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Abstract. Various studies have been performed to quantify silicon (Si) stocks in plant biomass and related Si fluxes in 

terrestrial biogeosystems. Most of these studies were performed at relatively small plots with an intended low heterogeneity 

in soils and plant canopy composition, and results were extrapolated to larger spatial units up to global scale implicitly 

assuming similar environmental conditions. However, the emergence of new technical features and increasing knowledge on 15 

details in Si cycling leads to a more complex picture at landscape or catchment scales. Dynamic and static soil properties 

change along the soil continuum and might influence not only the species composition of natural vegetation, but its biomass 

distribution and related Si stocks. Maximum Likelihood (ML) classification was applied to multispectral imagery captured by 

an Unmanned Aerial System (UAS) aiming the identification of land cover classes (LCC). Subsequently, the Normalized 

Difference Vegetation Index (NDVI) and ground-based measurements of biomass were used to quantify aboveground Si stocks 20 

in two Si accumulating plants (Calamagrostis epigejos and Phragmites australis) in a heterogeneous catchment and related 

corresponding spatial patterns of these stocks to soil properties. We found aboveground Si stocks of C. epigejos and P. australis 

to be surprisingly high (maxima of Si stocks reach values up to 98 g Si m-2), i.e., comparable to or markedly exceeding reported 

values for the Si storage in aboveground vegetation of various terrestrial ecosystems. We further found spatial patterns of plant 

aboveground Si stocks to reflect spatial heterogeneities in soil properties. From our results we concluded that (i) aboveground 25 

biomass of plants seems to be the main factor of corresponding phytogenic Si stock quantities and (ii) a detection of biomass 

heterogeneities via UAS-based remote sensing represents a promising tool for the quantification of lifelike phytogenic Si pools 

at landscape scales.  

1 Introduction 

Biogenic silicon (BSi), i.e., silica precipitates (SiO2·nH2O) synthesized by various organisms, has been recognized as a key 30 

factor controlling Si fluxes from terrestrial to aquatic ecosystems (Dürr et al., 2011; Street-Perrott and Barker, 2008; Struyf 
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and Conley, 2012), which mainly results from its pool size and a larger solubility compared to silicate minerals (e.g., Cornelis 

and Delvaux, 2016). Eukaryotic and prokaryotic organisms, i.a., plants, bacteria, fungi, diatoms, testate amoebae, and sponges, 

are able to synthesize BSi (Clarke, 2003; Ehrlich et al., 2010), and corresponding BSi pools can be found in terrestrial 

biogeosystems (Puppe et al., 2015; Puppe, 2020; Sommer et al., 2006). BSi structures of different origin indicate differences 35 

in their physicochemical surface properties (Puppe and Leue, 2018), which in turn control their dissolution kinetics (Bartoli, 

1985; Fraysse et al., 2006, 2009). In most terrestrial ecosystems phytogenic Si, i.e., BSi synthesized by plants, generally 

represents the largest BSi pool in soil-plant systems, hence exerts the strongest influence on Si fluxes into soils. 

For the majority of higher plants Si is considered as a beneficial element, because various positive effects of Si accumulation 

in plants have been revealed, i.e., increased plant growth and resistance against abiotic and biotic stresses (e.g., Epstein, 2009; 40 

Ma and Yamaji, 2006; Puppe and Sommer, 2018). In this context, especially grasses of the family Poaceae (or Gramineae) are 

known as strong Si accumulators (Hodson et al., 2005), and corresponding Si storage in aboveground vegetation, e.g., in the 

Great Plains or the tropical humid grass savanna, has been found to be an important driver in Si cycling (Blecker et al., 2006; 

Alexandre et al., 2011). Various studies have been performed to quantify Si stocks and fluxes in/from the above- and 

belowground plant biomass (e.g., Alexandre et al., 1997; Bartoli, 1983; Cornelis et al., 2010; Sommer et al., 2013; Turpault et 45 

al., 2018). Most of these studies were performed at (sequences of) small-scale plots (<102 m2) with intended low heterogeneity 

in soils and plant canopy composition. Often results were extrapolated to larger spatial units up to global scale implicitly 

assuming similar environmental conditions (e.g., Carey and Fulweiler, 2012). However, the emergence of new technical 

features and increasing knowledge on details in Si cycling (e.g., the role of lateral fluxes) leads to a more complex picture at 

landscape or catchment scales. Dynamic and static soil properties change along the soil continuum and might influence not 50 

only the species composition of natural vegetation, but its biomass distribution and related Si stocks. 

Remote sensing represents an efficient tool to provide spatially consistent information on environmental objects, conditions 

and properties. To identify different land covers or to assess biodiversity indicators, supervised classification techniques such 

as Maximum Likelihood (ML) has found wide acceptance (Fuller et al., 1998; Otukei et al., 2010; Shafri et al., 2007; Strecha 

et al., 2012; Gonzáles et al., 2015). A widespread method for the derivation of quantitative canopy properties is the use of 55 

vegetation indices (VIs) in combination with ground-based measurements (Thenkabail et al., 2002; Lelong et al., 2008; Zarco-

Tajeda et al., 2012). VIs are linear, orthogonal or ratio combinations of reflectance calculated from different wavelengths 

ranging from the visible (VIS) to the near-infrared (NIR) part of the electromagnetic spectrum (Bouman, 1992) and found to 

be appropriate proxies for temporal and spatial variation in vegetation canopies and biophysical parameters (Gao et al., 2000; 

Haboudane et al., 2004). In particular, the Normalized Difference Vegetation Index (NDVI), as the most commonly used VI, 60 

relates reflectance in red (sensitive to chlorophyll absorption) and near-infrared (sensitive to canopy and leaf structure) 

wavebands (Rouse, 1974). Numerous satellite based studies applied VIs to quantify biophysical vegetation parameters either 

of crops (Moran et al., 1995; Kross et al., 2015) grassland (Gammon et al., 1995; Wang et al., 2005) or pristine and near-

natural ecosystems (Kim et al., 2015; Cui et al., 2018). The recent development of Unmanned Aerial Systems (UAS) offers 

new options for high-resolution observations at landscape and catchment scale. Successful preprocessing workflows were 65 
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developed for UAS imagery as a prerequisite for accurate image interpretation (Laliberte et al., 2011; Berni et al., 2009; Kelcey 

and Lucieer, 2012; Lelong et al., 2008; Wehrhan et al., 2016). 

UAS missions have been conducted over hardly accessible areas such as wetlands (Strecha et al., 2012; Zweig et al., 2015), 

riparian zones of lakes and rivers (Husson et al., 2014; Husson et al., 2016), estuarine tidal flats (Kaneko and Nohara, 2014) 

and riparian forests (Dunford et al., 2009). Most of the studies delineated the patchy and small-scale distribution of plant 70 

communities and identified individual species by using of-the-shelf (partly modified) compact digital cameras providing an 

adequate sub-decimeter resolution in VIS and NIR spectral wavelengths. Zarco-Tajeda et al. (2012) demonstrated the 

successful application of a narrow-band multispectral sensor to assess water stress status of olive, peach and orange trees by 

estimates of chlorophyll fluorescence emissions. Turner et al. (2014) coupled multispectral and thermal imagery to investigate 

the physiological state of Antarctic moss beds. Wehrhan et al. (2016) derived biomass patterns of lucerne (Medicago sativa) 75 

from UAS imagery in a soil landscape, which is strongly affected by soil erosion and Tóth (2018) observed seasonal and spatial 

changes of Phragmites australis derived from multi-temporal UAS imagery. Recently, Easterday et al. (2019) demonstrate the 

benefits of UAS-based remote sensing for plant water status estimates of shrubs using VIs derived from multispectral imagery. 

