Supplement Changing sub-Arctic tundra vegetation upon permafrost degradation: impact on foliar mineral element cycling

Elisabeth Mauclet^{1*}, Yannick Agnan¹, Catherine Hirst¹, Arthur Monhonval¹, Benoît Pereira¹, Aubry 5 Vandeuren¹, Maëlle Villani¹, Justin Ledman², Meghan Taylor², Briana L. Jasinski², Edward A. G. Schuur², Sophie Opfergelt¹

¹Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium ²Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA

Correspondence to: Elisabeth Mauclet (elisabeth.mauclet@uclouvain.be)

10 Text S.1. Method to correct pXRF measurements using linear regressions between pXRF and ICP OES total element measurements he logo of Copernicus Publications.

For trueness of the total element concentrations measured by pXRF on the total set of foliar samples (n=506), we calibrated the pXRF measurements with another accurate analytical method. For 90 foliar and litter samples, we compared the total elemental concentrations (Al, Ca, Fe, K, Mn, P, S, Si, and Zn) measured by pXRF with the concentrations of the same elements

- 15 measured by ICP-OES (iCAP 6500 ThermoFisher Scientific, Waltham, USA) after sample dissolution by alkaline fusion. For the fusion, a portion of the ground sample was mixed with lithium metaborate and lithium tetraborate and heated up to 1000°C. The fusion bead was dissolved in HNO3 2.2 N at 80°C and stirred until complete dissolution (Chao and Sanzolone, 1992). The loss on ignition was assessed at 500°C and total element content was expressed in reference to the dry weight at 60°C. Trueness of the analytical measurement by ICP-OES was validated by repeated measurements on the lichen reference material
- 20 IAEA-336 Lichen (Heller-Zeisler et al., 1999). For the selected mineral elements (Al, Ca, Fe, K, Mn, P, S, Si, and Zn), the linear regressions based on the two analytical methods (pXRF and ICP-OES) presented coefficients of correlation (R²) between the two methods higher than 0.7, except for Fe at 0.6 and S at 0.5 (Figure S1).

Figure S.1. Linear regressions between XRF and ICP OES measurements of mineral element concentration (Al, Ca, Fe, K, Mn, P, S, Si, Zn) from organic matrices (foliar tissues and soil litter).

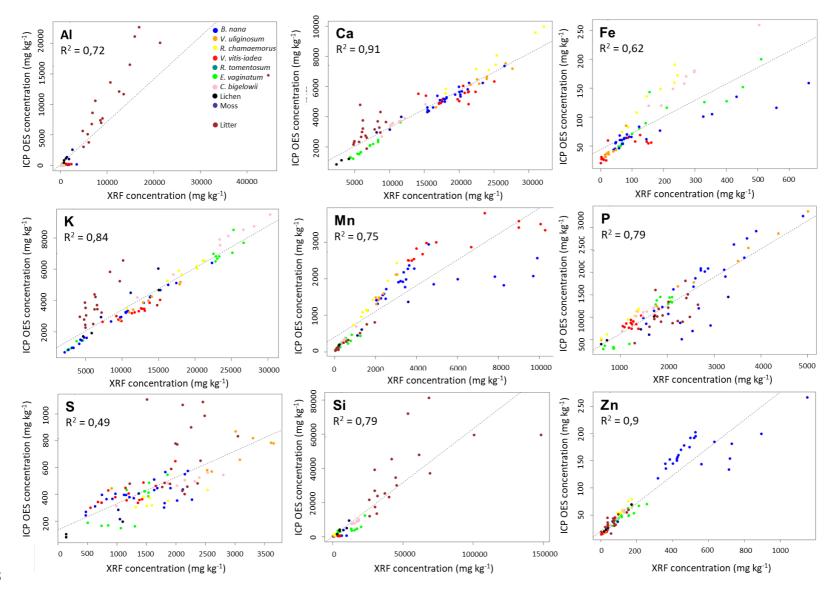
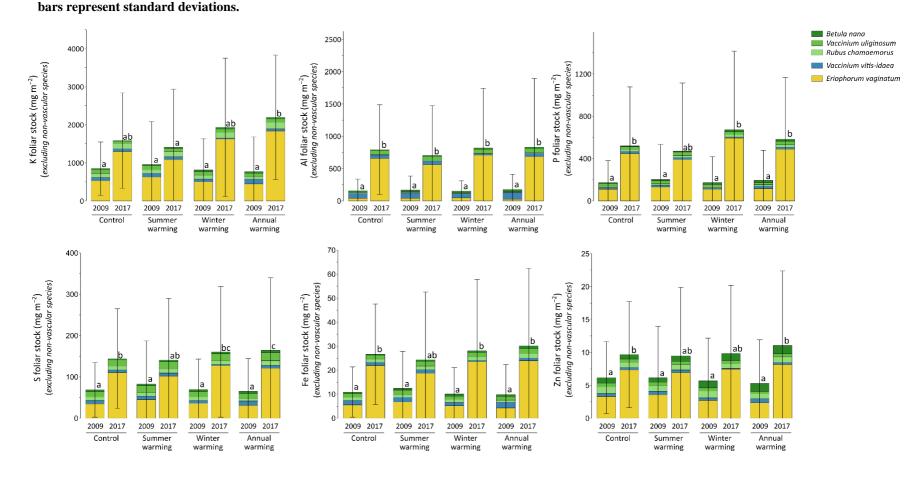



