
Dear Dr Chaparro,
We want to thank you for your thorough proofreading and your relevant comments.  We took them into
account and believe the manuscript has been substantially improved thanks to your suggestions.
The  major  modification  was  the  addition  of  the  land  covers  “shrublands”,  “croplands”,  and  “natural
vegetation mosaic” to  our  study.  The maximum threshold on the seasonal  water  fraction has  also been
increased from 10% to 20%. The exclusion of regions subject to seasonal fires and of Australia was better
justified. The suggested references have been included. Other minor changes were made according to your
suggestions, in order to improve the clarity of the text.
Please find below in blue font a detailed description of how we addressed your comments.
Sincerely,
Emma Bousquet et al.

Review of the manuscript “SMOS L-VOD shows that post-fire recovery of dense vegetation is slower
than what is depicted with X- and C-VOD and optical indices”

This paper studies the time evolution of several climate and vegetation variables before (triggering factors)
and after (recovery of vegetation) fire occurrences worldwide. The study is divided in two parts. The first
part details fire episodes in the Amazon, California and Australia. The second part extends the research to a
global  scale. The authors confirm the capacity of different  Earth observation sensors to capture drought
situations  leading  to  fire  ignitions,  and  nicely  show  how  vegetation  recovery  can  be  monitored  with
microwave and optical-infrared data. Importantly, they demonstrate which VOD frequencies are appropriate
for monitoring vegetation recovery after fires in different land cover types. The main finding is that L-VOD,
which is more related to tropical biomass, shows delayed recovery if compared to higher VOD frequencies
and optical-infrared indices in this forest type.

The paper is well written and, as explained above, the findings are sounding. However, I have some major
concerns that must be addressed before being accepted for publication. The most important one refers to the
completeness of the fires database. Both major and minor comments are detailed hereafter.

Major comments

1. Figure 4 shows the fires studied in this work during a nine-years study period (July 2012– December
2020). The authors explain that “the considered fires are well spread spatially […].” However, the map of
fires is certainly omitting a large amount of wildfire episodes worldwide and, most importantly, it scarcely
includes fire episodes for all relevant fire-prone regions. Probably the most relevant cases in that sense are
the Sahel and the Mediterranean, where a large number of wildfires occur within the land cover types under
study (grasslands, savannahs…), according to the monthly maps of the product applied. It is likely that, in
part, these regions are not well represented in the study because it does not include shrubland covers. This
land cover type should be included as well in this research. Hence, please ensure completeness for all fire-
prone regions, especially the Mediterranean and the Sahel, and all land cover types (shrublands are lacking).
With this, large and continuous fire occurrence patches (similar to those in the Russian and North American
grasslands and forests)  should be observed in the northern Mediterranean (especially southern Italy,  the
Iberian Peninsula and Greece), and in the Sahel.

The reviewer is right, we omitted the land cover class “shrublands” to focus only on five biomes to lighten
the observations and not to disperse our efforts. Nevertheless, taking into account the referee’s comments, we
decided to add this land cover (IGBP labels 6 and 7) to the biome “tropical and subtropical savannas” (IGBP
labels 8 and 9). We also added the land covers “croplands” (IGBP label 12) and “natural vegetation mosaic”
(IGBP label 14) to the biome “grasslands” (IGBP label 10). Figure 4 of the manuscript was replaced by the
resulting Fig. R1 below.
Despite this modification, the number of points is still low in the Sahel, because of the selection method
described at lines 280-282 : “Fires with a number larger than 5 in the MODIS dataset were considered, and
only if no other fire occurred on the same area (number lower than 2 apart from the main fire event). This
was done to observe only the impact of the major fires, without any other disturbance.” In the Sahel, these



conditions are not fulfilled because many fires occur each year, and the second threshold is exceeded. An
example is shown in Fig. R2.
The above paragraph was replaced by : “To properly observe the factors and impacts of a fire event without
any other disturbance,  only 25 km regions showing a unique and heavy fire over the time period were
considered. This excluded areas with regular seasonal fires, such as the Sahel region. For that, a minimum
threshold of 5 was applied on the maximum number of fires ; and a maximum threshold of 2 was applied
outside the main fire event period (i.e. outside the period -6/+6 months around the fire event).”

Figure R1 - Location of the selected fires and histograms of the fire dates, for grasslands and croplands
(IGBP label 10, 12 and 14), savannas and shrublands (IGBP labels 6, 7, 8 and 9), needleleaf forests (IGBP
labels 1 and 3), sparse broadleaf forests (IGBP labels 2 and 4, AGB ≤ 150 Mg ha-1), and dense broadleaf
forests (IGBP labels 2 and 4, AGB > 150 Mg ha-1). Australia was excluded as well as areas affected by
water, snow, or strong topography.

