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Abstract. Riverine transport of nutrients and carbon from inland waters to the coastal and finally the open ocean 12 
alters marine primary production (PP) and carbon (C) uptake regionally and globally. So far, this contribution is 13 
represented in the state-of-the-art Earth system models with limited effort. Here we assess changes in marine PP 14 
and C uptake projected under the Representative Concentration Pathway 4.5 climate scenario using the Norwegian 15 
Earth system model, with four riverine transport configurations for nutrients (nitrogen, phosphorus, silicon and 16 
iron), carbon and total alkalinity: deactivated, fixed at a recent-past level, coupled to simulated freshwater runoff, 17 
and following four plausible future scenarios. The inclusion of riverine nutrients and carbon at 1970’s level 18 
improves the simulated contemporary spatial distribution relative to observations, especially on the continental 19 
margins (5.4% reduction in root mean square error [RMSE] for PP) and in the North Atlantic region (7.4% 20 
reduction in RMSE for C uptake). While the riverine nutrients and C input is kept constant, its impact on projected 21 
PP and C uptake expresses differently in future period from the historical period. Riverine nutrient inputs lessen 22 
nutrient limitation under future warmer conditions as stratification increases, and thus lessen the projected future 23 
decline in PP by up to 0.7 ± 0.02 Pg C yr-1 (29.5%) globally, when comparing 1950–1999 with 2050–2099 period. 24 
The riverine impact on projected C uptake depends on the balance between the net effect of riverine nutrient 25 
induced C uptake and riverine C induced CO2 outgassing. These two opposite impacts are comparable in 26 
magnitudes when they are globally integrated. Therefore, in the two idealized riverine configurations the river 27 
inputs result in a weak net C sink of 0.03–0.04 ± 0.01 Pg C yr-1, while in the more plausible riverine configurations 28 
the river inputs cause a net C source of ~0.1 ± 0.03 Pg C yr-1. The results are subject to model limitations related 29 
to resolution and process representations that potentially cause underestimation of impacts. High-resolution global 30 
or regional models with an adequate representation of physical and biogeochemical shelf processes should be 31 
used to assess the impact of future riverine scenarios more accurately. 32 

1 Introduction 33 
At global scale, the major sources of both dissolved and particulate materials to the oceans are river runoff, 34 
atmospheric deposition and hydrothermal inputs; of these three, river runoff plays an essential role in transporting 35 
nutrients into the ocean which stimulate biological primary production (PP) in the ocean (Meybeck, 1982; Smith 36 
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et al., 2003; Chester, 2012). For some substances riverine transport even acts as the absolutely dominant source, 59 
such as total phosphorus (~90%) and total silicon (>70%) (Chester, 2012). River transport of carbon into the ocean 60 
influences the air-sea CO2 exchange, local oxygen balance and acidification level, thus further affecting marine 61 
ecosystem health (Meybeck and Vörösmarty, 1999; Liu et al., 2021). Despite our limited understanding on 62 
the  riverine carbon fluxes, they could play an important role in closing the global carbon budget (Friedlingstein 63 
et al., 2021).  64 
With an increasing world population and a perturbed hydrological cycle under climate change, riverine transport 65 
of nutrients and carbon from land to oceans has a potentially growing impact on the marine biogeochemistry and 66 
ecosystem (Seitzinger et al., 2010; van der Struijk and Kroeze, 2010). Furthermore, the impacts of anthropogenic 67 
activity, particularly agriculture (Bouwman et al., 2009; Garnier et al., 2021), wastewater discharges (Van Drecht 68 
et al., 2009) and extensive damming (Eiriksdottir et al., 2016; Zhang et al., 2022), have greatly perturbed the 69 
riverine transport of nitrogen (N), phosphorus (P) and silicon (Si) to the oceans. Seitzinger et al. (2010) estimated 70 
that there was an increase in global riverine fluxes of dissolved inorganic nitrogen (DIN) and phosphorus (DIP) 71 
by 35% and 29%, respectively, between 1970 and 2000, and a further possible change of -2% to +29% in DIN 72 
and +37% to +57% in DIP between 2000 and 2050, depending on the future scenarios used in their study. Beusen 73 
et al. (2016) estimated that river nutrient transport to the ocean increased from 19 to 37 Tg N yr-1 and from 2 to 4 74 
Tg P yr-1 over the 20th century, taking into account of both increased nutrient input to rivers and intensified 75 
retention/removal of nutrients in freshwater systems. The riverine carbon input is highly influenced by the 76 
magnitude of continental runoff (Liu et al., 2020; Frigstad et al., 2020), permafrost melting and leaching of post-77 
glacial peat deposits (Wild et al., 2019; Pokrovsky et al., 2020; Mann et al., 2022), all of which are sensitive to 78 
climate change. In addition, anthropogenic change, such as land-use and land-cover changes, lake and reservoir 79 
eutrophication and sewage emissions of organic material into rivers may become an important factor in the future 80 
(Meybeck and Vörösmarty, 1999). 81 
Some regions such as the Arctic Ocean and large river estuaries may receive a higher impact from changes in 82 
riverine inputs than other regions. The Arctic Ocean accounts for only 4% of the global ocean area (Jakobsson, 83 
2002), but takes 11% of the global river discharge (McClelland et al., 2012), and it is estimated that about one 84 
third of its net PP is sustained by nutrients originated from rivers and coastal erosion (Terhaar et al., 2021). 85 
Therefore, one can expect that Arctic PP will be affected by altered riverine transport of nutrients and carbon 86 
under future climate changes. Previous studies have shown that enhanced riverine nutrient input increases PP in 87 
the Arctic Ocean (Letscher et al., 2013; Le Fouest et al., 2013, 2015, 2018; Terhaar et al., 2019), while large 88 
riverine dissolved organic carbon (DOC) delivery reduces CO2 uptake in Siberian shelf seas (Anderson et al., 89 
2009; Manizza et al., 2011). Considering large river estuaries, van der Struijk and Kroeze (2010) have 90 
demonstrated potentially higher eutrophication or hypoxia risk in the coastal waters of South America by 2050, 91 
