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Abstract. Anthropogenic  climate change is  now considered to be one of  the main factors  causing an increase  in  both

frequency and severity of wildfires. These fires are prone to release substantial quantities of CO2 in the atmosphere and to

endanger natural ecosystems and biodiversity. Depending on the ecosystem and climate regime, fires have distinct triggering

factors  and impacts.  To better  analyse and describe  fire  impact  on different  biomes,  we investigated pre and post  fire

vegetation  anomalies  at  global  scale.  The study was  performed  using several  remotely  sensed  quantities  ranging  from

visible-infrared vegetation indices (the enhanced vegetation index (EVI)) to vegetation opacities obtained at several passive

microwave wavelengths (X-band, C-band, and L-band vegetation optical depth (X-VOD, C-VOD, and L-VOD)), ranging

from 2 to 20 cm. It was found that C- and X-VOD are mostly sensitive to fire impact on low vegetation areas (grass and

small bushes) or on tree leaves; while L-VOD depicts better the fire impact on tree trunks and branches. As a consequence,

L-VOD is probably a better way of assessing fire impact on biomass. The study shows that L-VOD can be used to monitor

fire affected areas as well as post-fire recovery, especially over densely vegetated areas.

1 Introduction

Fires  are  a  natural  part  of  many ecosystems,  being  historically  triggered  by  lightning  strikes  (de  Groot  et  al.,  2013).

Nevertheless, most wildfires are now ignited by human activities (95% in the Mediterranean basin, 85% in Asia and South

America; FAO, 2006). In recent years, and in spite of various efforts, wildfires were proven to increase both in frequency

and in severity worldwide, largely due to anthropogenic climate change and human pressure (Weber and Stocks, 1998; Jin et

al., 2012). The 2020 fire season became historically significant in southern Australia and in western US, linked with extreme

vegetation  dryness  (Higuera  and  Abatzoglou,  2020).  Summer  2021 saw an  unprecedented  number  of  fires  around  the

Mediterranean  Sea,  in  Siberia  and  in  North America  (CAMS,  2021).  In  tropical  rainforests,  the  Amazon in particular,

wildfires have become increasingly prevalent over the past decades due to more frequent droughts and periodic El Niño

events (Aragão et al., 2018; Chen et al., 2013; Cochrane, 2003), but also to selective logging and deforestation, that lead to

forest desiccation and reduce rainfall (Asner et al., 2010).
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   Wildfire  likelihood factors were categorized into climatic (e.g.  precipitation, temperature,  air humidity,  wind speed),

topographic, in situ, historical, and anthropogenic factors (Mhawej et al., 2015). Drought, i.e. the concomitant increase of air

dryness  and  decrease  of  soil  moisture,  was  identified  as  the  most  significant  fire  likelihood factor  (Ray et  al.,  2005).

Indirectly,  drought also causes vegetation drying, leaf  shedding, and branch losses,  which increases forest  flammability

(Nepstad et al., 2001; Chuvieco et al., 2012). Surveying the soil moisture (SM) and the vegetation water content (VWC)

could then be a good indicator for fire risk detection, and passive microwave remote sensing is a useful tool for that. Indeed,

the SM deficit monitored with AMSR-E was previously proven to be a major driving factor for the evolution of extreme fire

events in Siberia (Forkel et al., 2012). GRACE-assimilated SM was also exploited for fire risk assessment in the United

States (Jensen et al., 2018; Farahmand et al., 2020). SMOS SM anomalies have been found to explain singular fire episodes

in the northwestern Iberian Peninsula (Chaparro et al., 2016) and in Canada (Ambadan et al., 2020). SMOS SM has been

used as an alternative source of moisture information in the McArthur Forest Fire Danger Index (FFDI; Holgate et al., 2017).

Finally, AMSR-E vegetation optical depth (VOD) was successfully used in data-driven fire models (Forkel et al.,  2017;

Kuhn-Régnier et al., 2021).

   In addition to endangering populations, wildlife, ecosystems, and to releasing overwhelming quantities of CO2 in the

atmosphere  (CAMS,  2021),  wildfires  have  several  negative  effects  on  soil  and  vegetation  properties.  They  cause

deterioration of soil structure and porosity, ash entrapment, removal of organic matter and nutrients, decreasing of microbial

and invertebrate communities,  etc.  (Certini, 2005).  Plant cover removal also increases soil water repellency and runoff,

which can lead to floods and erosion (Shakesby and Doerr, 2005). Post-fire vegetation regeneration highly depends on the

ecosystem and on the fire severity (Chu and Guo, 2013). In humid tropical forests, the Amazon in particular, wildfires can

significantly reduce above-ground biomass (AGB) for decades by amplifying tree mortality (Barlow et al., 2003; Silva et al.,

2018; de Faria et al., 2021). Conversely, some ecosystems can recover much faster. For instance, some coniferous trees (e.g.

jack pine, black spruce) evolved to become fire resistant and to use the flames as a means for spreading their seeds, as the

heat causes the opening of cones (Weber and Stocks, 1998). Some eucalyptus communities of South-East Australia are also

able to survive fire by activating dormant vegetative buds to produce regrowth (Heath et al., 2016). In savannas, recurrent

seasonal fires help maintaining the structure, species composition, and biological diversity (Menaut et al., 1990). In forests,

prescribed burning enables to reduce hazardous accumulations of fuel, and thus to mitigate the severity of wildfires (Sackett,

1975). Fires can even be necessary for canopy regeneration: a decline of sequoias population was observed when fires were

suppressed in California (Parsons and DeBenedetti, 1979). Vegetation can thus recover from fire and if plants succeed in

promptly recolonising the burnt area, the pre-fire level of most properties can be recovered and even enhanced (Certini,

2005).

