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 10 

Abstract. Climate change is expected to have detrimental consequences on fragile ecosystems, threatening biodiversity 11 

as well as food security of millions of people. Trees are likely to play a central role in mitigating these impacts. The 12 

microclimatic conditions below tree canopies usually differ substantially from the ambient macroclimate, as vegetation 13 

can buffer temperature changes and variability. Trees cool down their surroundings through several biophysical 14 

mechanisms, and the cooling benefits occur also with trees outside forest. The aim of this study was to examine the effect 15 

of canopy cover on microclimate in an intensively modified Afromontane landscape in Taita Taveta, Kenya. We studied 16 

temperatures recorded by 19 microclimate sensors under different canopy covers, and land surface temperature (LST) 17 

estimated by Landsat 8 thermal infrared sensor. We combined the temperature records with high–resolution airborne laser 18 

scanning data to untangle the combined effects of topography and canopy cover on microclimate. We developed four 19 

multivariate regression models to study the joint impacts of topography and canopy cover on LST. The results showed a 20 

negative linear relationship between canopy cover percentage and daytime mean (R2 = 0.65) and maximum (R2 = 0.75) 21 

temperatures. Any increase in canopy cover contributed to reducing temperatures. The average difference between 0 % 22 

and 100 % canopy cover sites was 5.2 ˚C in mean temperatures and 10.2 ˚C in maximum temperatures. Canopy cover 23 

reduced LST on average by 0.05 ˚C/%CC. The influence of canopy cover on microclimate was shown to vary strongly 24 

with elevation and ambient temperatures. These results demonstrate that trees have substantial effect on microclimate, 25 

but the effect is dependent on macroclimate, highlighting the importance of maintaining tree cover particularly in warmer 26 

conditions. Hence, we demonstrate that trees outside forests can increase climate change resilience in fragmented 27 

landscapes, having strong potential for regulating regional and local temperatures. 28 
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 32 

1. Introduction 33 

Climate change poses an imminent threat to the rich biodiversity and frequently found fragile socio–economic conditions 34 

that characterize Afromontane ecosystems and their surroundings. In these regions, climate warming is mostly driven by 35 

land use and land cover change (LULCC) (IPCC, 2018; Pellikka and Hakala, 2019; Abera et al., 2020). Agricultural 36 

expansion, in particular, has caused rapid loss of tropical forests (FAO, 2016). Forests are essential in mitigating climate 37 

warming, due to their role in especially the carbon and water cycles (Beer et al., 2010; Ellison et al., 2017; De Frenne et 38 

al., 2019).  39 

Currently, forests cover approximately 4 billion hectares of the Earth’s surface (FAO, 2016). Forests are often defined as 40 

a land area of at least 0.5 hectares with a minimum canopy cover of 10 % and trees higher than 5 m (FAO, 2015). Trees 41 

that are not part of a forest are commonly called “trees outside forest” (TOF) and, by the definition of FAO (2000), include 42 

trees on farmland, in cities, and in other locations not defined as forest. Forests and TOF provide vital ecosystem services 43 

including water regulation, air purification, carbon sequestration, and climate regulation (Chakravarty et al., 2019; Kuyah 44 

et al., 2019; Skole et al., 2021). They are also a source of goods for humans, such as food and timber (Thijs et al., 2015; 45 

Martínez Pastur et al., 2018; Chakravarty et al., 2019). As global forest cover decreases, the importance of TOF will 46 

increase in biodiversity conservation and ecosystem service provision (Mace et al., 2012; Mendenhall et al., 2016), and 47 

TOF can be beneficial in reducing the pressure on native forests (Ilyama et al., 2014; Chakravarty et al., 2019). For 48 

example, in Taita Hills in Kenya, TOF make up a remarkable amount of the area’s total aboveground carbon and play an 49 

important part in carbon sequestration in the area (Pellikka et al., 2018), especially because Taita Hills have experienced 50 

massive indigenous forest loss since 1950’s (Pellikka et al., 2009). Forest loss is a major threat to biodiversity, as Taita 51 

Hills are identified as an important biodiversity hotspot (Pellikka et al., 2013; Thijs et al., 2015). Biodiversity is considered 52 

fundamental for the provision of ecosystem services (Mace et al., 2012). 53 

Many ecosystem services, such as nutrient cycling and pollination, occur in the understories, where tree canopies create 54 

the appropriate microclimates essential for these processes (De Frenne et al., 2013). The term “microclimate” describes 55 

the climatic conditions near the ground or along the vertical forest profile, experienced by terrestrial organisms (De Frenne 56 

et al., 2019; Zellweger et al., 2019). In contrast to free air temperatures, which are highly controlled by elevation and 57 

atmospheric processes, temperatures close to the ground are primarily affected by topographic factors and vegetation 58 

structures that produce local microclimates through shading, mixing of air, and evapotranspiration (Geiger, 1980; Das et 59 

al., 2015; Zellweger et al., 2020). Climatic conditions below forest canopies can vary spatially within the forest (Chen et 60 
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al., 1999) and differ substantially from the ambient macroclimate: this difference is referred to as microclimatic buffering 61 

(Ewers and Banks-Leite, 2013; Zellweger et al., 2020). The temperature buffering provided by tree cover may protect 62 

ecosystems from climate change consequences (Zomer et al., 2016; Ellison et al., 2017; De Frenne et al., 2019; Wanderley 63 

et al., 2019), but the magnitude of the buffering is affected by the forest area (Ewers and Banks-Leite, 2013). In time, 64 

forest microclimates will likely warm like the macroclimate around them, and fragmentation may accelerate this process 65 

(Ewers and Banks-Leite, 2013; Li et al., 2016).  66 

Despite wide recognition of the vital role microclimates play, studies about tropical forests’ response to climate warming 67 

have primarily focused on the macroscale (Belsky et al., 1989; De Frenne et al., 2019, Wild et al., 2019). Weather stations 68 

that commonly measure free air temperatures at 1.5 meters height do not capture microclimatic conditions that are 69 

ecologically more relevant to terrestrial organisms (Potter et al., 2013; Wild et al., 2019; Maclean et al., 2021). Further, 70 

microclimate may be a better indicator of how well forests mitigate climate change than macroclimate (De Frenne et al., 71 

2013). Due to the importance of microclimatic conditions for the survival of tropical species facing climate change, 72 

below–canopy microclimates warrant further investigation (Potter et al., 2013; Jucker et al., 2018; De Frenne et al., 2021). 73 

In our study area in Kenya, temperatures are expected to increase by 2–4 °C by the end of the century (Adhikari et al., 74 

2015), and changes in precipitation, that will increase the moisture stress of crops, are projected (MoALF, 2016). Dry 75 

spells, heat stress and extreme rain events pose a threat to the area’s agricultural production. These phenomena cause crop 76 

failure and low yields, and hence affect the livelihoods of people (Adhikari et al., 2015; MoALF 2016). Farmers have 77 

already noticed climate fluctuations that affect both crops and livestock in the area (Mwalusepo et al., 2015).  78 