However, none of these studies addressed both the classification of species composition and the quantification of respective 

aboveground biomass fractions. To the best of our knowledge there is no study published until now, which finally quantifies 80 

aboveground plant Si accumulation and its spatial distribution using UAS remote sensing in a heterogeneous catchment and 

relates the spatial patterns to relevant soil properties. 

In the current study we apply UAS-based remote sensing to the grass-dominated, artificially catchment “Chicken Creek”. It 

represents an ideal study site for Si cycling at catchment scale for several reasons: Firstly, the vegetation dynamics as well as 

soil development have been intensively monitored ab initio (e.g., Elmer et al., 2013; Zaplata et al., 2011a, b). From this data 85 

base the site-specific appearance and spread of two predominant Si accumulators, Calamagrostis epigejos and Phragmites 

australis (both belonging to the Poaceae family), can be derived, which allows an estimation of mean annual Si uptake rates. 

Secondly, extensive soil data (repetitive sampling campaigns) are available at a 20 m x 20 m grid (Gerwin et al. 2011). 

Potentially important drivers for the observed spatial patterns of plants, like soil texture and nutrients can be withdrawn from 

these data. Thirdly, previous studies already clarified the BSi pool dynamics in soils at Chicken Creek during initial 90 

pedogenesis (Puppe et al., 2014, 2016, 2017, 2018). Here we present a methodological approach to quantify the Si stocks of 

two Si accumulators (i.e., C. epigejos and P. australis) at catchment scale and their relationship to soil-related drivers. In detail 

we want to answer three major research questions: 

(i) How large are aboveground phytogenic Si stocks? 

(ii) To which extent are spatial patterns of C. epigejos and P. australis and corresponding Si stocks driven by initial soil 95 

properties? 

(iii) What are the benefits and limitations of UAS-based remote sensing of phytogenic Si stocks? 
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2 Methods 

2.1 Study Area 

The artificial catchment “Chicken Creek”  (6 ha in size, thereof 5.3 ha fenced) was constructed in an open-cast mining area of 100 

Lusatia, Germany (51.6049° N, 14.2667° E) in 2004–2005 (construction finished in September 2005). A 2-4 m thick, surficial 

layer of Quaternary, sandy sediments was dumped on a 1–2 m pan-shaped layer of Tertiary clays, which seals the whole 

catchment at its base. In the lower part of the catchment, additional clay dams were constructed on top of the clay layer 

(transverse to the slope). These dams act as a stabilization barrier preventing the sandy substrate from sliding downhill and 

serve as a funnel to direct groundwater flow into the artificial pond downstream (Gerwin et al., 2010). Due to the artificial 105 

construction, the lower boundary conditions of the catchment site are clearly defined including knowledge about the 3D 

sediment structures (Gerke et al. 2013, Schneider et al., 2011). The construction work left a bare land surface on which natural 

vegetation could develop without disturbance (natural succession) but also created a zonal pattern of soil properties caused by 

the natural heterogeneity of the parent material taken from different areas in the fore-field according to the progression of the 

mine (Gerwin et al., 2009) (Fig. 1). 110 

 

 

 

Figure 1: Schematic map of the artificial catchment “Chicken Creek” showing grid points, ground truth sites and zones, delineating 

areas with slightly different soil properties. 115 

C. epigejos has been present since the very beginning and belonged to the most dominating species since 2010, especially in 

the western part of the catchment. P. australis has also been present from the beginning of vegetation development in 2006, 
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but it was mainly restricted to the area around the pond in the southern part of the catchment (Elmer et al., 2011, Schaaf et al., 

2010). The sub-continental climate is characterized by a mean annual precipitation of 563 mm and a mean annual temperature 

of 8.9 °C. 120 

2.2 Ground-based measurements 

2.2.1 Aboveground biomass 

Shoot biomass (include stems, leaves and inflorescence) with a dominance of C. epigejos was sampled at sites C5, F2, I5 and 

L2, which represents raster points equipped for an extensive soil moisture and temperature monitoring. Three additional sites 

(CA1 to CA3) were sampled outside of the fenced area to include sites of high population densities (Fig. 1). At each site plants 125 

were cut within an area of 50 cm x 50 cm (0.25 m²) from three locations, which represent a (local) gradient of low, medium 

and high population densities. Analogous, 3 sites close to raster points P3, Q2 and Q5 with a dominant occurrence of P. 

australis were sampled. The dead, tufted biomass of C. epigejos and the brown shoots including the litter of P. australis where 

sampled separately within the same areas. This material of the preceding seasons will be referred to as litter hereafter. A subset 

of the brown P. australis shoots have been retained for further analysis in order to find out whether the Si content is different 130 

from green shoots. All plant samples were oven dried over 48 h at 105 °C for further determination of Si content. 

2.2.2. Si analysis of plant material 

An aliquot of 5 g from the dried plant material was used to determine Si content. The collected plant material was carefully 

washed with distilled water to remove adhering soil particles and oven-dried at 45°C. Subsequently the samples were milled 

using a knife mill (Grindomix GM 200, Retsch) in two steps: 4.000 rpm for 1 min. and then 10.000 rpm for 3 min. Sample 135 

aliquots of approximately 100 mg were digested under pressure in PFA digestion vessels using a mixture of 4 ml distilled 

water, 5 ml nitric acid (65%), and 1 ml hydrofluoric acid (40%) at 190 °C using a microwave digestion system (Mars 6, CEM). 

A second digestion step was used to neutralize the hydrofluoric acid with 10 ml of a 4%-boric acid solution at 150 °C. Silicon 

was measured by ICP-OES (ICP-iCAP 6300 Duo, Thermo Fisher Scientific GmbH) with an internal standard. To avoid 

contamination, only plastic equipment was used during the complete procedure. Analyses were performed in three lab 140 

replicates. 

2.2.3. Soil sampling and soil analysis 

Soil sampling of the upper 30 cm was carried out subsequent to catchment completion in 2005 at 124 grid points in a 20 m x 

20 m grid (see Fig. 1). Soil samples were analysed on various physicochemical soil properties (for details see Gerwin et al., 

2010). From these we used data of clay and nitrogen (N), which are known as important drivers for vegetation development at 145 

Chicken Creek (Elmer et al., 2013, Zaplata et al., 2011a, b). In addition, we analysed plant available potassium (K), phosphorus 
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(P), and Si content in retained samples from 2005 to analyse their effects on spatial patterns of C. epigejos and P. australis and 

corresponding aboveground phytogenic Si stocks. 

Plant available K and P were determined with the double-lactate method is used in Germany for the determination of plant 

available potassium and phosphorus. The extraction solution comprises a 0.04 m calcium lactate solution buffered with 0.02 150 

m hydrochloric acid at pH of 3.6 using a soil-to-solution ratio of 1:50 (VDLUFA, 1991). Four grams of air dried soil (<2 mm) 

were weighed into polyethylene laboratory bottles, 200 mL of extraction solution were added and placed on a mechanical 

shaker for 90 min. After filtration the phosphorus concentration was determined by colorimetry (Gallery Plus, Microgenics) 

and the potassium concentration was measured using Flame-Atomic absorption spectroscopy (AAS-iCE 3300, Thermo 

Fischer). The reported values are in mg K or P per 100 g dry soil. 155 

Plant available Si (water-extractable Si, cf. Sauer et al., 2006) was determined as described in Puppe et al. (2017). In short, ten 

grams of dry soil (<2 mm) was weighed, put into 80 mL centrifuge tubes, and 50 mL distilled water was added with three 

drops of a 0.1% NaN3 solution to prevent microbial activity. Total extraction time was 7 days. Twice a day tubes were gently 

shaken for 20 s by hand to prevent abrasion of mineral particles from colliding during constant (mechanical) shaking by using, 

e.g., a roll mixer. After extraction solutions were centrifuged (4000 rpm, 20 min), filtrated (0.45 μm polyamide membrane 160 

filters), and Si was measured via ICP–OES (ICP-iCAP 6300 DUO, Thermo Fisher Scientific Inc). Only plastic equipment was 

used during the complete extraction procedure to exclude any Si contamination. Analyses of water-extractable Si were 

performed at a minimum of two lab replicates per sample. 