   Post-fire vegetation conditions are then essential to monitor, and satellite remote sensing proved its abilities for that in

addition to field campaigns (Chu and Guo, 2013). Indicators and metrics based on multispectral satellite imagery (visible and

infrared) are the most frequently used, such as the normalized difference vegetation index (NDVI), the enhanced vegetation

index (EVI), and the normalized burned ratio (NBR) (Pérez-Cabello et al., 2021). Despite their fast saturation over dense
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forests,  they still  provide a good proxy for green vegetation regrowth. Microwave data also shown a good potential to

monitor post-fire recovery. L-band SAR was used to assess forest regrowth in South-East Asia (Mermoz and Le Toan, 2016);

and to estimate the tree survival in eucalyptus forests of Western Australia (Fernandez-Carrillo et al., 2019). C-band VOD

was used to analyse the Amazon canopy dynamics during the 2019 fire season (Zhang et al., 2021). Authors found a lower

magnitude of canopy damage and a longer recovery period for C-VOD than for optical-based indices (NDVI, EVI, NBR).

Indeed, the optical-based indices only represent the canopy greenness, whereas microwave measurements are more sensitive

to woody components (Guglielmetti et al., 2007; Frappart et al., 2020). Microwave VODs are also sensitive to VWC and can

help to monitor the biomass status (Fan et al., 2018; Konings et al., 2019).

   With the arrival of L-band radiometers such as the Soil Moisture and Ocean Salinity (SMOS) satellite, it is now possible to

infer surface soil moisture, biomass (i.e. fuel) and its water content at deeper sensing depth. The rationale of this study is to

investigate how L-band radiometry responds to fire events in various ecosystems and climates. The SMOS satellite has been

operating for over 12 years now and we have access to a large catalogue of major fires. This study also presents for the first

time L-VOD used in conjunction with other sensors, from visible-infrared (EVI) to microwave X- and C-VOD, for the study

of  post-fire  vegetation  recovery.  The  complementarity  of  these  vegetation  variables  along  with  climate  variables  (air

temperature (T), precipitation (P), soil moisture (SM), and terrestrial water storage (TWS)) was used to identify the fire

likelihood factors and the immediate and long-term fire impacts on vegetation. To do this, we first observed three particular

cases of large fires in various environments and then extended the analysis to the global scale.

2 Data

2.1 Fires

Fires  were  obtained  from  the  National  Aeronautics  and  Space  Administration  (NASA)  MODerate  resolution  Imaging

Spectroradiometer (MODIS) Active Fire product (MOD14A1_M). The product is a quantification of the number of fires

observed within a 1000 km² area over a month. A fire must cover at least ~ 1000 m² to be detected, and must not be covered

with clouds, heavy smoke, or tree canopy (Giglio et al., 2020). The Active Fire product is based on the 1 km fire channels at

3.9 and 11 μm of MODIS Terra and Aqua satellites (Justice et al., 2006). It is distributed at 0.1 deg resolution and at a

monthly time scale by NASA Earth Observations (NEO) portal.

2.2 Precipitation

Precipitation (P) data come from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural

Networks- Climate Data Record (PERSIANN-CDR). The precipitation estimate uses the PERSIANN algorithm on GridSat-

B1 infrared satellite data, and training of the artificial neural network on the National Centers for Environmental Prediction

3

65

70

75

80

85

90

5



(NCEP) hourly precipitation data (Ashouri et al., 2015). The dataset is distributed by National Oceanic and Atmospheric

Administration (NOAA) at a daily time scale, and at 0.25 deg resolution in the latitude band 60°S – 60°N.

2.3 Soil Moisture

The soil moisture (SM) dataset comes from the  SMOS satellite, launched by the European Space Agency (ESA) in 2009

(Kerr et al., 2001). It performs passive measurements of the thermal emission of the Earth at L-band (1.4 GHz, 21 cm). L-

band VOD and SM are derived from SMOS brightness temperatures using the L-band Microwave Emission of the Biosphere

(L-MEB) radiative transfer model (Wigneron et al., 2007; Kerr et al., 2012). L-band SM is the volume of water per volume

of soil (m3 m-3) in the top surface soil layer (~ 5 cm). The footprint size is ~ 43 km in average (Kerr et al., 2010). We

considered the ESA level 2 SM dataset in version 7.2 (L2 v720) resampled to the global cylindrical Equal-Area Scalable

Earth (EASE) Grid version 2.0 (Brodzik et al., 2012) at 625 km² spatial sampling (25 km × 25 km at 30 deg of latitude).

Ascending (6 am) and descending (6 pm) overpasses were averaged, from June 2010 to December 2020.

2.4 Terrestrial Water Storage

Terrestrial water storage (TWS) anomalies from the Gravity Recovery and Climate Experiment (GRACE) satellite were also

considered. We used monthly GRACE/GRACE-Follow On (FO) Level-3 product provided through the Gravity Information

Service  (GravIS)  web portal  of  the  German Research  Centre  for  Geosciences  (GFZ)  at  1  deg  latitude-longitude  grids

(Boergens et al., 2019). TWS anomalies represent the water mass anomalies from snow, surface water, soil moisture, and

deep groundwater. They are derived from measurements of temporal changes in the Earth's gravity field.  Data were lacking

for 35 dates of the ten-year dataset. One-time gaps were filled by linear interpolation; consecutive missing months were not

considered (Sep.−Nov. 2016, Jul. 2017−May 2018, and Aug.−Oct. 2018, 17 months in total).

2.5 Temperature

Temperature  (T)  data  come from the  Land  Surface  Temperature  (LST)  dataset  from MODIS  Terra  satellite  (NASA).

Daytime and night time measurements were averaged (MOD11C3 Version 6 product in a Climate Modeling Grid (CMG),

LST_Day_CMG and LST_Night_CMG, Wan et al., 2015). These datasets are obtained using MODIS thermal infrared bands

from 3 to 15 μm, and distributed by NASA Land Processes Distributed Active Archive Center (LP DAAC) at a monthly time

scale and at 0.05 deg resolution.