where increasing trends in DIN and DIP are detected. Yan et al. (2010) have reported that anthropogenically 92 
enhanced N inputs will continue to dominate river DIN yields in the future and impose a challenge of N 93 
eutrophication in Changjiang river basin. 94 
The latest generation of Earth system models (ESMs) have implemented some forms of riverine inputs in their 95 
ocean biogeochemistry modules (Séférian et al., 2020). The models that include riverine inputs use different 96 
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implementations, from constant contemporary fluxes (e.g., IPSL-SM6A-LR and NorESM2; Aumont et al., 2015; 117 
Tjiputra et al., 2020), to temporally varying fluxes (CESM2; Danabasoglu et al., 2020), and to interactive with 118 
terrestrial nutrient leaching transported by dynamical river routing (e.g., CNRM-ESM2-1 and MIROC-ES2L; 119 
Séférian et al., 2019; Hajima et al., 2020), and they typically use the Redfield ratio to convert from one chemical 120 
compound to the others. For instance, in the latest version of IPSL model (IPSL-SM6A-LR; Aumont et al., 2015) 121 
riverine nutrients (DIN, DIP, Si), dissolved organic nitrogen (DON), dissolved organic phosphorus (DOP), 122 
dissolved inorganic carbon (DIC) and total alkalinity (TA) are implemented as constant contemporary fluxes 123 
based on data sets from Global NEWS 2 (NEWS 2; Mayorga et al., 2010) and the Global Erosion Model of 124 
Ludwig et al. (1996). Further, in the CESM2 (Danabasoglu et al., 2020) DIN and DIP are taken from a model 125 
(Beusen et al., 2015, 2016) and vary from 1900 to 2005, which is more sophisticated than using constant fluxes. 126 
The other riverine nutrients, DIC and TA are held constant using data from NEWS 2 (Mayorga et al., 2010). Some 127 
ESMs have implemented interactive riverine nutrients input from terrestrial processes, e.g., in the CNRM-ESM2-128 
1 the riverine DOC is calculated actively from litter and soil carbon leaching in the land model, and the supply of 129 
the other nutrients, DIC and TA have been parameterized using the global average ratios to DOC from Mayorga 130 
et al. (2010) and Ludwig et al. (1996). In MIROC-ES2L model (Hajima et al., 2020), N cycle is coupled between 131 
the ocean and land ecosystems, therefore, the inorganic N leached from the soil is transported by rivers and 132 
subsequently as an input to the ocean ecosystem. The riverine P is calculated from N using the Redfield ratio, but 133 
riverine carbon input is not implemented. Existing models with interactive riverine inputs typically do not consider 134 
biogeochemical processes in the freshwater system such as sedimentation. 135 
A few modelling studies have assessed the impact of riverine nutrients and carbon on marine biogeochemistry. 136 
For example, Bernard et al. (2011) and Aumont et al. (2001) evaluated riverine impact on marine Si and carbon 137 
cycle, respectively. Lacroix et al. (2020) estimated and implemented pre-industrial riverine loads of nutrients and 138 
carbon in a global ocean biogeochemistry model, and concluded that the riverine (mainly inorganic and organic) 139 
carbon inputs lead to a net global oceanic CO2 outgassing of 231 Tg C yr-1 and an opposing response of an uptake 140 
of 80 Tg C yr-1 due to riverine nutrient inputs. Additionally, the riverine inputs at pre-industrial level lead to a 141 
strong PP increase in some regions, e.g., +377%, +166% and +71% in Bay of Bengal, tropical west Atlantic and 142 
the East China Sea, respectively (Lacroix et al., 2020). Tivig et al. (2021), on the other hand, found that riverine 143 
N supply alone has limited impact on global marine PP (<+2%) due to the negative feedback of reduced N2 144 
fixation and increased denitrification. This negative feedback could also overcompensate the N addition by river 145 
supply locally, e.g., in Bay of Bengal where PP decreased due to riverine N input (Tivig et al., 2021). A couple 146 
of modelling studies have also assessed the impact of changing riverine inputs on marine PP and CO2 fluxes. 147 
Cotrim da Cunha et al. (2007) assessed riverine impact, using a coarse resolution ocean biogeochemistry model, 148 
with single or combined nutrients from zero input to a high input corresponding to a world population of 12 billion 149 
people, and reported changes in PP from −5% to +5% for the open ocean, and from −16% to +5% for the coastal 150 
ocean, compared to the present-day simulation. Liu et al. (2021) demonstrated an increase in global coastal net 151 
PP of +4.6% response to a half-century (1961–2010) increase in river N loads. In a recent study by Lacroix et al. 152 
(2021) the impact of changing riverine N and P in a historical period (1905–2010) on marine net PP and air-sea 153 
CO2 fluxes was investigated by applying an eddy-permitting fine resolution (~0.4˚) ocean biogeochemistry model. 154 
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Their result revealed an enhancement of 2.15 Pg C yr-1 of the global marine PP, corresponding to a relative 162 
increase of +5% over the studied period, induced by increased terrigenous nutrient inputs. The PP increase in 163 
coastal ocean averaged to 14% with regional increase exceeding 100% and the global coastal ocean CO2 uptake 164 
increased by 0.02 Pg C yr-1 due to the increased riverine nutrient inputs (Lacroix et al., 2021). In the Arctic, 165 
doubling riverine nutrient delivery increased PP by 11% on average and by up to 35% locally, while the riverine 166 
DOC input induced CO2 outgassing resulted in 25% reduction in C uptake in the Arctic Ocean (Terhaar et al., 167 
2019). 168 
Although the historical and contemporary impacts of riverine nutrients and carbon have been considered 169 
increasingly, their impacts on future projections of marine biogeochemistry have not been sufficiently addressed. 170 
Taking advantage of the latest improvement of global river nutrient/carbon export datasets, e.g., NEWS 2 171 
(https://marine.rutgers.edu/globalnews/datasets.htm) and GLORICH 172 
(https://doi.pangaea.de/10.1594/PANGAEA.902360), and responding to the demand of development of ESMs 173 
with increasing model resolution, the assessment of the impact of riverine nutrients and carbon on future 174 
projections of marine biogeochemistry becomes feasible and desired.  175 
In this study, we aim to assess the impact of riverine nutrients and carbon on the projected changes in regional 176 
and global marine PP and air-sea CO2 exchange by addressing the following questions: 177 

