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Abstract. Climate change is expected to have detrimental consequences on fragile ecosystems, threatening biodiversity9

as well as food security of millions of people. Trees are likely to play a central role in mitigating these impacts. The10

microclimatic conditions below tree canopies usually differ substantially from the ambient macroclimate, as vegetation11

can buffer temperature changes and variability. Trees cool down their surroundings through several biophysical12

mechanisms, and the cooling benefits occur also with trees outside forest. The aim of this study was to examine the effect13

of canopy cover on microclimate in an intensively modified Afromontane landscape in Taita Taveta, Kenya. We studied14

temperatures recorded by 19 microclimate sensors under different canopy covers, and land surface temperature (LST)15

estimated by Landsat 8 thermal infrared sensor. We combined the temperature records with high–resolution airborne laser16

scanning data to untangle the combined effects of topography and canopy cover on microclimate. We developed four17

multivariate regression models to study the joint impacts of topography and canopy cover on LST. The results showed a18

negative linear relationship between canopy cover percentage and daytime mean (R2 = 0.65) and maximum (R2 = 0.75)19

temperatures. Any increase in canopy cover contributed to reducing temperatures. The average difference between 0%20

and 100% canopy cover sites was 5.7 ˚C in mean temperatures and 10.2 ˚C in maximum temperatures. Canopy cover21

reduced LST on average by 0.05 ˚C/%CC. The influence of canopy cover on microclimate was shown to vary strongly22

with elevation and ambient temperatures. These results demonstrate that trees have substantial effect on microclimate,23

but the effect is dependent on macroclimatic conditions, highlighting the importance of maintaining tree cover particularly24

in warmer conditions. Hence, we demonstrate that trees outside forests can increase climate change resilience in25

fragmented landscapes, having strong potential for regulating regional and local temperatures.26
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1. Introduction31

Climate change poses an imminent threat to the rich biodiversity and frequently found fragile socio–economic conditions32

that characterize Afromontane ecosystems and their surroundings. In these regions, climate warming is mostly driven by33

land use and land cover change (LULCC) (IPCC, 2018; Pellikka and Hakala, 2019; Abera et al., 2020). Agricultural34

expansion, in particular, has caused rapid loss of tropical forests (FAO, 2016). Forests are essential in mitigating climate35

warming, due to their role in especially the carbon and water cycles (Beer et al. 2010; Ellison et al. 2017; De Frenne et36

al. 2019).37

Currently, forests cover approximately 4 billion hectares of the Earth’s surface (FAO, 2016). Trees that are not part of a38

forest are commonly called “trees outside forest” (TOF) and, by the definition of FAO (2000), include trees on farmland,39

in cities, and in other locations not defined as forest. Forests and TOF provide vital ecosystem services including water40

regulation, air purification, carbon sequestration, and climate regulation. They are also a source of goods for humans41

(Martínez Pastur et al., 2018). Many ecosystem services, such as nutrient cycling and pollination, occur in the42

understories, where tree canopies create the appropriate microclimates essential for these processes (De Frenne et al.,43

2013). The term “microclimate” describes the climatic conditions near the ground or along the vertical forest profile, with44

a scale from centimeters to meters (Zellweger et al., 2019). In contrast to free air temperatures, which are highly controlled45

by elevation and atmospheric processes, temperatures close to the ground are primarily affected by topographic factors46

and vegetation structures that produce local microclimates through shading, mixing of air, and evapotranspiration (Das et47

al., 2015; Zellweger et al., 2020). Climatic conditions below forest canopies can differ substantially from the ambient48

macroclimate. Furthermore, they can vary spatially within the forest (Chen et al., 1999). This variability has different49

magnitudes at different latitudes: for example, tropical forests experience the strongest cooling effect (Li et al., 2015;50

Wanderley et al., 2019). The temperature buffering provided by tree cover may protect ecosystems from climate change51

consequences (Zomer et al., 2016; Ellison et al., 2017; De Frenne et al., 2019; Wanderley et al., 2019), but the magnitude52

of the buffering is affected by the forest area (Ewers and Banks-Leite, 2013). In time, forest microclimates will likely53

warm like the macroclimate around them, and fragmentation may accelerate this process (Ewers and Banks-Leite, 2013;54

Li et al., 2016).55

Studies about forests’ response to climate warming have primarily focused on the macroscale, despite wide recognition56

of the vital role microclimates play (Belsky et al., 1989; De Frenne et al., 2019). Further, microclimate may be a better57

indicator of how well forests mitigate climate change than macroclimate (De Frenne et al., 2013). Due to the importance58

of microclimatic conditions for the survival of tropical species facing climate change, below–canopy microclimates59

warrant further investigation (Jucker et al., 2018).60
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However, microclimatic studies require extensive field measurements, making them sometimes unpractical or imprecise61

in larger scale applications (Prata et al., 1995). Alternatively, measuring satellite–derived land surface temperature (LST)62

proves useful when point-wise field measurements are insufficient, given the high spatial coverage of spaceborne LST63

and the strong correlation between LST and air temperature (Jin and Dickinson, 2010; Li et al., 2013). However, LST64

cannot provide information in the smallest relevant scales, such as organism level (Potter et al., 2013; Jucker et al., 2018).65

Due to the various factors affecting LST, accurate estimation remains a challenge (Simó et al., 2018; Li et al., 2013).66

Nevertheless, the complexity of the issue with climate change requires attention at both spatial resolutions.67

In remote sensing of vegetation, common outputs in previous research are land cover and land use types or vegetation68

indices, such as the normalized vegetation index (NDVI) or leaf area index (LAI) (Nemani et al., 1993; Kim 2013; He et69

al., 2019). However, airborne laser scanning (ALS) has proven to be a more effective method for computing structural70

variables, such as above-ground biomass, canopy height, and canopy cover (Griffin et al., 2008; Heiskanen et al., 2015a;71

