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Abstract. Several foraminifera are deposit feeders that consume organic detritus (dead particulate
organic material with entrained bacteria). However, the role of such foraminifera in the benthic
food-web remains understudied. Foraminifera feeding on methanotrophic bacteria, which are *C-
depleted, may cause negative cytoplasmic and/or calcitic §13C values. To test whether the
foraminiferal diet includes methanotrophs, we performed a short-term (20-h) feeding experiment
with Nonionellina labradorica from an active Arctic methane-emission site (Storfjordrenna,
Barents Sea) using the marine methanotroph Methyloprofundus sedimenti, and analyzed N.
labradorica cytology via Transmission Electron microscopy (TEM). We hypothesized that M.
sedimenti would be visible post experiment in degradation vacuoles, as evidenced by their
ultrastructure. Sediment grains (mostly clay) occurred inside one or several degradation vacuoles
in all foraminifers. In 24% of the specimens from the feeding experiment degradation vacuoles
also contained bacteria, although none could be confirmed to be the offered M. sedimenti.
Observations of the apertural area after 20-h incubation revealed three putative methanotrophs,
close to clay particles, based on bacterial ultrastructural characteristics. Furthermore, we noted the
absence of bacterial endobionts in all examined N. labradorica but confirmed the presence of
kleptoplasts, which were often partially degraded. In sum, we suggest that M. sedimenti can be
consumed via untargeted grazing in seeps and that N. labradorica can be generally classified as a

deposit feeder at this Arctic site.

benthic foraminifera — feeding experiment — grazing - marine methanotrophs — Arctic methane
seeps— transmission electron microscopy — ultrastructure — kleptoplasts- protist — molecular

identification
1. Introduction

In methane seep sites, the upward migration of methane affects the pore-water chemistry of near-
surface sediments, where benthic foraminifera live (e.g. Dessandier et al., 2019). Extremely light
isotopic signals of 5!3C have been measured in seep-associated foraminiferal calcite tests (Wefer
et al., 1994; Rathburn et al., 2003; Hill et al., 2004b; Panieri et al., 2014). Studies specifically
looking at living (rose bengal stained) foraminiferal tests support the hypothesis that the carbon
isotopic composition is strongly influenced by the porewater DIC (McCorkle et al., 1990a).
Interspecific 5'3C differences between species with similar depth indicate sometimes taxon-

specific “vital” effects (McCorkle et al., 1990a). Those “vital” effects describe the biology of the
2
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different species, which could reflect different feeding patterns. It has been suggested that
Nonionella auris is an indicator of methane release and possibly ingests *3C-depleted methane
oxidizing bacteria (Wefer et al., 1994). Recently, Melonis barleeanus (Williamson, 1858)
collected from an active methane seep site was found to be closely associated with putative
methanotrophs (Bernhard and Panieri, 2018), providing impetus to examine feeding habits of
foraminifera living in or around methane seeps.

Methanotrophs produce the biomarker diplopterol, which has an extremely light §*3C signature
(=60 %o) (Hinrichs et al., 2003). Our hypothesis is that if foraminifera ingest methanotrophs, 5°C
values of foraminiferal cytoplasm should be altered by their diet. Experiments using a high-
pressure culturing system revealed the difficulty to measure the sensitive relationship between
methane exposure and the foraminifera Cibicides wuellerstorfi. However, it was shown in one
experiment using entire cores that a methane source was reflected in 8*3C of foraminiferal calcite
(Wollenburg et al., 2015). It is also not yet conclusive if diet can influence foraminiferal calcite,
as new calcite did not form during experiments (Mojtahid et al., 2011).

Another hypothesis to explain extremely light §*3C values recorded in benthic foraminiferal calcite
is that foraminifera assimilate carbon as **C-depleted methane-derived DIC, which would lead to
extremely light 8'3C values. The possibility that **C-depleted DIC from the pore water can be
assimilated by foraminifera is currently debated. Some studies suggest it is not possible (Herguera
et al., 2014), while others assert the feasibility that foraminifera calcify close to seeps (Rathburn
et al., 2003; Hill et al., 20044a; Panieri et al., 2014). The problem lies in the calcite tests, and the
difficulty to asses the time of death of these protists in the sediment. Several studies found that the
lightest isotopic 8'3C values were measured in tests coated by methane-derived authigenic
carbonate (MDAC) overgrowth, which happens after the death of the foraminifer (Torres et al.,
2010; Panieri et al., 2014; Consolaro et al., 2015; Panieri et al., 2017; Schneider et al., 2017).
However, light 5'C values remain in many tests after MDACS are removed (Panieri et al., 2014)
and have been measured also in primary calcite, without MDACSs, from tests in methane-rich
environments (e.g.Mackensen, 2008; Dessandier et al., 2019). These observations again point to
the role of food influencing the cytoplasmic 5'3C.

