Supporting information for

Global modelling of soil carbonyl sulfide exchanges

Camille Abadie¹, Fabienne Maignan¹, Marine Remaud¹, Jérôme Ogée², J. Elliott Campbell³, Mary E. Whelan⁴, Florian Kitz⁵, Felix M. Spielmann⁵, Georg Wohlfahrt⁶, Richard Wehr⁶, Wu Sun⁷, Nina Raoult¹, Ulli Seibt⁸, Didier Hauglustaine¹, Sinikka T. Lennartz¹⁰,¹¹, Sauveur Belviso¹, David Montagne¹² and Philippe Peylin¹.

¹Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
²INRA, UMR 1391 ISPA, 33140 Villenave d’Ornon, France
³Sierra Nevada Research Institute, University of California, Merced, California 95343, USA
⁴Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
⁵Department of Ecology, University of Innsbruck, Innsbruck, 6020, Austria
⁶Center for Atmospheric and Environmental Chemistry, Aerodyne Research, Inc., Billerica, Massachusetts, 01821, USA.
⁷Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA
⁸Department of Atmospheric & Oceanic Sciences, University of California Los Angeles, California 90095, USA
⁹Institute of Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
¹⁰Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, 02139, MA, USA
¹¹AgroParisTech, INRAE, Université Paris-Saclay, UMR ECOSYS, 78850 Thiverval-Grignon, France

Table S1. Soil textures for the USDA texture classification.

<table>
<thead>
<tr>
<th>USDA texture classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- Sand</td>
</tr>
<tr>
<td>2- Loamy sand</td>
</tr>
<tr>
<td>3- Sandy loam</td>
</tr>
<tr>
<td>4- Silt loam</td>
</tr>
<tr>
<td>5- Silt</td>
</tr>
<tr>
<td>6- Loam</td>
</tr>
<tr>
<td>7- Sandy clay loam</td>
</tr>
<tr>
<td>8- Silty clay loam</td>
</tr>
<tr>
<td>9- Clay loam</td>
</tr>
<tr>
<td>10- Sandy clay</td>
</tr>
<tr>
<td>11- Silty clay</td>
</tr>
<tr>
<td>12- Clay</td>
</tr>
</tbody>
</table>

Table S2. USDA textures initially assigned in ORCHIDEE and the substituted textures from the observations at the studied sites. Textures are in bold when the imposed texture differs from the one initially assigned in ORCHIDEE.

<table>
<thead>
<tr>
<th>Initial</th>
<th>Substituted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES-LMA 3- Sandy loam</td>
<td>3- Sandy loam</td>
</tr>
<tr>
<td>DK-SOR 3- Sandy loam</td>
<td>3- Sandy loam</td>
</tr>
<tr>
<td>IT-CRO 3- Sandy loam</td>
<td>4- Silt loam</td>
</tr>
<tr>
<td>Code</td>
<td>Type</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td>AT-NEU</td>
<td>3 - Sandy loam</td>
</tr>
<tr>
<td>ET-JA</td>
<td>3 - Sandy loam</td>
</tr>
<tr>
<td>FI-HYY</td>
<td>2 - Loamy sand</td>
</tr>
<tr>
<td>US-HA</td>
<td>1 - Sand</td>
</tr>
</tbody>
</table>
Table S3: First-order parameters.

<table>
<thead>
<tr>
<th>Parameter name in ORCHIDEE</th>
<th>Parameter name in the model description</th>
<th>Description (unit)</th>
<th>Specificity</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ksoil</td>
<td>k_{soil}</td>
<td>Proportionality factor for soil COS fluxes (pmol COS μmol$^{-1}$ CO$_2$)</td>
<td>(-)</td>
<td>\pm1.08 pmol COS μmol$^{-1}$ CO$_2$</td>
</tr>
<tr>
<td>Mechanistic model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCA</td>
<td>f_{CA}</td>
<td>CA enhancement factor (unitless)</td>
<td>PFT-dependent</td>
<td>See Meredith et al., (2019) Table 1</td>
</tr>
<tr>
<td>α</td>
<td>α</td>
<td>COS production parameter (unitless)</td>
<td>PFT-dependent</td>
<td>See Text S1 and Table S5</td>
</tr>
<tr>
<td>β</td>
<td>β</td>
<td>COS production parameter ($^\circ$C$^{-1}$)</td>
<td>PFT-dependent</td>
<td>See Text S1 and Table S5</td>
</tr>
</tbody>
</table>
Table S4: Second-order parameters.