Heiskanen et al., 2015b; Pellikka et al., 2018; Jucker et al., 2018). Canopy cover (CC) describes the proportion of the72

forest floor covered by the vertical projection of the tree crowns (Korhonen et al., 2006) and it is the most important73

variable used in defining forests or other land with tree cover (FAO, 2015). ALS can assess tree cover over large areas74

more precisely than field measurements can. Hence, when ALS is combined with either field-based or remotely sensed75

temperatures, we can study the influence of trees on temperature in a new way of that is both nuanced and large scale.76

The primary objective of this study was to examine how different levels of CC can contribute to lower temperatures and77

more stable microclimates across a highly heterogeneous Afromontane landscape in Kenya. We based our analysis on78

micro-climatological measurements and CC estimates retrieved from ALS data. Microclimate sensors cannot entirely79

capture the spatial variability of temperatures, especially in heterogeneous landscapes. Therefore, we used satellite80

thermal data to provide a comprehensive and spatially continuous representation of the relationship between CC and81

temperature.82

83

2. Materials and methods84

2.1 Study area85

The Taita Hills are located in the Taita-Taveta County in the Coast Province in southern Kenya, approximately 200 km86

from Mombasa and 360 km from the capital city Nairobi. The study area comprises of the Taita Hills and the lowland87

areas of Maktau, LUMO Community Wildlife Sanctuary and Taita Hills Wildlife Sanctuary that have been laser scanned88

by University of Helsinki (Fig. 1). The elevation in the study area varies from 640 m in the lowlands to the highest peak89
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of the hills, Vuria, at 2208 m. Climate is mainly semi-arid. According to the Kenya Ministry of Agriculture, Livestock90

and Fishery (MoALF), annual precipitation averages 650 mm, but differences between hills and lowlands are notable:91

lowlands receive 500 mm annually compared to 1500 mm in the hills. Two rainy seasons control the climate and growing92

seasons: long rains from March to June, and short rains from October to December (Pellikka et al., 2013), while months93

from January to March are a short hot dry season and months from June to October long cool dry season (Wachiye et al.,94

2020). Mean temperature in the lowlands is 23 °C and in the hills 18 °C (MoALF, 2016). Vegetation varies from dry95

savanna and shrubland in the lowlands dominated by Vachellia ssp. and Commiphora ssp. tree species to indigenous96

cloud forests in the hilltops. Small indigenous forest fragments, exotic tree plantations, and intensive agriculture dominate97

the landscape in the hills. Agroforestry practices are typical, which increases cropland CC. TOF make up a remarkable98

amount of the area’s total aboveground carbon and play an important part in carbon sequestration in the area (Pellikka et99

al., 2018), especially because Taita Hills have experienced massive indigenous forest loss since 1950’s (Pellikka et al.,100

2009). Forest loss is a major threat to biodiversity, as Taita Hills are identified as an important biodiversity hotspot101

(Pellikka et al., 2013; Thijs et al., 2015).102

With climate change, temperatures in Kenya are expected to increase by 2–4 °C by the end of the century (Adhikari et103

al., 2015), and changes in precipitation, that will increase the moisture stress of crops, are projected (MoALF, 2016). Dry104

spells, heat stress and extreme rain events pose a threat to the area’s agricultural production. These phenomena cause crop105

failure and low yields, and hence affect the livelihoods of people (Adhikari et al., 2015; MoALF 2016). Farmers in the106

area have already noticed climate fluctuations that affect both crops and livestock (Mwalusepo et al., 2015).107
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108

Figure 1: Field plots with microclimate sensors in Taita Taveta County, Kenya. The base map is a false color Landsat 8109

OLI image from July 4, 2019.110

111

2.2 Airborne laser scanning data112
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We applied an ALS-based Digital Elevation Model (DEM) raster at 1 m resolution and a CC raster at 30 m resolution.113

The ALS data for the hills were acquired in February 2014 and February 2015, and the data for lowland areas in March114

2014. The mean pulse density of the ALS data in the hills was 3.1 pulses/m-2 and mean return density 3.4 returns/m-2, for115

the lowlands the pulse density was 1.04 pulses/m-2. The ALS data used in this study are described in detail in Adhikari et116

al. (2017) and Amara et al. (2020) with the description of pre-processing and derivation of DEM and CC rasters.117

We resampled the DEM to 30 m resolution to fit to the spatial resolution of the Landsat 8 image, and utilized it to derive118

topographic factors slope degree (°) and aspect (°) using ArcGIS Pro spatial analyst tools.119

2.3 Microclimatological field measurements120

Based on the CC raster derived from the ALS data, we selected a total of 19 field plots representing different CC levels121

(Table 1). In the plots, we installed TOMST TMS-4 microclimate sensors to measure temperature at three different122

heights: soil at 6 cm below ground, surface at 2 cm above ground, and air temperature at 15 cm above ground (Tsoil, Tsurface123

and Tair, respectively) (Wild et al., 2019) from June 13 to July 10, 2019. The sensors measured parameters every 15124

minutes. We calculated daytime temperature aggregates between sunrise and sunset, local time 06.30–18.30 UTC + 3h.125

We calculated maxima as the mean of daily maxima, and minimum temperatures as the mean of minimum temperatures126

based on the 24 hour cycle.127

To isolate the influence of CC on microclimate, we quantified and later removed the effect of topography, such as128

elevation (m) and slope (°), on temperature. We examined the relationships between the variables first with Pearson’s129

correlation using elevation, slope and CC as explanatory variables in a multiple regression model. Elevation and CC were130

the only statistically significant variables. We corrected the daytime mean temperatures according to the altitudinal lapse131

rates, which were 7.26 °C km-1 for soil temperature (Tsoil), 8.09 °C km-1 for surface temperature (Tsurface) and 8.06 °C km-132