Figure R2 - Time series of the number of fires (MODIS active fire product) over a 25 km pixel in the Sahel
(red). The blue line represents the minimum threshold s1 = 5 for the strongest fire event detection; and the
green line represents the maximum threshold s2 = 2 for the rest of the period (which is exceeded).



In  the  case  of  Australia,  the  authors  appropriately  excluded  this  continent  as  explained  in  section  3.2.
However,  justification  for  this  exclusion  is  provided  for  vegetation  variables  and  vegetation  recovery.
However, the authors should include the region at least for CVs explaining wildfires ignition in the region
(i.e., SM, TWS and P).

First, we wanted to be consistent between CVs and VVs analysis, so the same regions were kept for all
variables. Second, we fully agree with the reviewer that Australia is a very interesting case, this is also the
reason why we included a detailed case study in South-East Australia in the first part (Fig. 3a). However,
unfortunately, using the methodology described in Sect. 3.2, the majority of fires in Australia occured in
2012  in  the  Outback  (shrublands)  and  in  2019/2020  in  the  South-East  (broadleaf  forests),  at  the  very
beginning (resp. end) of the study period. This prevents a robust pre- and post-fire study, especially since
these fires become predominant in the global dataset (Fig. R3): Australia represents respectively 57% and
54% of the total fires for the savannas and shrublands biome and for the dense broadleaf forests biome. This
continent is strongly over-represented in the MODIS active fire product due to the large size of the fire
events over this continent (Giglio et al., 2016). With Australia, time series are indeed very different from the
previous ones (Fig. R4 and R5). In shrublands and savannas (Fig. R4b), C- and X-VOD pre-fire values are
higher and L-VOD and EVI anomalies are lower than without Australia (Fig. R4a). VVs, C- and X-VOD in
particular, recover slower. Temperature remains high two years after fire. In dense broadleaf forests (Fig.
R5b), VVs and CVs started to decrease ~2 years before the fire event, and this phenomenon is specific to
Australia's long drought. VVs, VODs in particular, also recover faster than elsewhere.
Thus, we reckon that it is more consistent not to analyse those events in the current study. We will certainly
revisit the study in Australia with more hindsight in the future, once the time series after the fire will be long
enough to properly analyse the vegetation recovery.
We agree that  the  exclusion of  this  continent  was  not  justified enough in the  text.  This  paragraph was
modified as follows (changes appear in red): “Australia was excluded because numerous fires were detected
in 2012 in the Outback (shrublands) and in 2019/2020 in the South-East (broadleaf forests), which prevailed
over the global dataset (~55% of the points) and prevented to perform a robust pre- and post-fire study.”



Figure R3 - Same as Fig. R1, without the exclusion of Australia.

a 

b  

Figure R4 - Time series of all VVs and CVs for the savannas and shrublands biome, a) without and b) with
Australia.

a 



b 

Figure R5 - Time series of all VVs and CVs for the dense broadleaf forests biome, a) without and b) with
Australia.

Also, it is quite surprising to me that the number of fires in tropical forests is very low. This is worrying as it
can affect the representativeness of the results in tropical forest fires, and consequently the main conclusion
of the paper (that L-VOD is the most appropriate for studying fire recovery in the tropics). Can the authors
double-check that all fire occurrences in this region have been included?

The number of fires in tropical forests is indeed very low. This is explained in the discussion (line 403): “We
can notice few fires in the densest rainforests (Congo basin, central Amazon) as they are usually too humid
to burn (Cochrane, 2003); and because seasonally flooded areas were excluded.” Seasonally flooded areas
were excluded since they were proven to decrease artificially VOD at L-band (Bousquet et al., 2021) and at
other  microwave  frequencies  (Jones  et  al.,  2011).  They were  detected  and filtered  out  using  GIEMS-2
database, which shows high values in tropical forests (Fig. R6). In order to keep more points in tropical
forests according to your comment, we decided to increase the threshold on the maximum seasonal water
fraction from 10% to 20%. The resulting number of points in tropical forests is thus increased from 48 to 59.
Their location and date is shown in Fig. R1.
The low number of fires in tropical forests is also due to the significant cloud coverage and the existence of
understory fires in this ecosystem, which prevent MODIS active fire detections (Giglio et al., 2020). This
additional  explanation was added in the  discussion:  “We can notice  few fires  in  the  densest  rainforests
(Congo basin, central Amazon) because i) they are usually too humid to burn (Cochrane, 2003); ii) MODIS
active fire detections are underestimated under thick cloud coverage or for understory fires (Giglio et al.,
2020);  and  iii)  seasonally  flooded  areas  were  excluded in  order  to  use  only  robust  VOD  estimations
(Bousquet et al., 2021).”



