthermore, top–bottom betweenness centrality characterizes the positioning

and shape of gas transport routes through the porous medium in a certain direction, thus also describing the efficiency of gas

transfer through the medium. It is essential to determine how the local and global network connectivity measures are related405

to the network gas transfer capability estimated by vertical geometrical tortuosity. According to our results, high average

local pore connectivity is not always reflected as high global connectivity or gas transfer capability of the pore space. The
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distribution and spatial coverage of the connected pore space within the porous medium was found to regulate the applicability

and comparability of the local and global measures and also their relationship to porosity and tortuosity.

Generally, a higher network porosity implied higher local pore connectivity characterized by the coordination number and410

the clustering coefficient (Fig. 8b,c). However, if the connected pore space was concentrated in a smaller region in the network

domain, which was the case in most of the deeper layer subsamples, local connectivity was rather high even though the

porosity of the network was relatively low. Likewise, the relationship between local and global connectivity measures was

largely dictated by the shape and topology of the network. In general, higher local network connectivity was reflected as a

higher average closeness centrality (Fig. 8d), which means that the path lengths between pores shortened when more alternative415

paths were available. The average betweenness centrality mainly decreased with increasing average coordination number at all

depths, which indicates that the shortest routes between pairs of pores were spread out more widely when the number of pores

and their connectivity was higher (Fig. 8e). However, some variation existed especially at deeper layers, where the porosity

was lower and the spatial extent of the network was typically smaller.

The location of a pore largely determines its centrality in a spatial network because the probability of a pore being part of420

the shortest route between two other pores is highest near the centroid of the network (Barthélemy, 2011). High abundance of

dead-end pores or pores located near the extremities of the network decreases the average betweenness centrality because these

pores do not belong to the shortest paths between other regions. In addition, the closeness centrality of a pore (the reciprocal

of the average of the shortest path lengths from a pore to every other pore) is related to the dimensions of a network within

its domain. If a network covers only a fraction of its domain or if it contains dense local clusters with narrow pore channels425

between them, the average closeness centrality may become relatively high even if the average coordination number is rather

low.

The ratio between the two local connectivity measures may reflect the structure of a pore network in regard to gas transfer

efficiency. A high ratio of the network average clustering coefficient to the network average coordination number indicates

that the number of three-pore loops is relatively high and may also imply that even larger clusters of interconnected nearby430

pores are abundant in the network. This may be reflected as a high gas transfer capacity and good resilience to disturbances.

By contrast, a low ratio may result from a high abundance of long nonbranching pore conduits in the network, which may

diminish the amount of alternative transport routes within the network and lead to a rapid suppression of gas transport if pores

become clogged.

The geometrical tortuosity of a pore network in a certain direction is strongly dependent on the geometry of the connected435

cluster within the network domain and on the localization of the boundary pores. If the boundary pores are spread evenly on the

opposite surfaces of the domain and the internal pores are also uniformly distributed in the network domain, the geometrical

tortuosity is relatively low even if the network porosity is low. By contrast, if the number of boundary pores is low and they

are located in a small area or if there are constrictions in the pore space, the average length of the shortest paths between the

boundary pores may be high even if the total number of the pores is high and the network is otherwise well connected.440

Top–bottom betweenness centrality is a network measure defined in this study to characterize the distribution of transport

paths through a network. A high network average top–bottom betweenness centrality may imply that the optimal flow routes
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between the top and bottom of the network domain are governed by a small number of different paths and that transport through

the network may therefore be sensitive to individual disturbances within the flow routes. Our results showed a correspondence

between geometrical tortuosity and top–bottom betweenness centrality in the top layer networks, most of which had a spatially445

rather even pore distribution (Fig. 8h). If the average shortest path length between the top and bottom boundary pores is low (the

vertical geometrical tortuosity is low) and the boundary pores are located evenly on the top and bottom surfaces of the domain,

the shortest paths between different pairs of boundary pores are also located more evenly throughout the network (the average

top–bottom betweenness centrality is low). Because of a smaller number and more localized spatial distribution of boundary

pores and more variable network topology and geometrical structure, there was evidently no correspondence between vertical450

geometrical tortuosity and top–bottom betweenness centrality in the deeper layers.

A low geometrical tortuosity of a pore network suggests that gas transfer through the network is efficient in a specified

direction. In the top layer subsamples with a higher network porosity and a stronger correlation between vertical tortuosity and

network porosity (Fig. 8f), a lower vertical geometrical tortuosity was strongly related to network metrics values that indicated

higher network connectivity (Table 2). By contrast, such a correlation was not found for any local or global connectivity metrics455

in other layers. Thus, the applicability of network connectivity metrics to the description of network transport properties seems

to be highly sensitive to the spatial distribution of the network within its domain. The average closeness centrality of a pore

network has been found to be a proxy for the efficiency of fluid flow in porous media (van der Linden et al., 2019). The

simulation of diffusion through a peat pore network and the comparison of different network metrics with effective diffusivity

could give further insight on the relation of network theory measures to macroscale gas transfer processes in peat. In addition460

to network average connectivity metrics, analysis of the distributions of different connectivity measures of individual pores

within a network could further illustrate the properties of peat pore structure.