2.6 Vegetation Optical Depth

Vegetation optical depth (VOD) is a remotely sensed indicator related to AGB and to VWC (Kerr and Njoku, 1990; Jackson

and Schmugge, 1991; Jones et al., 2011; Rahmoune et al., 2014; Vittucci et al., 2016; Rodriguez-Fernandez et al., 2018;

Mialon et al., 2020). No clear approach exists for disentangling the contributions of AGB and VWC in the VOD because of

4

95

100

105

110

115

120



the co-sensitivity of microwave observables to both quantities (Konings et al., 2019). The lower frequencies have better

capabilities  to  penetrate  deeper within the canopy (Ulaby et  al.,  1981).  At L-band,  VOD is sensitive to  coarse woody

elements,  such  as  trunks,  stems,  and  branches.  At  C-  and  X-band,  VOD  is  more  sensitive  to  thin  stems  and  leaves

(Guglielmetti et al., 2007). L-VOD is then more sensitive to high AGB values, and is a good proxy for dense vegetation

(Rodriguez-Fernandez et al.,  2018).  In this paper,  L-VOD comes from SMOS level 2 dataset  in version 7.2 (L2 v720)

measured at 1.4 GHz (λ = 21 cm), resampled to EASE-Grid 2.0 at 625 km² resolution (25 km × 25 km at 30 deg of latitude).

In the SMOS retrieval algorithm, the vegetation attenuation is taken into account by the τ parameter of the τ − ω model (Mo

et al., 1982) which corresponds to the L-VOD. Data from June 2010 to December 2020 were considered, and ascending (6

am) and descending (6 pm) overpasses  were averaged.  C- and X-VOD from the Japan Aerospace Exploration Agency

(JAXA) Global Change Observation Mission (GCOM) Advanced Microwave Scanning Radiometer (AMSR)-2 dataset were

also considered (Imaoka et al., 2010). C- and X-VOD are measured at 6.9 GHz (λ = 4.3 cm) and 10.7 GHz (λ = 2.8 cm)

respectively. C2-band (7.3 GHz, λ = 4.1 cm) was not discussed in this paper as the data were mostly redundant with C1-band

(6.9  GHz).  We used  the  daily  L3 V001 VOD products,  from July  2012 to December  2020,  processed  with  the  Land

Parameter Retrieval Model (LPRM) algorithm (Owe et al., 2008) and distributed by NASA on a regular grid at 25 km × 25

km  resolution.  Ascending  (1:30  pm)  and  descending  (1:30  am)  overpasses  (LPRM_AMSR2_A_SOILM3  and

LPRM_AMSR2_D_SOILM3) were averaged.

2.7 Enhanced Vegetation Index

VODs values were compared with the visible-near infrared based enhanced vegetation index (EVI) from MODIS (NASA)

MOD13C2 and MYD13C2 Version 6 for Aqua and Terra Satellites respectively, distributed at 5600 m resolution (Didan,

2015). EVI represents canopy greenness, with an improved sensitivity over high AGB regions compared to NDVI. It is

obtained by combining measurements at red (λ = 0.6−0.7 μm, f ~ 460 THz) and near infrared wavelengths (λ = 0.7−1.1 μm, f

~ 330 THz).

2.8 Auxiliary data

2.8.1 Year of gross forest cover loss event

The year of gross forest cover loss event map (the so-called lossyear product) from Hansen et al. (2013) was used to observe

the forest loss rate and year within a SMOS pixel, for the three major fires studied (Fig. 2). This map represents the first year

of detected tree loss during the period 2000–2020, defined as a stand-replacement disturbance, or a change from a forest to

non-forest state. This dataset is based on Landsat images and is distributed at ~ 30 m resolution with 10x10 square degree

tiles at  https://glad.earthengine.app/view/global-forest-change. Each year of the period 2010−2020 was extracted from the

forest loss product and averaged into SMOS EASE-Grid 2.0, so as to obtain a yearly percentage of forest loss.
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2.8.2 Land cover

A land surface climatology map based on 10 years (2001–2010) of the MODIS MCD12Q1 product at 500 m resolution

(Broxton et al., 2014) was used to filter the data and to distinguish four different vegetation types (see Sect. 3). This land

cover map allows to identify 17 ecosystems based on the IGBP (International Geosphere-Biosphere Programme) class labels.

2.8.3 Above-Ground Biomass

The global map of AGB (Mg ha-1) from Santoro et al. (2021) was used to distinguish sparse from dense forests (see Sect.

3.3). This map is distributed through the ESA Climate Change Initiative (CCI) Biomass at 100 m resolution. It combines a

large  pool  of  spaceborne  remote  sensing  observations  from two synthetic  aperture  radar  (SAR) missions  (Envisat  and

ALOS), and uses optical (Landsat) and LiDAR (Icesat GLAS) data to support the model calibration procedure. The ESA

CCI Biomass map representative of 2010 was used here because it provides an AGB information prior to the studied fire

events (2011–2020).

2.8.4 Snow and Ice

The Interactive Multisensor Snow and Ice Mapping System (IMS) database was used to mask areas covered with snow or ice

(see Sect. 3.1). We used the IMS Daily Northern Hemisphere Snow and Ice Analysis at 4 km resolution, version 1 (Helfrich

et al., 2007), provided by the National Snow and Ice Data Center (NSIDC).

2.8.5 Flooding

Flooded areas were filtered out (see Sect. 3.1) based on the Global Inundation Estimate from Multiple Satellites (GIEMS-2)

dataset  (Prigent  et  al.,  2019).  It  provides  long-term monthly  estimates  of  surface  water  extent,  including  open  water,

wetlands,  and  rice  paddies.  The  methodology  combines  passive  and  active  microwaves,  visible  and  near-infrared

observations (SSM/I, ERS, AVHRR). The water fraction is delivered globally from 1992 to 2015, on an equal area grid of

0.25 deg × 0.25 deg at the equator (~ 28 km × 28 km). Flooded areas were detected with a climatology over the 1992–2015

period.