The alkaline extractant Tiron (C6H4Na2O8S2∙H2O) was used for the detection of potential differences in the amorphous silica 

stocks (as a proxy of synthesized biogenic and pedogenic siliceous structures representing the main source for plant available 165 

Si), although a partial dissolution of primary minerals is well known (Sauer et al., 2006). However, due to the fact that the 

suitability of the so-called DeMaster technique (which represents the de facto standard method) for quantification of 

amorphous biogenic Si has been questioned recently (Meunier et al., 2014; Li et al., 2019), we performed no time-course 

extraction, but used a short time extraction (1 h) for all samples. Based on the short extraction time of only one hour we 

excluded extensive extraction of mineral Si forms (cf. Kaczorek et al., 2019). The Tiron extractable Si (SiTiron) was determined 170 

by the method developed by Biermans and Baert (1977), modified by Kodama and Ross (1991). The extraction solution was 

produced by dilution of 31.42 g Tiron with 800 mL of distilled water, followed by addition of 100 mL sodium carbonate 

solution (5.3 g Na2CO3 + 100 mL distilled water) under constant stirring. The final pH of 10.5 was reached by adding small 

volumes of a 4M NaOH-solution. For the extraction 30 mg of dry soil were weighed into 80 mL centrifuge tubes and a 30 mL 

aliquot of the Tiron solution was added. The tubes were then heated at 80°C in a water bath for 1h. The extracted solutions 175 

were centrifuged at 4000 rpm for 30 min, filtrated (0.45 µm polyamide membrane filters, Whatman NL 17) and Si 

concentrations measured by ICP-OES. To avoid contamination, only plastic equipment was used during the complete 

procedure. Analyses of Tiron extractable Si was performed in three lab replicates per sample. 
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2.3 UAS remote sensing 

We used a fixed-wing UAS Carolo P360 (Fig. 2) with a wingspan of 3.6 m and a take-off weight of 22.5 kg. The UAS is 180 

equipped with a 12-band multi-camera array Mini-MCA 12 (MCA hereafter) (Tetracam Inc., CA, USA). The 12 narrow-band 

filters (between 10 nm and 40 nm bandwidth) cover the spectral range from visible to near infrared wavelengths with focus on 

the characteristic reflectance features of healthy vegetation (chlorophyll absorption band around 660 nm, the red-edge region 

between 680 nm and 750 nm) and one of the water absorption bands around 950 nm. Hereafter, bands will be denoted according 

their respective center wavelength in nm (e.g. b713 for the red edge band).  185 

 

Figure 2: Unmanned Aerial System (UAS) Carolo P360 with multi-camera array Mini-MCA 12 (visible lenses at the underside of 

the camera). 

The UAS mission was conducted during the flowering period of C. epigejos on 21 August 2014 under acceptable flight 

conditions (moderate wind speed and little cloud shadow). A small negligible area was covered in the south-east part with no 190 

or little occurrence of C. epigejos and P. australis respectively. At this time, the foliage is medium green and the large 

inflorescences are clearly visible. This facilitates the (i) spatial delineation and (ii) spectral distinction between C. epigejos 

populations and dozens of other existing grass-like species. Due to camera specifications a unique flight altitude of 163 m 

above ground is required to achieve the desired ultrahigh ground sampling distance (GSD) of ~ 0.1 m. Details about UAS, 

camera specifications and mission settings are presented in appendix A1. The post-processing chain including radiometric 195 

corrections, mosaicking and geo-referencing is described in more detail in appendix A2. 

2.4 Image classification 

A supervised ML classification was applied to identify individual dominant plant species or communities. The ML classifier 

requires a proper selected set of training areas for all objects visible in the image.. For this purpose we used field inspections 

and available botanical mappings at grid points (data provided by M. Zaplata). Details regarding conditions and constraints of 200 

the ML classifier are given in appendix B1.. 
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Finally 16 relevant land cover classes (LCC) were defined including three classes of non-vegetation (shadow, bare soil, open 

water) and four classes of legume and non-legume woods (Table 1). The statistical separability of the LCC signatures was 

computed before each classification run. Divergence, an often used separability measure in remote sensing, is computed using 

the mean and variance-covariance matrices of the pixel values representing the training area. The Jeffries-Matusita (J-M) 205 

distance (Kavzoglu and Mather, 2000), the divergence measure used in this study, was computed for all possible LCC pairs. 

A computed value of zero indicates that classes are inseparable and a value of 1414 means total separability (Swain, 1978).  

Table 1: List of the 16 relevant land cover classes (LCC) as predefined for classification on basis of field survey and botanical 

mappings. 

Group LCC Description 

 No   

Grass-like communities 01 C. epigejos - d Dense population 

 02 C. epigejos - dt Dense population close to trees (sunlit side of Robinia pseudoacacia) 

 03 C. epigejos - m Population with a minor fraction of visible Herbs, Mosses and Lichens 

 04 C. epigejos - HML Sparse population with a large fraction of visible Herbs, Mosses and lichens 

 05 P. australis - d Dense population with a particular fraction of shadow 

 06 P. australis - m Population with a minor fraction of other visible grass-like species and shadow 

 07 P. australis – HML Sparse population with a large fraction of visible Herbs, Mosses and lichens 

 08 F. rubra Population of Festuca rubra agg. 

Legume-, non-legume Herbs; Mosses; 09 HML-0 Herbs, Mosses and lichens populations without any other visible grass-like species 

Lichens (HML)  communities 10 HML-1 Herbs, Mosses and lichens populations with a  minor fraction of grass-like species (unidentified) 

Legume-, non-legume Woods 11 R. pseudoacacia/S. caprea Large individuals of Robinia pseudoacacia and Salix caprea 

individuals 12 H. rhamnoides Large individuals of Hippophae rhamnoides 

 13 P. sylvestris Small individuals of Pinus sylvestris 

Non - vegetation 14 Shadow Shadow of trees and bushes 

 15 Bare soil Predominately sandy substrate 

 16 Open water  

 210 

2.5 Calculation of the Normalized Difference Vegetation Index (NDVI) 

The NDVI is an intrinsic vegetation index that simply accounts for the chlorophyll absorption feature in the red (R) and the 

structural information inherent in high NIR reflectance of a green vegetation canopy. It does not involve any external factor 

other than the measured spectral information and is calculated by: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅)

(𝑁𝐼𝑅+𝑅)
                    (1) 215 

where NIR and R are the reflectance in the near-infrared and red band. Since radiometric calibration was renounced in this 

study, NIR and R refer to DNs instead of at-surface reflectance. In order to investigate the potential of the available bands in 

the red edge (RE, the steep incline between VIS and NIR reflectance typically for green vegetation) and NIR domain, five 

variations of the NDVI were calculated. The four NIR bands correspond to b831, b861, b899 and b953. In case of the RE band b713, 

NIR have to be substituted by RE in Eq. 1. 220 
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Coefficients of determination (R²s) were calculated for the relationships between the examined VIs and the ground measured 

fresh shoot biomass of C. epigejos and P. australis as individual species and for the pooled dataset consisting of all measures. 

Since the fresh litter accumulated during the preceding seasons is covered by the tall growing C. epigejos and P. australis and 

therefore cannot be estimated directly, R²s were calculated analogous for the sum of the fresh shoot biomass and litter. The 

latter was done in order to find out whether correlations between calculated VIs and fresh shoot biomass at the one side, and -225 

on the other hand-, between VIs and fresh shoot biomass including the litter can be used for an indirect estimation of fresh 

litter. 