Foraminifera play an important role in the carbon cycle on the deep seafloor (Nomaki et al., 2005)
where feeding behavior and food preference vary with species (Nomaki et al., 2006). Selected

species of deep-sea benthic foraminifera have been shown to feed selectively on 3C-labeled algae
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from sedimentary organic matter, but unselectively on *3C-labeled bacteria of the strain Vibrio
(Nomaki et al., 2006). A study from the seafloor around Adriatic seeps suggested that §°C of
foraminiferal cytoplasm could be influenced by feeding on the sulfur-oxidizing bacterium
Beggiatoa, whose abundance was also positively correlated with foraminiferal densities (Panieri,
2006). Generally, some foraminifera can ingest dissolved organic matter (DOM); some are
herbivorous, carnivorous, suspension feeders and most commonly deposit feeders (reviewed in
Lipps, 1983). Deposit feeders are omnivorous, gathering fine-grained sediment (e.g., clay) and
associated bacteria, organic detritus (dead particulate organic material) and, if present, diatom cells
using their pseudopodia. Based on the ultrastructure of the diet found in vacuoles serveral species
of foraminifera from different habitats have already been classified to be deposit feeders (Goldstein
and Corliss, 1994).

Here we investigate if Nonionellina labradorica would feed in a short-term feeding experiment on
the marine methanotroph Metyloprofundus sedimenti and compare its ultrastructure on
experimental specimens and field specimens. Nonionellina labradorica is an abundant species in
the North Atlantic (Cedhagen, 1991) and occurs together with N. digitata in Svalbard fjord
sediments (Hald and Korsun, 1997; Shetye et al., 2011; Fossile et al., 2020). In addition to its wide
distribution, it is an especially interesting experimental species for feeding studies because it hosts
kleptoplasts, i.e. sequestered chloroplasts, of diatom origin inside its cytoplasm (Cedhagen, 1991;
Jauffrais et al., 2019b). Nonionellina labradorica’s aperture shows a specific ornamentation,
possibly a morphological adaptation to this “predatory” mode of life for obtaining the kleptoplasts
(Bernhard and Bowser, 1999). Denitrification has been speculated for N. labradorica (reviewed in
Charrieau et al., 2019), because the foraminiferal genus Nonionella can denitrify, which was
demonstrated on two species (Risgaard-Petersen et al., 2006; Choquel et al., 2021), but not yet on
N. labradorica. Our study analyzed contents of the degradation vacuoles of this species from an
active methane-emitting site in the Arctic (Storfjordrenna, Barents Sea) before and after a feeding

experiment.
2. Materials and methods
2.1. Site description and sampling living foraminifera

The sampling site was located app. 50 km south of Svalbard at 382m water depth at the mouth of

Storfjordrenna (Serov et al., 2017). The site is characterized by several large gas hydrate pingos
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(GHP), which actively vent methane over an area of 2.5 km?. Our samples were taken at GHP3,
which is referred to as an underwater gas hydrate-bearing mound (Hong et al., 2017; Hong et al.,
2018). GHP3 is a ~500-m diameter, 10-m tall mound that actively vents methane (Fig. 1). Marine
sediment samples were collected during CAGE cruise 18-05 supported by the research vessel
Kronprins Haakon in October 2018 and sampled by the Remotely Operated Vehicle (ROV) Agir.
A blade corer BLC18 (surface dimensions 27 x 19 cm, Fig. 1c) was used to retrieve marine
sediment in the vicinity of bacterial mats (GPS 76°6'23.7"N 15°58'1.7"E). Once onboard the blade
corer was immediately sampled to retrieve living (cytoplasm containing) foraminifera using a
small aquarium hose targeting the first cm (~0-1 cm). The sediment was collected in petri dishes
and wet sieved to a size range of 250-500 um. The species N. labradorica, which was abundant in

that layer, was subsequently used for a feeding experiment described in detail below.