2.8.6 Topography

Strong topographies were also filtered out for this study (see Sect. 3.1). They were flagged using a mask created for SMOS

retrieval (Mialon et al., 2008) based on a digital elevation model (DEM) provided by the Shuttle Radar Topography Mission

(SRTM), a joint project between the National Aeronautics and Space Administration (NASA) and the National Geospatial-

Intelligence Agency (NGA), conducted in 2000 (Jarvis et al., 2006).
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3 Methods

First, we investigated three various regions which recently experienced a severe fire. These areas consist in: i) a eucalyptus

open forest in a human-affected environment, under dry El Niño conditions in Australia; ii) a mixed area of needleleaf

forests,  woody savannas,  and  human activities  under a  Mediterranean  climate in  California;  and iii)  a  remote primary

rainforest in a tropical wet climate in Amazonia (see Sect. 3.2). Secondly, the study was extended to the global scale, for five

vegetation types, by selecting the major fires of the last decade (see Sect. 3.3). The rationale was to capture significant events

occurring over an area large enough to be observed with the SMOS satellite without any ambiguity. Four climate variables

related  to  the  fire  risk  were  considered:  precipitation,  SM,  TWS,  and  temperature.  Wind  is  another  predominant  fire

likelihood factor (Albini, 1993), but was not studied here due to the lack of reliable data at the required spatio-temporal

scale. Vegetation status before, during, and after fire was monitored with four vegetation variables: EVI, X-VOD, C-VOD,

and L-VOD.

3.1 Data preprocessing

Data from June 2010 to December 2020 were considered (10.5 years), except for C- and X-VOD from AMSR2 which were

only available from July 2012. Only the latitude band 60°S – 60°N was kept, in order to be consistent with the precipitation

dataset  extent.  Monthly  averages  of  all  datasets  were  computed  and  resampled  to  SMOS  EASE-Grid  2.0  (~  25  km

resolution) with a weighted average interpolation, using GDAL (GDAL/OGR contributors, 2020). SMOS data (SM and L-

VOD) were filtered from RFI impacts by using a 20% maximum threshold on the RFI probability, provided by SMOS Level

2 product. Only the centre part of the swath was considered (less than 450 km away from the sub-satellite track) so as to only

use optimal retrievals. Microwave measurements were also proven to be disturbed by strong topography (Mialon et al.,

2008), snow (Schwank et al., 2014), and standing water (Ye et al., 2015; Jones et al., 2011; Bousquet et al., 2021). Hence, for

all datasets, we removed strong topography areas based on SMOS topography mask; snow-covered months based on IMS

database (20% maximum snow coverage); water contaminated areas based on the land cover map (50% maximum water

fraction); and flooded ones based on GIEMS-2 climatology (20% maximum water fraction).

3.2 Case study : analysis of three major fires

3.2.1 Wildfires in the South Coast of New South Wales in Australia

The first studied area is located in the South Coast of New South Wales in Australia, between [33.53°S – 37.72°S] and

[149.40°E – 150.17°E] (Fig. 1) and covers thirteen SMOS pixels. The dominant vegetation type is eucalyptus open forest

(McColl, 1969; DEWR 2007). The climate is warm temperate with dry summer (Kottek et al., 2006). The mean rainfall is ~

1000 mm year-1, and the mean temperature is ~ 15°C (McColl, 1969). The topography varies between 0 to 600 m above sea

level. The 2019–2020 wildfires in Australia were influenced by El Niño Southern Oscillation (Dowdy, 2018). They became
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historically significant as they were widespread and extremely severe, in particular in New South Wales (Ehsani et al., 2020).

The tree cover loss map (Hansen et al., 2013) indicates a 25% forest loss in 2020 in the studied area (Fig. 2).

3.2.2 Mendocino Complex fire in California

The second studied area is located in California, near Lakeport, between [38.96°N – 39.46°N] and [122.68°W – 123.20°W]

(Fig. 1). It corresponds to four SMOS pixels. The area is covered with evergreen needleleaf forest and woody savannas

(Broxton et al., 2014), and is much urbanised. The climate is warm temperate (Kottek et al., 2006), with dry, windy, and

often hot weather conditions from spring through late autumn that can produce severe wildfires (Crockett and Westerling,

2018). The 2018 fire season was the most extreme on record in Northern California (now second to the 2020 fire season) in

terms of number of fatalities, destroyed structures, and burned areas (Brown et al., 2020). The Mendocino complex is the

largest fire complex in state history, and burned nearly 1860 km2 of vegetation between July and September 2018. It included

two wildfires: the Ranch fire at the North, which was the largest single fire in state history and burned 1660 km 2, and the

River fire at the West, which burned 198 km2 (BLM, 2018). The Mendocino complex caused a 34% vegetation loss in this

region (26% in 2018 and 8% in 2019, Fig. 2), and was predominantly classified as moderate severity (62%; BLM, 2018).

Figure 1 - Global maps of SMOS L-VOD (left) and SM (right), in average for 2011–2020. The red dots show the locations of the
three areas of interest: the Mendocino complex in California, Santarem in Amazonia, and the South Coast of New South Wales in
Australia.

Figure 2 – Yearly forest loss (%) attributed to the three burnt areas under study, from Hansen et al. “lossyear” product.
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3.2.3 Santarem wildfire in the Amazon

The third studied area is  located in the Amazon rainforest  near  Santarem city (Brazil),  between [3.14°S – 2.75°S] and

[53.95°W – 54.13°W] (Fig. 1) and covers two SMOS pixels. The evergreen broadleaf forest is dense (L-VOD = 1.02; AGB =

280 Mg ha-1 in average over the area). The climate is hot and humid, with annual mean temperature of 25°C and mean

precipitation of 1920 mm year-1 (Berenguer et al.,  2018). During the strong El Niño event in December 2015, a severe

drought caused large fires in this area, with no link with anthropic deforestation (Berenguer et al., 2018). They induced a

20% forest loss in 2016 in the studied area (Fig. 2).

3.2.4 Anomaly time series computation

Anomaly time series of EVI, X-, C-, L-VOD, P, SM, TWS, and T were plotted over the three studied sites. The anomaly time

series of a variable x is the difference between the original time series and the mean climatology, which is the mean seasonal

cycle of this variable. They are defined as:

anom (x (t ))=x (t )−climatology (x (m)) (1)

and

climatology (x (m))= 1
yn
∑
y=1

yn

x (m+( y −1 )∗12) ,∀ m=1:12 (2)

where t is the month number from January 2010 (6 to 132 in this study); m is the month of the year, between 1 and 12, with

m = (t-1 mod 12) + 1 ; y is the year number, from 1 to y n, with yn = 11 here as the climatology was computed on the period

2010–2020.  Plotting  the  anomaly  time  series  enables  to  remove  the  natural  seasonal  cycle  so  as  to  observe  only  the

variations due to specific events. The average pre-fire variable value was subtracted from the anomaly time series, only if at

least twelve months of data were available before the fire event. It enables to observe the anomalies with respect to the pre-

disturbance value. The time series of the number of fires were plotted in absolute values.