Microclimatic studies require extensive field measurements, making them sometimes unpractical or imprecise in larger 79 

scale applications (Prata et al., 1995). Alternatively, measuring satellite–derived land surface temperature (LST) proves 80 

useful when point-wise field measurements are insufficient, given the high spatial coverage of spaceborne LST and the 81 

strong correlation between LST and air temperature (Jin and Dickinson, 2010; Li et al., 2013). These two measurements 82 

differ in their physical principles: air temperature is the kinetic temperature of the air, whereas LST is defined as the 83 

radiometric temperature recorded by a satellite sensor in a scale of the sensor’s pixel size (Jin and Dickinson, 2010). 84 

Various factors affect LST: atmospheric conditions, water content of the surface, topography and canopy cover control 85 

the energy exchange processes (Goward and Hope, 1989; Nemani et al., 1993), which makes accurate estimation of LST 86 

a challenge (Simó et al., 2018; Li et al., 2013). Vegetation density has a strong negative relationship with LST due to 87 

evapotranspiration causing increased latent heat loss from the canopy (Goward et al., 1985; Goward and Hope, 1989; 88 

Nemani and Running, 1997). Canopies’ cooling effect has different magnitudes at different latitudes: for example, tropical 89 

forests experience the strongest cooling effect (Li et al., 2015; Wanderley et al., 2019). 90 
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In remote sensing of vegetation, common outputs in previous research are land cover and land use types or vegetation 91 

indices, such as the normalized vegetation index (NDVI) or leaf area index (LAI) (Nemani et al., 1993; Kim 2013; He et 92 

al., 2019). However, airborne laser scanning (ALS) has proven to be a more effective method for computing structural 93 

variables, such as above-ground biomass, canopy height, and canopy cover (Griffin et al., 2008; Heiskanen et al., 2015a; 94 

Heiskanen et al., 2015b; Pellikka et al., 2018; Jucker et al., 2018). Canopy cover (CC) describes the proportion of the 95 

forest floor covered by the vertical projection of the tree crowns (Korhonen et al., 2006) and it is the most important 96 

variable used in defining forests or other land with tree cover (FAO, 2015). ALS can assess tree cover over large areas 97 

more precisely than field measurements can. Hence, when ALS is combined with either field-based or remotely sensed 98 

temperatures, we can study the influence of trees on temperature in a new way of that is both nuanced and large scale. 99 

The complexity of the issue with climate change requires attention at both spatial resolutions. 100 

The primary objective of this study was to examine how different levels of CC can contribute to lower temperatures and 101 

more stable microclimates across a highly heterogeneous Afromontane landscape in Kenya. We based our analysis on 102 

micro-climatological measurements and CC estimates retrieved from ALS data. Microclimate sensors cannot entirely 103 

capture the spatial variability of temperatures, especially in heterogeneous landscapes. Therefore, we used satellite 104 

thermal data to provide a comprehensive and spatially continuous representation of the relationship between CC and 105 

temperature. 106 

 107 

2. Materials and methods 108 

2.1 Study area 109 

The Taita Hills are located in the Taita-Taveta County in the Coast Province in southern Kenya (3° 25′ S, 38° 20′ E), 110 

approximately 200 km from Mombasa and 360 km from the capital city Nairobi. The study area comprises of the Taita 111 

Hills and the lowland areas of Maktau, LUMO Community Wildlife Sanctuary and Taita Hills Wildlife Sanctuary that 112 

have been laser scanned by the University of Helsinki (Fig. 1). The elevation in the study area varies from 640 m in the 113 

lowlands to the highest peak of the hills, Vuria, at 2208 m. Climate is mainly semi-arid. According to the Kenya Ministry 114 

of Agriculture, Livestock and Fishery (MoALF), annual precipitation averages 650 mm, but differences between hills and 115 

lowlands are notable: lowlands receive 500 mm annually compared to 1500 mm in the hills. Two rainy seasons control 116 

the climate and growing seasons: long rains from March to June, and short rains from October to December (Pellikka et 117 

al., 2013), while months from January to March are a short hot dry season and months from June to October long cool 118 

dry season (Wachiye et al., 2020). Mean temperature in the lowlands is 23 °C and in the hills 18 °C (MoALF, 2016). 119 
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Vegetation varies from dry savanna and shrubland in the lowlands dominated by Vachellia ssp. and Commiphora ssp. 120 

tree species to indigenous cloud forests in the hilltops. Small indigenous forest fragments, exotic tree plantations, and 121 

intensive agriculture dominate the landscape in the hills. Agroforestry practices are typical, which increases cropland CC. 122 

 123 

Figure 1: Field plots with microclimate sensors in Taita Taveta County, Kenya. ALS refers to airborne laser scanning. 124 

The base map is a false color Landsat 8 OLI image from July 4, 2019. 125 
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 126 

2.2 Airborne laser scanning data 127 

We applied an ALS-based Digital Elevation Model (DEM) raster at 1 m resolution and a CC raster at 30 m resolution. 128 

The ALS data for the hills were acquired in February 2014 and February 2015, and the data for lowland areas in March 129 

2014. The mean pulse density of the ALS data in the hills was 3.1 pulses/m-2 and mean return density 3.4 returns/m-2, for 130 

the lowlands the pulse density was 1.04 pulses/m-2. The ALS data used in this study are described in detail in Adhikari et 131 

al. (2017) and Amara et al. (2020) with the description of pre-processing and derivation of DEM and CC rasters. 132 

We resampled the DEM to 30 m resolution to fit to the spatial resolution of the Landsat 8 image, and utilized it to derive 133 

topographic factors slope degree (°) and aspect (°) using ArcGIS Pro spatial analyst tools.  134 

2.3 Microclimatological field measurements 135 

Based on the CC raster derived from the ALS data, we selected a total of 19 field plots representing different CC levels 136 

(Table 1). In the plots, we installed TOMST TMS-4 microclimate sensors to measure temperature at three different 137 

heights: soil at 6 cm below ground, surface at 2 cm above ground, and air temperature at 15 cm above ground (Tsoil, Tsurface 138 

and Tair, respectively) (Wild et al., 2019). The sensors were deployed in places that were as flat as possible to reduce the 139 

effect of slope, and that received both sunlight and shade during the day with the changing sun angles. In high CC sites, 140 

the sensors were shaded most of the day, while in the open areas, the sensors were exposed to sunlight all day. 141 

The sensors measured parameters every 15 minutes from June 13 to July 10, 2019. We calculated daytime temperature 142 

aggregates between sunrise and sunset, local time 06.30–18.30 UTC + 3h. We calculated maxima as the mean of daily 143 

maxima, and minimum temperatures as the mean of minimum temperatures based on the 24 hour cycle.  144 

To isolate the influence of CC on microclimate, we quantified and later removed the effect of topography, such as 145 

elevation (m) and slope (°), on temperature. We examined the relationships between the variables first with Pearson’s 146 

correlation using elevation, slope and CC as explanatory variables in a multiple regression model. Elevation and CC were 147 

the only statistically significant variables. We corrected the daytime mean temperatures according to the altitudinal lapse 148 

rates, which were 7.26 °C km-1 for soil temperature (Tsoil), 8.09 °C km-1 for surface temperature (Tsurface) and 8.06 °C km-149 