2.6 Statistical analysis 

Correlations were analysed using Spearman’s rank correlation (rs). Significances between two independent samples were 

verified with the Mann–Whitney U test. Significances between more than two independent samples were tested with the 230 

Kruskal-Wallis analysis of variance (ANOVA) followed by pairwise multiple comparisons (Dunn’s post hoc test). Statistical 

analyses were performed using software package SPSS Statistics (version 22.0.0.0, IBM Corp.). 

3 Results 

3.1 Image classification 

The computed J-M distance for the 120 LCC pairs shows an average of 1386 and a minimum of 1142. While the signatures of 235 

79 LCCs are almost totally separable (J-M distance ≥1 410), a fairly separability exists for 32 LCC pairs (J-M distance ≥ 1248). 

Values below 1249 were computed for 9 LCC pairs indicating a poor separability. 

Figure 3 depicts the mean signatures of the 16 LCCs. In Fig. 3a all LCCs others than those classified as C. epigejos or P. 

australis (8 to 16) reveal large differences and can thus be clearly distinguished. While open water and shadow shows the 

lowest DNs over all spectral bands, the highest DNs in the visible range are characteristic for sandy soil (Stoner and 240 

Baumgarder, 1982). Regardless the use of DNs instead of reflectance the signatures of trees and bushes show the characteristic 

features of green vegetation. With decreasing chlorophyll content and population densities of photosynthetically active species 

(here F. rubra) and a simultaneously increasing fraction of shadow, cryptogam species and dead plant material (LCCs 9 and 

10), DNs show a more or less monotonous increase of DNs from the VIS to the NIR wavelength domain. The signatures of 

LCCs 1 to 7 are depicted in Fig. 3b.The signature of the dense P. australis population (LCC 5) exhibits a shape similar to the 245 

signatures of trees and bushes but DNs are lower in the NIR domain caused by a higher fraction of shadow visible to the sensor. 

All other signatures appear similar regarding the general shape (monotonous increase) but the separability is fairly high for 

most of them caused by the lower overall reflectance and the flatter slope of the signature with an increasing fraction of visible 

non-photosynthetic material and shadow. Amongst the 10 pairs showing poor separability, 4 pairs comprise LCCs describing 

transitional states within the same species (e.g. P. australis; LCC 6 and LCC 7) or cannot clearly distinguish between C. 250 

epigejos and P. australis. The first case is uncritical since the respective LCCs will be treated as one LCC in the further 

https://doi.org/10.5194/bg-2021-26
Preprint. Discussion started: 3 March 2021
c© Author(s) 2021. CC BY 4.0 License.



10 

 

analysis. The second case cannot be avoided due to co-occurrence within the same area of interest. However resulting 

misclassifications are negligible with respect to the small differences of Si content observed for both species. 

 

 255 

 

Figure 3: Mean signatures of classified LCCs others than C. epigejos and P. australis (a) and respective signatures of C. epigejos 

and P. australis classes (b). Note the different scaling of the y-axes. 

Constraints have to be accepted regarding the poor separability between F. rubra (LCC 8), C. epigejos (LCC 2) and P. australis 

(LCC 6 and 7) respectively. Although mean signatures indicate fairly separabilty at least in the NIR domain, class variances 260 

are large and diminish the separability. 
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3.2 Spatial coverage and zonal distribution of land cover classes 

C. epigejos (40 %) and P. australis (22 %) cover most of the area followed by trees, bushes and the respective shadow with a 

spatial coverage of 19 %. Legume and non-legume herbs, mosses and lichens without or with a minor fraction of grass-like 

species cover 4.5 % and 4.8 % respectively. The remaining area was classified as F. rubra (LCC 8; 3.5 %). open water (3.1 %) 265 

and bare soil (2.6 %). The spatial coverage of each of the 16 LCCs is depicted in Fig. 4. 

 

 

Figure 4: Spatial distribution of classified land cover classes (LCC). 

 270 

The Si accumulators C. epigejos and P. australis show a clear zonal distribution. C. epigejos is widespread in the northern 

zones of the catchment. Populations with high density (LCC 1 and 2) occur regularly nearby the sunlit side of R. pseudoacacia 

(LCC 2). In reality the populations are distributed more circular around the trees but the shaded side during image acquisition 

prevented from classification. Other high density populations (LCC 1) are predominately spread as smaller patches in the 

western zone. A clear zonal distinction can be observed for the two C. epigejos classes dominating the northern zones. The 275 

sparse populations (LCC 4) with a spatial coverage of 19 % occur in the western zone and the central trench. LCC 3 as the 

second largest class (15 %) is widespread in the eastern zone and the central trench, but spatially separated by trees, bushes 

and larger patches of other LCCs (HML 0 and 1, bare soil). P. australis mainly occurs in the southern zone of the catchment 

with a dense population concentrated around the artificial pond. A narrow band runs from the north-west to the south-east 

along the central trench. The less dense and the sparse populations (LCCs 6 and 7) occur in a band-like pattern running in 280 

west-east direction. The zonal pattern reflects mainly wetter areas, i.e. the pond’s fringe or sites where lateral groundwater 
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flow approaches the surface (return flow). The narrow NW-SE band marks the edge of an erosion gully along the central trench 

and the W-E band matches the belowground clay dams, where groundwater flow is forced towards the land surface. 

3.3 Ground-based measurements of above ground biomass of C. epigejos and P. australis 

With the exception of the separately sampled litter the variation of fresh shoot biomass is larger than the respective variation 285 

at P. australis sites (Table 2). The lowest amount was sampled at plot I5-2 with 126 g m−2. In contrast, amounts at plot CA-1 

are eight times higher (1018 g m−2). Since the sampled litter is predominately dead material, differences between fresh and dry 

samples are naturally small. However, the overall variance is similar to that of fresh and dry shoot biomass but it should be 

noted that no correlation exists between the two quantities. High amounts of litter were sampled at plots with low and high 

shoot biomass (e.g. I5-2 and CA-2 respectively). The variation between the three plots at one site reflects the small-scale 290 

variability of the island-like populations of C. epigejos with decreasing shoot biomass from the center to the margins. While 

amounts at L2-3 (center) are 1.5 times higher than at L2-2 (margin) the factor increases to almost 3 between plots I5-3 and I5-

2. The separately sampled litter varies within a range between 14 g m−2 (L2-1) and 126 g m−2 (I5-3). 

Table 2: Mean, standard deviation (SD), min, max and Coefficient of Variation (CV) calculated for fresh and dry biomass samples 

of C. epigejos and P. australis.  295 

 C. epigejos (n = 15) P. australis (n = 9) 

 Fresh Dry Fresh Dry 

 green shoot litter green shoot litter green shoot litter (incl. brown shoot) green shoot litter (incl. brown shoot) 

Mean 387 84 214 78 456 634 204 482 

Sd 243 39 131 36 262 332 120 310 

Min 126 14 57 13 133 251 50 178 

Max 1018 150 465 139 830 1337 384 1106 

CV [%] 63 47 61 47 58 52 59 64 

 

Since there was no access to the dense P. australis population in the surrounding of the pond, highest and lowest amounts of 

fresh and dry shoot biomass were collected at site Q5. The small-scale variability in fresh green shoot biomass (factor 4.9) is 

even higher compared with C. epigejos. The fresh and dry samples of litter show a high variance indicated by a CV of 74 % 

between plots. Again lowest and highest amounts were sampled at site Q5 with fresh weights of 57 g m−2 at Q5-2 and 646 g 300 

m−2 at Q5-1. 