1)  How does the presence of riverine fluxes of nutrient and carbon affect the contemporary representation of 178 
marine PP and C uptake in our model?  179 

2)  How does the presence of riverine fluxes of nutrient and carbon affect the future projections of marine PP 180 
and C uptake?  181 

3)  How important is the consideration of transient changes in riverine fluxes of nutrient and carbon on the 182 
future projections?  183 

We explore these questions by performing a series of transient historical and 21st century climate simulations 184 
under the RCP 4.5 (middle-of-the-road) scenario with the fully coupled Norwegian Earth system model (NorESM) 185 
under four different riverine input configurations. Another objective of the study is to explore the best practical 186 
way of implementing riverine inputs into future versions of NorESM. Because of the coarse resolution of the 187 
version used here, a series of processes in the coastal zone cannot be represented in our study such as the high 188 
accumulation of organic sediment in shallow waters and respective remineralization rates of previously deposited 189 
material (Arndt et al., 2013; Regnier et al., 2013). These processes can only be presented in models of much higher 190 
spatial resolution, which are at present too costly to be integrated long enough to simulate the large-scale water 191 
masses adequately and project long-term scale climatic change. Given missing contributions from unresolved 192 
processes, our results are to be interpreted as lower bound estimates.  193 

2 Methods 194 

2.1 Model description 195 

All simulations in this study have been performed with the Norwegian Earth System Model version 1 (NorESM1-196 
ME, hereafter NorESM) (Bentsen et al., 2013), a state-of-the-art climate model that provided input to the Fifth 197 
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Coupled Model Intercomparison Project (CMIP5) (Taylor et al., 2011). The model is based on the Community 210 
Earth System Model version 1 (CESM1) (Hurrell et al., 2013). The atmospheric, land and sea ice components are 211 
the Community Atmosphere Model (CAM4) (Neale et al., 2013), the Community Land Model (CLM4) (Oleson 212 
et al., 2010; Lawrence et al., 2011) and the Los Alamos National Laboratory sea ice model (CICE4) (Holland et 213 
al., 2011), respectively. An interactive aerosol-cloud-chemistry module has been added to the atmospheric 214 
component (Kirkevåg et al., 2013). The physical ocean component—the Bergen Layered Ocean Model (BLOM, 215 
formerly called NorESM-O) (Bentsen et al., 2013)—is an updated version of the Miami Isopycnic Coordinate 216 
Ocean Model (MICOM) (Bleck and Smith, 1990; Bleck et al., 1992) and features a stack of 51 isopycnic layers 217 
(potential densities ranging from 1028.2 to 1037.8 kg m-3 referenced to 2000 dbar) with a two-layer bulk mixed 218 
layer on top. The depth of the bulk mixed layer varies in time and the thickness of the topmost layer is limited to 219 
10 m in order to allow for a faster air-sea flux exchange. The ocean and sea ice components are implemented on 220 
a dipolar curvilinear horizontal grid with a 1° nominal resolution that is enhanced at the Equator and towards the 221 
poles, and its northern grid pole singularity is rotated over Greenland. The atmosphere and land components are 222 
configured on a regular 1.9° x 2.5° horizontal grid. 223 
The ocean biogeochemistry component of NorESM is based on the Hamburg Ocean Carbon Cycle Model 224 
(HAMOCC5) (Maier-Reimer et al., 2005). The component has been tightly coupled to NorESM-O such that both 225 
components share the same horizontal grid as well as vertical layers and that all tracers are transported by the 226 
physical component at model time step (Assmann et al., 2010). Tuning choices and further improvements to the 227 
biogeochemistry component are detailed in Tjiputra et al. (2013). Here we only summarise features of particular 228 
importance to this study. The partial pressure of CO2 (pCO2) in seawater is calculated as a function of surface 229 
temperature, salinity, pressure, dissolved inorganic carbon (DIC) and total alkalinity (TA). Dissolved iron is 230 
released to the surface ocean with a constant fraction (3.5%) of the climatology monthly aerial dust deposition 231 
(Mahowald et al., 2005), but only 1% of this is assumed to be bio-available. Nitrogen fixation by cyanobacteria 232 
occurs when nitrate in the surface water is depleted relative to phosphate according to the Redfield ratio (Redfield 233 
et al., 1934). Phytoplankton growth in the model depends on temperature, availability of light and on the most 234 
limiting nutrient among phosphate, nitrate and iron. Constant stoichiometric ratios for the biological fixation of 235 
C, N, P and ∆O2 (122 : 16 : 1 : -172) are prescribed in HAMOCC5, and are extended by fixed Si : P (25 : 1) and 236 
Fe : P (3.66 x 10-4 : 1) stoichiometric ratios. HAMOCC5 prognostically simulates export production of particulate 237 
organic carbon (POC). It is assumed that a fraction of POC production is associated with diatom silica production, 238 
and the remaining fraction is associated with calcium carbonate production by coccolithophorides. The fraction 239 
of diatom-associated production is calculated from silicate availability, effectively assuming that diatoms are able 240 
to out-compete other phytoplankton growth under favorable (high surface silicate concentration) growth 241 
conditions. Particles, including POC, biogenic silica, calcium carbonate and dust are advected by ocean circulation 242 
in the model. Those particles sink through the water column with constant sinking speeds and are remineralized 243 
at constant rates. HAMOCC5 includes an interactive sediment module with 12 biogeochemically active vertical 244 
layers. Permanent burial of particles out of the deepest sediment layer represents a net loss of POC, calcium 245 
carbonate and silica from the ocean/sediment system and is compensated by atmospheric and riverine inputs on a 246 
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time scale of several thousand model-years. More detailed model description and parameters are documented in 253 
previous publications (Bentsen et al., 2013; Tjiputra et al., 2013).  254 

2.2 Model evaluation 255 

The overall performance of the physical and biogeochemistry ocean components has been evaluated elsewhere 256 
(Bentsen et al., 2013; Tjiputra et al., 2013). Here we only briefly review the model performance of the mostly 257 
relevant variables for this study, namely PP and air-sea CO2 fluxes. 258 
The simulated distribution of annual mean surface PP is in good agreement with the remote sensing-based 259 
estimates from Behrenfeld and Falkowski (1997), with the largest model-data deviation in the eastern equatorial 260 
Pacific and parts of the Southern Ocean (known as High-Nutrient-Low-Chlorophyll regions), where the model 261 
overestimates PP (the Arctic Ocean was not assessed in that study; Tjiputra et al., 2013). Along the continental 262 
margins, the simulated PP is generally underestimated compared to the remote sensing-based estimates (Tjiputra 263 
et al., 2013), which may relate to the lack of riverine inputs and/or unresolved shelf processes due to coarse model 264 
resolution. Additionally, our model simulates a comparable magnitude of projected decrease in PP, by the end of 265 
the 21th century compared to historical period, with other global models (see detailed discussion in section 4.1).  266 
In the Arctic Ocean, the simulated PP in our model is biased towards lower values. In the study by Skogen et al. 267 
(2018), the NorESM model is compared with a regional model that comprises part of the Arctic region, and it 268 
shows that the NorESM simulates too late and too short bloom period than the regional model, hence the annual 269 
integrated PP is too low. In a multi-model study (Lee et al., 2016) that assesses the relative skills of 21 regional 270 
and global biogeochemical models in reproducing the observed contemporary Arctic PP, the NorESM is shown 271 
to have a negative bias of -0.49, but is well within the multi-model mean bias of -0.31±0.39. Many 272 
coarse/intermediate resolution global models also show considerably lower net PP in the Arctic (Terhaar et al., 273 
2019). Such common shortcomings in global scale marine biogeochemical models can partly be attributed by the 274 
simplified, not regionally adapted ecosystem parameterization, which can be improved through data assimilation 275 
(Tjiputra et al., 2007; Gharamti et al., 2017). Despite the biased low PP under the contemporary climate, the 276 
projected absolute change of 70 Tg C yr-1 by the end of the 21th century is well within the range estimated from 277 
other ESMs (Vancoppenolle et al., 2013). 278 
Tjiputra et al. (2013) also evaluated the simulated mean annual sea-air CO2 fluxes for the 1996–2005 period 279 
against observational-based estimates by Takahashi et al. (2009) and concluded that the model broadly agrees 280 
with the observations in term of spatial variation, although in the equatorial Indian Ocean and in the polar Southern 281 
Ocean (South of 60˚ S) the model underestimates outgassing and overestimates C uptake, respectively. 282 