1 for air temperature (Tair). In the case of diurnal analysis, we applied separate lapse rates for each hour that were derived 150 

from the regression analyses. The lapse rates were 6.1 °C–8.2 °C km-1 in Tsoil, 3.8 °C–10.4 °C km-1 in Tsurface, and 3.3 °C–151 

10.2 °C km-1 in Tair. To find the relationships between temperature, CC and topographic variables, we conducted statistical 152 

analyses, including descriptive statistics, linear regression and Pearson’s correlation. We used standard deviation (SD) to 153 

describe the variability of temperatures. We used RStudio (R Core Team, 2019) for all statistical analyses. 154 
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The ALS data was 4–5 years older than the field measurements. Moreover, the ALS data was collected during the short 155 

dry season, in contrast to the field measurements, which we carried out during the start of the long dry season in June 156 

2019. To address the mismatch between the data collection dates, we acquired hemispherical photography at each field 157 

plot for validating the CC raster. The differences in CC were not statistically significant and we considered the estimates 158 

consistent enough for proceeding the analysis using CC from ALS. In the case of Mwatate river plot, CC was retrieved 159 

by hemispherical photography only, because the plot was outside of the ALS coverage. The methodology is described in 160 

Appendix A. 161 

Site CC % Elevation, m Description 

Bura 68 1095 Parkland by school campus 

Bura river 79 880 Riverine forest 

Chawia 97 1562 Indigenous forest 

Dembwa 13 1083 Agroforestry 

Maktau 19 1044 Bushland 

Mlima wa simba 8 923 Bushland 

Mwanda 2 1653 Bushland 

Mwatate river 63 884 Riverine forest 

Ngangao 1 94 1775 Indigenous forest 

Ngangao 2 77 1778 Eucalyptus forest 

Ngerenyi campus 44 1572 Macadamia plantation 

Saghaighu 16 1611 Agroforestry 

Sarova 1 0 901 Bushland 

Sarova 2 0 900 Grassland 

Werugha 8 1613 Macadamia plantation 

Wesu 1 53 1642 Forest edge 

Wesu 2 0 1562 Open maize field 

Wuchichi 36 1595 Agroforestry 

Wundanyi 31 1372 Riverside bushland 

Table 1: Names, canopy cover (CC) percentages, elevations and descriptions of field plot sites. 162 

2.4 Land surface temperature 163 
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To observe the effect of CC on temperature in Taita Taveta County, we applied Landsat 8 OLI thermal infrared sensor 164 

(TIRS) satellite image data, downloaded from USGS Earth Explorer (https://earthexplorer.usgs.gov/). The bands 10 and 165 

11 of TIRS provide thermal infrared imagery in a resolution of 100 m, but we resampled the band to 30 m to concert with 166 

the OLI images. The image used in the study was a Level-1 scene obtained on July 4, 2019 at approximately 10:30 UTC 167 

+ 3h with solar azimuth angle of 45.6° and solar elevation angle of 52.1°. The cloud cover of the whole scene was 11.67 168 

%; there was no completely cloudless scene over the study area for the timing of the field measurements. 169 

Several methods have been developed to retrieve LST from Landsat 8. Unfortunately, shortly after the launch of Landsat 170 

8 in 2013, a stray light problem was detected with TIRS band 11, and it was not recommended by United States Geological 171 

Survey (USGS) to apply for scientific purposes (USGS, 2017). We applied the workflow by Ndossi and Avdan (2016) 172 

and used the single channel (SC) method by Jiménez-Muñoz and Sobrino (2003) to calculate LST, because SC method 173 

needs only one thermal infrared channel, and land surface emissivity (LSE) and water vapor content as parameters. Using 174 

only one channel may introduce uncertainty in LST estimations: for Landsat 8 band 10, Jiménez-Muñoz et al. (2014) 175 

reported RMSE = 1.5 K, while in Ndossi and Avdan (2016) the RMSE = 3.06 °C. Nevertheless, SC method is most 176 

accurate for sensors with effective wavelengths near to 11 μm (Jiménez-Muñoz et al., 2014), the wavelength of Landsat 177 

8 band 10 being 10.6–11.19 μm. 178 

We calculated LSE using the algorithm based on the NDVI image, where pixels were given pre-defined emissivity values 179 

based on the NDVI derived from the red, green and infrared bands. Please refer to Ndossi and Avdan (2016) for more 180 

details. Water vapor content at the time of the satellite overpass was 1.7 g cm-2, and was calculated with Eq. (1) using the 181 

relative humidity and temperature data obtained from the local weather station: 182 

𝑤 =  0.0981 × {10 × 0.6108 × exp [
17.27×(𝑇0−273.15)

237.3+(𝑇0−273.15)
] × 𝑅𝐻} + 0.1679  (1) 183 

where w = water vapor content, T0 = air temperature and RH = relative humidity. 184 

The SC formula is shown in Eq. (2): 185 

𝑇𝑠 = 𝛾 [
1

𝜀
(𝛹1𝐿𝑠𝑒𝑛 + 𝛹2) + 𝛹3] + 𝛿   (2) 186 

𝛾 =  
𝑇𝑠𝑒𝑛

2

𝑏𝛾𝐿𝑠𝑒𝑛
    (3) 187 

𝛿 =  𝑇𝑠𝑒𝑛 −
𝑇𝑠𝑒𝑛

2

𝑏𝛾
    (4) 188 
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where 𝑇𝑠 = LST, 𝛾 = parameter depending on Eq. (3), 𝛿 = parameter depending on Eq. (4), 𝜀 = land surface emissivity, 189 

𝐿𝑠𝑒𝑛 = top of atmosphere spectral radiance (W sr-1 m-2 μm-1), 𝑏𝛾 = 1324 K for Landsat 8 band 10, and 𝑇𝑠𝑒𝑛 = at sensor 190 

brightness temperature (K). We obtained the atmospheric parameters Ψ1, Ψ2 and Ψ3 with Eq. (5): 191 

[

Ψ1

Ψ2

Ψ3

] = [

𝑐11 𝑐12 𝑐13

𝑐21 𝑐22 𝑐23

𝑐31 𝑐32 𝑐33

] [
𝜔2

𝜔
1

]    (5) 192 

According to Jiménez-Muñoz, et al. (2014), the coefficients for atmospheric parameters for Landsat 8 TIRS are as in Eq. 193 

(6):  194 

𝑐 = [

0.04019       0.02916           1.01523
−0.38333     − 1.50294    0.20324
0.00918         1.36072    − 0.27514

 