1 for air temperature (Tair). In the case of diurnal analysis, we applied separate lapse rates for each hour. These varied from133

6.1 °C to 8.2 °C km-1 in Tsoil, 3.8 °C to 10.4 °C km-1 in Tsurface and 3.3 °C to °C km-1 in Tair. To find the relationships134

between temperature, CC and topographic variables, we conducted statistical analysis, including descriptive statistics,135

linear regression and Pearson’s correlation. We used RStudio (R Core Team, 2019) for all statistical analysis.136

Because the ALS data was 4–5 years older than the field measurements, we acquired hemispherical photography at each137

field plot for validating the CC raster. Moreover, the ALS data was collected during the short dry season, in contrast to138

the field measurements, which we carried out during the start of long dry season in June 2019. For Mwatate river plot,139

CC was retrieved by hemispherical photography only, as the plot was laying outside of the ALS coverage. The140

methodology is described in the supplementary material.141
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Site CC % Elevation, m Description

Bura 68 1095 Parkland by school campus

Bura river 79 880 Riverine forest

Chawia 97 1562 Indigenous forest

Dembwa 13 1083 Agroforestry

Maktau 19 1044 Bushland

Mlima wa simba 8 923 Bushland

Mwanda 2 1653 Bushland

Mwatate river 63 884 Riverine forest

Ngangao 1 94 1775 Indigenous forest

Ngangao 2 77 1778 Eucalyptus forest

Ngerenyi campus 44 1572 Macadamia plantation

Saghaighu 16 1611 Agroforestry

Sarova 1 0 901 Bushland

Sarova 2 0 900 Grassland

Werugha 8 1613 Macadamia plantation

Wesu 1 53 1642 Forest edge

Wesu 2 0 1562 Open maize field

Wuchichi 36 1595 Agroforestry

Wundanyi 31 1372 Riverside bushland

Table 1: Names, canopy cover (CC) percentages, elevations and descriptions of field plot sites.142

2.4 Land Surface Temperature143

To observe the effect of CC on temperature in Taita Taveta County, we applied Landsat 8 OLI thermal infrared sensor144

(TIRS) satellite image data, downloaded from USGS Earth Explorer (https://earthexplorer.usgs.gov/). The bands 10 and145

11 of TIRS provide thermal infrared imagery in a resolution of 100 m, but we resampled the band to 30 m to concert with146

the OLI images. The image used in the study was a Level-1 scene obtained on July 4, 2019 at approximately 10:30 UTC147

+ 3h with solar azimuth angle of 45.6° and solar elevation angle of 52.1°. The cloud cover of the whole scene was 11.67148

%; there was no completely cloudless scene over the study area for the timing of the field measurements.149

Several methods have been developed to retrieve LST from Landsat 8. Unfortunately, shortly after the launch of Landsat150

8 in 2013, a stray light problem was detected with TIRS band 11, and it was not recommended by United States Geological151
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Survey (USGS) to apply for scientific purposes (USGS, 2017). In order to result in a topographically corrected LST152

product, we applied the workflow by Ndossi and Avdan (2016) (Fig. 2). We used the single channel (SC) method by153

Jiménez-Muñoz and Sobrino (2003) to calculate LST, because SC method needs only one thermal infrared channel, and154

land surface emissivity and water vapor content as parameters. The SC formula is shown in Eq. (1):155

𝑇𝑠 = 𝛾 ቂ1
𝜀

(𝛹1𝐿𝑠𝑒𝑛 +𝛹2) +𝛹3ቃ + 𝛿 (1)156

𝛾 = 𝑇𝑠𝑒𝑛2

𝑏𝛾𝐿𝑠𝑒𝑛
(2)157

𝛿 = 𝑇𝑠𝑒𝑛 −
𝑇𝑠𝑒𝑛2

𝑏𝛾
(3)158

where 𝑇𝑠 = LST, 𝛾 = parameter depending on Eq. (2), 𝛿 = parameter depending on Eq. (3), 𝜀 = land surface emissivity,159

𝐿𝑠𝑒𝑛 = top of atmosphere spectral radiance (W sr-1 m-2 μm-1), 𝑏𝛾 = 1324 K for Landsat 8 band 10, and 𝑇𝑠𝑒𝑛 = at sensor160

brightness temperature (K). We obtained the atmospheric parameters Ψ1, Ψ2 and Ψ3 with Eq. (4):161


Ψ1
Ψ2
Ψ3

൩ = 
𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

൩ 
𝜔2

𝜔
1
൩ (4)162

According to Jiménez-Muñoz, et al. (2014), the coefficients for atmospheric parameters for Landsat 8 TIRS are as in Eq.163

(5):164

𝑐 = ൦
0.04019       0.02916           1.01523
−0.38333     − 1.50294    0.20324
0.00918         1.36072    − 0.27514൪ (5)165

We conducted similar topographic correction with the Landsat image as with microclimate sensors to exclude the effect166

of topography on LST. Topographic variables (elevation, slope and aspect), CC and LST were included in a multiple167

regression model. We classified aspect to nine classes indicating eight cardinal directions (south, south-west, west, north-168

west, north, north-east, east, south-east), and flat surface. The classes were treated as dummy variables due to their169

categorical nature. Following Wanderley et al. (2019), we calculated the topographically corrected LST with Eq. (6):170