76°6'26'N

T~ T X ok
(b) 15°58E 15°584°E 15°588°E.
6 o
5 3

Gas Hydrate Pingo 3 .
Ga;\;i:hble relea?e_j “:-': ' —

of

7w PUC2 Reference core (geochemistry)
m BLC 18 Blade corer (sample for experiment)

Figure 1. Description of the sampling site Gas Hydrate Pingo 3 (GHP3), a gas-hydrate bearing mound,
located in Storfjordrenna Barents Sea. (a) Map illustrating Svalbard Archipelago and the sampling site,
app. 50 km offshore. (b) Map of sampling site GHP3, active gas bubble release is marked on the top of
the underwater mount, yellow star indicates location of push corer PUC2 (geochemical analyses), black
square indicates location of BLC18 (sediment source for experiment). (c) Underwater image of retrieval
of BLC18 taken by ROV camera illustrating the coloration of sediment with the sea-floor visible in
background.
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2.2. Geochemistry of the study site

For geochemical analysis of the study site a push corer (PUC2; henceforth referred to as
geochemistry core) was taken to obtain measurements of §13Cp\c and sulfate, because blade corer
(BLC18) did not allow those measurements. PUC2 was taken in close vicinity to BLC18, ~5m
apart (see Figure S1). Pore-water samples were taken from PUC2 using rhizons that were inserted
through pre-drilled holes in the core tube at intervals of 1 cm (Table S1). Acid washed 20-ml
syringes were attached to the rhizons for pore water collection. Depending on the amount of pore
water collected, the samples were split for $*Cpic and sulfate measurements. To the samples, 10
pL of saturated HgCl, (aqueous) was added to stop microbial activity and stored in cold conditions
(5°C). A ThermoScientific Gasbench 1l coupled to a ThermoScientific MAT 253 IRMS at the
Stable Isotope Laboratory (SIL) at CAGE, UiT was used to determine §*3*Cpc of the pore-water.
Anhydrous phosphoric acid was added to small glass vials (volume 4.5 mL), that were closed and
flushed with helium 5.0 gas before the pore-water sub-sample was measured. A porewater sub-
sample (volume 0.5 mL) was then added through the septa with a syringe needle, followed by
equilibration for 24 h at 24°C to liberate the CO> gas. Three solid calcite standards with a range of
+2 10 -49 %o were used for normalization to §'3C-VPDB. Correction of measured §*3C by -0.1 %o,
was done to account for fractionation between (gas) and (aqueous) in sample vials. Instrument
precision for §3C on a MAT253 IRMS was +/- 0.1 %o (SD). Sulfate was measured with a Metrohm
ion chromatography instrument equipped with column Metrosep A sup 4 and eluted with 1.8
mmol/L Na2COz + 1.7 mmol/L NaHCO3 at the University of Bergen.

2.3. Culturing of the marine methanotroph M. sedimenti

Methyloprofundus sedimenti PKF-14 had been previously isolated from a water-column sample
collected at Prins Karls Forland, Svalbard in the laboratory at UiT in Tromsg. Methyloprofundus
sedimenti were cultured in 10-ml batches of a 35:65 mix of 1/10 Nitrate Mineral Salt medium
(NMS) and sterile filtered sea water using 125-mL Wheaton® serum bottles with butyl septa and
aluminum crimp caps (Teknolab®). Methane was injected to give a headspace of 20% methane in
air, and the bottles were incubated without shaking at 15°C in darkness. Purity of the cultures and
cell integrity was verified by microscopy and by absence of growth on agar plates with a general

medium for heterotrophic bacteria (tryptone, yeast extract, glucose and agar).
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2.4. Experimental setup

On the ship, Nonionellina labradorica (Fig. 2a,b) specimens showing dark greenish brown
cytoplasm were picked using sable artist brushes under a stereomicroscope immediately after wet
sieving the sediment using natural seawater delivered from the ship pump. Living specimens had
a partly inorganic covering surrounding the test, which was gently removed using fine artist
brushes. Those so-called cysts are nothing unusal with many foraminiferan taxa (Heinz et al.,
2005).