Figure S.2. Cumulative foliar stocks (mg m-2) of mineral elements (K, Al, P, S, Fe, and Zn) into typical moist acidic tundra species. At the Carbon in Permafrost Experimental Heating Research (CiPEHR), elemental content of mosses and lichens was not measure. The four treatments (Control, Summer warming, Winter warming and Annual warming) refer respectively to no artificial treatment, air warming, soil warming and both (air and soil) warming. Vegetation species are sorted by plant functional types; deciduous shrubs and forbs (green), evergreen shrubs (blue), and sedges (yellow). Letters correspond to a mixed model analysis and compare the total foliar elemental stocks between warming treatments and years. Error

30

35

Figure S.3. Cumulative foliar stocks (mg m-2) of mineral elements (K, Al, P, S, Fe, and Zn) into typical moist acidic tundra species. The natural thermokarst gradient (Gradient site) displays three stages of permafrost degradation, classified as Minimal, Moderate and Extensive, based on 40 permafrost thaw and subsidence rate. Vegetation species are sorted by plant functional types: deciduous shrubs and forbs (green), evergreen shrubs (blue), sedges (vellow), lichens and mosses (red). Letters correspond to a one-way ANOVA test and compare the total foliar elemental stocks between the three stages of permafrost degradation at Gradient. Error bars represent standard deviations.