3.4 VI performance 

All relationships calculated for the combinations between NDVIs and ground measured biomass show a positive linear trend. 

The low NDVI values, ranging between 0.08 (C. epigejos; L2-2; NDVIb891) and 0.41 (P. australis; P3-2; NDVIb856) indicate 
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no saturation effects. The respective R²s, Root Mean Square Errors (RMSE) [g m-2] and Mean Relative Errors (MRE) [%] for 305 

the examined relationships are summarized in Table 3. 

Regarding the band combinations the NDVI using the RE b713 (Fig. 5) was found the best predictor for both species as well as 

of fresh green shoot biomass (Fig. 6a) and the sum of fresh green shoot biomass and fresh litter (Fig. 6b). In both cases high 

R²s can be observed for C. epigejos (R² = 0.87) and for P. australis (R² = 0.74 and R² = 0.78 respectively). While the other 

band combinations perform well for C. epigejos, the predictive power decreases significantly for P. australis (R²s range 310 

between 0.40 and 0.11). VIs of P. australis show higher values at same fresh green biomass amounts and generally a larger 

scatter of values than of C. epigejos. This effect is related to the different plant architecture of the two species. The combination 

of broader green leaves and larger but less individual plants of P. australis leads to higher VIs representing the same biomass 

on the one hand. On the other hand the number of pixel affected by shadow with decreasing population densities increases the 

scatter of VI values. 315 

Table 3: R², RMSE and MRE for relationships between examined NDVIs and aboveground biomass of C. epigejos and P. australis. 

 fresh green shoot biomass fresh green shoot biomass plus litter 

 C. epigejos P. australis C. epigejos P. australis (litter incl. brown shoot) 

Band R² RMSE MRE R² RMSE MRE R² RMSE MRE R² RMSE MRE 

  [g m-2] [%]  [g m-2] [%]  [g m-2] [%]  [g m-2] [%] 

b713 0.87 84 27.3 0.74 126 38.5 0.87 89 19.5 0.79 353 31.3 

b861 0.82 100 29.2 0.37 197 55.3 0.81 106 20.9 0.36 389 30.0 

b899 0.82 99 31.6 0.33 202 60.6 0.80 108 23.1 0.40 376 29.1 

b953 0.73 123 36.6 0.11 234 76.6 0.70 132 27.1 0.21 434 39.7 
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Figure 5: NDVIb713 calculated from Eq. 1 using the red edge band. The area corresponds with the classified spread of C. epigejos 320 
(LCCs 1 – 4) and P. australis (LCCs 5 – 7). 

 

 

Figure 6: Respond of NDVIb713 to fresh green shoot biomass (a) and the sum of fresh green shoot biomass and litter (b) of C. 

epigejos and P. australis. 325 
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3.5 Estimation of dry biomass fractions 

Taking into account the results of section 3.3, dry green shoots and the sum of dry green shoots and litter were calculated 

separately for each species. The quantities are highly correlated with R²s of 0.88 and 0.86 for C. epigejos and 0.99 and 0.97 

for P. australis. The respective linear regressions (Fig. 7a and 7b) were used to model their spatial distribution in a first step. 

In a second step, the modelled amounts of dry green shoots were subtracted from the modelled sum of dry green shoots and 330 

litter to yield the spatial distribution of dry litter. 

 

 

Figure 7: Correlation between fresh and dry green shoot biomass (a) and the respective biomass including litter (b) for C. epigejos 

and P. australis. 335 

3.6 Silicon content and stocks of C. epigejos and P. australis 

The mean Si content within dry litter of C. epigejos (3.7 %) is 1.8 times higher than the Si content in the dry shoot biomass of 

the current year (2.1 %). The effect is less pronounced for the three analyzed fractions of P. australis (Table 4). The Si content 

range between 3.0 % (dry litter without dry brown shoot biomass), 2.5 % (dry brown shoot biomass) and 2.3 % (dry green 

shoot biomass). As we regard the sum of the first two fractions as litter, the mean of both contents (2.7 %) was used for further 340 

calculations. The mean fairly represents real conditions since both fractions, on average, contribute to the sum in equal 

amounts. Finally, the respective Si content was used to calculate the Si stocks in both fractions of C. epigejos and P. australis. 

The areas given in Table 4 equal the summed areal coverage of the classified LCCs 1–4 (C. epigejos) and 5–7 (P. australis). 

The total Si stock (sum of green shoot biomass and litter) accumulated in P. australis contributes to 64 % (275 kg) to the total 

Si stock calculated for the whole catchment (429 kg) despite the fact that the areal coverage is almost half that of C. epigejos. 345 
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Table 4: Mean Si content of biomass fractions of C. epigejos and P. australis and respective Si stocks calculated from the areal 

coverage derived from ML classification.  

 Si content [%]  Si  stocks 

 Fractions Mean CV [%]  [g m-2] Area [m²] Si [kg] 

C. epigejos shoot biomass 2.1 (0.7) 33  6.0 20755 125 

n = 15 litter 3.7 (1.0) 27  1.4  30 

 total    7.4  155 

P. australis shoot biomass 2.3 (0.4) 17  7.5 10063 75 

n = 9 litter 2.7 (0.4) 13  19.8  199 

 total    27.3  274 

Catchment     13.9 30818 429 

 

This is simply caused by the fact that P. australis forms more dry biomass per unit ground area than C. epigejos (factor 2.3 on 

average). The spatial distribution of total Si stocks calculated on the basis of the real areal coverage of both species is depicted 350 

in Fig. 8a and Fig. 8c. According the higher biomass production, Si stocks of P. australis reach a maximum (98 g m-2) in the 

fringe around the pond. The majority between 3 g Si m-2 and 60 g Si m-2 occurs in the southern zone and in a narrow band 

along erosion gullies in the central trench. 
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Figure 8: Spatial distribution of Si stocks of C. epigejos (a) and P. australis (c) and total amounts of Si accumulated in the four zones 355 
by C. epigejos (b) and P. australis (d). Note the different legend scales in (a) and (c). 

With the exception of few patches in the southern zone the vast majority of values do no not exceed 17 g m-2 in the case of C. 

epigejos.  It is noticeable that the southern zone shows a clear two-parted internal zonation. The northern part is a type of a 

transition zone showing a co-occurrence of both species with high Si accumulation in C. epigejos, whereas the southern part 

is dominated by P. australis in the surrounding of the pond. This indicates that the spatial pattern is caused by soil moisture 360 

conditions rather than the initial spatial differences in soil properties induced by construction work and explains the relative 

low zonal contribution of 17% (26 kg) to the total Si stock of 154 kg (Fig. 8b). 

Regardless the accumulated Si in the southern zone and the central trench, the clear distinction between the eastern and western 

zone is striking. While the western zone contributes to 40% (62 kg), only 23% (35 kg) were accumulated in the eastern zone. 

Values correspond to mean Si stocks of 4.0 g m-2 and 2.3 g m-² respectively. 365 
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Figure 8d shows the Si stocks accumulated in P. australis calculated for each of the four zones. While the southern zone 

contributes to 66 % (180 kg Si) to the total amount, Si stocks in northern zones play a minor role. Mean Si stocks reach 12.2 

g Si m-2 in the southern zone but significantly lower values in the eastern (3.1 g Si m-2) and the western zone (1.0 g Si m-2). 

Although mean Si stocks in the central trench are similar to those in the eastern zone (3.6 g Si m-2) the occurrence of P. 

australis tends to be more linear along the main gully. Regarding habitat requirements of P. australis, the occurrence is a result 370 

of higher soil moisture conditions in this area and the partially wet and flooded sites around the pond. 