2.3 Riverine data 283 

The influx of carbon and nutrients from over 6000 rivers to the coastal oceans has been implemented in 284 
HAMOCC5 based on previous work of Bernard et al. (2011) but with modifications that are outlined in the 285 
following paragraphs.  286 
The riverine influx includes carbon, nitrogen and phosphorus, each in dissolved inorganic, dissolved organic, and 287 
particulate forms, as well as TA, dissolved silicon and iron (Fe). Except for DIC, TA and Fe, all data are provided 288 
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by the NEWS 2 model (Mayorga et al., 2010), which is a hybrid of empirical, statistical and mechanistic model 298 
components that simulate steady-state annual riverine fluxes as a function of natural processes and anthropogenic 299 
influences. The NEWS 2 data product contains historical (year 1970 and 2000) and future (year 2030 and 2050) 300 
estimates of riverine fluxes of carbon and nutrients. The future products are developed based on four Millennium 301 
Ecosystem Assessment scenarios (Alcamo et al., 2006): Global Orchestration (GNg), Order from Strength (GNo), 302 
Technogarden (GNt) and Adapting Mosaic (GNa). These scenarios represent different focuses of future society 303 
on e.g., globalization or regionalization, reactive or proactive environmental management and their respective 304 
influences on efficiency of nutrient use in agriculture, nutrient release from sewage, total crop and livestock 305 
production along with others (see Table 1 for a brief summary; Seitzinger et al., 2010). The NEWS 2 riverine 306 
dataset has been calibrated and assessed against measured yields (Mayorga et al., 2010) and has been widely used 307 
and evaluated for different river estuaries (van der Struijk and Kroeze, 2010; Terhaar et al., 2019; Tivig et al., 308 
2021). For example, van der Struijk and Kroeze (2010) compared the NEWS 2 nutrient yields to observed values 309 
for South American rivers and indicated that the NEWS 2 models in general perform reasonably well for South 310 
American rivers with the variations in yields among rivers described well, although the model performs better for 311 
some rivers such as the Amazon than for others. We have compared DIN and dissolved organic nitrogen (DON) 312 
from NEWS 2 with measured data from PARTNERS Project (Holmes et al., 2012) for the six largest Arctic rivers 313 
around year 2000 (Table C1). The NEWS 2 dataset compares fairly well with the measured data, especially for 314 
the Eurasian Arctic rivers with 3.5-28.6% deviation in DIN and 7.3-34.8% in DON, while the discrepancy is larger 315 
in the Canadian-Alaska Arctic rivers (i.e., Yukon and Mackenzie rivers) with upto 80.8% and 100% deviation in 316 
DIN and DON, respectively. 317 
The DIC and TA fluxes, provided by Hartmann (2009), are produced from a high-resolution model for global 318 
CO2 consumption by chemical weathering and are implemented to the NEWS 2 river basin map. Riverine Fe flux 319 
is calculated as a proportion of a global total input of 1.45 Tg yr-1 (Chester, 1990), weighted by water runoff of 320 
each river. Only 1% of the riverine Fe is added to the oceanic dissolved Fe, under the assumption that upto 99% 321 
of the fluvial gross dissolved Fe is removed during estuarine mixing (Boyle et al., 1977; Figuères et al., 1978; 322 
Sholkovitz and Copland, 1981; Shiller and Boyle, 1991).  323 
At the river mouths, all fluxes are interpolated to the ocean grid in the same way as the freshwater runoff, which 324 
is distributed as a function of river mouth distance with an e-folding length scale of 1000 km and cutoff of 300 325 
km.  326 
In HAMOCC5, there is one dissolved organic pool (DOM) and one particulate organic pool (DET, detritus). First, 327 
we calculate the riverine organic P-N-C ratios for both dissolved and particulate forms, then add the least abundant 328 
species (scaled by the Redfield ratio) to the DOM and DET pools, respectively. The excess budget from the 329 
remaining two species both in dissolved and in particulate forms are assumed to be directly remineralized into 330 
inorganic form and added to the corresponding dissolved inorganic pools (i.e., DIP, DIN, and DIC) in the ocean. 331 

2.4 Experimental design 332 

The fully coupled NorESM model is spun up for 900 years with external forcings fixed at preindustrial year-1850 333 
levels prior to our experiments (Tjiputra et al., 2013). The atmospheric CO2 mixing ratio is set to 284.7 ppm 334 
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during the spin-up. Nutrients and oxygen concentrations in the ocean are initialised with the World Ocean Atlas 355 
dataset (Garcia et al., 2013a, b). Initial DIC and TA fields are taken from the Global Data Analysis Project (Key 356 
et al., 2004). After 900 years, the ocean physical- and biogeochemical tracer distributions reach quasi-equilibrium 357 
states. We extended the spin-up for another 200 years with riverine input for each experiment (except for the 358 
reference run) and then performed a set of transient climate simulations for the industrial era and the 21st century 359 
(1850-2100). The simulations use external climate forcings that follow the CMIP5 protocol (Taylor et al., 2011). 360 
For the historical period (1850-2005), observed time-varying solar radiation, atmospheric greenhouse gas 361 
concentrations (including CO2), natural and anthropogenic aerosols are prescribed. For the future period (2006-362 
2100), the Representative Concentration Pathway (RCP) 4.5 (van Vuuren et al., 2011) is applied. Here, we 363 
consider RCP4.5 as the representative future scenario following the CO2 emission rate based on the submitted 364 
Intended Nationally Determined Contributions, which projects a median warming of 2.6–3.1˚C by 2100 (Rogelj 365 
et al., 2016). The riverine input configurations employed in this study are summarized in Figure 1. The evolution 366 
of global total fluxes of each nutrient/carbon species are shown in Figure 2. The experiment configurations are 367 
described as follows: 368 
● REF: Reference run. Riverine nutrient and carbon supply is deactivated. 369 
● FIX and FIXnoc: Fixed at recent-past level. FIX: A constant riverine nutrient and carbon supply, 370 

representative for the year 1970 as provided by NEWS 2, is applied to the model throughout the whole 371 
experiment duration. FIXnoc: As FIX but only with nutrients supply, all carbon (DIC, DOC, POC) and TA 372 
fluxes are deactivated. 373 

● RUN: Coupled to simulated freshwater runoff. Riverine nutrient and carbon supply representative for the 374 
year 1970 is linearly scaled with the on-line simulated freshwater runoff divided by the climatological mean 375 
runoff over 1960-1979 of the model. Thus, the inputs follow the seasonality and long-term trend of the 376 
simulated runoff. We assume that the nutrient and carbon concentrations in the rivers are constant at the 377 
level of 1970, but the fluxes fluctuate with freshwater runoff.  378 

● GNS: Four different transient inputs following future projections of NEWS 2. A constant riverine nutrient 379 
and carbon supply representative for year 1970 has been applied from year 1850 to 1970. Between year 1970, 380 
2000, 2030 and 2050 the annual riverine supply is linearly interpolated. From year 2050 to 2100 the annual 381 
riverine supply is linearly extrapolated. From year 2000, riverine supplies of the four NEWS 2 future 382 
scenarios (GNa, GNg, GNo and GNt) are applied.  383 

By comparing FIX versus REF, we assess how the presence of riverine inputs affect the contemporary marine PP 384 
and C uptake representation and also the projected changes. By comparing RUN versus FIX we assess the 385 
potential effects of riverine nutrient and carbon long-term trends associated with an intensifying global 386 
hydrological cycle on marine PP and C uptake. RUN represents a first step towards coupling riverine nutrient and 387 
carbon fluxes to the simulated hydrological cycle. By comparing the GNS configurations versus FIX we assess 388 
how plausible, realistic future evolutions in riverine nutrient and carbon fluxes may impact marine PP and C 389 
uptake projections. We span the uncertainty in future riverine nutrient and carbon fluxes by considering multiple 390 
NEWS 2 scenarios. 391 

Deleted: ALK392 

Formatted: Font: Arial, 12 pt, Font colour: Text 1,
, Pattern: Clear (White)
Formatted
Deleted: assume that393 

Formatted

Deleted: middle-of-the-road scenario with some mitigations 394 
to be the most 395 

Formatted

Deleted: .396 

Formatted: Font: 12 pt
Deleted: Figure 2.397 

Deleted: contemporary398 
Deleted: alkalinity399 
Deleted: not considered400 

Deleted: Transient input401 

Deleted: biogeochemistry402 

Deleted: biogeochemistry.403 

Deleted: biogeochemistry404 



 

 
 
 
 
 