<table>
<thead>
<tr>
<th>Parameter name in ORCHIDEE</th>
<th>Description (unit)</th>
<th>Specificity</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthesis parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vcmax25</td>
<td>Maximum rate of Rubisco activity-limited carboxylation at 25°C (µmol m(^2) s(^{-1}))</td>
<td>PFT-dependent</td>
<td>±45% (Mahmud et al., 2021)</td>
</tr>
<tr>
<td>Zroot</td>
<td>Root profile in empirical plant water stress function calculation (m)</td>
<td>PFT-dependent</td>
<td>See Mahmud et al. (2021)</td>
</tr>
<tr>
<td>Tmin</td>
<td>Minimum photosynthesis temperature (°C)</td>
<td>PFT-dependent</td>
<td>Vegetated PFTs: - 9, 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Mahmud et al., 2021)</td>
</tr>
<tr>
<td>Tmax</td>
<td>Maximum photosynthesis temperature (°C)</td>
<td>PFT-dependent</td>
<td>Vegetated PFTs: 50, 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Mahmud et al., 2021)</td>
</tr>
<tr>
<td>Conductance parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| g0 | Residual stomatal conductance when irradiance approaches zero (mol m\(^{-2}\) s\(^{-1}\) bar\(^{-1}\)) | PFT-dependent (C\(_3\) or C\(_4\) plant types) | C\(_3\) plants: 0.00565, 0.00685
<pre><code> | | | C\(_4\) plants: 0.01675, 0.02075 |
</code></pre>
<p>| | | | |
| Phenology parameters | | | |
| SLA | Specific leaf area (m(^2) gC(^{-1})) | PFT-dependent | See Mahmud et al. (2021) |
| Soil hydrology parameters | | | |</p>
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Unit</th>
<th>Range</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>Van Genuchten water retention curve coefficient n (unitless)</td>
<td></td>
<td>Soil texture-dependent</td>
<td>±40% (Dantec-Nédélec et al., 2016)</td>
</tr>
<tr>
<td>a</td>
<td>Van Genuchten water retention curve coefficient a (unitless)</td>
<td></td>
<td>Soil texture-dependent</td>
<td>±50% (Dantec-Nédélec et al., 2016)</td>
</tr>
<tr>
<td>Ks</td>
<td>Hydraulic conductivity at saturation</td>
<td>Soil texture-dependent</td>
<td></td>
<td>±40%</td>
</tr>
<tr>
<td>θWP</td>
<td>Volumetric water content at wilting point (%)</td>
<td>Soil texture-dependent</td>
<td></td>
<td>±20% (Dantec-Nédélec et al., 2016)</td>
</tr>
<tr>
<td>θFC</td>
<td>Volumetric water content at field capacity (%)</td>
<td>Soil texture-dependent</td>
<td></td>
<td>±20% (Dantec-Nédélec et al., 2016)</td>
</tr>
<tr>
<td>θR</td>
<td>Residual volumetric water content (m3 m$^{-3}$)</td>
<td>Soil texture-dependent</td>
<td></td>
<td>±20% (Dantec-Nédélec et al., 2016)</td>
</tr>
<tr>
<td>θSAT</td>
<td>Saturated volumetric water content (m3 m$^{-3}$)</td>
<td>Soil texture-dependent</td>
<td></td>
<td>±20% (Dantec-Nédélec et al., 2016)</td>
</tr>
<tr>
<td>θTransp_max</td>
<td>Fraction of saturated volumetric soil moisture above which transpiration is maximum (unitless)</td>
<td>Soil texture-dependent</td>
<td></td>
<td>±20% (Dantec-Nédélec et al., 2016)</td>
</tr>
<tr>
<td>C_dry</td>
<td>Dry soil heat capacity (J m$^{-3}$ K$^{-1}$)</td>
<td>Soil texture-dependent</td>
<td></td>
<td>±20% (Dantec-Nédélec et al., 2016)</td>
</tr>
<tr>
<td>soilC</td>
<td>Scalar on the active soil C pool content to account for uncertainty in spinup (unitless)</td>
<td>(-)</td>
<td></td>
<td>0.5, 2 (Mahmud et al., 2021)</td>
</tr>
</tbody>
</table>

Post carbon uptake and allocation parameters
| soil_Q10 | Temperature dependency factor for heterotrophic respiration (Q10=\exp^{SOIL_Q10}) (unitless) | (-) | FI-HYY: 0.53, 1.36 (Barba et al., 2018)
US-HA: 0.88, 1.37 (Giasson et al., 2013) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min_SWC_resp</td>
<td>Minimum soil wetness to limit the heterotrophic respiration (unitless)</td>
<td>(-)</td>
<td>0.1, 0.6 (Mahmud et al., 2021)</td>
</tr>
</tbody>
</table>
The values of the α and β parameters are found in Whelan et al. (2016), but no range of variation is given. A similar expression of the production term is defined in Meredith et al. (2018),

$$P_{\text{Meredith}} = P_{\text{ref}} \cdot Q_{10}^{\frac{(T - T_{\text{ref}})}{10}}$$ \hspace{1cm} (S1)

with P_{ref} (mol m$^{-3}$ s$^{-1}$) the COS flux at T_{ref} (°C).