𝑇’=𝑇−Δ𝑇ℎ−Δ𝑇𝑠−Δ𝑇𝑎 (6)171

Where T’ = topographically corrected LST, T = raw LST, ΔTh = difference of T to the reference LST at elevation of 880172

m, ΔTs = difference of T to the reference LST at slope of 0 °, ΔTa = difference of T to the reference LST in the aspect173

class “north”. We used linear regression to study how much CC percentage and topographic variables affected174

microclimate and LST. In total, we estimated four different models for LST (Table 2).175
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Table 2: Topographic and canopy cover (CC) predictors included in the four multiple regression models used in the176

analysis of Landsat 8 Land surface temperature.177

178

Figure 2: The workflow of Landsat 8 processing following the methodology by Ndossi and Avdan (2016), and179

topographic correction.180

Model Predictors

1 DEM, CC, slope, aspect (south, south-west, west, north-west, north, north-east, east, south-east)

2 DEM, CC, slope, aspect (south, south-west, west, north-west, north, north-east, east, south-east)

elevation zones (<1000 m, 1000–1500 m, >1500 m), elevation zones * CC

3 DEM, CC, slope, aspect (south, south-west, west, north-west, north, north-east, east, south-east), DEM

* CC

4 DEM, CC, slope, aspect (south, south-west, west, north-west, north, north-east, east, south-east),

elevation zones (<1000 m, 1000–1500 m, >1500 m), elevation zones * CC, aspect classes * CC
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181

3. Results182

3.1 Canopy cover and microclimate183

3.1.1 Temporal variation184

Figure 3 presents the daily variation in topographically corrected daytime mean temperatures (T’). The effect of CC was185

evident at all three measurement heights (soil, surface, air): mean temperatures were lower in high CC sites than in open186

areas, yet some low CC sites exhibited relatively low temperatures. On the hottest day of the study period (July 2),187

temperature differences between the hottest (Maktau, 19% CC) and coolest (Ngangao 1, 94% CC) sites were 11.0 °C in188

T’soil, 11.3 °C in T’surface and 9.8 °C in T’air. Even during colder days, temperatures were approximately 6.5 °C lower in189

sites with dense canopies than in open land.190

CC affected also temperature variability: SD of temperature decreased by approximately 0.1 per 10 CC% increase at all191

measurement heights. Especially T’soil in the sites with high CC remained relatively stable from day to day, showing little192

fluctuation even during the hot day streaks: differences remained even less than 1 °C between hottest and coolest days.193

When comparing the three measurement heights, the coldest mean temperatures were measured in T’air and the hottest in194

T’surface. Temperatures varied more in T’surface (SD = 3.0) and T’air (SD = 2.7) than in T’soil (SD = 2.3).195
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196

Figure 3: Daily variation in topographically corrected daytime (6.30–18.30) mean temperatures (T’) between June 13197

and July 10, 2019. Line color indicates canopy cover (CC) percentage. Dashed line represents the overpass date of198

Landsat 8, July 4, 2019. a) Soil temperature. b) Surface temperature. c) Air temperature.199

Figure 4 shows the intra-daily temperature variability based on study period means. T’soil were more stable than T’surface200

and T’air that showed higher peaks and drops. In the morning, temperatures at all measurement heights started to rise201

rapidly between 6:00 and 8:00. Changes in T’soil seemed to lag a couple of hours behind T’surface and T’air: they reached202

highest readings between 11:00 and 15:00, while T’soil peaked between 15:00 and 17:00. Further, after peaking,203
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temperatures decreased before stabilizing between 19:00 and 20:00 in T’surface and T’air, while T’soil decreased slower. Tsoil204

remained warmer during the night than the other two.205

Figure 4 also describes the correlation between CC% and temperatures. The impact of CC was the lowest in the morning,206

when the temperatures also reached their minima. The strongest correlation (r < -0.8) occurred during afternoon at all207

measurement heights. T’soil correlated negatively with CC% throughout the day, in contrast to T’surface and T’air, where208

correlations were positive during the night.209

210

Figure 4: Topographically corrected diurnal mean temperatures (T’) (left) and the correlation between T’ and canopy211

cover (CC) percentage (right) between June 13 and July 10, 2019. Hour refers to ordinal number of hour, e.g. 1 means212

00:00–01:00. Line color indicates CC percentage. a–b) Soil temperature. c–d) Surface temperature. e–f) Air temperature.213

214

3.1.2 Mean, maximum and minimum temperatures215

Mean temperatures had significant negative correlation with CC at all the measurement heights (T’surface and T’air r = -216

0.84, T’soil r = -0.78). Based on the linear regression, an increase from 0% to 100% CC decreased T’soil by 5.2 °C (R2 =217
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0.6), T’surface by 5.9 °C (R2 = 0.71) and T’air by 4.6 °C (R2 = 0.71) (Fig. 5). The average effect on combined T’soil, T’surface218

and T’air was 5.7 °C (R2 = 0.65). T’surface and T’air were in general higher than T’soil, which was a case also with temperature219

maxima.220

CC had a strong effect on maximum temperatures at all measurement heights, T’surface being affected the most. High CC221

sites experienced the lowest T’surface and T’air maxima, while T’surface and T’air were the hottest in Maktau and sites with222

zero % CC. Here, average maximum temperatures ranged between 30 °C and 38.5 °C. The linear models showed that the223

increase from zero % CC to 100% CC decreased the maximum T’soil by 9 °C (R2 = 0.69), T’surface by 12.1 °C (R2 = 0.74)224

and T’air by 9.6 °C (R2 = 0.69) (Table 3). On average, the difference was 10.2 °C. Based on the model coefficients, which225

indicate the magnitude of the influence of CC on temperature, the cooling effect of CC was stronger on maximum T’soil226

and T’surface than mean, while CC affected T’air mean more than maximum.227

228

Figure 5: Scatterplots of topographically corrected daytime mean temperatures (T’) against canopy cover (CC)229

percentage, with regression line. a) Soil temperature. b) Surface temperature. c) Air temperature.230