3.3 Extension to the global scale

Fires were then studied at the global scale to assess the general factors and impacts of fire according to the ecosystem. Only

the latitude band 60°S – 60°N was retained in order  to match with the precipitation dataset  extent.  Australia was also

excluded because numerous fires were detected in 2012 in the Outback (shrublands) and in 2019/2020 in the South-East

(broadleaf forests), which prevailed over the global dataset (~55% of the points) and prevented to perform a robust pre- and

post-fire study. The global scale was divided into five land cover classes: needleleaf forests (IGBP labels 1 and 3), sparse

broadleaf forests (IGBP labels 2 and 4, AGB ≤ 150 Mg ha-1), dense broadleaf forests (IGBP labels 2 and 4, AGB > 150 Mg

ha-1), savannas and shrublands (IGBP labels 6, 7, 8, and 9), and grasslands and croplands (IGBP labels 10, 12, and 14). Only
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the range July 2012–December 2020 was conserved here for  all  datasets so as to match with AMSR2 time-period. To

properly observe the factors and impacts of a fire event over a long time period without any other disturbance, only 25 km

regions showing a unique and intense fire over the nine-year period were considered. This excluded areas with regular

seasonal fires, such as the Sahel region. For that, a minimum threshold of 5 was applied on the maximum number of fires;

and a maximum threshold of 2 was applied outside the main fire event period (i.e. outside the period -6/+6 months around

the  fire  event).  These  thresholds  were  defined  empirically.  Anomalies  were  computed  with  Eq.  (1)  and  (2),  with  a

climatology over all dates excepted the period -5/+6 months from the fire date, in order to remove these exceptional values.

The anomaly time series were then shifted to collocate in time all fire events, and averaged by ecosystem. To ensure the

spatial representativeness of each ecosystem, only the months with available data for at least one quarter of the sites were

kept.

   Pre-fire climatic anomalies and post-fire vegetation anomalies were also aggregated at different time frames and plotted, in

order to compare their temporal behaviour in different ecosystems. The standard error of the mean of the measurements σ

was also computed with Eq. (3):

σ ( p )= std
( p )

√n
 (3)

where std is the standard deviation of the population p and n is the number of samples.

4 Results

4.1 Case study: analysis of three major fires

In evergreen forests of the South Coast of New South Wales in Australia (Fig. 3a), fires reached a maximum in January 2020

(mean number of fires = 8). They are associated with high temperature and low precipitation (anom(T) = +3°C, anom(P) = -

80 mm). The drought started 3 years before fire (decrease in precipitation, SM, and TWS). All vegetation data exhibit the

same pattern, which is i) a constant and mild decrease since 2012; ii) a strong decrease just before and during the fire event

(~ -0.15); and iii) a rapid post-fire recovery (~ 1 year). C-VOD is the most affected vegetation variable.

   In California, no major pre-fire drought is visible in summer 2018 (Fig. 3b). The Mendocino Complex was the strongest of

the three case studies, with 20 fires observed on average in August 2018. It provoked a decrease in all vegetation variables,

particularly in L-VOD (anom(L-VOD) = -0.08) and in EVI (anom(EVI) = -0.10). C- and X-VOD regained rapidly their pre-

fire values (~ 1 year), but EVI and L-VOD did not.

   In the dense rainforest near Santarem (Brazilian Amazon), the detected number of fires in December 2015 is quite low (~

4.5) (Fig. 3c), but this value may be underestimated due to cloud coverage (Giglio et al., 2020). Vegetation variables are

stable before the fire event, even if L-VOD signal is quite noisy because only two SMOS pixels were considered here.

Strong positive temperature anomalies (+3°C), negative precipitation anomalies (-160 mm) and TWS anomalies (-60) are
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visible before and during the fire. Surprisingly, SM stayed stable during the fire. L-VOD was substantially impacted by the

fire (anom(L-VOD) = -0.14), as well as EVI (anom(EVI) = -0.09). C- and X-VOD were barely affected (anom(C-VOD) = -

0.04, anom(X-VOD) = -0.01). EVI recovered in ~ 2–3 years, whereas L-VOD never recovered its pre-fire level.

Figure 3 – Time series of the number of fires, and anomaly time series of EVI, X-, C-, L-VOD, P, SM, TWS, and T on (a) South-
East Australia (13 SMOS pixels), (b) the Mendocino Complex, California (4 SMOS pixels), and (c) Santarem (2 SMOS pixels).

4.2 Extension to the global scale

In this section, the major fires from July 2012 to December 2020 were analysed at the global scale, by shifting the anomaly

time series of all variables on the fire date tfire. The considered fires are well spread spatially and temporally over the nine-
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year period (Fig.  4).  In  savannas and grasslands (Fig.  5a and 5b),  pre-fire  hydrologic variables are stable (positive for

grasslands) and temperature anomalies are negative during 2 years before fire. Concurrently, vegetation variables start to

increase and reach a maximum a few months before the fire event (particularly C- and X-VOD over grasslands). Vegetation

variables anomalies also show a light surplus over needleleaf forests just before the fire event (Fig. 5c). Over forests (Fig. 5c,

5d and 5e), a one-year pre-fire drought is visible through the temperature increase and the precipitation, SM, and TWS

decrease. For all ecosystems, these drought conditions intensify just before and during fire, and end a few months after fire.

During fire, all vegetation variables abruptly decrease in all ecosystems, EVI being the most impacted one, excepted over

dense forests where L-VOD heavily decreases (Fig. 5e). For all ecosystems, EVI recovers more rapidly than VODs. L-VOD

is particularly long to recover over dense broadleaf forests (more than 4 years, Fig. 5e). Needleleaf forests (Fig. 5c) exhibit a

slow recovery time for all vegetation variables, with ~ 3 years for EVI and ~ 4 years for VODs. VODs even continue to

decrease during 1 year post-fire in this ecosystem. In low vegetation ecosystems (Fig. 5a and 5b), C- and X-VOD never

regain their immediately pre-fire values, which were particularly high.