Our specimens were subsequently rinsed twice in filtered artificial seawater to remove any
sediment before placing them into the experimental petri dishes. Care was taken that those were
minimally exposed to light during preparation of the experiment, as kleptoplasts are known to be
highly light sensitive in this foraminifer (Jauffrais et al., 2019b).

The experiment with M. sedimenti was conducted for a total duration of 20-h to resemble previous
experiments on N. labradorica using transmission electron microscopy and nanometre-scale
secondary ion mass spectrometry isotopic imaging (TEM-NanoSIMS) (Jauffrais et al., 2019b),
and included two more time points at 4 and 8 h. A short pre-experimental phase (2-4 h) was
included before the start of the feeding experiment, to allow specimens to acclimate. During the
pre-experimental phase specimens were not fed and resided in the petri dishes to adjust to the
experimental conditions. The feeding experiment consisted of several small petri dishes (3.5 cm
&, 3 mL) each containing five N. labradorica in ASW at ambient salinity 35 (Red Sea Salt). Petri
dishes were sealed with Parafilm® and covered with aluminum foil and placed inside the incubator
in complete darkness. Temperature inside the chamber was maintained at 2-3°C, which is within
the range of the site’s bottom-water temperature (-1.8 — 4.6°C) (Hong et al., 2017). The feeding of
M. sedimenti was performed once at the beginning of the experiment by adding 100 pL of culture
to 3 mL of artificial seawater to produce a final concentration of ~1E10° bacteria/ mL in each petri
dish. Previously conducted feeding studies were used as guides: Muller and Lee (1969) used 1EI0*
bacteria/mL seawater and Mojtahid et al. (2011) used 4E108 bacteria/mL seawater.
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Five foraminifera, which served as initial/field specimens (Table 1), were fixed without M.
sedimenti incubation. The respective petri dishes were incubated for 4, 8 and 20 h to determine if
incubation duration influenced response of the foraminifera to the methanotroph. One petri dish
containing five foraminifera, which were un-fed and fixed at 20 h, served as a negative “control”.
After the end of the respective incubation times, each foraminifer was picked with a sterilized fine
artist brush, which was cleaned in 70% ethanol between each specimen, and placed individually

into a fixative solution (4% glutaraldehyde and 2% paraformaldehyde dissolved in ASW).

Figure 2 Exemplary illustration of Nonionellina labradorica, utilized in this study. (a) Reflected light microscopy image
from a specimen directly after sampling, white arrowhead indicates aperture location. (b) Scanning electron image from a
specimen before molecular analysis was performed, white arrowhead indicates aperture location. (c) Transmission electron
microscopy image of a culture of Metyloprofundus sedimenti, the marine methanotroph used in the feeding experiment. The
characteristic features for methanotroph identification is the typical type | intracytoplasmic membranes (ICM).
Furthermore, other internal structures visible are storage granules (SG), and a gram-negative cell wall (GNCW).

2.5. Transmission Electron microscopy (TEM) preparation

Samples of N. labradorica preserved in fixative solution were transported to the University of
Angers, where they were prepared for ultrastructural analysis using established protocols
(Lekieffre et al., 2018). Four embedded foraminiferal cells per treatment were sectioned using an
ultramicrotome (Leica® Ultracut S) equipped with a diamond knife (Diatome®, ultra 45°). Grids
were stained using UranyLess® EM Stain (EMS, USA). Ultra-thin sections (70 nm) were observed
with a JEOL JEM-1400 TEM at the SCIAM facility, University of Angers.

To document the ultrastructure of Methyloprofundus sedimenti, a sub-sample of the culture used
for experiments was imaged with TEM (Fig. 2c¢). To do so, an exponentially growing culture was

collected, centrifuged, pre-fixed with 2.5 % (w/v) glutaraldehyde in growth medium overnight,
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washed in PBS (Phosphate Buffered Saline), then post fixed with 1% (w/v) aqueous osmium
tetroxide for 1.5 hours at room temperature. After dehydration in an ethanol series, the samples
were embedded in an Epon equivalent (Serva) epoxy resin. Ultra-thin sections were cut on a Leica
EM UCG6 ultramicrotome, and stained with 3 % (w/v) aqueous uranyl acetate followed by staining
with lead citrate (Reynolds, 1963) at 20 °C for 4-5 min. The samples were examined with a JEOL
JEM-1010 transmission electron microscope at an accelerating voltage of 80 kV with a Morada
camera system at the Advanced Microscopy Core Facility (AMCF), Faculty of Health Science,
UiT The Arctic University of Norway.