231

Minimum temperatures showed no explicit relationship with CC, and sites with similar CC% had high temperature232

variability. R2 were low (< 0.2) at all measurement heights, and correlations between temperatures and CC were233

insignificant.234

235
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Table 3. Topographically corrected temperature (T’) statistics for the soil, surface and air. Temperatures in the maximum236

and minimum columns refer to the highest and lowest mean, maximum and minimum temperatures. Site refers to where237

the highest and lowest temperatures were measured and their respective canopy cover (CC) percentage. * indicates238

statistical significance.239

240

3.2 Landsat 8 Land surface temperature241

3.2.1 Land surface temperature compared with temperatures measured in the field242

LST and raw field temperatures (T) at the time of satellite overpass showed statistically significant correlation (r = 0.82,243

0.79 and 0.84 at Tsoil, Tsurface and Tair, respectively) (Fig. 6). At 18 sites out of 19, LST was higher than Tsoil, whereas244

between LST and Tsurface or Tair there was no consistent difference. Mean differences were 4.1 °C (Tsoil), -0.03 °C (Tsurface)245

and 0.57 °C (Tair). The Tsoil difference was statistically significant with 95 % confidence, while Tsurface and Tair not.246

 Measur

ement

height

Max

(C°)

Site, CC % Min

(C°)

Site, CC % Coef R2 r p-value

M
ea

n

T’soil 29.3 Maktau, 19 % 20.6 Bura river, 79 % -0.052 0.604 -0.777 <0.001*

T’surface 29.2 Maktau, 19 % 21.7 Chawia, 97 % -0.059 0.711 -0.843 <0.001*

T’air 27.6 Sarova 2, 0 % 21.6 Chawia, 97 % -0.046 0.710 -0.842 <0.001*

M
ax

im
um

T’soil 33.3 Maktau, 19 % 20.8 Bura river,79 % -0.09 0.693 -0.832 <0.001*

T’surface 38.8 Sarova 2, 0 % 22.9 Chawia ,97 % -0.121 0.742 -0.862 <0.001*

T’air 37.4 Sarova 2, 0 % 23.8 Chawia, 97 % -0.1 0.686 -0.828 <0.001*

M
in

im
um

T’soil 23.0 Maktau, 19 % 19.2 Bura, 68 % -0.003 0.083 -0.289 0.231

T’surface 19.5 Chawia, 97 % 12.9 Sarova 2, 0 % -0.024 0.189 0.435 0.063

T’air 19.3 Ngangao 2, 77 % 12.3 Sarova 2, 0 % -0.023 0.149 0.386 0.102
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247

Figure 6: Landsat 8 land surface temperature (LST) compared with raw field temperatures (T) at the time of satellite248

overpass (10:30) on July 4, 2019. a) LST and soil temperature. b) LST and surface temperature. c) LST and air249

temperature.250

251

3.2.2 Impact of canopy cover on land surface temperature252

All the variables in Model 1 showed statistical significance (R2 = 0.74). Based on the regression analysis, generally the253

increase from zero % CC to 100% CC decreased LST with 5 °C (Table 4). After the exclusion of other variables except254

CC, correlation between LST and CC was -0.37 (p < 0.001) and R2 = 0.14. Topographic correction based on Model 1255

improved the correlation coefficient to -0.42 and R2 to 0.18.256

In Model 2, three elevation zones were added to the model. This increased the R2 to 0.77, demonstrating a notable257

difference in the cooling effect of CC depending on elevation zone. At the elevations below 1000 m, the cooling effect of258

CC when moving from  zero % CC to 100% CC was -6.6 °C, between 1000–1500 m the effect was -3.2 °C, and above259

1500 m the effect was -2.8 °C (Table 4). Roughly, the cooling impact of CC was about a half in the hills compared to the260

effect in the lowlands.261

In Model 3, the interaction term of CC and elevation zones was replaced with interaction term of CC and the continuous262

variable elevation from the DEM. This produced R2 = 0.74. The coefficient for the interaction term was 0.00005,263

indicating that increase of 1000 m in elevation decreased the cooling effect of CC by 0.05 °C (Table 4). The model264

performed poorer compared to Model 2.265

Model 4 was built up on Model 2 by adding interaction terms between aspect classes and CC (Table 4). According to the266

results from Model 4, the magnitude of aspect’s influence on the cooling effect of CC was mostly insignificantly small,267
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except in the cases of north-east, east and south-east, where the coefficients decreased by roughly 0.01 °C. Model 4268

performed best of the four (R2 = 0.77).269

In summary, including either of the elevation factors (DEM or elevation zones) in the model showed that elevation270

affected CC’s cooling effect significantly, having two times higher impact in the lowlands compared to the hills. The271

dependence of CC’s impact on elevation is demonstrated in Fig. 7 using eight elevation classes. CC’s coefficients272

decreased with increasing elevation after 1000 m, yet increased again between 1200–1400 m to roughly the same as in273

the lowlands. The effect was the smallest in elevations above 1800 m.274

Predictor Model Coef Std. Error T-Value P-Value

Constant

1 44.79 0.013 3324.0 <0.001*

2 44.24 0.019 2300.9 <0.001*

3 46.71 0.018 2580.3 <0.001*

4 44.38 0.021 2142.5 <0.001*

Elevation

1 -0.013 0.000 -1241.4 <0.001*

2 -0.011 0.000 -577.2 <0.001*

3 -0.015 0.000 -954.6 <0.001*

4 -0.011 0.000 -579.3 <0.001*

Slope

1 -4.061 0.018 -220.0 <0.001*

2 -3.806 0.018 -214.9 <0.001*

3 -3.723 0.018 -202.3 <0.001*

4 -3.781 0.018 -212.6 <0.001*

Canopy cover

1 -0.050 0.000 -419.0 <0.001*

2 -0.068 0.000 -449.1 <0.001*

3 -0.109 0.000 -274.7 <0.001*

4 -0.073 0.000 -208.0 <0.001*

NE

1 0.177 0.011 16.0 <0.001*

2 0.084 0.010 8.1 <0.001*

3 0.157 0.011 14.3 <0.001*

4 -0.215 -0.015 -14.0 <0.001*
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E