   Climate variables anomalies were also averaged in space and in time, within time frames of 6 months, from 24 to 1 month

pre-fire, in order to observe their general trends (Fig. 6). The error bars were computed with Eq. (3). Precipitation anomalies

(Fig. 6a) are negative from 6 months pre-fire for all classes, and reach -10 mm month -1 in average before the fire event. The

precipitation deficit is more intense in dense broadleaf forests, where it starts two years pre-fire and reaches -60 mm month -1

before the fire event. SM anomalies (Fig. 6b) are similar for the three forest ecosystems. The SM deficit starts one year pre-

fire and reaches -0.04 m3 m-3 before the fire event. Savannas and grasslands are affected later (6 months pre-fire) and to a

lesser extent (~ -0.015 m3 m-3), as previously observed in Fig. 5. TWS anomalies (Fig. 6c) are negative from 12 months pre-

fire,  excepted  for  grasslands.  Again,  dense  broadleaf  forests  are  the  most  impacted  ecosystem,  with a  minimum TWS

anomaly of -7 before fire. Temperature anomalies (Fig. 6d) show significant negative anomalies in grasslands, savannas, and

needleleaf forests from two to one year pre-fire. From 6 months pre-fire, temperature anomalies show a surplus in nearly all

ecosystems,  and  reach  +0.95°C in  needleleaf  forests  and  +0.80°C in  dense  broadleaf  forests  before  the  fire  event.  In

summary,  pre-fire  drought  is  mainly  observed  in  forests,  with  particularly  low  hydrological  values  in  dense  forests

(rainforests), and particularly high temperatures in needleleaf forests (boreal ecosystems). Savannas and grasslands barely

suffer from pre-fire drought; temperatures are even mild one year pre-fire.

   Vegetation variables anomalies were averaged within time frames of 6 months, from 1 to 36 months post-fire, in order to

observe the global impacts and recovery time (Fig. 7). We considered that a variable has totally recovered when its anomaly

is between -0.005 and +0.005. Immediately after fire, EVI is the most impacted variable, with average anomalies of -0.030

over grasslands, -0.033 over savannas, -0.036 over needleleaf forests, -0.052 over sparse broadleaf forests, and -0.059 over

dense broadleaf forests (Fig. 7a). EVI recovers rapidly, in about 25 to 30 months over needleleaf forests, and 19 to 24

months over other ecosystems. X-VOD is less affected over forests (-0.015) than over low vegetation (-0.025) (Fig. 7b). X-

VOD gets back to normal within three years, needleleaf forests being the longest to recover. C-band is mainly impacted over

forests and savannas (~ -0.03, Fig. 7c). C-VOD recovers slower than X-VOD, in particular over forests. L-VOD is mainly
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affected over broadleaf forests, and particularly over the densest ones (Fig. 7d). There, negative anomalies decrease up to -

0.05 one year post-fire, then slowly increase. L-VOD is less affected than C-VOD elsewhere. It also shows a delayed impact

by one year over needleleaf forests, as for C- and X-VOD.

Figure 4 – Location of the selected fires and histograms of the fire dates, for grasslands and croplands (IGBP label 10, 12, and 14),
savannas and shrublands (IGBP labels 6, 7, 8, and 9), needleleaf forests (IGBP labels 1 and 3), sparse broadleaf forests (IGBP
labels 2 and 4, AGB ≤ 150 Mg ha-1), and dense broadleaf forests (IGBP labels 2 and 4, AGB > 150 Mg ha-1). Australia was excluded
as well as areas affected by water, snow, or strong topography (see Sect. 3.1).
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Figure 5 – Time series of the number of fires, and anomaly time series of EVI, X-, C-, L-VOD, P, SM, TWS, and T, shifted on the
fire date, for (a) 669 points in the grasslands and croplands biome; (b) 591 points in the savannas and shrublands biome; (c) 387
points in the needleleaf forest biome; (d) 79 points in the sparse broadleaf forest biome; and (e) 66 points in the dense broadleaf
forest biome. The missing values are mainly due to snow filtering.

Figure 6 – Anomalies of (a) precipitation, (b) SM, (c) TWS, and (d) temperature, for each land cover class, at several pre-fire time-
scales. The error bars were computed with Eq. (3).

Figure 7 – Anomalies of (a) EVI, (b) X-VOD, (c) C-VOD, and (d) L-VOD, for each land cover class, at several post-fire time-scales.
The error bars were computed with Eq. (3).
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5 Discussion

5.1 Case study : analysis of three major fires

In South-East Australia,  a  strong pre-fire  drought  is  visible  in  the  climate  variables  but  also  in  the  mild  decrease  of

vegetation variables (Fig. 3a), linked with VWC deficit. Ehsani et al. (2020) stated that the air temperature from December

2019 to February 2020 was about 1°C higher than usual, which increased evapotranspiration, while the lack of precipitation

prevented the soil from satisfying the moisture demand, and led to a significant vegetation drying (fuel) that facilitated the

propagation of fires. After the fire event, L-VOD regained its pre-fire values within a year, meaning that the woody biomass

was not entirely destroyed. Indeed, these eucalyptus forests are known to be somewhat fire resistant (Wilkinson and Jennings

1993; Caccamo et al., 2015). They can regenerate branches and leaves by resprouting from heat-resistant buds (Burrows,

2002).  The rapid recovery of vegetation data can also be explained by the recovery of VWC, linked with the post-fire

increase in precipitation and SM (Konings et al., 2021). Indeed, in 2020, SM values exceeded those of the previous decade

(anom(SM) = +0.15 m3 m-3), corresponding to the end of the severe drought affecting South-East Australia associated with

the 2020/2021 La Niña event (BoM, 2021). The increase of SM and precipitation may also have expedited the extinction of

fires (Ehsani et al., 2020).