Figure R6 - Maximum water fraction of GIEMS-2 climatology, 2010-2015.

2. Although the main focus of the paper is on vegetation recovery, the work also details which main climate
and vegetation variables act as triggers of fire ignition (mainly precipitation, soil moisture, ground water
storage, and fuel availability). In that sense, the introduction should be extended to provide further state of
the art.  On the one hand,  GRACE data (groundwater storage) has been previously applied for  fire risk
assessment in the United States (e.g., Jensen et al., 2018; Farahmand et al., 2020). On the other hand, SMOS
soil moisture data has been applied as an alternative source of moisture information in the McArthur Forest
Fire Danger Index (FFDI; Holgate et al., 2017). Also, SMOS SM anomalies have been found to explain
anomalous  fire  episodes  in  the  northwestern  Iberian  Peninsula  (Chaparro  et  al.,  2016)  and  in  Canada
(Ambadan et al., 2020). Apart from L-band, a nice study of how satellite soil moisture anomalies can be used
for fire risk assessment is shown by Forkel et al. (2012; see also my minor comment below).

We agree with the reviewer’s comment. We reworked the introductory paragraph regarding the CVs impacts
on fire ignition (line 67) in that sense:
“Naturally,  understanding  the  potential  factors  triggering  large  uncontrollable  fires  is  important  to
anticipate them and thus to reduce their impacts. Mhawej et al. (2015) presented and categorized 28 wildfire
likelihood factors into climatic (e.g. precipitation, temperature, air humidity, wind speed), topographic (e.g.
slope, altitude), in situ (e.g. fuel type, soil  texture, tree diameter),  historical,  and anthropogenic factors.
Drought, i.e. the concomitant increase of air dryness and decrease of fuel moisture, was identified as the
most significant fire likelihood factor (Ray et al., 2005). Indirectly, drought also causes leaf shedding and
branch losses (Pausas and Bradstock, 2007), which leads to fuel accumulation and direct sunlight reaching
the forest floor, and increases forest flammability (Nepstad et al., 2001). Surveying the soil moisture  (SM)
and the biomass status could then be a good indicator for fire risk detection. The SM deficit monitored with
AMSR-E was previously proven to be a major driving factor for the evolution of  extreme fire events in
Siberia (Forkel  et al.,  2012).  GRACE-assimilated SM was also exploited for fire risk assessment in the
United States  (Jensen et  al.,  2018; Farahmand et  al.,  2020).  SMOS SM anomalies have been found to
explain singular fire episodes in the northwestern Iberian Peninsula (Chaparro et al., 2016) and in Canada
(Ambadan et al., 2020). Finally, SMOS SM has been used as an alternative source of moisture information in
the  McArthur  Forest  Fire  Danger  Index  (FFDI;  Holgate  et  al.,  2017).  Currently,  drought  is  mainly
monitored  with  temperature  and  precipitation  observations.  Fuel  availability  is  monitored  with  optical
sensors, but with fast saturation over dense vegetation, and lack of sensitivity for dry biomass (not green),
which is the main fuel.”

Minor comments

Line 15 (and through the entire paper): optical vegetation indices → optical-infrared vegetation indices. Or
VIS/IR vegetation indices, if you prefer. The point is that EVI includes both visible and infrared bands.
Agreed and done.

L. 30: Amazônia legal → Amazônia Legal
Done.

L. 50: a sentence should be included about the fact that most wildfires are ignited due to human activities. In
the Mediterranean regions 95% of fires are due to these causes, and similar percentages are found in other
areas (e.g., 90% in South Asia, 85% in South America, 80% in Northern Asia; FAO, 2006).
Agreed  and  added:  “Nevertheless,  most  wildfires  now  are  ignited  by  human  activities  (95%  in  the
Mediterranean basin, 90% in South Asia, 85% in South America, and 80% in Northern Asia; FAO, 2006).”