Formatted: Header

Deleted: 9¶

3 Results 405 

3.1 Effect of including riverine inputs on contemporary marine PP and C uptake  406 

We start with assessing how the inclusion of riverine nutrients and carbon affects the contemporary representation 407 
of the global marine PP and C uptake in our model by comparing the annual mean output over the years 2003–408 
2012 between the REF and FIX experiments. We also compare with satellite and observational based estimates 409 
to see if the inclusion of riverine nutrients and carbon improves the marine PP and C uptake representation in our 410 
model. The spatially integrated values presented in this and following sections are summarized and supplemented 411 
with statistical robustness information in Tables B1 and B2 in Appendix B.                                                                                                                                                                                                     412 
The annual net primary production (PP) is 40.1 and 43.0 Pg C yr-1 in the REF and FIX experiments, respectively. 413 
The increase of PP in FIX occurs along continental margins (where seafloor is shallower than 300 m) and also in 414 
the North Atlantic region (0°N-65°N, 0°W-90°W), accounting for 15.4% and 24.9% of the global total increase, 415 
respectively (Figure 3c). The simulated global total PP in both REF and FIX are lower than the satellite-based 416 
model estimates, including Vertically Generalized Production Model (VGPM), Eppley-VGPM and Carbon-based 417 
Production Model (CbPM) over the same time period (data source:  418 
http://www.science.oregonstate.edu/ocean.productivity), ranging from 55 to 61 Pg C yr-1 (Behrenfeld and 419 
Falkowski, 1997; Westberry et al., 2008). Although the total PP in FIX is still considerably lower than the satellite-420 
based estimates, the inclusion of riverine nutrients and carbon does slightly improve the distribution of PP 421 
especially on continental margins (Figure 3), according to our area-weighted root mean square error (RMSE) 422 
analysis. The RMSE of REF relative to mean observational estimates (mentioned above) averages 10.7 mol C m-423 
2 yr-1 globally, while the value of FIX is 10.3 mol C m-2 yr-1, which is reduced by 3.7%. For the continental margins, 424 
the RMSE is reduced by 5.5% from 29.0 mol C m-2 yr-1 in REF to 27.4 mol C m-2 yr-1 in FIX. 425 
The ocean annual net uptake of CO2 is 2.8 and 2.9 Pg C yr-1 in REF and FIX, respectively, with a FIX-REF 426 
difference of 0.1 Pg C yr-1 equivalent to 3.1% relative change, which is statistically significant (see Table B2). In 427 
FIX the ocean carbon uptake is generally enhanced everywhere except for the upwelling regions of the Southern 428 
Ocean and in the subpolar North Atlantic between approximately 50°N-65°N and 60°W-10°W (Figure 4c). To 429 
isolate the impact of riverine nutrients input from carbon input, an additional experiment (FIXnoc) was conducted, 430 
where the nutrient fluxes are implemented the same as in FIX, while all carbon (DIC, DOC, POC) and TA fluxes 431 
are eliminated. As shown in Figure 4d, the nutrients input results in more CO2 uptake not only at large river 432 
estuaries but also in the subtropical gyres due to enhanced primary production. In the subpolar North Atlantic and 433 
in the Southern Ocean upwelling region, the addition of riverine nutrients leads to enhanced outgassing. The 434 
riverine carbon input, on the other hand, leads to CO2 outgassing mainly at river estuaries (Figure 4e), but also in 435 
a band along the gulf stream extending into the North Atlantic, where it accounts for 18.1% of the CO2 outgassing 436 
in the subpolar region (50°N-65°N, 60°W-10°W). Along the continental margins the nutrients input increases the 437 
CO2 uptake, while the carbon input has an opposite effect which induces more outgassing. The net effect of both 438 
nutrient and carbon inputs shows that the uptake of CO2 dominates over the outgassing, along the continental 439 
margins and in subtropical gyres (Figure 4c). Compared to the observational based estimates of Landschützer et 440 
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al. (2017) (Figure 4a) and according to our RMSE analysis, the inclusion of riverine nutrients and carbon does 472 
not improve the simulated air-sea CO2 fluxes globally. The RMSE of FIX relative to observational estimates 473 
averages to 0.83 mol C m-2 yr-1 globally, which does not differ much from the value of REF (0.84 mol C m-2 yr-474 
1). However, there is a distinguishable improvement of the distribution of air-sea CO2 fluxes in the subpolar North 475 
Atlantic (RMSE is reduced by 8.2%, from 0.73 mol C m-2 yr-1 in REF to 0.67 mol C m-2 yr-1 in FIX), with slight 476 
degradations in some other regions (Figure 4c). 477 

3.2 Effect of including contemporary riverine inputs on future projections of marine PP and C uptake 478 

We now address how the inclusion of riverine nutrient and carbon fluxes affects future projections of marine PP 479 
and C uptake by comparing the average output between a future period (2050–2099) and a historical period (1950–480 
1999) of FIX versus REF. 481 
In both experiments the future projections of global PP averaged over the years 2050–2099 are lower than their 482 
corresponding 1950–1999 averages (Figure 5a). However, when riverine input of nutrient and carbon is included, 483 
the projected decrease of global PP is mitigated from -2.2 Pg C yr-1 in REF to -1.9 Pg C yr-1 in FIX (by 13.6%). 484 
Spatially, the decrease of PP in REF occurs largely in upwelling regions such as the tropical eastern Pacific and 485 
tropical Atlantic, as well as along a latitude band around 40ºS (Figure 6a). The riverine inputs alleviate the 486 
projected PP decrease in those regions (see further discussion in Section 4.2) and reinforce the projected PP 487 
increase in high latitudes (Figure 6b, c). The future projections of PP in the Arctic Ocean show significant 488 
increases in both REF and FIX. Climate change alone (REF, without riverine inputs) almost doubles the simulated 489 
PP in the Arctic from 0.08 Pg C yr-1 during 1950–1999 to 0.15 Pg C yr-1 in 2050–2099 (Figure 5b), likely as a 490 
consequence of sea ice retreat. FIX, which includes riverine inputs, exhibits a slightly larger (but significant, see 491 
Table B1) absolute Arctic PP increase (from 0.10 to 0.18 Pg C yr-1) in its future projection than REF. 492 
For global net uptake rate of CO2, both experiments (REF and FIX) project a significant increase under the RCP4.5 493 
(Figure 7a). The inclusion of riverine inputs leads to a slightly higher (but significant, see Table B2) (2.4%) 494 
projected increase of 1.28 Pg C yr-1 in FIX compared with 1.25 Pg C yr-1 in REF. The increase rate of CO2 uptake 495 
in the Arctic closely follows the global trend (Figure 7b). Spatially, there is a widespread simulated increase in 496 
ocean uptake of CO2 under future climate change except in the subtropical gyres (Figure 8a). Riverine nutrients 497 
input slightly increases the projected carbon uptake at large river estuaries, while decreases the projected uptake 498 
in subpolar North Atlantic (Figure 8d).  499 

3.3 Effect of future changes in riverine inputs on marine PP and C uptake projections  500 

Finally, we address how future changes in riverine fluxes of nutrients and carbon affect marine PP and C uptake 501 
by comparing the projected changes for the time period 2050–2099 relative to 1950–1999 among FIX, RUN and 502 
the four GNS experiments. 503 
The future projected decrease of PP in the four GNS averages to -1.6 Pg C yr-1, which is less in magnitude 504 
compared to FIX (-1.9 Pg C yr-1) and RUN (-1.8 Pg C yr-1) (Figure 5a). Spatial distributions of projected PP 505 
changes in GNS and their respective differences relative to FIX are shown in Figure 9. The latter occur 506 
predominantly on the continental shelf in Southeast Asia, where the future projected increase in riverine nutrient 507 
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load is the largest in the world in GNS (Seitzinger et al., 2010). Interestingly, the projected increase in PP in 578 
Southeast Asia, induced by riverine nutrient inputs in GNS, is of the same order of magnitude as the projected 579 
decrease in PP due to future climate change in REF. Thus, in GNS the PP are projected to slightly increase on the 580 
continental shelf of Southeast Asia (Figure 9a-d). The riverine nutrient induced PP increase in FIX or RUN is not 581 
large enough to compensate the PP decline due to climate change, since the projected changes in riverine nutrient 582 
inputs are not taken into account in FIX or locally underestimated in RUN. 583 
On the other hand, the future projected global uptake of CO2 in GNS (1.13 Pg C yr-1 in average) is reduced 584 
compared to REF (1.25 Pg C yr-1), which shows an opposite change than FIX (1.28 Pg C yr-1) and RUN (1.29 Pg 585 
C yr-1). The changes in riverine inputs in GNS emerge along continental margins, especially around large river 586 
estuaries (Figure 10e-h), where the dissolved organic matter (DOM), that is projected to increase in GNS, enters 587 
the ocean and releases CO2 to the atmosphere (Seitzinger et al., 2010).   588 
Despite the regional differences, there is no significant difference in the projected changes in either globally 589 
integrated PP or CO2 uptake among the four GNS in our model (Figures 5 and 7, see further discussion in Section 590 
4.3).  591 