   In California, the study by Brown et al. (2020) provides a comprehensive analysis of the climate and fuel conditions

leading to the 2018 Mendocino complex, and reports several events that are also noticeable in our analysis. Among these,

positive rainfall and SM anomalies in winter 2016/2017 are depicted in Fig. 3b, which led to the second consecutive spring

with above average accumulation of fine fuel (grasses). Positive temperature anomalies in winter 2017/2018 are also visible,

when a lack of storm enabled the survival of grasses. In April 2018, precipitation and warm temperatures led to above

normal spring brush and grass growth. No major drought is visible in summer 2018, but low rainfall and warm temperatures

led to a rapid drying of fuels, and induced a poor overnight humidity recovery. All these similarities with the findings by

Brown et al. support our observations. The dramatic fire impacted EVI and L-VOD in the long term. Eucalyptus, pine trees

and chapparal were burnt. Even if this type of vegetation is fire-adapted, the strength of the fire seemed to have destroyed

most of it (34% vegetation loss, Hansen et al., 2013). Increased forest fire activity in recent decades in California has likely

been enabled by the legacy of  fire  suppression, human settlement,  and anthropogenic climate change (Abatzoglou and

Williams, 2016). Stephens et al. (2018) stated that the massive current tree mortality in California will undoubtedly provoke

severe “mass fires” in the coming decades, driven by the amount of dry and combustible wood.

   In the Santarem region (Amazon), the winter 2015 wildfire was attributed to high temperature and low precipitation linked

with  El  Niño  event  (Berenguer  et  al.,  2018),  which  clearly  emerges  from Fig.  3c.  These  extreme  drought  conditions

worsened during the fire, and may explain its strength. Contrary to TWS and precipitation, SM stayed stable during the fire,

maybe because of the reduced accuracy of SM measurements under very dense forest. The three-year recovery time of EVI

after the severe fire indicates a moderate regrowth of leaves and grasses. In contrast, L-VOD never regained its pre-fire

values, meaning that trunks were impacted on the long term.
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5.2 Extension to the global scale

At global scale, grasslands, croplands, shrublands and savannas do not show signs of pre-fire drought (Fig. 5a, 5b, 6). A

substantial increase in vegetation variables occurs 1–2 years before fire, which implies an increase in vegetation density, e.g.

available fuel. Immediately before fire, both VOD and SM values drop down, suggesting a decrease in VWC, especially over

grasslands (Fig. 5a). The increase of vegetation material combined with the decrease of VWC may contribute to trigger large

wildfires (Forkel et al., 2017; Kuhn-Régnier et al., 2021). Indeed, the fire risk in savannas is highest for a dry vegetation with

enough fuel to enable a drastic burning (Mbow et al., 2004). This vegetation growth might be enabled by negative pre-fire

temperature anomalies, and light positive pre-fire hydrological variables anomalies (Fig. 6). Vegetation variables are less

impacted by fires (Fig. 7) because they are rapid and burn through the grass layer, resulting in less destruction than in forests

(Menaut et al., 1990; Gignoux et al., 1997). L-VOD in particular is slightly impacted because the burnt vegetation is mainly

leaf biomass. EVI quickly recovers after fire, probably because fire burns most of the AGB of grass species, but spares their

large underground root systems, resulting in a rapid establishment of new shoots (Hochberg et al., 1994). The exceptionally

high pre-fire vegetation variables values are never regained.

   In needleleaf forests anomaly time series (Fig. 5c), the numerous missing values correspond to the filtering of snow in

winter. These wildfires are located in the Northern hemisphere temperate and boreal forests, and mostly occur in late spring

and summer (Fig. 4). De Groot et al. (2013) explained that most fires in Canada occur during summer, due to lightning

strikes; whereas most fires in Russia occur during spring and are human-caused. We found a strong pre-fire drought in this

ecosystem (low SM and high temperature one year pre-fire, Fig. 6), which is well documented for previous fire episodes

(Weber and Stocks, 1998). Our results are in line with those of Forkel et al. (2012), who found that previous-summer SM

was a good predictor for burned area in Siberian larch forests. Indeed, negative summer anomalies led to low frozen water

the following winter, and to less water released during the following spring-summer season, which in turn eased the outbreak

of large wildfires. VODs also showed a light surplus before fire, possibly linked with litter thickening (e.g. dead needles,

cured grass, leaf litter), which also facilitate fire propagation (de Groot et al., 2013). We found a delayed impact of fire on

vegetation variables, and a longer recovery time than in other ecosystems, of about 3–4 years (Fig. 5c and 7). This duration is

slightly less than what was found in other studies (5 years in Canada, Goetz et al., 2006; 5 to 8 years in North America, Jin et

al., 2012), but our findings still confirm previous results from Yang et al. (2017), who showed with NDVI analyses over

North America that the fire effect on needleleaf trees was stronger and longer than on other vegetation types. Fires in North

America are predominantly stand-replacing and high-intensity crown fires (Stocks et al., 2004; Jin et al., 2012), whereas fires

in Eurasia are generally lower intensity surface fires and less destructive for the vegetation (de Groot et al., 2013). These

different fire regimes are influenced by tree species (Rogers et al., 2015). Time series were plotted separately over each

continent (Fig. S1). L-VOD and EVI recover slower in North-America than in Eurasia (~ 4 years vs ~ 2 years for L-VOD, ~

3 years vs ~ 2 years for EVI), confirming these different boreal fire regimes. Moreover, we found that L-VOD is moderately
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impacted during fire. This can be attributed to the dominant destruction of needles and branches by boreal fires (Alexander

and Cruz, 2011).

   Sparse broadleaf forests (AGB ≤ 150 Mg ha-1) subject to wildfires are mostly located in subtropical and temperate areas of

South America, North America, West Africa, and South-East Asia (Fig. 4). A drying trend is visible one year pre-fire (Fig. 5d

and 6). The link between drought and wildfires was previously observed by de Marzo et al. (2021) in the Argentine Gran

Chaco; by Cheng et al. (2013) in the Mexican Yucatan forest; and by Vadrevu et al. (2019) in South-East Asian forests, with

a prominent influence of precipitation variations over temperature variations. L-VOD and EVI are particularly impacted by

fire, but they recover quickly (1 year for EVI, 2 years for L-VOD). Yang et al. (2017) also found a rapid recovery time over

North American broadleaf trees due to their fire-adaptive resprouting regeneration mode. Same observations were made in

the fire-prone Argentine Chaco forest by Torres et al. (2014).