3.7 Relationship between Si stocks of C. epigejos, P. australis and site properties 

From a total of 124 grid points we excluded all locations in the central trench due to disturbances in soil properties and related 

nutrient availability caused by water erosion compared to the initial conditions in 2005. Moreover, we excluded several grid 

points within the remaining zones located below trees and bushes without any classified occurrence of C. epigejos and P. 375 

australis. Finally, Si stocks and site properties of 35 grid points located in the western, 32 in the eastern and 18 in the southern 

zone were used for statistical analysis. Mean Si stocks were extracted from a squared area of 25 m² around each grid point. 

 

Figure 9: Distribution of Si stocks of C. epigejos (a) and P. australis (b) at grid points in the western, eastern and southern zone. 

Note the different scaling of the y-axes. 380 

Compared to the zonal means of 4.0 g m-2, 2.3 g m-2 and 1.8 g m-2 for C. epigejos, the Si stocks extracted at grid points 

increased to 4.7 g m-2 in the western, 2.6 g m-2 in the eastern and 3.3 g m-2 in the southern zone (Fig. 9a). However the ratios 

of 0.9 for the western and eastern zone indicate an adequate representation of the grid points for both zones. The large 

difference in the southern zone is mainly caused by the two-parted zonation with almost no occurrence of C. epigejos in more 

than half of the southern zone area. Zonal Si stocks accumulated in P. australis in the western, eastern and southern zone (1.0 385 

g m-2, 3.1 g m-2 and 12.2 g m-2) are sufficiently represented by grid points in all zones (1.5 g m-2, 2.6 g m-2 and 10.0 g m-2) 

(Fig. 9b).  
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Among the examined soil properties, means of clay content (Fig. 10a) show a corresponding trend with respect to Si 

accumulation in dry biomass of C. epigejos for all three zones. 

 390 

Figure 10: Distribution of soil properties and nutrients at grid points in the western, eastern and southern zone. Figures depict the 

data distribution of clay content (a), Tiron extractable amorphous Si (SiTiron) (b), water soluble Si (Si – H2O) (c), nitrogen (d), 

potassium (e), and phosphorus (f). 

Significant differences were found for SiTiron (Fig. 10b) between the western and the eastern zone, whereas values in the 

southern zone do not differ very much from those in the eastern zone. The water soluble Si (Fig. 10c) can be ruled out as a 395 

driving factor since there is no differentiation between means over all zones. The zonal distribution of the most important 

nutrients draws a similar picture. Highly significant differences of means between the western and eastern zone were found 

for nitrogen (Fig. 10d) and potassium (Fig. 10e). For both nutrients, slightly higher values compared to the eastern zone can 
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be observed for the southern zone which is in accordance with higher Si stocks. It can be considered that PDL is not a driving 

factor for the spatial spread of C. epigejos populations, since availability is more or less equal in all three zones (Fig. 10f). 400 

As stated before, the occurrence of P. australis is governed by soil moisture conditions. Therefore neither examined soil 

properties nor nutrient availability show a recognizable impact on the spatial spread along zones. However, we cannot exclude 

the possibility of relationships within zones on the basis of grid points especially in the two-parted southern zone. 

4 Discussion 

4.1. Aboveground phytogenic Si stocks at Chicken Creek 405 

Mean aboveground Si stocks of P. australis and C. epigejos are surprisingly high and are comparable to or markedly exceed 

reported values for the Si storage in aboveground vegetation, e.g., in the Great Plains (short grass steppe and tall grass prairie, 

2.2 to 6.7 g Si m-2, Blecker et al., 2006), the tropical humid grass savanna (tall grass Loudetia simplex, 3.3 g Si m-2, Alexandre 

et al., 2011) or forested biogeosystems (beech forest: 8.3 g Si m-2, Sommer et al., 2013; Beech-fir forest: 18 g Si m-2, pine 

forest: 9 g Si m-2, Bartoli, 1983). Maxima of Si stocks at Chicken Creek reach values (up to 98 g Si m-2) that are comparable 410 

to the Si storage in wetlands (50 to100 g Si m-2, Struyf and Conley, 2009). Due to the fact that the Si content of C. epigejos 

and P. australis are in line with published values for grasses in general (Hodson et al., 2005), we conclude the observed Si 

stocks to be predominantly driven by the (high) biomasses of both plants. If we assume a more or less steady annual Si 

accumulation in C. epigejos for 5 years (C. epigejos became one of the most dominating plant species since 2010, Zaplata et 

al., 2011b), the mean Si accumulation in the aboveground biomass of C. epigejos amounted to about 6.0 g Si m-2 per year. If 415 

we further assume a similar time span for the Si accumulation in P. australis, the mean Si accumulation in the aboveground 

biomass of P. australis amounted to about 7.5 g Si m-2 per year. Thus, annual Si fixation in C. epigejos and P. australis at 

Chicken Creek exceeds published data on annual biosilicification rates of temperate forest biogeosystems (beech forest: 3.5 g 

Si m-2 yr-1, Sommer et al., 2013; Beech-fir forest: 2.6 g Si m-2 yr-1, pine forest: 0.8 g Si m-2 yr-1, Bartoli, 1983; Douglas fir 

forest: 3.1 g Si m-2 yr-1, Norway spruce forest: 4.4 g Si m-2 yr-1, black pine forest: 0.2 g Si m-2 yr-1, European beech forest: 2.3 420 

g Si m-2 yr-1, oak forest: 1.9 g Si m-2 yr-1, Cornelis et al., 2010). 

In the light of potential aboveground biomasses of, e.g., C. epigejos (up to about 700 g m-2, Rebele and Lehmann, 2001), our 

results emphasize the significance of grasses for Si cycling in general. In this context, eutrophication is one of the most 

important drivers of the increased abundance of C. epigejos in many regions of Central Europe, especially East Germany, 

Poland, and Czech Republic (Rebele and Lehmann, 2001), while on the other hand eutrophication might also be one of the 425 

drivers of the decline of P. australis in numerous European wetlands since the 1950s (Van der Putten, 1997). Considering the 

net primary production of the worldwide major biome types and the average amounts of Si fixed in the corresponding 

vegetation, the significance of grasses for Si cycling becomes much clearer: tropical woodland and savanna, temperate steppe, 

tundra, wetland, and cultivated land belong to the biome types where Si is actively accumulated and vegetation is widely 

dominated by grasses (Carey and Fulweiler, 2012). Humans directly affect the distribution and size of these biomes and thus 430 
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influence corresponding Si cycling through intensified land use (forestry, agriculture) (Struyf et al., 2010, Vandevenne et al., 

2015a, b). Si exports through harvested crops generally lead to a Si loss in agricultural used soils (= anthropogenic 

desilicification) (Desplanques et al., 2006, Guntzer et al., 2012, Keller et al., 2012, Meunier et al., 2008, Vandevenne et al., 

2012). On a global scale, about 35 % of Si accumulated in vegetation is synthesized by field crops and this proportion is going 

to increase with increased agricultural production within the next decades (Carey and Fulweiler 2016). In this context, targeted 435 

manipulation of Si cycling might be a promising strategy to enhance carbon sequestration in agricultural biogeosystems to 

mitigate climate change (Song et al., 2014). 

4.2. Initial soil properties as drivers of spatial patterns of C. epigejos and P. australis and corresponding Si stocks 

In general, plant biomass and its distribution is mainly controlled by climatic, edaphic (e.g., soil moisture/texture, pH, and 

nutrients) and geographic-historic factors as well as by species interactions (e.g., consumption by herbivores) and 440 

(anthropogenic) perturbations (e.g., Polis 1999). At Chicken Creek consumption of plants by herbivores can be generally 

excluded, because the total study area is fenced. The composition and structure of plant communities thus is mainly governed 

by climatic and edaphic factors at Chicken Creek. Studies of Zaplata et al. (2011a, 2013) indicated that differences in vegetation 

dynamics at Chicken Creek can be directly derived from slight differences in edaphic conditions resulting from construction 

work with large machines (Gerwin et al., 2010). 445 

In this context, especially differences in soil pH, carbon content, calcium carbonate and conductivity between the sandier 

eastern and the loamier western part were identified to influence plant species distribution in general (Zaplata et al., 2013). 