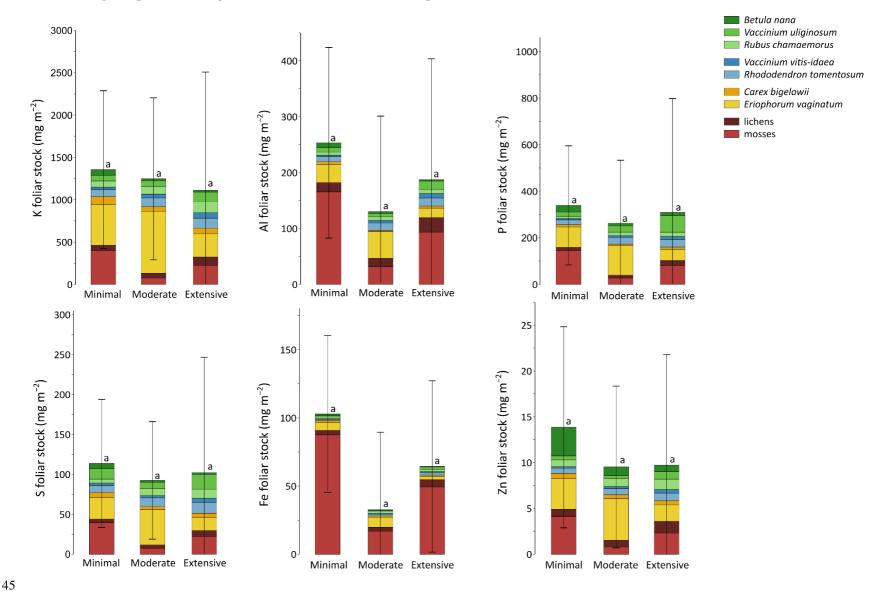


Figure S.4. Cumulative annual foliar fluxes (mg m-2 a-1) of mineral elements (K, Al, P, S, Fe, and Zn) from typical moist acidic tundra species. At the Carbon in Permafrost Experimental Heating Research (CiPEHR), the four treatments (Control, Summer warming, Winter warming and Annual warming) refer respectively to no artificial treatment, air warming, soil warming and both (air and soil) warming. Vegetation species are sorted by plant functional types: deciduous shrubs and forbs (green), and sedges (yellow). Letters correspond to a mixed model analysis and compare total foliar elemental fluxes between warming treatments and years. Error bars represent standard deviations.

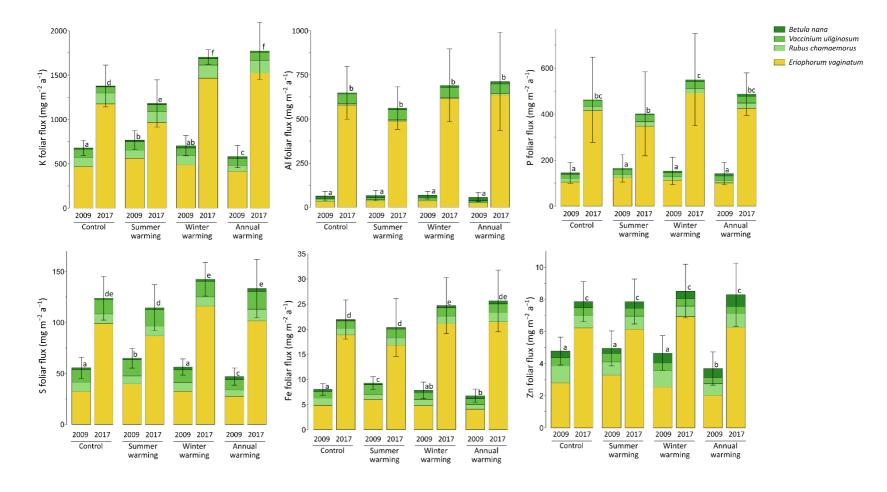


Figure S.5. Cumulative annual foliar fluxes (mg m-2 a-1) of mineral elements (K, Al, P, S, Fe, and Zn) from typical moist acidic tundra species. The natural thermokarst gradient (Gradient site) displays three stages of permafrost degradation, classified as Minimal, Moderate and Extensive, based on permafrost thaw and subsidence rate. Vegetation species are sorted by plant functional types: deciduous shrubs and forbs (green), and sedges (yellow). Letters correspond to one-way ANOVA test and compare total foliar elemental fluxes from the three stages of permafrost degradation at

Gradient. Error bars represent standard deviations.