1 -0.030 0.010 -29.0 <0.001*

2 -0.428 0.010 -44.6 <0.001*

3 -0.352 0.010 -34.7 <0.001*

4 -0.766 0.014 -55.2 <0.001*

SE

1 -1.447 0.010 -140.0 <0.001*

2 -1.509 0.010 -155.6 <0.001*

3 -1.529 0.010 -149.3 <0.001*

4 -1.733 0.014 -127.3 <0.001*

S

1 -2.095 0.011 -189.4 <0.001*

2 -2.132 0.010 -205.2 <0.001*

3 -2.186 0.011 -199.4 <0.001*

4 -2.166 0.014 -153.3 <0.001*

SW

1 -2.441 0.011 -230.0 <0.001*

2 -2.554 0.010 -256.0 <0.001*

3 -2.527 0.011 -240.1 <0.001*

4 -2.538 0.014 -185.9 <0.001*

W

1 -2.293 0.010 -219.5 <0.001*

2 -2.254 0.010 -229.9 <0.001*

3 -2.332 0.010 -225.5 <0.001*

4 -2.195 0.014 -159.0 <0.001*

NW

1 -1.380 0.011 -126.8 <0.001*

2 -1.205 0.010 -117.9 <0.001*

3 -1.379 0.012 -127.9 <0.001*

4 -1.196 0.015 -81.9 <0.001*

1000-1500 m

1 . . . .

2 -2.667 0.008 -346.9 <0.001*

3 . . . .

4 -2.678 0.008 -348.5 <0.001*

>1500 m 1 . . . .
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2 -2.030 0.018 -111.2 <0.001*

3 . . . .

4 -2.006 0.018 -110.0 <0.001*

Canopy cover: 1000–

1500 m

1 . . . .

2 0.031 0.000 149.7 <0.001*

3 . . . .

4 0.032 0.000 153.5 <0.001*

Canopy cover:

>1500m

1 . . . .

2 0.028 0.000 120.7 <0.001*

3 . . . .

4 0.038 0.000 121.6 <0.001*

Elevation: canopy

cover

1 . . . .

2 . . . .

3 0.00005 0.000 156.3 <0.001*

4 . . . .

Canopy cover: NE

1 . . . .

2 . . . .

3 . . . .

4 0.011 0.000 25.6 <0.001*

Canopy cover: E

1 . . . .

2 . . . .

3 . . . .

4 0.013 0.000 32.6 <0.001*

Canopy cover: SE

1 . . . .

2 . . . .

3 . . . .

4 0.010 0.000 24.0 <0.001*

Canopy cover: S
1 . . . .

2 . . . .
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3 . . . .

4 -0.000 0.000 -0.2 0.8

Canopy cover: SW

1 . . . .

2 . . . .

3 . . . .

4 -0.003 0.000 -8.0 <0.001*

Canopy cover: W

1 . . . .

2 . . . .

3 . . . .

4 -0.003 0.000 -7.8 <0.001*

Canopy cover: NW

1 . . . .

2 . . . .

3 . . . .

4 -0.000 0.000 -1.2 0.25

275

Table 4: Summary of regression coefficients in the analysis of land surface temperature (LST) from the four models276

tested. * indicates statistical significance.277
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278

Figure 7: Density plots of topographically corrected land surface temperature (LST’) and canopy cover (CC) percentage279

in eight elevation classes, with regression line. a) below 800 m. b) 800–1000 m. c) 1000–1200 m. d) 1200–1400 m. e)280

1400–1600 m. f) 1600–1800 m. g) 1800–2000 m. h) above 2000 m.281
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282

4. Discussion283

High CC decreased near-ground mean temperatures on average by 5.7 °C compared to open land, depending on284

measurement height. The difference was even greater in temperature maxima, which has been reported to be the case also285

by De Frenne et al. (2019) and Belsky et al. (1989). Temperature and CC had a linear relationship, pointing out that closed286

CC was not needed for a sensible cooling effect. Tsurface was affected the most by CC. Despite the measurement height of287

Tsurface being only 13 cm below Tair, the effect of CC was notably weaker in Tair, which is in line with previous studies.288

For example, Luyssaert et al. (2014) report that the temperature of the planetary boundary was less affected than LST by289

the removal of forest cover, while in De Frenne et al. (2019) temperature offset between forest and open land was the290

greatest close to the ground. In Belsky et al. (1989), soil temperature was the least affected by CC.291

The prevalent temperatures affected the magnitude of the cooling: in elevations above 1000 m, the cooling effect292

decreased remarkably by approximately 50 % compared to the lowlands. Moreover, based on the temporal data from the293

microclimate sensors, during the cooler days of overcast conditions, CC’s cooling effect was smaller. Additionally, the294

temperature differences between low and high CC sites were smaller during these days. One likely reason behind the295

phenomenon is that plant evapotranspiration rates are relative to the solar radiation and ambient temperatures (Allen et296

al. 1998). It can be concluded that trees’ importance in controlling temperatures increases in hotter environments. The297

discovery is meaningful, since agricultural expansion on the cost of woody vegetation cover in the area is predicted to298

take place predominantly in the lowlands (Erdogan et al. 2011; Maeda et al., 2010), where the temperatures are very high.299