Using the correspondence between the production term describe in Whelan et al. (2016) and Meredith et al. (2018),

$$e^{\alpha + \beta T} = P_{\text{ref}} \cdot Q_{10}^{\frac{(T - T_{\text{ref}})}{10}}$$ \hspace{1cm} (S2)

$$\alpha = \log \left(P_{\text{ref}} \cdot Q_{10}^{\frac{T_{\text{ref}}}{10}} \right)$$ \hspace{1cm} (S3)

$$\beta = \frac{1}{10} \log \left(Q_{10} \right)$$ \hspace{1cm} (S4)

Using the identity $\log(a \cdot b^x) = \log(a) + x \cdot \log(b)$ and taking the derivatives, we obtain the following error propagation:

$$\Delta \alpha = \frac{\Delta P_{\text{ref}}}{P_{\text{ref}}} + \frac{\Delta Q_{10}}{Q_{10}}$$ \hspace{1cm} (S5)

$$\Delta \beta = \frac{1}{10} \cdot \frac{\Delta Q_{10}}{Q_{10}}$$ \hspace{1cm} (S6)

Meredith et al. (2018) indicate a ±1 uncertainty on Q_{10} and a 50% uncertainty on P_{ref}.

$$\Delta \alpha = \frac{0.5 \cdot P_{\text{ref}}}{P_{\text{ref}}} + \frac{1}{e^{10\beta}}$$ \hspace{1cm} (S7)

$$\Delta \beta = \frac{1}{10} \cdot \frac{1}{e^{10\beta}}$$ \hspace{1cm} (S8)
Table S5: Ranges of variation for α and β parameters.

<table>
<thead>
<tr>
<th>PFT</th>
<th>$\Delta \alpha$</th>
<th>$\Delta \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - Bare soil</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>2 - Tropical broad-leaved evergreen</td>
<td>1.41</td>
<td>0.0364</td>
</tr>
<tr>
<td>3 - Tropical broad-leaved raingreen</td>
<td>1.41</td>
<td>0.0364</td>
</tr>
<tr>
<td>4 - Temperate needleleaf evergreen</td>
<td>1.26</td>
<td>0.0304</td>
</tr>
<tr>
<td>5 - Temperate broad-leaved evergreen</td>
<td>1.26</td>
<td>0.0304</td>
</tr>
<tr>
<td>6 - Temperate broad-leaved summergreen</td>
<td>1.26</td>
<td>0.0304</td>
</tr>
<tr>
<td>7 - Temperate needleleaf evergreen</td>
<td>1.26</td>
<td>0.0304</td>
</tr>
<tr>
<td>8 - Boreal broad-leaved summergreen</td>
<td>1.26</td>
<td>0.0304</td>
</tr>
<tr>
<td>9 - Boreal needleleaf summergreen</td>
<td>1.26</td>
<td>0.0304</td>
</tr>
<tr>
<td>10 - C$_3$ grass</td>
<td>1.35</td>
<td>0.0340</td>
</tr>
<tr>
<td>11 - C$_4$ grass</td>
<td>1.35</td>
<td>0.0340</td>
</tr>
<tr>
<td>12 - C$_3$ agriculture</td>
<td>1.46</td>
<td>0.0383</td>
</tr>
<tr>
<td>13 - C$_4$ agriculture</td>
<td>1.46</td>
<td>0.0383</td>
</tr>
<tr>
<td>14 - Tropical C$_3$ grass</td>
<td>1.35</td>
<td>0.0340</td>
</tr>
<tr>
<td>15 - Boreal C$_3$ grass</td>
<td>1.35</td>
<td>0.0340</td>
</tr>
</tbody>
</table>
Figure S1: Mean seasonal cycle of monthly atmospheric COS concentrations over 2010-2019.

Figure S2: Mean spatial distribution of atmospheric COS concentrations over 2010-2019.
Figure S3: Spatial distribution of dominant plant functional types (PFTs) in ORCHIDEE over 2010-2019. The map resolution is 0.5° x 0.5°.