]   (6) 195 

We conducted similar topographic correction with the Landsat image as with microclimate sensors to exclude the effect 196 

of topography on LST. Topographic variables (elevation, slope and aspect), CC, and their interaction terms were included 197 

as independent factors and LST as the dependent factor in four multiple regression models (Table 2). We classified aspect 198 

to nine classes indicating eight cardinal directions (south, south-west, west, north-west, north, north-east, east, south-199 

east), and flat surface. The classes were treated as dummy variables due to their categorical nature. We also classified 200 

elevation to three classes: below 1000 m, 1000–1500 m, and above 1500 m. We used the LST at elevation of 880 m, slope 201 

of 0 ° and aspect class north as reference. 202 

Model Predictors 

1 DEM, CC, slope, aspect (south, south-west, west, north-west, north, north-east, east, south-east) 

2 DEM, CC, slope, aspect (south, south-west, west, north-west, north, north-east, east, south-east)  

elevation zones (<1000 m, 1000–1500 m, >1500 m), elevation zones * CC 

3 DEM, CC, slope, aspect (south, south-west, west, north-west, north, north-east, east, south-east), DEM 

* CC 

4 DEM, CC, slope, aspect (south, south-west, west, north-west, north, north-east, east, south-east), slope 

* aspect classes, elevation zones (<1000 m, 1000–1500 m, >1500 m), elevation zones * CC 
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Table 2: Topographic and canopy cover (CC) predictors included in the four multiple regression models used in the 203 

analysis of Landsat 8 land surface temperature. 204 

 205 

3. Results 206 

3.1 Canopy cover and microclimate 207 

3.1.1 Mean, maximum and minimum temperatures  208 

Topographically corrected mean temperatures (T’) had significant negative correlation with CC at all the measurement 209 

heights (T’surface and T’air r = -0.84, T’soil r = -0.78). Based on the linear regression, an increase from 0 % to 100 % CC 210 

decreased T’soil by 5.2 °C (R2 = 0.6), T’surface by 5.9 °C (R2 = 0.71) and T’air by 4.6 °C (R2 = 0.71) (Fig. 2). The average 211 

effect on combined T’soil, T’surface and T’air was 5.2 °C (R2 = 0.68). T’surface and T’air were in general higher than T’soil. 212 

CC also affected variability of mean temperatures: SD of temperatures decreased by approximately 0.1 per 10 CC% 213 

increase at all measurement heights (Fig. 2). In T’air, the relationship was not as evident as in T’soil and T’surface: SD 214 

decreased distinctly first when CC% was higher than 60 %.  215 

CC had a strong effect on maximum temperatures at all measurement heights, T’surface being affected the most. High CC 216 

sites experienced the lowest T’surface and T’air maxima, while T’surface and T’air were the hottest in Maktau and sites with 0 217 

% CC. Here, topographically corrected average maximum temperatures ranged between 30 °C and 38.5 °C. Again, T’surface 218 

and T’air were generally higher than T’soil. The linear models showed that the increase from 0 % CC to 100 % CC decreased 219 

the maximum T’soil by 9 °C (R2 = 0.69), T’surface by 12.1 °C (R2 = 0.74) and T’air by 9.6 °C (R2 = 0.69) (Fig. 3). On average, 220 

the difference was 10.2 °C. Similarly to mean temperatures, SD of maximum temperatures decreased with increasing CC: 221 

T’soil showed a more gradual decrease than T’soil and T’surface, where SD decreased substantially only in high CC sites (Fig. 222 

3). The SD of maximum temperatures were higher than in mean temperatures. 223 

Based on the regression coefficients, which indicate the magnitude of the influence of CC on temperature, the cooling 224 

effect of CC was stronger on maximum temperatures than mean. Additionally, whereas CC affected mean T’soil more than 225 

mean T’air, in maximum temperatures the situation was the opposite, and T’air was more affected by CC than T’soil (Fig. 2 226 

and Fig. 3).  227 
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 228 

Figure 2: Scatterplots of topographically corrected daytime mean temperatures (T’) and standard deviation against 229 

canopy cover (CC) percentage, with regression line. a) Soil temperature. b) Surface temperature. c) Air temperature. 230 

 231 

Figure 3: Scatterplots of topographically corrected daytime maximum temperatures (T’) and standard deviation against 232 

canopy cover (CC) percentage, with regression line. a) Soil temperature. b) Surface temperature. c) Air temperature. 233 

Minimum temperatures showed no explicit relationship with CC, and sites with similar CC had high temperature 234 

variability. R2 were low (< 0.2) at all measurement heights, and correlations between temperatures and CC were 235 

insignificant. All results from the regression analyses are summarized in Table 3.  236 
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 237 

Table 3. Topographically corrected temperature (T’) statistics for the soil, surface and air. Temperatures in the maximum 238 

and minimum columns refer to the highest and lowest mean, maximum and minimum temperatures. Site refers to where 239 

the highest and lowest temperatures were measured and their respective canopy cover (CC) percentage. * indicates 240 

statistical significance. 241 

3.1.2 Temporal variation 242 

Figure 4 presents the daily variation in topographically corrected daytime mean temperatures. The effect of CC was 243 

evident at all three measurement heights: mean temperatures were lower in high CC sites than in open areas, yet some 244 

low CC sites exhibited relatively low temperatures. For example, on July 2, which was one of the hottest days of the study 245 

period, temperature differences between the hottest (Maktau, 19 % CC) and coolest (Ngangao 1, 94 % CC) sites were 246 

11.0 °C in T’soil, 11.3 °C in T’surface and 9.8 °C in T’air. Even during the coldest days, temperatures were lower in sites with 247 

dense canopies than in open land. Especially T’soil in the sites with high CC remained relatively stable from day to day, 248 

showing little fluctuation even during the hot day streaks: differences in mean temperatures remained even less than 1 °C 249 

between hottest and coolest days. 250 

The cooling effect of CC varied throughout the study period: on hot days, the cooling effect (described by CC’s regression 251 

coefficient in Fig. 4) increased, while on cooler days, the cooling effect decreased. The strongest cooling took place in 252 

 Measur

ement 

height 

Max 

(C°) 

Site, CC % Min 

(C°) 

Site, CC % Coef R2 r p-value 

M
ea

n
 

T’soil 29.3 Maktau, 19 % 20.6 Bura river, 79 % -0.052 0.604 -0.777 <0.001* 

T’surface 29.2 Maktau, 19 % 21.7 Chawia, 97 % -0.059 0.711 -0.843 <0.001* 

T’air 27.6 Sarova 2, 0 % 21.6 Chawia, 97 % -0.046 0.710 -0.842 <0.001* 

M
ax

im
u

m
 

T’soil 33.3 Maktau, 19 % 20.8 Bura river,79 % -0.09 0.693 -0.832 <0.001* 

T’surface 38.8 Sarova 2, 0 % 22.9 Chawia ,97 % -0.121 0.742 -0.862 <0.001* 

T’air 37.4 Sarova 2, 0 % 23.8 Chawia, 97 % -0.1 0.686 -0.828 <0.001* 

M
in

im
u

m
 

T’soil 23.0 Maktau, 19 % 19.2 Bura, 68 % -0.003 0.083 -0.289 0.231 

T’surface 19.5 Chawia, 97 % 12.9 Sarova 2, 0 % -0.024 0.189 0.435 0.063 

T’air 19.3 Ngangao 2, 77 % 12.3 Sarova 2, 0 % -0.023 0.149 0.386 0.102 
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T’surface on June 23, when CC’s cooling effect was 7.6 °C. T’surface had overall the highest cooling effect (3.3 °C–7.6 °C) 253 

and T’air the weakest (2.6 °C–6 °C). In T’soil, the cooling effect was 3.2 °C–6.9 °C (Fig. 4). 254 