The structural anisotropy of peat, characterized by the difference between vertical and horizontal geometrical tortuosity, can

be used to estimate the diffusion capability of a gas in different directions through peat. In this study, the pore structure was

slightly anisotropic in the top layer, but no anisotropy was found in deeper layers. Thus, structural anisotropy decreased with465

lower network porosity and pore connectivity. However, the geometrical tortuosity was highly variable between samples in

deeper layers because of the very heterogeneous spatial distribution of the pores in the middle and bottom layer networks. The

variation of anisotropy between depths suggests that chains of pores existed between horizontally orientated, less degraded

plant residues, giving rise to a low horizontal geometrical tortuosity. In deeper levels with more degraded and compacted peat,

the horizontally oriented pore chains had fractured and collapsed, and the structural anisotropy had diminished. These findings470

are in line with Kruse et al. (2008) and Liu et al. (2016) who found that the anisotropy of the hydraulic conductivity of fen

peat decreased with increasing degradation. According to our results, the orientation of diffusion paths in pore networks is

such that it does not promote or restrain gas transfer towards the atmosphere in deeper, more degraded peat layers. In less

degraded peat near the surface, the impact of the orientation of plant litter on the primary diffusion direction may be more

pronounced. However, higher pore connectivity and porosity in the less degraded peat may outweigh the hindering effect of475

structural anisotropy on the rate of gas diffusion from the peat to the atmosphere.
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4.3 Conceptual implications for anaerobic pocket formation and methane dynamics

Emissions of CH4 from northern peatlands are characterized by a large spatiotemporal variation (Abdalla et al., 2016; Rinne

et al., 2018). The CH4 efflux usually occurs episodically and in hotspots (Lai, 2009), and the supply of O2 and gas diffusion

conditions in the soil profile are the main abiotic factors affecting CH4 emissions (Xu et al., 2016). We argue that the structure,480

topology, and behavior of peat macropore networks above the WT can be a good candidate for explaining the spatiotemporal

variation of peatland CH4 emissions. The following conceptualization describes the pore network, anaerobic pocket formation,

and CH4 production and transport: When the pore network is internally connected and open to the atmosphere, the supply of

O2 to the soil is adequate and facilitates aerobic decomposition. When some of the pores become blocked by water, the O2

supply to the soil gradually decreases, as the number of air-conducting pores decreases and the air flow paths become longer485

and more tortuous. With increasing water content, part of the pore network becomes isolated and the O2 supply is prevented.

Next, microbial activity consumes the trapped O2, and the microbial metabolism changes to alternative electron acceptors. In

the final stage, the production of CH4 onsets. An anaerobic pocket has formed. When soil water content decreases again, the

network becomes connected, and the CH4 trapped in the pocket is released and can be detected as a burst of CH4 emission at

the soil surface.490

The existence of isolated anaerobic macropore clusters above the WT may also enable CH4 production in newly aerated

layers during a drying period (Knorr et al., 2008; Estop-Aragonés and Blodau, 2012). Large macropores are drained and

exposed to O2 as the WT declines, but pore clusters with narrower throats adjacent to the air-filled regions remain anoxic

if diffusional O2 supply to these water-filled pores is inadequate. If the isolated macropores are formed close to the peat

surface, the time span that a substance needs to diffuse to the atmosphere is relatively short and, consequently, there is a limited495

exposure to oxidation in the aerated layer. Thus, methanogenesis in isolated near-surface macropores may significantly increase

the atmospheric emission of CH4 (Estop-Aragonés et al., 2013). In addition, anaerobic pore clusters may be the regions where

anaerobic microbes may survive above the WT and facilitate the onset of CH4 production when the WT rises again (Kettunen

et al., 1999).

Our drainage and imbibition simulations indicated that hysteresis may affect the evolution of the fraction of peat pore500

space that is isolated from the atmosphere. The volume fraction of the air-filled pore space connected to the atmosphere at a

specific matric potential was considerably smaller during drying than during wetting. This may further provide support for the

conception that hysteresis may also affect the formation and destruction of anaerobic pockets and the temporal CH4 dynamics

in the unsaturated layer. Figure 9 describes conditions under which the anaerobic pockets are likely to occur. When the peat is

drying, the macropore network remains largely water-filled until a matric potential of −2 to −3 kPa, which under hydrostatic505

equilibrium corresponds to a distance of 20–30 cm from the WT. This promotes a high abundance of anaerobic pockets in

the unsaturated layer close to the WT. The thickness of this layer is greater at deeper depths, where the average pore throat

dimensions are smaller. In a hectare scale, this suggests that 2000–3000 m3 of unsaturated peat is potentially active in CH4

production. Under wetting conditions, the macropore network remains largely air-filled until the matric potential is higher than

−1 kPa or the distance to the WT is less than 10 cm. This means that the thickness of the layer where anaerobic pockets can510
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be formed when the WT is rising is less than 10 cm. The large difference between the thickness of the pocketing layer under

drying and wetting conditions is likely to cause a short-term mismatch between peatland CH4 emissions and WT observations.