4 Discussion 592 

4.1 Projected marine PP and C uptake changes  593 

The projected global total PP shows up to 29.5% less decrease, if riverine inputs are present in the model. This is 594 
mainly because the riverine nutrient inputs into the surface ocean alleviates the increasing nutrient limitation 595 
caused by stronger stratification under future climate warming.  596 
In our model, PP is roughly linearly related to the concentrations of the most limiting nutrient (Nut), light intensity 597 
(I), temperature (T) and the available phytoplankton concentration (Phy), i.e., PP ~ Nut · I ·f(T) · Phy. It is shown 598 
in Figure 6a that under climate change the projected decrease in PP occurs mainly in low- and mid-latitudes. 599 
Nitrate is the limiting nutrient (in REF) in almost everywhere except in the Central Indo-Pacific region, in the 600 
South Pacific subtropical gyre, in the Bering Sea and part of the Arctic, where Fe is limiting (Figure A1). Projected 601 
reduction in surface nitrate concentrations (Figure A2b), which is tightly linked to the upper ocean warming and 602 
increased vertical stratification (Bopp et al., 2001; Behrenfeld et al., 2006; Steinacher et al., 2010; Cabré et al., 603 
2015), contributes to the projected decrease in PP in our model. The simulated global mean PP over 2050–2099 604 
is 38.9 Pg C yr-1 in REF, which is 2.24 Pg C yr-1 lower than the value over 1950–1999. This -5.4% projected 605 
change in PP is comparable with the multi-model mean estimate of projected change of -3.6 ± 5.7% in the 2090s 606 
relative to the 1990s for RCP4.5 (Bopp et al., 2013) and sits in the range of 2-13% decrease projected by four 607 
ESMs over the 21st century under the SRES A2 scenario (Steinacher et al., 2010). It is also still within the range 608 
of the 13 multi-model mean projected PP change of -1.13 ± 5.81% under the CMIP6 Shared Socioeconomic 609 
Pathways SSP2-4.5 when comparing mean values in 2080–2099 relative to 1870–1899 (Kwiatkowski et al., 2020), 610 
given that the inter-model uncertainties in projected PP have increased in CMIP6 compared to CMIP5 (Tagliabue 611 
et al., 2021). 612 

Deleted: increase in the 613 
Deleted: 132614 
Deleted: smaller615 
Deleted: 280616 
Deleted: 290617 
Deleted: Differences618 

Deleted: biogeochemistry619 

Deleted: projection of620 
Deleted: We argue that this621 

Deleted:  experiment622 

Deleted: A2c623 
Deleted: -624 
Deleted: . 2006;625 
Deleted: -626 
Deleted: -627 
Deleted: (±628 
Deleted: ) 629 

Formatted: Superscript
Deleted: 2010630 



 

 
 
 
 
 

Formatted: Header

Deleted: 12¶

When riverine nutrient fluxes are added into coastal surface waters in FIX, the PP is higher in both historical and 631 
future periods compared to REF (Figure 5a), due to alleviated nutrient limitation. Interestingly, the effect of 632 
riverine inputs on PP for the historical and future time periods is not the same, suggesting a different nutrient 633 
depletion level (Figure A2b). The projected decrease in PP is lessened from -5.4% in REF to -4.4% in FIX. It 634 
implies that during 1950–1999 the riverine nutrients are not depleted by primary producers, while during 2050–635 
2099 the riverine nutrients are utilized to a greater extent due to the exacerbated nutrient limitation (Figure A2b) 636 
and potentially to higher phytoplankton growth rate in warmer climate. Figure 12 illustrates this in a schematic 637 
diagram that shows the impact of riverine nutrients on projected PP in low- and mid-latitudes. Moreover, the 638 
inclusion of constant riverine inputs (FIX) can potentially explain one tenth of the ~10% (2-13%, Steinacher et 639 
al., 2010) inter-model spread. 640 
In contrast to the global PP, there are considerable increases in the future projected PP in the Arctic in REF (Figure 641 
5b). In polar regions light and temperature are the primary limiting factors for phytoplankton growth, therefore 642 
PP increases when light and temperature become more favourable owing to sea-ice melting under warmer 643 
conditions (Sarmiento et al., 2004; Bopp et al., 2005; Doney, 2006; Steinacher et al., 2010). On the other hand, 644 
the fresher and warmer surface water increases stratification, prohibiting nutrients upwelling (Figure A2b), which 645 
counteracts the increase in PP. Therefore, when riverine nutrients input is present in the model, it helps to sustain 646 
the projected PP increase in the Arctic, although this effect is only minor (Figure 5b). 647 
The ocean annual net uptake of CO2 increases significantly during 2050–2099 compared with the uptake during 648 
1950–1999 in REF (Figure 7a), which is mainly driven by increasing difference in air-sea partial pressure of CO2. 649 
The riverine inputs have a two-fold effect on the ocean C uptake. It is the competition between the riverine 650 
(inorganic and organic) nutrients input induced CO2 uptake and the riverine carbon input induced CO2 outgassing, 651 
which determines whether the shelf is a C sink or a C source. However, the composition of the riverine organic 652 
matter (i.e., carbon to nutrient ratio) and the degradation timescales which are the key factors, have been debated 653 
over the last three decades (Ittekkot, 1988; Hedges et al., 1997; Cai, 2010; Bianchi, 2011; Blair and Aller, 2011; 654 
Lalonde et al., 2014; Galy et al., 2015). It is generally agreed that the riverine organic carbon to nutrient ratio is 655 
high (e.g., C:P weight ratio larger than 700, Seitzinger et al., 2010) and the degradation and resuspension rates in 656 
shallow shelf seas/sediment are higher than the open ocean (Krumins et al., 2013). It suggests that at shallow and 657 
near-shore areas the riverine carbon input usually results in a CO2 source to the atmosphere, while at deeper outer 658 
shelf areas the riverine nutrient input causes PP increase and a CO2 sink, and the magnitudes of the C source and 659 
sink on the continental shelves almost compensate each other. This phenomenon has been discussed by both 660 
measurement-based studies (Borges and Frankignoulle, 2005; Chen and Borges, 2009) and modelling studies (e.g., 661 
Lacroix et al., 2020). However, the spatial resolution in our model is not fine enough to differentiate the near-662 
shore and outer shelf processes. This partly contributes to comparable CO2 outgassing near shore (due to riverine 663 
C) and CO2 ingassing on outer shelves (due to riverine inorganic and organic nutrients input), leading to a globally 664 
weak integrated C sink on the continental margins in FIX and RUN experiments for both historical and future 665 
time periods. Although the riverine input of nutrients and C are constant for both time periods in FIX, the riverine 666 
induced C uptake is slightly (but significantly) bigger (0.03 Pg C yr-1) during 2055–2099 compared to 1950–1999, 667 
which indicates that the riverine nutrients input is slightly dominant over riverine C input in FIX, and the riverine 668 
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nutrients are utilized more in the future period. On the other hand, in GNS the riverine inputs reduce globally 682 
integrated C uptake for both historical and future time periods, but not equally. It reduces more in the future period 683 
(2050–2099) than the historical period (1950–1999), which implies that the effect of riverine C input in the future 684 
scenarios are more dominant over nutrients input. A recent modelling study (Lacroix et al., 2021), which uses a 685 
finer resolution (~0.4˚) global model with improved shelf processes, has also reported a 0.03 Pg C yr-1 increase in 686 
global C uptake induced by terrestrial nutrients input during 1905–2010, although they have applied temporally 687 
varying (increasing) nutrients and no riverine C input. Simulations with high-resolution global or regional models 688 
with more realistic representation of shelf processes are required to accurately assess the impact of riverine inputs 689 
on carbon cycling in the coastal ocean. 690 