 255 

Figure 4: Daily variation in topographically corrected daytime (6.30–18.30) mean temperatures (T’) between June 13 256 

and July 10, 2019 (left), and cooling effect of canopy cover (described by regression coefficient) (right). Line color 257 

indicates canopy cover (CC) percentage. Dashed line represents the overpass date of Landsat 8, July 4, 2019. a–b) Soil 258 

temperature. c–d) Surface temperature. e–f) Air temperature. 259 

Figure 5 shows the intra-daily temperature variability based on study period means. T’soil were more stable than T’surface 260 

and T’air that showed higher peaks and drops. In the morning, temperatures at all measurement heights started to rise 261 

rapidly between 6:00 and 8:00. Changes in T’soil seemed to lag a couple of hours behind T’surface and T’air: they reached 262 

highest readings between 11:00 and 15:00, while T’soil peaked between 15:00 and 17:00. Further, after peaking, 263 

temperatures decreased before stabilizing between 19:00 and 20:00 in T’surface and T’air, while T’soil decreased slower. Tsoil 264 

remained warmer during the night than the other two measurement heights.  265 
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Figure 5 also describes the correlation between CC and temperatures. The impact of CC was the lowest in the morning, 266 

when the temperatures also reached their minima. The strongest correlation (r < -0.8) occurred during afternoon at all 267 

measurement heights. T’soil correlated negatively with CC throughout the day, in contrast to T’surface and T’air, where 268 

correlations were positive during the night. 269 

 270 

Figure 5: Topographically corrected diurnal mean temperatures (T’) (left) and the correlation between T’ and canopy 271 

cover (CC) percentage (right) between June 13 and July 10, 2019. Hour refers to ordinal number of hour, e.g. 1 means 272 

00:00–01:00. Line color indicates CC percentage. a–b) Soil temperature. c–d) Surface temperature. e–f) Air temperature. 273 

 274 

3.2 Landsat 8 land surface temperature 275 

3.2.1 Land surface temperature compared with temperatures measured in the field 276 

LST and raw field temperatures (T) at the time of satellite overpass showed statistically significant correlation (r = 0.82, 277 

0.79 and 0.84 at Tsoil, Tsurface and Tair, respectively) (Fig. 6). At 18 sites out of 19, LST was higher than Tsoil, whereas 278 
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between LST and Tsurface or Tair there was no consistent difference. Mean differences were 4.1 °C (Tsoil), -0.03 °C (Tsurface) 279 

and 0.57 °C (Tair). The Tsoil difference was statistically significant with 95 % confidence, while Tsurface and Tair not. 280 

 281 

Figure 6: Landsat 8 land surface temperature (LST) compared with raw field temperatures (T) at the time of satellite 282 

overpass (10:30) on July 4, 2019. a) LST and soil temperature. b) LST and surface temperature. c) LST and air 283 

temperature. 284 

 285 

3.2.2 Impact of canopy cover and topography on land surface temperature 286 

Topographic variables elevation, slope and aspect had all a significant effect on LST. In all four models, the elevational 287 

lapse rates varied from 11 °C km-1 to 15 °C km-1. Aspect, in turn, had a varying impact depending on the model, but the 288 

general trend was that south, south-west and west had the highest cooling, as was expected at the time of the day. The 289 

effect of slope decreased as the models became more complex, and the joint impacts of slope and aspect in Model 4 were 290 

greater than the effects of slope or aspect alone. The results of all four models can be found in Appendix B.  291 

All the variables in Model 1 showed statistical significance (R2 = 0.74). Based on the regression analysis, generally the 292 

increase from 0 % CC to 100 % CC decreased LST with 5 °C. After the exclusion of other variables except CC, correlation 293 

between LST and CC was -0.37 (p < 0.001) and R2 = 0.14. 294 

In Model 2, three elevation zones (below 1000 m, 1000–1500 m, above 1500 m) were added to the model. This increased 295 

the R2 to 0.77, demonstrating a notable difference in the cooling effect of CC depending on elevation zone. At the 296 

elevations below 1000 m, the cooling effect of CC when moving from  0 % CC to 100% CC was 6.8 °C, between 1000–297 

1500 m the effect was 3.7 °C, and above 1500 m the effect was 4 °C. Roughly, the cooling impact of CC above 1000 m 298 

decreased to almost half of the impact in the lowlands. 299 
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In Model 3, the interaction term of CC and elevation zones was replaced with interaction term of CC and the continuous 300 

variable elevation from the DEM. This produced R2 = 0.74. The coefficient for the interaction term was 0.00005, 301 

indicating that an increase of 1000 m in elevation decreased the cooling effect of CC by 0.05 °C. The model performed 302 

poorer compared to Model 2.  303 

Model 4 was built up on Model 2 by adding interaction terms between slope and aspect classes. Model 4 performed best 304 

of the four (R2 = 0.77), but the difference was not large compared to Model 2. The cooling effect of CC in the lowlands 305 

was 6.8 °C, the same as in Model 2. In the elevation zone 1000–1500 m the cooling effect was 3.7 °C and above 1500 m 306 

it was 3 °C. The cooling effect of CC in 1000–1500 m had the same magnitude as in Model 2, and it decreased by further 307 

0.7 °C in elevations above 1500 m. 308 

In summary, including either of the elevation factors (DEM or elevation zones) in the model showed that elevation 309 

affected CC’s cooling effect significantly, having almost two times higher impact in the lowlands compared to the hills. 310 

The dependence of CC’s impact on elevation is demonstrated in Fig. 7 using eight elevation classes. CC’s regression 311 

coefficients decreased with increasing elevation after 1000 m, yet increased again between 1200–1400 m to roughly the 312 

same as in the lowlands. The effect was the smallest in elevations above 1800 m. 313 
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 314 

Figure 7: Density plots of topographically corrected land surface temperature (LST’) and canopy cover (CC) percentage 315 

in eight elevation classes, with regression line. a) below 800 m. b) 800–1000 m. c) 1000–1200 m. d) 1200–1400 m. e) 316 

1400–1600 m. f) 1600–1800 m. g) 1800–2000 m. h) above 2000 m. 317 

 318 
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4. Discussion 319 

High CC decreased near-ground mean temperatures on average by 5.2 °C compared to open land, depending on 320 

measurement height. The difference was even greater in temperature maxima, which has been reported to be the case also 321 

by De Frenne et al. (2019) and Belsky et al. (1989). Temperature and CC had a linear relationship, pointing out that closed 322 