   Dense broadleaf forests are mostly located in the tropics (Fig. 4). We can notice few fires in the densest rainforests (Congo

basin, central Amazon) because i) they are usually too humid to burn (Cochrane, 2003; Forkel et al., 2017); ii) MODIS active

fire detections are underestimated under thick cloud coverage or for understory fires (Giglio et al., 2020); and iii) seasonally

flooded areas were excluded in order to use only robust VOD estimations (Bousquet et al., 2021). A consistent drought is

visible 8 months before fire events (Fig. 5e), with high negative SM, TWS, and precipitation anomalies (Fig. 6). Chen et al.

(2013) also found TWS deficits before severe fire seasons across the southern Amazon. Indeed, rainfall shortage generates

high water deficits (i.e. high negative TWS and SM anomalies), which cause tree mortality, leaf shedding (visible in pre-fire

EVI decrease) and thus increase fuel availability (Aragão et al., 2018). Nevertheless, no pre-fire VOD decrease is observed

here, showing that tree species of dense forests can maintain their VWC. Drought-related fires were suggested to prevail

over deforestation fires in the Amazon, and are predicted to increase in the near future (Aragão et al., 2018). The opening of

forest canopies also boosts incident radiation levels which leads to temperature rise (Ray et al., 2005). The combination of

fuel increase in a drier and hotter environment converts forests into fire-prone ecosystems (Aragão et al., 2018). We also

found that the dense broadleaf forest biome was the one most impacted by fire (Fig. 7), because the absolute values of

vegetation variables before fires are higher in this biome, and because it is not a fire-adapted ecosystem (Cochrane, 2003). L-

VOD in particular decreases strongly and recovers very slowly (Fig. 7d), as previously observed over Santarem fire (Fig.

3c).  The  strong post-fire  decrease  in  L-VOD is  due  to  biomass  destruction  but  also  to  water  stress  in  the  remaining

vegetation (Konings et al., 2021). This finding confirms the significant and damaging impact of fires in the dense broadleaf

ecosystem previously observed by Silva et al. (2018) and de Faria et al. (2021). L-VOD was previously proven to be more

sensitive to high AGB values than C- and X-VOD (Rodriguez-Fernandez et al., 2018). Here, we suggest that L-VOD depicts

better the fire impact on high AGB areas than the other vegetation variables.

   For all biomes, EVI is the most rapid index to recover, because leaves rapidly resprout. EVI and X-VOD seem better

adapted for grasslands fire monitoring, C-VOD for savanna fire monitoring, and L-VOD for forest fire monitoring.
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5.3 The potential of L-VOD for vegetation recovery monitoring over dense forests

Vegetation variables anomalies were also plotted with respect  to the number of fires in the dense broadleaf ecosystem,

immediately after fire (1–3 months post-fire, Fig. 8a) and over a longer period (1–2 years post-fire, Fig. 8b). A quasi-linear

relationship is  visible for  all  vegetation estimates.  As previously observed in Sect.  4.2,  EVI and L-VOD are the most

impacted variables immediately after fire (Fig. 8a), while L-VOD is still significantly affected 1 to 2 years after fire (up to -

0.05, Fig. 8b). L-VOD then shows a clear response to fire events over high AGB areas, immediately but also in the long

term, and proportionally to the number of fires within a SMOS pixel. Thanks to its sensitivity to coarse woody elements and

to its deep penetration through the vegetation layer, L-VOD is better correlated to high AGB than other vegetation variables

(Rodriguez-Fernandez et al., 2018), and could be used for post-fire recovery monitoring over dense forests. One must keep

in mind that not only the biomass volume (AGB) but also the biomass status (VWC) is depicted in the VOD.

Figure 8 – Anomalies of vegetation variables (V) averaged (a) from 1 to 3 months post-fire, and (b) from 24 to 35 months post-fire,
with respect to the number of fires by pixel (MODIS), for dense broadleaf forests only. The anomalies were normalized with the
99th quantile of each variable Vmax (EVImax = 0.60, X-VODmax = 1.02, C-VODmax = 1.20, and L-VODmax = 1.21).

6 Conclusion

In this paper, we analysed the pre-fire behaviour of four fire likelihood factors, including SMOS SM which provides access

to top surface soil moisture at the global scale. In forests, which generally maintain a steady humidity, we found that fires are

linked with intense and prolonged drought. Pre-fire temperature anomalies are particularly high in boreal needleleaf forests.

In savannas and grasslands, in agreement with previous studies (Mbow et al., 2004), we found evidences of an increase in

available fuel prior to fire events, enabled by humid and cold conditions a few years before. We also found that vegetation

variables recover rapidly in these ecosystems, as wildfires are often rapid and mildly destructive for trees. In contrast, over

forests, fires can damage the vegetation in the long term. Zhang et al. (2021) demonstrated the potential of C-band vegetation

optical depth to detect the vegetation change patterns caused by fire in the southern Amazon. Our study confirms these
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findings and extends it to the global scale, and to two extra wavelengths. Dense broadleaf forest fires particularly impact the

L-band emission, which represents coarse woody elements (trunks and stems); whereas sparse vegetation fires affect more

C- and X-bands, which are more sensitive to small branches and leaves. For all biomes, the visible-infrared index (EVI)

drops down after fire but recovers quickly, as it represents only herbage and canopy foliage. The long term impact on L-

VOD in dense broadleaf forests shows that fires in this ecosystem are severely destructive for trunks, while smaller woody

elements and leaves resprout faster. Thus, L-VOD seems the best adapted vegetation variable for the monitoring of dense

vegetation recovery after large fires.

   The increasing number of wildfires threatens the stability of several ecosystems. It is then particularly important to monitor

the vegetation health and L-band proved to be complementary to existing measurements, especially over dense forests.
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