4.2 Different riverine configurations 691 

By exploring different riverine configurations (FIX, RUN, GNS) we investigate how uncertainties in future 692 
riverine fluxes translate into uncertainties in projected PP and C uptake changes. In RUN we assume constant 693 
concentrations (at 1970’s level) of riverine nutrient and carbon over time and couple them to the simulated 694 
freshwater runoff. Thus, the annual global total fluxes of nutrient and carbon vary with time following the 695 
variability of runoff (Figure 2), in contrast to the constant fluxes in FIX. The global total simulated runoff, under 696 
RCP4.5 in our model, is on average higher during 2050–2099 than the runoff during 1950–1999, indicating an 697 
intensified hydrological cycle under future climate change. Hence, the global riverine fluxes of nutrient and carbon 698 
during 2050–2099 are higher than those during 1950–1999 in RUN. However, the temporal changes in global 699 
riverine fluxes in RUN are relatively small compared with the absolute flux values in FIX, which explains the 700 
slightly larger projected changes in global PP and ocean carbon uptake in RUN compared to FIX. It is noteworthy 701 
that the large inter-annual variability in the riverine fluxes of nutrient and carbon in RUN does not increase the 702 
inter-annual variability in simulated PP and ocean carbon uptake either globally or on the continental margins 703 
(Figure 11), something that warrants further investigation. The approach of RUN serves as a trial to introduce 704 
seasonal and inter-annual variability in riverine nutrient and C inputs that is linked to hydrological variability. It 705 
should be explored in future works if RUN and GNS can be integrated to produce more realistic long-term trends 706 
in riverine nutrient and C inputs as well as short-term variability. Although the RUN approach is more 707 
sophisticated when compared to FIX, it employs a linear relationship between the future riverine nutrient and C 708 
fluxes and the simulated hydrological cycle, which is a highly simplified assumption (see discussion in section 709 
4.3). 710 
Figure 2 shows that the inputs of DIN and DIP are considerably lower, while the dissolved silicon (DSi) and 711 
particulate organic matter (POM) are higher in the future period in RUN compared to GNS. This is because many 712 
anthropogenic processes that are important for determining the future riverine fluxes are not considered in RUN, 713 
but are considered in NEWS 2 model system, from which the GNS’ future scenarios are simulated. For example, 714 
the nutrient management in agriculture, the sewage treatment and phosphorus detergent use, and the increased 715 
reservoirs from global dam construction in river system (Seitzinger et al., 2010; Beusen et al., 2009) are the key 716 
factors affecting future riverine fluxes of DIN, DIP, and DSi/POM, respectively. Therefore, it is worth exploring 717 
the merits of using GNS in future projections of marine biogeochemistry. The four future scenarios provide a 718 
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range of potential outcomes resulting from different choices tending toward either globalization or regional 735 
orientation, either reactive or proactive approach to environmental threats (see Table 1). A large range of the 736 
riverine inputs in GNS, e.g., temporal changes in DIN fluxes across scenarios ranging 24.8-63.0% of the annual 737 
flux in FIX, do not transfer to large uncertainties in future projections of global marine PP in our model, which 738 
can primarily be attributed to unresolved shelf processes due to coarse model resolution. However, the scenario 739 
differences might be of importance in regional projections, such as in seas surrounded by highly populated nations 740 
and near river estuaries. Simulations with high-resolution global or regional models with a good representation of 741 
shelf processes are required to accurately assess the local impact of riverine inputs. 742 

4.3 Limitations and uncertainties 743 

Given that the riverine nutrient and carbon inputs account for only a small proportion of the total amount of 744 
nutrients and carbon in the euphotic zone of the ocean, we acknowledge several limitations of our study, 745 
particularly related to the complexity and resolution of our ESM. Firstly, coarse-resolution models tend to 746 
underestimate PP along the coast. Such well-known model issues may offset the impact induced by riverine inputs. 747 
Secondly, shelf processes, which are not well represented in our model due to coarse resolution, modify a large 748 
fraction of some riverine species, e.g., conversion of organic carbon to CO2 occurs rapidly via remineralization in 749 
estuaries before they are transported to the open ocean. Further, some simplified processes of the model may 750 
introduce bias in the results, e.g., how the model deals with the riverine dissolved organic and particulate matter. 751 
In our model, there is only one dissolved organic pool (DOM) and one particulate organic pool (DET), and the 752 
Redfield ratio (P-N-C) needs to be kept. Therefore, the P-N-C ratios of riverine input for both dissolved organic 753 
matter (including DON, DOP and DOC) and particulate (inorganic and organic) matter (including particulate 754 
nitrogen, particulate phosphorus and POC) are calculated, then the least abundant species (scaled by the Redfield 755 
ratio) are added to the DOM and DET pools, respectively. The excess budget from the remaining two species (of 756 
P, N or C) are assumed to be directly remineralized into inorganic form and added to the corresponding dissolved 757 
inorganic pools (i.e., DIP, DIN, or DIC) in the ocean. This simplification may result in overestimation of riverine 758 
dissolved inorganic nutrients and thereby riverine induced PP enhancement. Especially, in NEW 2 dataset 759 
particulate P is typically dominated by inorganic forms (Mayorga et al., 2010), which means that it is likely not 760 
directly bio-available. Therefore, we have assessed the bias due to the direct remineralization of the riverine 761 
dissolved organic and particulate matter. We calculated firstly the proportion of directly remineralized matter 762 
from the total riverine dissolved organic matter (DOM) and particulate (inorganic and organic) matter (PM) by 763 
using the following equation, i.e., [X/(DOMriv+PMriv)*100%] (X is the directly remineralized dissolved organic 764 
and particulate matter). The directly remineralized part on average accounts for 64.8%, 27.8% and 62.8% of the 765 
total riverine organic and particulate matter of P, N and C, respectively. In a recent study by Lacroix et al. (2021) 766 
who used an enhanced version of HAMOCC (horizontal resolution of ~0.4˚) with improved representation of 767 
riverine inputs and organic matter dynamics in the coastal ocean, they quantified that around 50% of the riverine 768 
DOM and 75% of the POM are mineralized in global shelf waters. Therefore, our model assumption is on track 769 
with the finer-resolution-model estimates and this direct remineralization compensates to some extent the under-770 
represented organic matter degradation rate on the ocean shelf. This bias in riverine dissolved nutrient input may 771 
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further lead to bias in the enhanced PP. We calculated the contribution of the directly remineralized part on the 787 
enhanced PP, by comparing X with the corresponding total riverine dissolved nutrient additions as 788 
[X/(X+DIXriv)*100%] (DIXriv denotes the corresponding riverine dissolved nutrient additions), which accounts 789 
for 80.5%, 33.3%, and 41.1% for P, N, and C, respectively. Assuming that all coastal regions are nutrient limited, 790 
this direct remineralization could be theoretically responsible for 33.3%-80.5% of the enhanced PP, depending on 791 
which nutrient species is limiting the PP. In our model, phosphate is rarely limiting (Figure A1), therefore, the 792 
impact of this direct remineralization on PP is likely on the lower end of this range (33.3%-80.5%). Given that 793 
the proportion of the direct remineralized organic matters in our model is comparable to those reported by Lacroix 794 
et al. (2021), which indicates that there is a considerable fraction of organic matters that remineralize in shelf 795 
waters, the bias on enhanced PP is likely less than 33.3%. 796 
Some approximation and assumption in the experimental setup may also induce uncertainties in our results. Our 797 
spin-up experiment uses riverine nutrient and carbon inputs fixed at 1970 levels, as provided by NEWS 2. As a 798 
caveat, our post-1970 simulated changes in marine PP and CO2 fluxes miss out any legacy effects from riverine 799 
input changes that occurred before 1970. The fixed inputs likely overestimate the accumulated inputs prior 1970, 800 
causing potential underestimation of the projected change impacts. However, Beusen et al. (2016) found that 801 
changes in riverine N and P are relatively small before 1970 compared to changes after 1970. Therefore, we expect 802 
the impact due to missing legacy effects to be minor. Moreover, in FIX we applied riverine inputs at 1970 level 803 
over available inputs at 2000 level, because the former are more representative for the 1950–1999 baseline period. 804 
However, the use of 1970 level input is suboptimal when evaluating simulated PP and CO2 fluxes against 805 
observations obtained after 2000. Beusen et al. (2016) have shown that the riverine N and P has increased by 806 
~40.0% and 28.6%, respectively, from 1970 to 2000. Therefore, the riverine impact may be underestimated when 807 
comparing with the observations during 2003–2012. In RUN, we assume constant concentrations of riverine 808 
nutrient and carbon over time and the fluxes vary with freshwater runoff. This may be applicable for some 809 
nutrients such as DIN or within a certain limit of runoff change such as for dissolved Si (Figure A3). However, 810 
this may not be appropriate for all nutrient/carbon species. Furthermore, the variability of runoff is subject to 811 
inter-annual to decadal climate variability, which partially masks the centennial trend. This caveat can be 812 
overcome through performing multi-realization ensemble simulations.  813 
Lastly, riverine Fe flux is weighted by water runoff of each river and integrated globally as a total input of 1.45 814 
Tg yr-1 (Chester, 1990). To the best of our knowledge, the available global riverine iron dataset is rare. Previous 815 
studies have used various approximation approaches, e.g., constant Fe to dissolved inorganic carbon (DIC) ratio 816 
(Aumont et al., 2015), Fe to phosphorus ratio (Lacroix et al., 2020). In the study by Aumont et al. (2015), the Fe: 817 
DIC ratio is determined so that the total Fe supply also equals 1.45 Tg Fe yr−1 as estimated by Chester (1990). We 818 
are aware that our approximation likely has bias in regional scales, especially in Fe limiting regions like the Arctic. 819 
However, it has likely a minor impact on the projected PP, since light rather than riverine nutrients input is the 820 
primary control of the projected Arctic PP in our model. Also, we have conducted all simulations only under one 821 
IPCC representative concentration pathway scenario (the intermediate RCP 4.5), which may lead to a narrower 822 
possible range of the riverine fluxes induced impact on the projected marine PP and C uptake.   823 
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5 Conclusions 826 