Our results on hand generally corroborate this differentiation between zones of Chicken Creek with clay, N, KDL, and Tiron 

extractable Si content as important drivers of the small-scale distribution of C. epigejos. Süß et al. (2004) analysed plant 

successional trajectories and corresponding drivers in calcareous sand ecosystems in the northern upper Rhine valley in 450 

Germany. They found the successional trajectories of C. epigejos to be correlated to total N, extractable P and K as well as 

soil moisture. In contrast, the most important nutrients for aboveground biomass production of C. epigejos seem to be N and 

calcium, while P and K seem to have no significant effect on biomass production (Rebele and Lehmann, 2001). This also is in 

line with our observation that PDL seems to be no driver of the small-scale distribution of C. epigejos at Chicken Creek. Plant 

available Si concentrations seem to be no driver for the distribution of C. epigejos and P. australis as well. This might be a 455 

hint that Si accumulation in plants is probably more influenced by the phylogenetic position of a plant than by environmental 

factors like temperature or Si availability (cf. Prychid et al., 2004, Hodson et al., 2005, Cooke and Leishman 2012). 

4.3. Benefits and limitations of UAS-based remote sensing of phytogenic Si stocks  

Natural ecosystems are characterized by an abundant flora, arranged in a complex spatial pattern. Thus, a sufficient 

classification of all relevant species in an ecosystem is challenging or even impossible and has been addressed in previous 460 

studies (e. g. Dunford et al., 2009; Laliberte et al., 2011; Husson et al., 2016).  
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While larger individuals like trees and bushes are easy to identify, the size of the majority of species at Chicken Creek is far 

below the 10 cm spatial resolution of the multispectral imagery used in our study and tall growing plants or broad leaved 

species prevent the sensor of seeing low growing species below. As a consequence, and in contrast to the classification of 

monocultures, the produced LCC map of the Chicken Creek catchment merely represents the spatial distribution of species or 465 

species compositions visible to the sensor. For this reason, we could hardly use the botanical mapping at grid points provided 

by M. Zaplata to validate our classification but we could use these data as a rough quality check. Hence training areas for the 

classification have been defined giving priority to the two main Si accumulators under study. However, both limitations were 

of minor importance in the case of P. australis and C. epigejos. Even smaller patches of both species were large enough to be 

identified unless the spatial resolution. With the exception of the transition zone northeast of the pond, where C. epigejos co-470 

exist below P. australis, populations are spatially separated and represent the uppermost layer of the canopy within the 

respective plant community. This may lead to slight underestimations of the spread of C. epigejos and the subsequently 

estimated Si – stock in this area. The clear spectral distinction between similar signatures prevents many other species from 

proper classification in general and in particular in the case of only few available spectral bands. This limitation can be 

diminished by choosing an appropriate date for image acquisition, when the predominately green leaves of C. epigejos and P. 475 

australis enhance the optical contrast against the background reflectance of herbs, mosses and lichens. This cannot avoid the 

inclusion of other grass-like species such as F. rubra or B. sylvaticum in one of the C. epigejos or P. australis classes and the 

confusion with litter in case of sparse vegetation cover. 

The majority of studies using the original NDVI, other VIs or combinations of VIs have been derived from satellite imagery 

at landscape level (e. g. short grass prairie, Anderson et al., 1993; short grass steppe, Todd et al., 1998; rangeland, Mundava 480 

et al., 2014; different types of grassland and temperate steppe, Meng et al. 2018) showing poor up to moderate correlations 

between VIs and above ground biomass. R²s range between 0 and 0.6 for either total biomass or fractions of biomass caused 

by insufficient spatial and spectral resolution but mainly by background reflectance of soil, shadow or non-photosynthetic 

plant components such as standing dead plants or litter. The immense quantity of studies which evaluated different sensors 

with numerous VIs at various scales and environments hamper a clear assessment of our results. While several studies reported 485 

no or minor improvements in the relationships between red edge VIs involving the wavelength region between 680 nm to 750 

nm and vegetation parameters (e. g. Cui and Kerekes, 2018; Easterday et al., 2019), other studies carried out over 

heterogeneous forest stands have proven the red edge reflectance to be sensitive to chlorophyll content while largely unaffected 

by structural properties and crown shadow (e.g. Zarco-Tejada et al., 2018, Xu et al., 2019). This explains in parts the 

outperformance of our results compared to the aforementioned studies and the results presented here, in particular for P. 490 

australis, which show a drastic decrease of R²s when NIR reflectance bands where used instead of the red edge band. The most 

important benefit of UAS-based remote sensing of phytogenic Si stocks is its potential to cover the heterogeneity in plant 

biomasses and thus phytogenic Si stocks. This is in contrast to previous studies, which assumed identical biomasses for Si 

stock quantifications (e.g., Cornelis et al., 2010; Sommer et al., 2013; Turpault et al., 2018). In addition, these studies mainly 

focused on a single plant species in a given ecosystem. Contrary, UAS-based remote sensing enables to detect biomasses of 495 
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different plant species simultaneously, and thus to quantify Si stocks in a lifelike way. Furthermore, UAS-based remote sensing 

enables the detection of plant biomasses in larger areas, i.e., at a landscape scale, which is also in contrast to previous studies, 

which used results of small study plots for an extrapolation to larger spatial units up to a global scale implicitly assuming 

similar environmental conditions (e.g., Carey and Fulweiler, 2012). Due to the fact that aboveground biomass of plants seems 

to be the main factor of corresponding phytogenic Si stock quantities (the variations in Si content in a plant species in a given 500 

ecosystem are considerably lower, especially when we assume that the phylogenetic position of a plant - rather than 

environmental factors - determines potential plant Si content, see, e.g., Hodson et al. 2005), a detection of biomass 

heterogeneities via UAS-based remote sensing represents a promising tool for the quantification of lifelike phytogenic Si pools 

at landscape scales. 

5 Conclusions 505 

As both species, C. epigejos as well as P. australis, analysed at Chicken Creek show a wide range of biomass (0.1 - 98 g m-2), 

the use of mean biomasses in Si stock calculations or Si cycling models generally leads to deviations, thus substantial Si stock 

underestimations or overestimations. For a profound understanding of Si cycling in general and the influence of land use in 

particular, detailed information on the small-scale spatial distribution of plant related Si stocks based on an accurate biomass 

assessment is urgently needed. This information will help us to understand the interaction between edaphic factors, plant 510 

distribution, ecosystem productivity (biomass), and anthropogenic desilicification on a local (i.e. site-specific) scale. Due to 

the fact that ultrahigh resolution imagery captured by UASs is capable of differentiating between Si accumulating species and 

respective fresh biomass and litter, this technique is also a promising tool for the detailed assessment of Si fluxes in grasslands. 

As Si content of litter have been recognized as an important driver of decomposition rates (Schaller et al., 2016, 2017), 

information on litter Si stocks will further help us to better understand ecosystem biogeochemistry in general. 515 

Appendix A 

Appendix A1: UAS, camera specification, and mission settings  

The Carolo P360 is a fixed wing construction, developed by the Institute of Aerospace Systems of the Technical University 

Braunschweig (Fig X). With a wingspan of 3.6 m and a take-off weight of almost 22.5 kg including the complete battery set 

for the electric drive motor, the MINC autopilot system including servo actuators and the payload (sensors and control unit), 520 

the UAS is capable to carry an additional payload of approximately 2.5 kg. The battery set allows flight durations of 

approximately 40 min at ground speeds between 20 m s-1 and 30 m s-1 including the time for climbing and landing. 