60

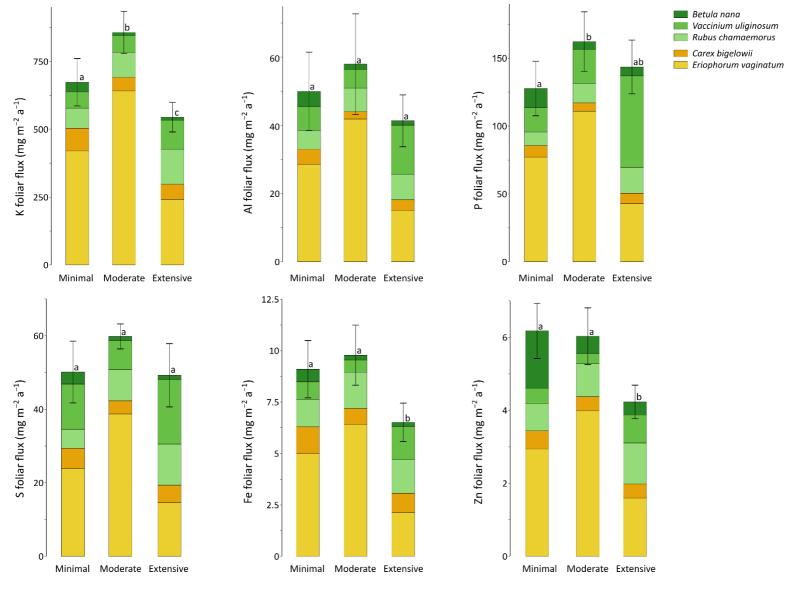


Table S.1. Number of leaf samples used for the pXRF measurements of total elements concentration, at the Carbon in Permafrost Experimental Heating Research (CiPEHR) in 2009 and 2017, and at the natural thermokarst gradient

65 (Gradient site) in 2019.

			Number of leaf samples								
Site	Year	Species	Control	Summer warming	Winter warming	Annual warming	Total				
CiPEHR	2009	E.vaginatum	12	12	12	12	48				
CiPEHR	2009	B. nana	12	10	11	8	41				
CiPEHR	2009	V. uliginosum	12	12	12	12	48				
CiPEHR	2009	R. chamaemorus	12	12	12	12	48				
CiPEHR	2009	V. vitis-idaea	12	12	12	12	48				
CiPEHR	2017	E.vaginatum	12	12	9	7	40				
CiPEHR	2017	B. nana	8	9	7	8	32				
CiPEHR	2017	V. uliginosum	12	12	11	11	46				
CiPEHR	2017	R. chamaemorus	10	11	12	10	43				
CiPEHR	2017	V. vitis-idaea	12	11	9	11	43				

Site	Year	Cassias	Number of leaf samples							
Site	rear	Species	Minimal	Moderate	Extensive	Total				
Gradient	2019	E.vaginatum	3	3	3	9				
Gradient	2019	C. bigelowii	3	3	3	9				
Gradient	2019	B. nana	3	3	3	9				
Gradient	2019	V. uliginosum	3	3	3	9				
Gradient	2019	R. chamaemorus	3	3	3	9				
Gradient	2019	R. tomentosum	3	3	3	9				
Gradient	2019	V. vitis-idaea	3	3	3	9				
Gradient	2019	Moss	undefined*	undefined*	undefined*	3				
Gradient	2019	Lichen	undefined*	undefined*	undefined*	3				

*Mosses and lichens were randomly sampled at Gradient and do not refer to a specific site. The total number of mosses and lichens corresponds to the three species sampled (for mosses: Sphagnum sp., Dicranum sp., and Brachytecium sp; for lichens: Nephroma sp., Cladonia sp., and Flavocetraria cucullata).

Table S.2. Ratios between foliar biomass and aboveground biomass for seven typical vascular plant species from moist 70 acidic tundra (Salmon et al., 2016; Schuur et al., 2007).