L. 90-91: according to these lines, it seems that soil moisture could be retrieved only from L-band sensors,
while this is not true. I suggest explaining the advantage of L-band (more penetration capacity through soils
and vegetation) to provide better motivation on the advantage of using L-band for soil moisture retrievals,



and to explain why L-band is more linked to dense biomass (this point is important for the interpretation of
results in this paper).
These lines were changed as follows:
“With the arrival of L-band radiometers such as the Soil Moisture and Ocean Salinity (SMOS) satellite, it is
possible to infer surface soil moisture, biomass (i.e. fuel) and its water content at deeper sensing depth.”
The link between L-VOD and AGB is explained at line 98. We added a sentence to provide more information
about this point: “L-VOD is then more sensitive to high AGB values than C- and X-VOD, and is a good proxy
for dense vegetation (Rodriguez-Fernandez et al., 2018).”

L. 94-95: “This study also presents for the first time L-band used in conjunction with other
sensors, from optical (EVI) to X- and C-band…”: add (specify): “in the study of vegetation
recovery after fires.”
Agreed and added.

L. 120: from SMOS satellite → from the SMOS satellite.
Done.

L. 136: please specify which months are not included, and how much months does it add up
within the entire study period.
This information was added in the text:
“Data were lacking for 35 dates of the ten-year dataset. One-time gaps were filled by linear interpolation;
consecutive missing months were not considered  (Sep.−Nov. 2016, Jul.  2017−May 2018, and Aug.−Oct.
2018, 17 months in total).”

L. 197: watern → water
Done.

L. 216: why are VOD data resampled to 1 km resolution and later averaged to the SMOS grid? This does not
make sense because VOD at C- and X-bands have much coarser resolutions than 1 km (as in SMOS). Please,
be sure  to  interpolate  directly  C-  and X-VOD data  from their  native resolution to  the  SMOS grid.  An
intermediate step through 1 km may introduce errors.
SMOS and AMSR-2 are distributed into ~ 25 km grids, but SMOS grid is EASE Grid v2 (irregular grid)
while AMSR-2 grid is a regular one (EPSG 4326). Hence, a reprojection is needed and a nearest neighbour
interpolation would  introduce  spatial  errors.  By adding  an intermediate  step of  oversampling  at  a  finer
resolution (1 km here, i.e. 25 times finer), the contributions of each part of the pixel are taken into account
and weighted.
However,  considering  your  comment,  we  conducted  a  test  to  compare  the  approach  we  used  (1  km
oversampling) with a direct bilinear interpolation from the native resolution of AMSR-2. We found that the
results are very similar, because this method is also based on a weighted average of contributing pixels.
Moreover, the bilinear interpolation is more accurate than a nearest neighbour interpolation (Fahmy et al.,
2008).
We agree that  the proposed method is  then not  necessary and hence decided to  modify the resampling
method with a more common bilinear interpolation for the low resolution datasets. For the high resolution
datasets, we kept the average method, in order to take into account all contributing pixels in the 25 km grid.
The figures will be updated in the revised version of the manuscript, but they are very close to the previous
ones, and the conclusions do not change. The text was modified accordingly :  “Monthly averages of all
datasets  were  computed  and resampled  to  SMOS EASE-Grid  2.0  (~  25  km resolution)  with  a  bilinear
interpolation for the low resolution datasets (X-VOD, C-VOD, precipitation, TWS, fires, and fw); and with an
average interpolation for the high resolution datasets (EVI, temperature, snow, land cover, and AGB), using
GDAL (GDAL/OGR contributors, 2020)”.

L. 239: you use “ha” as burned area unit here, but “km 2 ” throughout the manuscript. Please be consistent,
use only one or the other.
Done.



L. 241: how was burn severity defined and classified in “moderate”, “high”, etc… in this case?
The watershed modeling report of the Mendocino Complex Fire (BLM, 2018) indicated 3% of high severity,
62% of moderate severity, 21% of low severity and 14% of unburned soil.
The corresponding sentence was modified as follows:  “This wildfire  caused a 34% vegetation loss in this
region (26% in 2018 and 8% in 2019, Fig. 2),  and caused a burn severity ranging from moderate to high.
and was predominantly classified as moderate severity (62%; BLM, 2018).”