The multispectral camera Mini-MCA 12 is a compact modular construction integrating two basic modules into one rugged 

chassis. Each module consists of an array of six individual CMOS sensors (1280 × 1024 pixels; pixel size 5.2 µm), lenses 

(focal length 8.5 mm) and mountings for user definable band-pass filters. The filter configuration and specific properties are 525 

summarized in Table A1.  
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Mission settings followed the recommended cruising speed of 25 m s-1 and the camera exposure time of 2 s resulted in an 

overlap in flight direction of approximately 50%. A distance of 40 m between the flight paths required to achieve a sufficient 

across flight overlap of at least 60%. Twenty-two waypoints were predefined, each marking a start- and endpoint of 10 parallel 

flight paths with a total length of 8.6 km including the loop lines. In order to maintain the GSD of ~ 0.1 m, terrain effects were 530 

compensated by setting the flight altitude to 163 m for the northern- and 153 m for the southern waypoints. A total of 2556 

individual (≙ 213 multispectral) images were captured during the mission. 

 

Table A1: Filter configuration of the Mini-MCA 12 and optical properties of the mounted filters. For band 2 (b) no fact sheet has 

been provided. 535 

Band Center Wavelength [nm] FWHM* Coordinates (Bandwidth) [nm] Bandwidth (10%) [nm] Peak Transmission [%] 

1 471 466.0 – 475.1   (9.1) 12.8 68.3 

2 515 N/A (≈10.0) N/A N/A 

3 551 545.5 – 555.6 (10.1 ) 14.8 56.4 

4 613 607.7 – 617.8 (10.2 ) 14.2 67.6 

5 658 653.4 – 662.9   (9.5 ) 13.6 69.2 

6 713 708.1 – 717.7   (9.6 ) 13.4 63.0 

7 761 756.2 – 766.7 (10.5) 14.7 71.9 

8 802 797.3 – 807.3 (10.1) 14.5 56.3 

9 831 826.3 – 835.8   (9.5) 13.1 55.3 

10 861 856.4 – 866.4 (10.1) 14.0 64.2 

11 899 891.3 – 907.7 (16.4) 22.9 63.6 

12 953 933.0 – 973.8 (40.8) 58.2 69.6 

  

Appendix A2: Image post-processing chain 

Post-processing of MCA imagery aims at the conversion of raw digital numbers (DN) into georeferenced at-surface reflectance 

images. This multistage procedure consists of three major components (i) radiometric image correction and (ii) transformation 

of sensor coordinates into a geographic coordinate system and image alignment and (iii) absolute radiometric calibration. The 540 

radiometric image correction includes periodic and checkered pattern noise reduction, correction of sensor-based illumination 

fall-off (vignetting), horizontal band noise removal (caused by the progressive shutter of CMOS sensors) and lens distortion. 

The transformation of sensor coordinates includes the fusion of recorded GPS measurements with collected images, band-wise 

automated aerial triangulation (AAT), the minimizing of remaining geometric distortions and the alignment of single bands to 

one multispectral image using ground control points (GCPs). Due to homogenous environmental conditions during the 10 545 

minutes of image acquisition (weather and illumination geometry), we renounced the conversion of measured DNs into at-

https://doi.org/10.5194/bg-2021-26
Preprint. Discussion started: 3 March 2021
c© Author(s) 2021. CC BY 4.0 License.



25 

 

surface reflectance, which is required for the retrieval of physical parameters of vegetation canopies or bare soil properties 

because a recorded DN is not only a function of the spectral characteristics of vegetation or soils but also of environmental 

condition (Moran et al., 1995). A detailed description of the multistage procedure is beyond the scope of this paper. Thus the 

following paragraphs give a brief overview of the basic methods used in this study to generate one georeferenced multispectral 550 

image from the recorded raw images.   

Radiometric corrections comprise noise reduction, correction for vignetting and lens distortion effects. The dark offset 

subtraction technique proposed by (Kelcey and Lucieer, 2012) reduces the noise component of an image by subtracting the 

average per-pixel noise calculated from 120 repetitions captured in a completely darkened environment for each of the 12 

sensors. The method used for the correction of vignetting effects basically uses a look-up table (LUT) for each sensor, 555 

composed of correction factors for each pixel derived from flat field imagery (Mansouri et al., 2005). These were generated 

by capturing multiple images of an evenly illuminated white cardboard with almost lambertian properties and constant spectral 

characteristics over VIS and NIR wavelengths. In a first step the per-pixel average and the corresponding standard deviation 

were calculated from a total of 10 images for each of the 12 sensors at different exposure levels, followed by a subtraction of 

the respective dark offset imagery. 560 

To account for the horizontal band noise induced by the progressive shutter of the camera, a shutter correction factor has been 

calculated (Wehrhan et al., 2016). 

Finally, a correction technique for lens distortions is applied. The plumb-line approach described in the Brown–Conrady model 

(Hugemann, 2010) is implemented in the PhotoScan-Pro V.1.7. software (Agisoft LLC, St. Petersburg, Russia). The model requires 

the input of the focal length (8.5 mm) and the pixel size (5.2 µm). Internal and external orientation of each camera (band) is then 565 

estimated automatically from the geometry of an image sequence during the image alignment process (Dall’Asta and Roncella, 2014). 

Mosaicking and geo-referencing using The PhotoScan-Pro workflow involves common photogrammetric procedures including 

the search for conjugate points by feature detection algorithms used in the bundle adjustment procedure, approximation of 

camera positions and orientation, geometric image correction, point cloud and mesh creation, automatic georeferencing and 

finally the creation of an orthorectified mosaic (Conçalves and Henriques, 2015). This workflow was applied to each of the 10 570 

bands independently. The ERDAS Imagine software (Hexagon Geospatial, Norcross, GA, U.S.) was then used to improve the 

spatial accuracy and to transform the single bands to the local coordinate system ETRS 89 UTM 33 by using the precisely 

measured raster point coordinates. Finally the 10 bands were stacked to a single multispectral image. 

For more details regarding description of methods, used materials and technical equipment the reader is referred to (Wehrhan 

et al., 2016). 575 
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Appendix B 

Appendix B1: Image Classification  

A supervised pixel-based classification of a natural ecosystem needs a clear understanding of the nature and the expected 

results. The result is governed (i) by the spectral and spatial resolution of input imagery, (ii) the biodiversity, (iii) the 

morphology of the vegetation layer and (iiii) the selection of adequate training areas. The ultrahigh resolution easy allows the 580 

identification of larger objects such as trees, patches of bare soil and some individuals of P. australis but is still too low to 

identify individuals of C. epigejos. Due to almost unique spectral properties of green grass-like species, the number and the 

bandwidths of spectral MCA bands is insufficient for a clear distinction. The morphology of the vegetation layer determines 

whether a species is visible to the sensor or hidden by another species, e.g. trees or P. australis plants prevent the classification 

of an underneath growing C. epigejos population. Finally the selection of training areas determines the classification quality. 585 

Selecting small training areas with little statistical variation in the signatures may result in large unclassified areas and vice 

versa. The separabilty between classes will be diminished if the signatures of the respective training areas are to some extent 

similar. As it is typical for a supervised maximum-likelihood classification, several trials are necessary to define an appropriate 

number of representative training areas with sufficient statistical separabilty of signatures. Taking all aforementioned aspects 

into account, class definition is driven by the objectives addressed in this particular study. We are aware that these classes in 590 

parts do not coincide with vegetation or species communities as they are defined in the terminology of ecologist or biologists. 

However, for simplification purposes the term land cover class (LCC) was used. 
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