Species	Plant functional type	Leave: aboveground ratio in biomass tissue allocation
E. vaginatum	Sedge	0.63
C. bigelowii	Sedge	0.79
B. nana	Dec. shrub	0.34
V. uliginosum	Dec. shrub	0.28
R. chamaemorus	Forb	0.91
R. tomentosum	Evergr. shrub	0.39
V. vitis-idaea	Evergr. shrub	0.66

Table S.3. Vascular and non-vascular foliar biomasses (means (μ), standard deviations (σ), and relative standard deviation (RDS)) from typical moist acidic tundra species, at Carbon in Permafrost Experimental Heating Research (CiPEHR) in 2009 and in 2017 (Taylor et al., 2018), and natural thermokarst gradient (Gradient site) in 2017 (Jasinski et al., 2018). The ratios between foliar and aboveground biomasses come from Salmon et al. (2016) and Schuur et al. (2007).

			Plant functional type		Foliar biomass (g m ⁻²)										
Site	Year	Species		Control			Summer warming			Winter warming			Annual warming		
	1 Cai	Species		Mean (µ)	SD (o)	RSD (σ/μ)	Mean (µ)	SD (σ)	RSD (σ/μ)	Mean (µ)	SD (σ)	RSD (σ/μ)	Mean (µ)	SD (σ)	RSD (σ/μ)
CiPEHR	2009	E. vaginatum	Sedge	61.83	38.09	62%	75.7 9	76.07	100%	57.04	44.11	77%	47.28	45.38	96%
CiPEHR	2009	C. bigelowii	Sedge	5.54	4.39	79%	8.43	6.48	77%	9.30	6.56	71%	9.93	5.81	59%
CiPEHR	2009	Betula nana	Dec. shrub	4.51	4.86	108%	3.85	5.52	143%	6.21	7.77	125%	5.98	8.91	149%
CiPEHR	2009	V. uliginosum	Dec. shrub	15.31	4.14	27%	18.32	8.87	48%	14.28	5.78	41%	11.66	4.88	42%
CiPEHR.	2009	R. chamaemorus	Forb	14.36	5.96	42%	12.54	4.87	39%	13.55	2.66	20%	10.13	6.60	65%
CiPEHR	2009	R. tomentosum	Evergr. shrub	26.06	13.96	54%	26.65	13.07	49%	31.78	14.02	44%	27.59	9.82	36%
CiPEHR	2009	V. vitis-idaea	Evergr. shrub	16.62	13.11	79%	18.96	11.35	60%	13.17	5.58	42%	21.36	15.70	74%
CiPEHR	2009	Mosses	Moss	44.55	16.63	37%	45.86	19.93	43%	41.03	13.37	33%	47.24	20.73	44%
CiPEHR.	2009	Lichens	Lichen	39.81	30.93	78%	33.08	24.97	75%	42.06	23.80	57%	34.84	38.00	109%
CiPEHR	2009	Tot	al	228.61			243.48			228.42			216.02		

			Plant functional type		Foliar biomass (g m ⁻²)										
Site	Year	Species			Control		Summer warming			Winter warming			Annual warming		
Sho Tea	1 Cai	Species		Mean (µ)	SD (o)	RSD (σ/μ)	Mean (µ)	SD (o)	RSD (σ/μ)	Mean (µ)	$SD\left(\sigma\right)$	RSD (σ/μ)	Mean (µ)	$SD\left(\sigma\right)$	RSD (σ/μ)
CiPEHR	2017	E. vaginatum	Sedge	149.14	84.64	57%	130.52	110.26	84%	161.35	98.55	61%	161.48	123.87	77%
CiPEHR	2017	C. bigelowii	Sedge	2.40	1.64	68%	2.84	3.15	111%	8.87	11.52	130%	4.06	1.69	42%
CiPEHR	2017	Betula nana	Dec. shrub	3.46	4.29	124%	4.02	6.26	156%	4.80	5.61	117%	6.03	8.78	146%
CiPEHR	2017	V. uliginosum	Dec. shrub	13.39	4.31	32%	14.61	4.70	32%	14.11	6.83	48%	13.88	9.97	72%
CiPEHR	2017	R. chamaemorus	Forb	15.16	9.93	65%	16.44	6.99	43%	14.65	8.25	56%	19.11	8.63	45%
CiPEHR	2017	R. tomentosum	Evergr. shrub	33.68	17.12	51%	31.97	14.84	46%	35.94	17.21	48%	33.53	17.91	53%
CiPEHR	2017	V. vitis-idaea	Evergr. shrub	11.26	3.87	34%	12.79	9.45	74%	3.97	5.26	132%	8.13	3.72	46%
CiPEHR	2017	Mosses	Moss	29.52	20.61	70%	23.29	25.60	110%	15.98	16.67	104%	32.41	50.78	157%
CiPEHR	2017	Lichens	Lichen	36.56	40.40	111%	21.32	30.27	142%	7.60	10.74	141%	12.20	28.60	235%
CiPEHR	2017	Tota	al	294.57			257.81			267.28			290.81		