CC was not needed for a substantial cooling effect. 323 

Tsurface was affected the most by CC. Despite the measurement height of Tsurface being only 13 cm below Tair, the effect of 324 

CC was notably weaker in Tair, which is in line with previous studies. For example, Davis et al. (2019) report that the 325 

effect of CC was weaker at 2 m than at 10 cm height, while in De Frenne et al. (2019) temperature offset between forest 326 

and open land was the greatest close to the ground. In Belsky et al. (1989), soil temperature was the least affected by CC. 327 

Luyssaert et al. (2014) compared air temperature and LST and report that the temperature of the planetary boundary was 328 

less affected than LST by the removal of forest cover. 329 

Macroclimate affected the magnitude of the cooling: based on the temporal data from the microclimate sensors, during 330 

the cooler days of overcast conditions, CC’s cooling effect was smaller. Additionally, the temperature differences between 331 

low and high CC sites were smaller during these days. In the case of LST, elevation impacted the cooling effect: above 332 

1000 m, the cooling effect decreased by approximately 50 % to that of the lowlands. It can be concluded that trees’ 333 

importance in controlling temperatures increases in hotter environments. The finding is meaningful, because agricultural 334 

expansion on the cost of woody vegetation cover in the area is predicted to take place predominantly in the lowlands 335 

(Erdogan et al., 2011; Maeda et al., 2010), where the temperatures are very high. Increasing tree cover on farmlands could 336 

thus be of considerable benefit in decreasing local temperatures. 337 

Our finding is in parallel to findings by Zeng et al. (2021), who reported an elevational effect of deforestation on 338 

temperatures in Albertine Rift Mountains: the warming effect of deforestation decreased with elevation and disappeared 339 

at elevations above 3000 m. This phenomenon resembles the latitude-dependent effect of forests on temperatures: in 340 

tropical areas, there is more cooling, while boreal forests cause more warming (Lee et al., 2011; Li et al., 2015).  Plant 341 

evapotranspiration rates are relative to the solar radiation, ambient temperatures and water balance (Geiger, 1980; Allen 342 

et al., 1998; Davis et al., 2019), decreasing the demand for evapotranspiration in low temperatures caused by elevational 343 

lapse rate or cool weather conditions. During clear weather, canopies absorb and reflect most of the incoming solar 344 

radiation creating cooler conditions in the understory together with evapotranspiration, whereas cloud cover causes a total 345 

reduction in the incoming short-wave radiation (Geiger, 1980; De Frenne et al., 2021). Moreover, while the 346 
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evapotranspirative cooling mostly offsets warming caused by canopy albedo, in high elevations the albedo effect stays 347 

constant and evapotranspiration decreases (Zeng et al., 2021). 348 

The impact of CC on microclimate was different on different days, and is likely to vary during different times of the year 349 

(Davis et al., 2019; De Frenne et al., 2021). We expect this to be the case with LST as well. For instance, Maeda and 350 

Hurskainen (2014) found that land cover’s influence on LST in Mount Kilimanjaro varied seasonally and diurnally, and 351 

the effect was dependent on elevation. Our LST estimation was only a snapshot for July 4, 2019, a sunny almost cloud-352 

free day, and does not represent the year-round situation experiencing two rainy seasons, which are cloudy. In the hills, 353 

cloudy and misty conditions are experienced throughout the year (Helle, 2016; Räsänen et al., 2018). A time series 354 

comparing the cooling effect of CC over seasons and several years is an interesting future research topic, as the TOMST 355 

sensors remained in the 19 field plots. Interesting would also be to model the sunshine hours every day in the locations 356 

of the TOMST sensors using the hemispherical photography, in order to assess how many hours of the day the tree cover 357 

causes shadows over the sensor. 358 

Canopies control the thermal environments of forests to a high extent (De Frenne et al., 2019; Davis et al., 2019), which 359 

was reaffirmed in this study. Therefore, CC can mitigate large-scale macroclimate warming (De Frenne et al., 2019). An 360 

increase of 2 °C of the global temperature as a consequence of enhanced greenhouse effect can have detrimental impacts 361 

on the most vulnerable ecosystems (IPCC, 2018). Because the time span of local changes in temperatures due to LULCC 362 

is much shorter than in the global climate change, the regional and local consequences can be of even higher magnitude 363 

(Potter et al., 2013; Chen et al., 1999). Due to the debts of species’ adaptation capabilities to climate warming (Zellweger 364 

et al., 2020), changes in the microclimate temperatures may be fatal for flora and fauna occupying narrow thermal niches. 365 

This may further impact biodiversity and consequently the crucial ecosystem services provided by forests that take place 366 

close to ground surface (Chen, et al., 1999; Zellweger et al., 2020).  367 

Forest fragmentation decreases the ability of tropical forests to mitigate climate change (Ewers and Banks-Leite, 2013), 368 

but on regional scale even small forests have an impact on LST (Mildrexler et al., 2011). Our results from the linear 369 

models revealed that TOF had the same effect on local temperatures as forests despite the smaller magnitude, and could 370 

hence help in conserving biodiversity. For instance, Mendenhall et al. (2016) found that in Costa Rica farm trees increased 371 

the number of tree and plant species. Most of the CC in Taita Hills comprises of TOF occurring on farms and human 372 

settlement. Sites with agroforestry trees and moderate CC were already experiencing both lower mean and maximum 373 

temperatures than the open sites. 374 
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The importance of TOF is receiving more attention (Kuyah et al., 2019; Skole et al., 2021), and in Taita Hills, Pellikka et 375 

al. (2018) reported an addition in carbon stocks since 2003. The Agriculture (Farm Forestry) Rules of 2009 requires that 376 

at least 10 % forest cover should be left or planted on farms. Based on our results, this 10 % CC makes a significant 377 

difference in temperatures (-0.5 °C in mean and -1 °C in maximum temperatures; -0.5 °C in LST). Soil and air 378 

temperatures impact crop productivity, and furthermore, the fog deposit captured by trees brings more water to plants. In 379 

general, increasing temperatures make plant growth more efficient, but this is the case only as long as the increase occurs 380 

within the thermal limits of the plant’s tolerance (Muimba-Kankolongo, 2018). As extreme heat and precipitation events 381 

are becoming more common with climate change (MoALF, 2016; IPCC, 2018), the negative effects of warming will 382 

become notable in sub-Saharan Africa. This further threatens the food security, and especially the most common crop, 383 

maize, which is one of the most vulnerable crops in terms of climate change in Africa (Cairns et al., 2013; Adhikari et al., 384 

2015). Forests of Taita Hills contribute to the food security by capturing atmospheric moisture as fog deposit and storing 385 

the water providing water for farms in the foothills and lowlands (Pellikka et al., 2013; Helle, 2016). In addition to dew 386 

capture, agroforestry has shown to contribute to improved soil moisture (Rhoades 1995; Siriri et al., 2013), hydraulic 387 

conductivity (Nyamadzawo et al., 2003, 2007) and water storage (Makumba et al., 2006; Nyamadzawo et al., 2012). 388 