L. 303-304: “a strong decrease during the fire event” → Also before it.
Agreed and done.

L. 311-312: it should be noted that the positive T anomalies and the negative TWS and P anomalies reach
their  maximum and minimum (respectively)  at  the  end of  the  fire  period.  Can you provide  a  possible
interpretation for this?
Over Santarem area (Fig. 3c), the MODIS number of fires is 4.4 in Dec. 2015 and 1.9 in Jan. 2016, while the
temperature anomaly is 2.5°C in Dec. 2015 and 3.5°C in Jan. 2016.
First, MODIS may not detect all fires in Jan. 2016 in this area, because i) the vegetation cover is dense and
Santarem fires mainly affected the understory (Withey et al., 2018); ii) the cloud cover is generally strong in
the Amazon in January, and the MODIS active fire product only detects fires unobscured by optically thick
clouds (Roy et al., 2008). This explanation would be in line with Hansen et al. tree cover loss product, which
detects the forest loss in 2016 (Fig. 2).
Secondly, even if drought predominantly ends at fire extinguishment (rainfall associated with temperature
cooling  often  extinguishes  fires,  e.g.  in  South-East  Australia), drought  conditions  may sometimes  keep
increasing after fire events. This is also visible in the savanna biome (Fig. 5b). Indeed, by removing the
vegetation cover and deteriorating the soil, fires maintain a hot and dry climate. Veraverbeke et al. (2010)
previously observed the increase of day Land Surface Temperature (LSTd) immediately after the fire event,
in the Peloponnese (Greece). Auld and Bradstock (1996) also observed an increase in temperature after fires
in Australia, because the removal of the vegetation cover by the fire led to increased levels of solar radiation
on the soil surface.

L. 348: please mention that savannahs and grasslands show positive VV anomalies one year before (as you
will discuss it later in the discussion).
This was mentioned at line 321. The section of line 348 refers to Fig. 6, which only concerns CVs. This is
why we didn’t mention VV anomalies there.

Figure 5: there is an interesting result in Fig. 5 which could be highlighted. Note that, in boreal forests, SM
and TWS anomalies are negative also one year before fires. This is interesting as it could be in line with
results shown in Forkel et al. (2012). In that case, the authors found that negative SM anomalies in Siberia
during summer 2002 led to low amount of water being frozen within permafrost soils during winter 2002-
2003. Therefore, a low amount of water was stored (frozen) and then released to the soils during permafrost
melting in spring-summer 2003. This led to drier than usual soils in summer 2003, which eased the outbreak
of large wildfires. In particular, the Forkel et al. stress in the abstract that “analyses of satellite data for 2002–
2009 indicate that previous-summer surface moisture is a better predictor for burned area than precipitation
anomalies or fire weather indices for larch forests with continuous permafrost.” Your results are in line with
this finding and this could be briefly included in the manuscript.
Thank you for this reference and this relevant advice. We included these observations and explanations in the
discussion:
“We found a strong pre-fire drought in this ecosystem (low SM and high temperature one year pre-fire, Fig.
6), which is well documented  for previous fire episodes (Weber and Stocks, 1998). Our results are in line
with those of Forkel et al. (2012), who found that previous-summer SM was a good predictor for burned
area in Siberian larch forests. Indeed, negative summer anomalies led to low frozen water the following
winter, and to less water released during the next spring-summer, which in turn eased the outbreak of large
wildfires.”



L. 340-345: when you comment on TWS and T anomalies, please refer to Figs. 6c and 6d,
Respectively.
Agreed and done.

L. 391: the reference to the Australian Bureau of Meteorology should be accompanied by a year and an
appropriate reference within the reference list.
We changed that reference by BoM, 2021:
“BoM: Annual climate statement 2020, available at:
http://www.bom.gov.au/climate/current/annual/aus/2020/, accessed 14 December 2021, 2021.”

L. 401: can you quantify the severity of the fire? Actually, it would be interesting to mention
severity indices when discussing the three study cases, if possible.
As previously answered for your comment regarding line 241, the Mendocino complex was classified as
moderate severity (BLM, 2018).
Concerning South-East Australia, Ehsani et al. (2020) showed that the severity of the 2019–2020 wildfires
was higher than any other event in the past twenty years.
As regards Satarem fire, Berenguer et al. (2018) stated that the region was severely affected by the El Niño
drought and by the related extensive wildfires.
Nevertheless, severity indices are difficult to obtain for these areas. We can only quantify this “severity” with
the percentage of  tree  cover  loss  (Hansen et  al.,  2013)  by  SMOS pixel.  The sentence  at  line  401 was
modified: “Even if this type of vegetation is fire-adapted, the strength of the fire seemed to have destroyed
most of it (34% vegetation loss, Hansen et al., 2013).”

L. 428: “which is well documented” → “which is well documented in previous fire episodes in this region.”
Agreed and done (see previous comment on Fig. 5).

L. 444 and 449: Argentine → Argentina
Since we refer to the adjective and not the noun of the country, we believe the term “Argentine” is correct
(see de Marzo et al., 2021 : “Characterizing forest disturbances across the Argentine Dry Chaco based on
Landsat time series”).
NB : we have now added this omitted reference to the manuscript.
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