2.6. Foraminifera ultrastructural observation and image processing

Four specimens per experimental time point (initals, 4, 8 and 20 h) plus one un-fed (control)
specimen were examined with the TEM. From each specimen, a minimum of 50 TEM images was
taken, including images detailing the degradation vacuoles (app. 5-27 images per specimen).
Before the ultrastructure was examined in detail, an overview images was created of each section
to illustrate number of chambers and size of the specimen. Images were blended together using
Photoshop CS5 (see Fig. 4-5a). Thereafter, the ultrastructure was examined at different parts of
the cell: (a) in the interior to document vitality, (b) on degradation vacuoles to determine their
contents, and (c) at the exterior to survey for microbes entrained in remnant “reticulopodial trunk”
material. All images made during the observations of the TEM sections are deposited at Zenodo
(doi: 10.5281/zen0d0.6941739).

2.7. Molecular genetics and morphology

DNA metabarcoding and morphological documentation were performed on 13 specimens of N.
labradorica. Briefly, live specimens were dried on micropaleontological slides and transported in
a small container, cooled with ice-pads to the University of Angers. All specimens were imaged
for morphological analysis using a Scanning Electron Microscope (SEM; EVOLS10, ZEISS, Fig.
S1) followed by individually extracting total DNA in DOC buffer (Pawlowski, 2000). To amplify
foraminiferal DNA, a hot start PCR (2 min. at 95°C) was performed in a volume of 25ul with 40
cycles of 30 s at 95°C, 30 s at 50°C and 2 min at 72°C, followed by 10 min at 72°C for final
extension. Primers s14F3 and sB were used for the first PCR and 30 cycles at an annealing
temperature of 52°C (other parameters unchanged) for the nested PCR with primers s14F1 and J2

(Pawlowski, 2000; Darling et al., 2016). Positive amplifications were sequenced directly with the
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Sanger method at Eurofins Genomics (Cologne, Germany). For taxonomic identification, DNA
sequences were compared first with BLAST (Basic Local Alignment Search Tool) (Altschul et al.,
1997) and then within an alignment comprising other Nonionids implemented in SeaView (Gouy
et al., 2010) and corrected manually.

3. Results
3.1. Sample description and geochemistry of the study site

The visual observation of the sediments within the blade corer BLC18 immediately after sampling
(Fig. 1c) indicated that the sediment appeared light grey — yellowish in the upper part until app. 13
cm and dark brown from app. 13 cm to the bottom. The sulfate measured in the pore water of the
geochemistry core (PUC2) declined from ~2750 ppm at the sediment-water interface to ~706 ppm
at approximately 13 cm (see Fig. S1, Table S1). A decline in sulfate concentration indicates that
the anaerobic oxidation of methane (AOM) occurred at app. 13 cm depth. The SMTZ (Sulfate
Methane Transition Zone) characterized by a DIC value of -32%o at app. 13 cm sediment depth

can be considered shallow on the global average (Egger et al., 2018).
3.2. Ultrastructure of methanotroph culture used in the feeding experiment

Transmission Electron Microscopy was performed on culture aliquots to allow morphological
comparison to previously published work (Tavormina et al., 2015). Methyloprofundus sedimenti
strain PKF-14 cells are coccoid to slightly elongated shape and is characterized by typical type |
stacked intracytoplasmic membranes (ICM) (Fig. 2c). It has storage granules (SG) and a gram-
negative cell wall (GNCW), which are not uniquely charactersitic of methanotrophs (Fig. 2c).
Additionally, 16S rRNA gene sequencing was performed (data not shown) to confirm it to be

similar to the published Methyloprofundus sedimenti (Tavormina et al., 2015).
3.3. Foraminiferal ultrastructure from an Arctic seep environment
3.3.1 General ultrastructure

All 17 specimen examined for ultrastructure were considered living at the time of observation (Fig.
3), as the mitochondria had characteristic double membranes and occasionally visible cristae
(Nomaki et al., 2016). Cytoplasm exhibited several vacuoles and kleptoplasts concentrated in the
youngest chambers (Fig. 3a) and, in some specimens, a nucleus with nucleoli was visible (Fig. 3b).