The pressure on tropical forests in sub-Saharan Africa is caused by many reasons, fuelwood collection being significant 389 

(Abdelgalil, 2004; Zschauer, 2012), which could be mitigated by increasing the tree cover on farms (Unruh et al., 1993; 390 

Iiyama et al., 2014; Chakravarty et al., 2019). The results of this study further encourage to increase tree cover, particularly 391 

in the lowland farms, as a strong potential way to fight the negative effects of climate change. Nevertheless, water is 392 

scarce especially in the lowland areas, and trees’ vast need for water must be taken into account. The phenomenon is 393 

paradoxical, because trees improve the water cycle, in general, but are consumes high amounts of water (Ong et al., 2006). 394 

Water balance also affects the temperature buffering capacity of trees (Davis et al., 2019). In areas with water scarcity, 395 

the competition for water resources between crops, animals and people may be a limiting factor in the adoption of 396 

agroforestry practices. One solution in the hot lowlands is dew collection, but it would require a tree cover or other 397 

surfaces to capture the humidity. In Tuure et al. (2019), artificial surfaces produced at best 0.1 liter per day and 25 liters 398 

in a year water from morning dew. 399 

This study was limited to a short time span and a small sample size in microclimate study sites, which makes it susceptible 400 

for uncertainties associated with temporal and spatial variability. Topographic correction was applied on the microclimate 401 

data and was calculated based on elevation only. The small amount of observations did not allow for calculating the 402 

impact of the aspect, which is expected to exist based on the LST analysis. Due to accounting for the effect of topography, 403 
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both microclimate and LST estimates did not represent the true values recorded, but made the temperatures comparable 404 

by CC. 405 

In terms of LST, as has been documented in several studies, spaceborne TIR remains an uncertain method for accurate 406 

LST retrieval (Simó et al., 2018; Li et al., 2013). After all, LST is an indirect measurement and the results of complicated 407 

mathematical processing requiring knowledge of several components, where error in any of them causes inaccuracies in 408 

LST (Simó et al., 2018). We calculated LST using the SC method by Jiménez-Muñoz and Sobrino (2004) due to the stray 409 

light problem in Landsat 8 TIRS band 11. While using only one thermal channel for the estimation of LST exposes a high 410 

possibility of inaccuracy, band 10 is more suitable for the SC method than band 11 because of higher atmospheric 411 

transmissivity (Jiménez-Muñoz et al., 2014). The main sources of error in SC are estimation of atmospheric water vapor 412 

content and LSE. LSE is determinant in the correct LST retrieval, yet highly difficult to measure and prone to error. Water 413 

vapor, in turn, can be highly spatially variable, and should be retrieved preferably from satellite data rather than pointwise 414 

weather station data (Ndossi and Avdan, 2016). Jiménez-Muñoz et al. (2014) report that water vapor content higher than 415 

3 g cm-2 causes unacceptable inaccuracy: in this study, the water vapor content was 1.7 g cm-2, which decreases the 416 

possible error. Wang et al. (2019) conclude that the SC is a valid method for Landsat 8 processing and produces results 417 

on accuracy high enough for most purposes; Ndossi and Avdan (2016) found that SC was the second best algorithm for 418 

the retrieval of Landsat 8 LST. SC has been applied successfully also by for example He et al. (2019). Moreover, in dense 419 

canopies the signal constitutes mostly of the upper canopy (Bense et al., 2016; Zellweger et al., 2019), and previous 420 

studies have not so far demonstrated LST’s relationship with understory conditions. We showed how LST provided 421 

consistent results with particularly Tsurface and Tair. Therefore, this study contributed to clarifying the relationship of upper 422 

canopy and the understory. 423 

Our study provided information about a topic of which importance has only recently been recognized (De Frenne et al., 424 

2013; Jucker et al., 2018; Davis et al., 2019; Zellweger et al., 2020). Research and modelling of climate change 425 

implications on microclimate cannot rely on observations from weather stations with low spatial resolution, but need data 426 

that represent the microclimatic conditions relevant for most ecosystem functions (Potter et al., 2013). Previous research 427 

about vegetation and LST have been often conducted at much lower spatial resolutions and applied less accurate 428 

topographic correction (Li et al., 2015). Furthermore, the effect of trees on climate is usually studied solely based on 429 

comparison between forest and open land (De Frenne et al., 2019), neglecting the intermediate canopies and their 430 

significance, despite of the fact that human activity focuses mostly in areas with TOF. We used microclimate data 431 

covering a CC gradient and satellite-derived LST data combined with a DEM of 30 m acquired with ALS over the versatile 432 
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study area. While establishing field observation networks with wide spatial coverage remains a challenge, our results 433 

showed that LST can be used as a proxy for assessing the impacts of CC on microclimate.  434 

Future research should further investigate the contribution of varied factors to microclimate. For example, since all trees 435 

are not of equal benefits in agroforestry, more studies could be targeted to the comparison of different agroforestry 436 

species’ cooling potential as well as the potential of plantation forests. Including soil moisture, air temperature and 437 

comprehensive field plot networks under different canopy structures in the future analyses should broaden the knowledge 438 

about trees’ role in mitigating and adapting to climate change. 439 

 440 

5. Conclusions 441 

Our results demonstrate a consistent but heterogeneous influence of canopy cover on the microclimate of highly diverse 442 

tropical ecosystems. Daytime temperatures correlated inversely with canopy cover, the effect being strongest on surface 443 

temperatures. In hotter environments, the difference between sites of high and low canopy cover became most notable. 444 

The cooling effect did not exist only with high canopy cover, but even intermediate canopy cover and trees outside forest 445 

buffered the hottest temperatures. Our results thus provide robust evidence that any efforts in the direction of preserving, 446 

restoring or increasing vegetation cover can have a substantial impact in creating more stable and cooler microclimates. 447 

Satellite-based land surface temperature was a suitable proxy for assessing microclimatic variables surface- and near-448 

ground temperatures, particularly in heterogeneous regions, where the network of field measurements cannot cover the 449 

spatial microclimate variability.  450 

This study provided valuable information about the potential of trees in climate change adaptation and mitigation in 451 

tropical environments. As the effect of canopy cover on microclimate increased at lower elevations and during hot days, 452 

our results indicate that warmer and drier regions are likely to benefit the most from trees.  453 
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Appendix A. Method for hemispherical photography  454 

We took hemispherical photographs at every microclimate sensor site. The camera in use was Nikon D5000 DSLR and 455 

the lens Sigma 4.5 mm F2.8 EX DC HSM Circular Fisheye. The camera was attached to a tripod during the taking of 456 

photographs. We took photographs at two different heights: the lowest possible tripod adjustment to be as close to the 457 

actual sensor level as possible, which was around 60 cm, and at eye-level around 130 cm. We took photographs at eye-458 

level also to every intercardinal direction 15 meters away from the sensor. The camera was adjusted looking upward with 459 

the top of the camera pointing north. Two images at every height and direction were taken with different settings: first 460 

image on Program mode with automatic aperture and shutter speed, and the second on Manual mode with the rest of the 461 

settings staying the same as in picture one, except shutter speed was reduced to half of the first mage. The ISO value was 462 

set as constant 500. The purpose of the smaller shutter speed was to reduce the impact of light conditions that were not 463 

optimal, meaning direct sunlight that causes overexposure of images which in turn makes them difficult to analyze. 464 