Increasing tree cover on farmlands could thus be of considerable benefit in decreasing local temperatures.300

The impact of CC on temperature is also most likely different on different days and different times of the year. For301

instance, Maeda and Hurskainen (2014) found that land cover’s influence on LST in Mount Kilimanjaro varied seasonally302

and diurnally, and the effect was dependent on elevation. Our LST estimation using the satellite image was only a snapshot303

for July 4, 2019, from a sunny almost cloud-free day, and does not represent the year-round situation experiencing two304

rainy seasons, which are cloudy. In the hills, cloudy and misty conditions are experienced throughout the year (Helle,305

2016; Räsänen et al., 2018). A time series comparing the cooling effect of CC over seasons and several years is an306

interesting future research topic, as the TOMST sensors remained in the 19 field plots. Interesting would also be to model307

the sunshine hours every day in the locations of the TOMST sensors using the hemispherical photography, in order to308

assess how many hours of the day the tree cover causes shadows on the sensor.309
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The thermal environments of forests are controlled by canopies to a high extent, which was reaffirmed in this study.310

Therefore, CC can mitigate large-scale macroclimate warming (De Frenne et al., 2019). An increase of 2 °C of the global311

temperature as a consequence of enhanced greenhouse effect can have detrimental impacts on the most vulnerable312

ecosystems (IPCC, 2018). Since the time span of local changes in temperatures due to LULCC is much shorter than in313

the global climate change, the regional and local consequences can be of even higher extent (Chen et al., 1999). Due to314

the debts of species’ adaptation capabilities to climate warming (Zellweger et al., 2020), changes in the microclimate315

temperatures may be fatal for flora and fauna occupying narrow thermal niches. This may further impact biodiversity and316

consequently the crucial ecosystem services provided by forests that take place close to ground surface (Chen, et al. 1999;317

Zellweger et al., 2020).318

Forest fragmentation decreases the ability of tropical forest to mitigate climate change (Ewers and Banks-Leite, 2013),319

but on regional scale even small forests have an impact on LST (Mildrexler et al., 2011). Our results revealed that trees320

on farms had the same effect on local temperatures as forests despite the smaller scale, and could hence help in conserving321

the biodiversity. For instance, Mendenhall et al. (2016) found that in Costa Rica farm trees increased the number of tree322

and plant species. Most of the CC in Taita Hills comprises of TOF, occurring on farms and human settlement. Sites with323

agroforestry trees and moderate CC were already experiencing both lower mean and maximum temperatures than the324

open sites.325

In Taita Hills, Pellikka et al. (2018) reported an addition in carbon stocks since 2003. The Agriculture (Farm Forestry)326

Rules of 2009 requires that at least 10 % forest cover should be left or planted on farms. Based on our results, this 10 %327

CC makes a significant difference in temperatures. Soil and air temperatures have an impact to crop productivity, and328

furthermore, the fog deposit captured by trees brings more water to plants. In general, increasing temperatures make plant329

growth more efficient, but this is the case only as long as the increase occurs within the thermal limits of the plant’s330

tolerance (Muimba-Kankolongo, 2018). As extreme heat and precipitation events are becoming more common with331

climate change (MoALF, 2016; IPCC, 2018), the negative effects of warming will become notable in sub-Saharan Africa.332

This further threatens the food security, and especially the most common crop, maize, which is one of the most vulnerable333

crops in terms of climate change in Africa (Cairns et al., 2013; Adhikari et al., 2015). Forests of Taita Hills contribute to334

the food security by capturing atmospheric moisture as fog deposit and storing the water providing water for farms in the335

foothills and lowlands (Pellikka et al., 2013; Helle, 2016).336

The pressure on tropical forests in sub-Saharan Africa is caused by many reasons, fuelwood collection being significant337

(Abdelgalil, 2004), which could be mitigated by increasing the tree cover on farms (Unruh et al., 1993). The results of338

this study further encourage to increase tree cover in particular in the lowland farms as a strong potential way to fight the339
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negative effects of climate change. Nevertheless, water is scarce especially in the lowland areas, and trees’ vast need for340

water must be taken into account. The phenomenon is paradoxical, since trees improve the water cycle, in general, but341

are consumes high amounts of water (Ong et al., 2006). In areas with water scarcity, the competition of water resources342

with crops, animals and people may be a limiting factor in the adoption of agroforestry practices. One solution in the hot343

lowlands is dew collection, but it would require a tree cover or other surfaces to capture the humidity. In Tuure et al.344

(2019), artificial surfaces produced at best 0.1 liter per day and 25 liters in a year water from morning dew.345

This study was limited to a short time span and a small sample size in microclimate study sites, which makes it susceptible346

for uncertainties associated with temporal and spatial variability. Topographic correction was applied on the microclimate347

data and was calculated based on elevation only. The small amount of observations did not allow for calculation the348

impact of the aspect, which is expected to exist based on the LST analysis. Due to the topographic manipulation of the349

temperatures, they did not represent the true values recorded, but made the temperatures comparable by CC. In terms of350

LST, as has been documented in several studies, spaceborne TIR remains an uncertain method for accurate LST retrieval351

(Simó et al., 2018; Li et al., 2013). After all, LST is an indirect measurement and the results of complicated mathematical352

processing requiring knowledge of several components, where error in any of them causes inaccuracies in LST (Simó et353

al., 2018). Estimation of land surface emissivity is determinant in the correct LST retrieval, yet highly difficult to measure354

and prone to error. Moreover, in dense canopies the signal constitutes mostly of the upper canopy and does not necessarily355

capture the temperatures on the forest floor, which may not make LST representative of understory conditions (Bense et356

al., 2016; Zellweger et al., 2019).  Landsat 8 TIRS band 11 was not used in this study due to the stray light problem,357

which exposes even higher possibility of inaccuracy with LST. However, Wang et al. (2019) conclude that the SC is a358

valid method for Landsat 8 processing and produces results on accuracy high enough for most purposes.359