Kleptoplasts were numerous throughout the cytoplasm and occurred in the form of a single

10
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chloroplast (Fig. 3a-b), or as double chloroplasts (Fig. S2a-d). Not all kleptoplasts were intact;
some showed peripheral degradation of the membranes indicated by an increasing number of white
areas between pyrenoid, lamella and thylakoids (Fig. S2a-d). The mitochondria occurred often in
small clusters of two to five throughout the cytoplasm and were oval, round or kidney-shaped in
cross section (Fig. 3e-f). Peroxisomes in N. labradorica occurred mostly as pairs (Fig. 3c) or small
clusters of 3-4 spherical organelles (Fig. S3a). Sometimes, but not always, peroxisomes were
associated with endoplasmic reticulum (Fig. S3b) but could also occur alone. Golgi apparatus (Fig
3d) had intact membranes, often occurring near mitochondria.

11
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Figure 3 Transmission electron micrographs showing cellular ultrastructure of N. labradorica. (a) Cytoplasm showing parts
of two chambers, with nucleus with nucleoli, vacuoles and several kleptoplasts, (b) nuclear envelope, nucleoli, and
kleptoplasts, (c) peroxisomes and electron opaque bodies, (d) Golgi, (e-f) mitochondria. V=vacuole, c=kleptoplast,
nu=nucleoli, n=nucleus p=peroxisome, eo=electron opaque body, m=mitochondrion, fv=fibrillar vesicle, li=lipid droplet.

Scales: (a) 2 um, (b) 1 um, (c-f) 200 nm

12
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3.3.2 Ultrastructure of aperture-associated bacteria

In total, three putative methanotrophs were identified in the vicinity of two specimens (sample
E39, Fig. 4; E37, Fig. 5). These microbes were identified adjacent to reticulopodial remains (Fig.
4b). As an aid for identification of M. sedimenti we used the characteristics shown in the literature
(Tavormina et al., 2015) and our own TEM observation obtained from M. sedimenti culture (Fig.
2¢). As noted, Methyloprofundus sedimenti is characterized by a typical type | intracytoplasmic
stacked membrane (ISM). Other characteristics, which are not specific for methanotrophs included
storage granules (SG) and a typical gram-negative cell wall (GNCW) (Fig. 2c). On specimen E39
from the 20 h treatment, we found the methanotroph exhibiting the clearest internal structure,

having both typical type I intracytoplasmic stacked membranes (ISM) and SG (Fig. 4c).

Figure 4 Transmission electron micrographs of N. labradorica from 20 h treatment (sample E39) (a) Stitched cross section
of TEM images showing location of methanotroph at the aperture region (black rectangle is the location of image shown in
panel b) (b) Location of two putative methanotrophs next to sediment particles and putative reticulopodial remains (black
rectangle is location of image shown in panel c) (c) Close up of two putative methanotrophs revealing detailed feature for
identification, such as typical type | stacked intracytoplasmic membranes (ICM), and other characteristics, such as storage
granules (SG), and gram-negative cell wall (GNCW), scale bars: a: 100 um, b: 1 pum, c¢: 200 nm.

13
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Figure 5 Transmission electron micrographs of N. labradorica from 20 h treatment (sample E37) (a) Stitched cross section
of TEM images showing location of putative methanotroph (black rectangle) at the aperture region. (b) Location of the
putative methanotroph next to sediment particles and sections of the putative reticulopodial remains (c) Close up of
putative methanotroph showing several SG throughout its cell, scale bars: a: 100 um, b: 0.5 pm, c: 200 nm.