Optimally, the photographs should be taken under constant cloud cover or at the dawn or dusk (Pellikka et al., 2000), 465 

however due to the timetable, waiting for better light conditions at some sites was not possible, thus some images were 466 

overexposed.   467 

We analyzed the hemispherical photographs in the software Hemisfer (WSL; version 2.2) (Schleppi et al., 2007; 468 

Thimonier et al., 2010). From the two images, we used the less exposed one in the analysis. For the calculation of canopy 469 

cover, we used the images taken from eye-level, because they were more comparable to the ALS-based canopy cover, 470 

and the photographs in cardinal directions were all taken at eye-level. We classified the image pixels to sky and canopy 471 

by determining a threshold value to separate dark and light pixels in the image. For most images, we used the automatic 472 

threshold method by Nobis and Hunziker (2005). In the case of some images, the algorithm clearly produced errors due 473 

to overexposure and direct sunlight, therefore the algorithm by Ridler and Calvart (1978) was applied, or a manual 474 

threshold was determined. We used only the blue band in the analysis, apart from photographs where the classification 475 

was failing and using all the bands produced the best result (Heiskanen et al., 2015a). The gamma correction was γ = 2.2. 476 

Only the zenith angle range of 0-15° was analyzed, because errors in canopy cover accuracy increase with larger angles 477 

(Paletto and Tosi, 2009). We computed canopy cover by calculating an average of 1-gap fraction of the five 478 

measurements, and this gave a plot-wise canopy cover (Heiskanen, et al., 2015b). Finally, we compared the canopy cover 479 

retrieved from hemispherical photography and ALS using Pearson’s correlation and a Student’s t-test. The mean of 480 

differences was 0.89 and was not statistically significant. 481 
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 482 

Figure A1. Comparison of canopy cover (CC) percentage retrieved from airborne laser scanning (ALS) and hemispherical 483 

photography (HP), with line of identity.  484 
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Appendix B. Results of the linear regression models of land surface temperature 485 

Predictor Model Coef Std. Error T-Value P-Value 

Constant 

1 44.79 0.013 3324.0 <0.001* 

2 44.24 0.019 2300.9 <0.001* 

3 46.71 0.018 2580.3 <0.001* 

4 44.08 0.021 2130.9 <0.001* 

Elevation 

1 -0.013 0.000 -1241.4 <0.001* 

2 -0.011 0.000 -577.2 <0.001* 

3 -0.015 0.000 -954.6 <0.001* 

4 -0.012 0.000 -592.3 <0.001* 

Slope 

1 -4.061 0.018 -220.0 <0.001* 

2 -3.806 0.018 -214.9 <0.001* 

3 -3.723 0.018 -202.3 <0.001* 

4 -1.545 0.054 -28.534 <0.001* 

Canopy cover 

1 -0.050 0.000 -419.0 <0.001* 

2 -0.068 0.000 -449.1 <0.001* 

3 -0.109 0.000 -274.7 <0.001* 

4 -0.068 0.000 -452.4 <0.001* 

NE 

1 0.177 0.011 16.0 <0.001* 

2 0.084 0.010 8.1  <0.001* 

3 0.157 0.011 14.3 <0.001* 

4 -0.148 -0.016 -9.4 <0.001* 

E 

1 -0.030 0.010 -29.0 <0.001* 

2 -0.428 0.010 -44.6 <0.001* 

3 -0.352 0.010 -34.7 <0.001* 

4 -0.452 0.016 -32.4 <0.001* 

SE 

1 -1.447 0.010 -140.0 <0.001* 

2 -1.509 0.010 -155.6 <0.001* 
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3 -1.529 0.010 -149.3 <0.001* 

4 -1.178 0.014 -85.4 <0.001* 

S 

1 -2.095 0.011 -189.4 <0.001* 

2 -2.132 0.010 -205.2 <0.001* 

3 -2.186 0.011 -199.4 <0.001* 

4 1.543 0.014 -107.3 <0.001* 

SW 

1 -2.441 0.011 -230.0 <0.001* 

2 -2.554 0.010 -256.0 <0.001* 

3 -2.527 0.011 -240.1 <0.001* 

4 -1.820 0.014 -130.2 <0.001* 

W 

1 -2.293 0.010 -219.5 <0.001* 

2 -2.254 0.010 -229.9 <0.001* 

3 -2.332 0.010 -225.5 <0.001* 

4 -1.554 0.014 -109.2 <0.001* 

NW 

1 -1.380 0.011 -126.8 <0.001* 

2 -1.205 0.010 -117.9 <0.001* 

3 -1.379 0.012 -127.9 <0.001* 

4 -0.883 0.015 -58.5 <0.001* 

1000-1500 m 

1 . . . . 

2 -2.667 0.008 -346.9 <0.001* 

3 . . . . 

4 -2.645 0.008 -346.8 <0.001* 

>1500 m 

1 . . . . 

2 -2.030 0.018 -111.2 <0.001* 

3 . . . . 

4 -1.875 0.018 -103.5 <0.001* 

Canopy cover: 1000–

1500 m 

1 . . . . 

2 0.031 0.000 149.7 <0.001* 

3 . . . . 
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4 0.031 0.000 151.2 <0.001* 

Canopy cover: 

>1500m 

1 . . . . 

2 0.028 0.000 120.7 <0.001* 

3 . . . . 

4 0.038 0.000 122.5 <0.001* 

Elevation: canopy 

cover 

1 . . . . 

2 . . . . 

3 0.00005 0.000 156.3 <0.001* 

4 . . . . 

Slope: NE 

1 . . . . 

2 . . . . 

3 . . . . 

4 0.798 0.062 11.8 <0.001* 

Slope: E 

1 . . . . 

2 . . . . 

3 . . . . 

4 -0.144 0.060 -2.387 0.017 

Slope: SE 

1 . . . . 

2 . . . . 

3 . . . . 

4 -2.014 0.061 -33.1 <0.001* 

Slope: S 

1 . . . . 

2 . . . . 

3 . . . . 

4 -4.045 0.067 -60.0 <0.001* 

Slope: SW 

1 . . . . 

2 . . . . 

3 . . . . 

4 -0.943 0.063 -78.1 <0.001* 



28 

 

Slope: W 

1 . . . . 

2 . . . . 

3 . . . . 

4 -3.918 0.060 -64.8 <0.001* 

Slope: NW 

1 . . . . 

2 . . . . 

3 . . . . 

4 -1.963 0.065 -30.4 <0.001* 

 486 

Table B1: Summary of regression coefficients in the analysis of land surface temperature (LST) from the four models 487 

tested. * indicates statistical significance.  488 
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