		Graning	Plant functional type		Foliar biomass (g m ⁻²)										
Site	Year				Minimal			Moderate		Extensive					
		Species		$Mean\left(\mu \right)$	SD (o)	RSD (σ/μ)	Mean (µ)	SD (o)	RSD (σ/μ)	$Mean\left(\mu \right)$	SD (o)	RSD (σ/μ)			
Gradient	2017	E. vaginatum	Sedge	61.69	30.16	49%	89.23	33.32	37%	33.74	52.34	155%			
Gradient	2017	C. bigelowii	Sedge	8.24	3.09	37%	5.16	2.67	52%	5.95	3.12	52%			
Gradient	2017	Betula nana	Dec. shrub	14.77	15.01	102%	5.04	5.89	117%	4.25	5.06	119%			
Gradient	2017	V. uliginosum	Dec. shrub	14.13	3.34	24%	11.07	4.69	42%	24.47	20.80	85%			
Gradient	2017	R. chamaemorus	Forb	14.25	4.60	32%	19.51	3.26	17%	24.60	14.64	60%			
Gradient	2017	R. tomentosum	Evergr. shrub	28.24	12.56	44%	35.42	14.22	40%	43.34	15.45	36%			
Gradient	2017	V. vitis-idaea	Evergr. shrub	6.18	5.53	89%	8.51	5.14	60%	13.98	10.91	78%			
Gradient	2017	Mosses	Moss	108.77	125.10	115%	20.89	19.54	94%	61.30	48.71	79%			
Gradient	2017	Lichens	Lichen	20.96	16.91	81%	18.65	21.08	113%	32.67	38.63	118%			
Gradient	2017	Tot	al	277.23			213.49			244.29					

Table S.4. Foliar net primary productivity (NPP) adapted from Schuur et al. (2007), at Carbon in Permafrost Experimental Heating Research80(CiPEHR) in 2009 and in 2017, and at the natural thermokarst gradient (Gradient site) in 2017. Figure 1: The logo of Copernicus Publications.

		Plant functional	2	009 Foliar N	IPP (g m ⁻² a ⁻	1)	2017 Foliar NPP (g m ⁻² a ⁻¹)					
Site	Species		Control	Summer		Annual	Control	Summer	Winter	Annual		
		type	Control	warming	warming	warming	Control	warming	warming	warming		
CiPEHR	E. vaginatum	Sedge	57.74	70.77	53.27	44.15	139.26	121.88	150.67	150.79		
CiPEHR	C. bigelowii	Sedge	6.63	10.08	11.12	11.87	2.87	3.40	10.61	4.85		
CiPEHR	Betula nana	Dec. shrub	2.87	2.45	3.95	3.81	2.20	2.56	3.05	3.83		
CiPEHR	V. uliginosum	Dec. shrub	15.98	19.11	14.90	12.17	13.97	15.25	14.72	14.48		
CiPEHR	R. chamaemorus	Forb	12.08	10.54	11.40	8.52	12.75	13.82	12.32	16.07		