3.3.3 Contents of degradation vacuoles

Digestive vacuoles and food vacuoles are often summarized as degradation vacuoles in the
literature (Lekieffre et al., 2018) and this makes sense for our study as well. A degradation vacuole
is a vacuole where enzymatic activities degrade contents, often making them unidentifiable (Bé et
al., 1982; Hemleben et al., 2012). Sediment particles were present in many degradation vacuoles.
The sediment grains were easy to recognize in the TEM image as angular grains inside the
vacuoles, next to organic debris, which can have many different shapes. Each specimen had at
least one degradation vacuole and mostly several, which were filled with sediment particles (Table
1). If a sediment particle was visible, the vacuole was defined as a degradation vacuole (dv), and
if it was not and empty then it was defined as a standard vacuole (v) (Fig. 6). The observed
entrained sediment particles were platelets, likely clay from the seafloor, and hence show that the

vacuole must contain foreign objects, around which degradation processes have started. Four of

14
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17 specimens examined (23%) had one or more bacteria of various sizes inside their degradation

290 vacuoles next to sediment particles (Fig 6 c, f).
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Figure 6 TEM micrographs of N. labradorica showing degradation vacuoles containing miscellaneous items, including
bacteria (b), inorganics (clay platelets) and unidentifiable remains after 4h incubation, which are shown enlarged in the left
side of the image in a zoom window (a,b; specimens E27, E28, respectively); after 8h incubation (c,d; specimen E14), after
20h incubation (e,f; specimens E36, E37, respectively). v=vacuole, dv=degradation vacuole, c=kleptoplast, p=peroxisome,
m=mitochondrion, li=lipid, g= Golgi. Scales: (a, c-f) 1 um, (b) 2 um.

3.4. Foraminiferal genetics

Six of 13 specimens analyzed for genetics were positively amplified and sequenced (Fig. S4). The
sequences are deposited in GenBank under the accession numbers MN514777 to MN514782.
When comparing them via BLAST, they were between 98.6% and 99.6% identical to published
sequences belonging to foraminifera identified as the morphospecies N. labradorica, from the
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Skagerrak, Svalbard and the White Sea (Holzmann and Pawlowski, 2017; Jauffrais et al., 2019b).
Sequences were also included in an alignment comprising other nonionids implemented in
Seaview (not shown) and corrected manually to check the BLAST search. This step confirmed the
BLAST identification.

4. Discussion
4.1. Sampling site and geochemistry

The sampling site of blade corer BLC18 was in close proximity (~50 m) to an active methane-vent
releasing methane bubbles at the gas hydrate pingo (GHP3) (Serov et al., 2017). At such sites with
high methane fluxes, the SMTZ (sulfate methane transition zone) is shallow, as sulfate in the
sediment is readily consumed in the first tens of centimeters (Barnes and Goldberg, 1976; Iversen
and Jagrgensen, 1993) by sulfate-reducing bacteria (SRB) (reviewed in Carrier et al., 2020).
Geochemical analysis of PUC2 revealed an SMTZ at app. 13 cm, which is rather shallow (Egger
et al., 2018), as it can also be several meters deep in other sites (reviewed in Panieri et al., 2017).
Similar geochemical characteristics can be considered at the sampling location of living specimens
(BLC18) given the close proximity of the two locations. The geochemical data at PUC2 allows
us conclude that the site, where living foraminifera were collected, can be classified as an active

methane emission site.
4.2. Possible association with putative methanotrophs

The possible association of N. labradorica with methanotrophs was documented via presence of
two putative methanothrophs, based on microbial ultrastructure (Tavormina et al., 2015). The
documentation of this possible association with putative methanotrophs likely is due to the feeding
experiment. However, there is a small possibility that the associated methanotrophs were field-
remains. Another benthic foraminifer, Melonis barleeanus, has been noted to have clumps of
putative methanotrophs at the apertural opening of field-collected specimens (Bernhard and
Panieri, 2018). However, the non-selective deposit-feeding behavior of N. labradorica, which we
describe for this species for the first time, shows that methanotrophs may be ingested via

untargeted grazing.