Despite its limitations, this study provided information about a topic of which importance has only recently been360

recognized (De Frenne et al., 2013; Jucker et al., 2018; Zellweger et al., 2020). Research and modelling of climate change361

implications on microclimate cannot rely on observations from weather stations with low spatial resolution, but need data362

that represent the microclimatic conditions relevant for most ecosystem functions. Previous research about vegetation and363

LST have been often conducted at much lower spatial resolutions and applied less accurate topographic correction (Li et364

al., 2015). Furthermore, the effect of trees on climate is usually studied solely based on comparison between forest and365

open land (De Frenne et al., 2019), neglecting the intermediate canopies and their significance, despite of the fact that366

human activity focuses mostly in areas with TOF. We used microclimate data covering a CC gradient and satellite-derived367

LST data combined with a DEM of 30 m acquired with ALS over the versatile and precise study area. While establishing368

https://doi.org/10.5194/bg-2021-261
Preprint. Discussion started: 21 October 2021
c© Author(s) 2021. CC BY 4.0 License.



24

field observation networks with wide spatial coverage remains a challenge, our results showed that LST can be used as a369

proxy for assessing the impacts of CC on microclimate.370

Future research should further investigate the contribution of varied factors to microclimate. For example, since all trees371

are not of equal benefits in agroforestry, more studies could be targeted to the comparison of different agroforestry372

species’ cooling potential as well as the potential of plantation forests. Including soil moisture, air temperature and373

comprehensive field plot networks under different canopy structures in the future analyses should broaden the knowledge374

about trees’ role in mitigating and adapting to climate change.375

376

5. Conclusions377

Our results demonstrate a consistent but heterogeneous influence of canopy cover on the microclimate of highly diverse378

tropical ecosystems. Daytime temperatures correlated inversely with canopy cover, the effect being strongest on surface379

temperatures. During the hottest days, the difference between sites of high and low canopy cover became most notable.380

The cooling effect did not exist only with high canopy cover, but even intermediate canopy cover and trees outside forest381

buffered the hottest temperatures. Our results thus provide robust evidence that any efforts in the direction of preserving,382

restoring or increasing vegetation cover can have a substantial impact in creating more stable and cooler microclimates.383

Satellite based LST was a suitable proxy for assessing microclimatic variables surface- and near-ground temperatures,384

particularly in heterogeneous regions, where the network of field measurements cannot cover the spatial microclimate385

variability.386

This study provided valuable information about the potential of trees in climate change adaptation and mitigation in387

tropical environments. As the effect of canopy cover on microclimate increased at lower elevations and during hot days,388

our results indicate that warmer and drier regions are likely to benefit the most from trees.389

https://doi.org/10.5194/bg-2021-261
Preprint. Discussion started: 21 October 2021
c© Author(s) 2021. CC BY 4.0 License.



25

Appendix A. Method for hemispherical photography390

We took hemispherical photographs at every microclimate sensor site. The camera in use was Nikon D5000 DSLR and391

the lens Sigma 4.5 mm F2.8 EX DC HSM Circular Fisheye. The camera was attached to a tripod during the taking of392

photographs. We took photographs at two different heights: the lowest possible tripod adjustment to be as close to the393

actual sensor level as possible, which was around 60 cm, and at eye-level around 130 cm. We took photographs at eye-394

level also to every intercardinal direction 15 meters away from the sensor. The camera was adjusted looking upward with395

the top of the camera pointing north. Two images at every height and direction were taken with different settings: first396

image on Program mode with automatic aperture and shutter speed, and the second on Manual mode with the rest of the397

settings staying the same as in picture one, except shutter speed was reduced to half of the first mage. The ISO value was398

set as constant 500. The purpose of the smaller shutter speed was to reduce the impact of light conditions that were not399

optimal, meaning direct sunlight that causes overexposure of images which in turn makes them difficult to analyze.400

Optimally, the photographs should be taken under constant cloud cover or at the dawn or dusk (Pellikka et al., 2000),401

however due to the timetable, waiting for better light conditions at some sites was not possible, thus some images were402

overexposed.403

404

We analyzed the hemispherical photographs in the software Hemisfer (WSL; version 2.2) (Schleppi et al., 2007;405

Thimonier et al., 2010). From the two images, we used the less exposed one in the analysis. For the calculation of canopy406

cover, we used the images taken from eye-level, because they were more comparable to the ALS-based canopy cover,407

and the photographs in cardinal directions were all taken at eye-level. We classified the image pixels to sky and canopy408

by determining a threshold value to separate dark and light pixels in the image. For most images, we used the automatic409

threshold method by Nobis and Hunziker (2005). In the case of some images, the algorithm clearly produced errors due410

to overexposure and direct sunlight, therefore the algorithm by Ridler and Calvart (1978) was applied, or a manual411

threshold was determined. We used only the blue band in the analysis, apart from photographs where the classification412

was failing and using all the bands produced the best result (Heiskanen et al., 2015a). The gamma correction was γ = 2.2.413

Only the zenith angle range of 0-15° was analyzed, because errors in canopy cover accuracy increase with larger angles414

(Paletto and Tosi, 2009). We computed canopy cover by calculating an average of 1-gap fraction of the five415

measurements, and this gave a plot-wise canopy cover (Heiskanen, et al., 2015b). Finally, we compared the canopy cover416

retrieved from hemispherical photography and ALS using Pearson’s correlation and a Student’s t-test.417
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