		Plant	2017 Foliar NPP (g m ⁻² a ⁻¹)							
Site	Species	functional	Minimal Thaw	Moderate	Extensive					
		type		Thaw	Thaw					
Gradient	E. vaginatum	Sedge	57.61	83.32	31.50					
Gradient	C. bigelowii	Sedge	9.86	6.17	7.12					
Gradient	Betula nana	Dec. shrub	9.39	3.20	2.70					
Gradient	V. uliginosum	Dec. shrub	14.74	11.55	25.53					
Gradient	R. chamaemorus	Forb	11.99	16.41	20.69					

Table S.5. Results of mixed model (*Lmer4* package in R 4.0.2 (R Core Team, 2020)) on foliar mineral element stocks and maximum potential litterfallfluxes at CiPEHR. We included individual plots as random factors, and year (2009 and 2017) and treatments (control, summer warming, winter85warming, and annual warming) as covariates. The model includes interactions between treatments (summer × winter), and between treatments andyears (2009 and 2017).

			Foliar stock	s at CiPEHR			Foliar fluxes at CiPEHR							
Mineral element	А	۱ [§]	c	a	Fe	\$ •	А	l [§]	c	а	Fe	e [§]		
	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value		
Intercept (Control)	4.95	***	395.23	***	2.35	***	4.12	***	276.00	***	2.08	***		
Winter	0.03		-50.75		-0.12		0.07		-21.16		-0.03			
Summer	0.13		-10.49		-0.05		0.05		10.53		0.16	*		
Year2017	1.50	***	61.55		0.75	***	2.33	***	104.25	***	0.99	***		
Winter*Summer	-0.19		-64.52		-0.13		-0.19		-65.17	**	-0.29	**		
Winter:Year2017	0.54		0.95		0.39		0.09		20.28		0.25	*		
Summer*Year2017	-0.44		-14.48		-0.26		-0.17		5.52		-0.22	*		
Winter*Summer*Year2017	0.24		264.21	*	0.45		0.09		83.74	*	0.23			
Mineral element		ĸ	м	n [§]	Р	ş	-	K	N	In	Р	ş		
	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value		
Intercept (Control)	852.17	***	4.86	***	5.10	***	678.20	***	70.07	***	4.96	***		
Winter	-40.36		-0.15		-0.06		25.45		0.23		0.06			
Summer	-28.33		0.07		-0.27		88.87	*	14.43	**	0.12			
Year2017	743.76	**	0.11		0.96	***	623.55	***	38.54	***	1.12	***		
Winter*Summer	-114.18		-0.23		0.09		-205.60	***	-24.04	**	-0.18			
Winter:Year2017	582.14		0.19		0.49		299.80	*	14.12		0.14			
Summer*Year2017	-329.54		-0.04		-0.19		-284.88	**	-9.90		-0.26			
Winter*Summer*Year2017	548.39		0.43		0.12		480.90	**	17.60		0.16			
Mineral element		5	Si [§]		Zn		s	S [§]		Si [§]		n		
	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value		
Intercept (Control)	68.92	***	6.22	***	6.17	***	4.01	***	5.73	***	4.78	***		
Winter	-1.34		0.06		-0.69		0.02		0.13		-0.15			
Summer	3.12		0.08		-0.84		0.17	**	0.15		0.24			
Year2017	66.65	***	1.25	***	3.17	**	0.77	***	1.77	***	2.81	***		
Winter*Summer	-15.30		-0.03		-0.56		-0.35	***	-0.11		-1.39	*		
Winter:Year2017	23.24		0.43		-0.32		0.12		0.05		0.79			
Summer*Year2017	-16.11		-0.39		-0.33		-0.20	*	-0.22		0.22			
Winter*Summer*Year2017	67.23		0.27		4.65		0.40	*	0.13		1.40			

Notes: The p-value asterisks indicate level of significance: p < 0.05 (*), p < 0.01(***), p < 0.001 (***), and not significant (blank). Some mineral element foliar stocks were log-transformed (§) to achieve homogeneity of variance.