For example, the hysteresis effect may contribute to the lagged response of CH4 flux to a rising WT that has been observed in

peatland ecosystems (Kettunen et al., 1996; Goodrich et al., 2015).

The average pore volumes and pore throat diameters were smaller at deeper depths than in the near-surface peat (Fig. 6). The515

higher volume fraction of large pores in the top layer compared to deeper layers is also seen in the air-invasion curves as a higher

relative air-filled porosity at −1 kPa matric potential (Fig. 4). The reduction of pore space volume and pore dimensions with

depth, which is due to increasing degree of decomposition of peat and higher compression by overlying matter (Rezanezhad

et al., 2016), is a typical feature of peat soil (Rezanezhad et al., 2010; Weber et al., 2017; Gharedaghloo et al., 2018). Thus,

the macropore network is drained at lower matric potentials in deeper peat than near the soil surface. In addition, the variation520

of porosity and the variation of average pore volume between the samples were largest in the top layer (Fig. 8a). Increasing

degree of decomposition deeper in the peat profile also results in the homogenization of peat and a smaller spatial variability

of the pore size distribution (Weber et al., 2017). In our samples, virtually all macropores were connected at −3 kPa matric

potential in the top layer, whereas roughly one-quarter of the macropore volume was still isolated in deeper layers (Fig. 9). As

a result, the width of the layer favorable for anaerobic pocket formation is greater in deeper, more decomposed peat. However,525

the lower macroporosity and smaller average volume of pores may reduce the total volume of anaerobic pockets and limit the

capacity for methanogenesis in the pocketing layer at deeper depths.

In our study, the peat samples originated from a drained forested peatland site. The total porosity range of the studied peat

layers was well in line with the values and the vertical variation reported for the near-surface layers of drained peatlands in

the literature (Päivänen, 1973; Minkkinen and Laine, 1998). However, the peat soil of a drained peatland differs in physical530

characteristics and pore size distribution from that of an undisturbed peatland (Liu et al., 2020). Pore deformation due to peat

shrinkage induced by drainage is partly irreversible (Price, 2003), and the pressure of a growing tree stand may further compact

the peat layer and increase its bulk density in deeper layers (Minkkinen and Laine, 1998). Also, the saturated peat layer below

the WT may be further compressed due to the weight of overlying peat that has become drier and lost the support by buoyancy

(Hooijer et al., 2012; Sloan et al., 2019). These processes decrease the macroporosity of the peat profile in drained peatlands in535

comparison to undisturbed peatlands (Liu et al., 2020). Therefore, conditions for methanogenesis may be even more favorable

in undisturbed peatlands because of a potentially larger volume of macropore space available for anaerobic pocket formation.

5 Conclusions

The network analysis of the peat pore system enabled by µCT imaging and a network representation of peat macropores

demonstrated fundamental differences in peat pore structure and macropore characteristics between topsoil and deeper soil540

layers. Pore space was more connected and routes through the peat matrix were less tortuous in the top layer than in deeper

layers. Decreasing pore connectivity with depth was accompanied by a lower number of macropores, smaller macropore

volumes, and narrower pore throats. This may indicate that the rate of gas diffusion in the air-filled pore space is reduced in
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deeper peat layers. The results also suggest that local and global network connectivity metrics might be used to estimate the

efficiency of diffusional gas transfer in the air-filled pore space of peat. However, we highlight that connectivity metrics should545

be evaluated with caution because not only pore connectivity but also the extent and spatial distribution of connected air-filled

pore space regulate the gas transfer capabilities.

Pore network analysis may also provide new insights into the impact of pore structure and pore space connectivity on con-

ditions regulating CH4 production and transfer in peat. As the WT is generally close to the surface and low suction conditions

prevail in peatlands, small pores remain continuously water-filled and diffusional gas transfer occurs in the air-filled macropore550

network above the WT. We argue that the complex pore structure and the vertical variation in the pore characteristics of peat

may promote the formation of anaerobic pockets above the WT during fluctuations of soil water content. When the WT finally

declines and soil water content decreases, CH4 produced in these pockets can be released rapidly via air-filled macropores.

In addition, hysteresis was found to regulate the thickness of the zone favorable for anaerobic pocket formation. Under the

same WT, the pocketing can be distinctively different depending on whether the peat is wetting or drying. This may provide555

an explanation for the observed hotspots and episodic spikes of CH4 emissions in peatlands. Most importantly, a pore network

representation of peat macropore structure enables the application of pore network modeling, which is a useful method for the

pore-scale description of CH4 production and transfer processes in peat and for the investigation of relations between peat pore

structure and CH4 dynamics.
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