4.3. Degradation vacuoles show large number of sediment particles and few bacteria
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Our results of the feeding experiment show that 23% of the examined N. labradorica specimens
contained bacteria inside their degradation vacuoles. That is not a large proportion compared to
presence of sediment particles, which occurred in 100% of the examined foraminifers. From this
result, however, we infer that N. labradorica at this site is a deposit feeder, feeding on organic
detritus and associated bacteria. The bacteria observed in the degradation vacuoles resembled those
from other deep-sea foraminifera (Globobulimina pacifica and Uvigerina peregrina) and the
shallow-dwelling genus Ammonia (Goldstein and Corliss, 1994). Salt-marsh foraminifera also
feed on bacteria and detritus, as observed in TEM studies (Frail-Gauthier et al., 2019). Scavenging
on bacteria has also been observed by other foraminifera from intertidal environments such as
Ammonia tepida or Haynesina germanica (Pascal et al., 2008) and is a logical consequence from
detritus feeding. Certain foraminifera have been shown to selectively ingest algae/bacteria
according to strain (Lee et al., 1966; Lee and Muller, 1973). From laboratory cultures we know
that several foraminifera cultures require bacteria to reproduce, as antibiotics inhibited
reproduction (Muller and Lee, 1969). Future studies will need to employ additional molecular tools
to determine the food contents inside the cytoplasm (e.g. Salonen et al., 2019). For example, a
recent study used metabarcoding to assess the contribution of eukaryotic OTUs associated with
intertidal foraminifera, revealing that Ammonia sp. T6 preys on metazoans, whereas Elphidium sp.

S5 and Haynesina sp. S16 were more likely to ingest diatoms (Chronopoulou et al., 2019).
4.4. General ultrastructure of N. labradorica collected in a seep environment

Our observations also included the intact nature of all major organelle types of this species, as this
was essential to conclude vitality after the experiment (Nomaki et al., 2016). Mitochondria and
kleptoplasts were generally homogeneously distributed throughout the cytoplasm confirming
previous observations of six N. labradorica from the Gullmar Fjord (Lekieffre et al., 2018;
Jauffrais et al., 2019b). If mitochondria are concentrated predominately under pore plugs, it can
be an indicator that the electron acceptor oxygen is scarce in their environment, as the pores are
the direct connection from the cell to the environment. This has been observed in several other
studies where mitochondria were accumulated under pores in N. stella (Leutenegger and Hansen,
1979) and Bolivina pacifica (Bernhard et al., 2010).

Even though our study did not focus on kleptoplasts, we could observe that kleptoplasts were
occasionally degraded, which could have happened; a) during sampling, b) due to exposure to

microscope lights or c) due to the age and condition of kleptoplasts inside the host. Kleptoplasts
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in N. labradorica have been studied in detail describing their diatom origin (Cedhagen, 1991),

sensitivity to light and missing photosynthetic functionality (Jauffrais et al., 2019b).
5. Conclusions

Based on the content of degradation vacuoles, we conclude that N. labradorica from our study
site, an active methane emmitting site in the Barents Sea, is a deposit-feeder. It ingests large
amounts of sediment particles together with bacteria. On two specimens of the feeding experiment,
putative methanotrophs were observed near the N. labradorica aperture, suggesting ingestion of
M. sedimenti via “untargeted grazing”. Further studies are needed on feeding strategies of other
paleo-oceanographically relevant foraminifera to detangle the relationship between §°C of

foraminiferal calcite, their cytoplasm and dietary composition.
6. Data availability

Datasets containg TEM images are downloadable at Zenodo (doi: 10.5281/zenodo.6941739).
Molecular sequence data is deposited at Genbank under the accession numbers MN514777 to
MN514782.
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394 Table I. Summary of TEM observations of Nonionellina labradorica comparing field specimens
395 and experimental specimens. Field specimens (initials) were not fed, nor was a non-fed control
396 preserved after a 20 h incubation. The only putative methanotrophs were observed and imaged in
397 specimens from the 20 h incubation. Bacteria of unknown origin were described as rod shaped

398 cells in the degradation vacuoles.

399
Duration of  Food Sample Cytoplasm: Aperture region:
experiment provided ID Degradation vacuole (putative)
(h)/field (yes Contents Methanotrophs
samples (x)/no)
bacteria  Clay/in-
organics
Field No El no X no
samples No E3 no X no
(Initials) No E5 no X no
No E6 no X no
4 X E25 no X no
X E27 X X no
X E28 no X no
X E29 no X no
8 X El4 X X no
X E15 no X no
X El6 no X no
X E17 no X no
20 X E36 X X 1x
X E37 X X no
X E38 no X no
X E39 no X 2 X
Control no E44 no X no
(20)
400
401
402
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