In this study, we apply a fully coupled Earth system model to assess the impact of riverine nutrients and carbon 827 
delivery to the ocean on the contemporary and future marine PP and carbon uptake. We also quantify the effects 828 
of uncertainty in future riverine fluxes on the projected changes, using several riverine input configurations. 829 
Compared to satellite- and observation-based estimates, the inclusion of riverine nutrients and carbon improves 830 
the contemporary spatial distribution only slightly for PP (3.6% reduction in RMSE) and insignificantly for ocean 831 
carbon uptake (0.1% reduction in RMSE) on a global scale, with larger improvements on the continental margins 832 
(5.4% reduction in RMSE for PP) and the North Atlantic region (7.4% reduction in RMSE for carbon uptake). 833 
Concerning future projected changes, decline in nutrients supply in tropical and subtropical surface waters, due 834 
to upper ocean warming and increased vertical stratification, is projected by our model to reduce PP over the 21st 835 
century. Riverine nutrient inputs into surface coastal waters alleviate the nutrient limitation and considerably 836 
lessen the projected future decline in PP from -5.4% without riverine inputs to -4.4%, -4.1% and -3.6% in FIX, 837 
RUN and GNS (averaged over GNa, GNg, GNo and GNt), respectively. Different from the global value, the 838 
projected PP in the Arctic increases considerably, because light and temperature—the primary limiting factors for 839 
phytoplankton growth in polar regions—become more favourable due to sea-ice melting under warmer future 840 
conditions. When riverine nutrient inputs are presented in the model, they further enhance the projected increase 841 
in PP in the Arctic, counteracting the nutrient decline effect due to stronger stratification in the fresher and warmer 842 
surface water.  843 
Depending on the riverine scenarios, where the riverine nutrients input dominates over the C input, the projected 844 
net uptake of CO2 further enhances along continental margins via photosynthesis process. Conversely, where the 845 
riverine C input is dominant over the nutrients input, the projected net uptake of CO2 is reduced, especially at 846 
large river estuaries, due to higher CO2 outgassing. 847 
We have explored a range of riverine input configurations from temporally constant fluxes (FIX), to idealised 848 
time-varying fluxes following variations in simulated hydrological cycle (RUN), to plausible future scenarios 849 
(GNS) from a set of global assumptions. The large range of the uncertainty of the riverine input does not transfer 850 
to large uncertainty of the projected global PP and ocean C uptake in our simulations likely due to model 851 
limitations related to resolution and shelf process representations. Our study suggests that applying transient 852 
riverine inputs in the ESMs with coarse or intermediate model resolution (~1°) does not significantly reduce the 853 
uncertainty in global marine PP and C uptake projections, but it may be of importance for regional studies such 854 
as in the North Atlantic and along the continental margins. 855 
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Appendix A 866 

 
Figure A1: The limiting nutrient among iron, nitrate and phosphate in REF during (a) 1950–1999 and (b) 2050–
2099.  

 867 
 868 

 
Figure A2: The relative changes in projected (2050–2099 compared to 1950–1999) (a) primary production, (b) 
nitrate concentration, (c) phytoplankton concentration, (d) sea surface temperature and (e) annual mean 
maximum mixed layer depth in REF. 
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Figure A3. The relationship between relative changes in freshwater runoff and relative changes in nutrient fluxes 
(dissolved inorganic nitrogen, phosphorus and silicon) in 2050 according to the Adapting Mosaic future scenario 
in NEW2 dataset. 

Appendix B – Robustness of results to sampling error 874 

Time-averaged quantities and their differences—like the ones considered in this study—are subject to temporal 875 
sampling uncertainty arising from the presence of internal climate variability and associated biogeochemistry 876 
variability. We evaluated the statistical robustness of our results with respect to temporal sampling uncertainty as 877 
outlined in the following.   878 
We assessed statistical significance of time-averaged differences using Student’s t-test. We performed the test on 879 
annual data with a set to 0.05 and N set to the number of years in the respective average period, assuming the 880 
internal climate variability exhibits most power on interannual and shorter timescales. We removed the main part 881 
of the externally forced signal by subtracting the linear trend of the annual timeseries prior to performing the t-882 
test if the timeseries contained more than 20 years. For shorter time series, we therefore did not remove the linear 883 
trend as it potentially has a large internal variability component.  884 
All differences presented in the main text, summarized in Tables B1 and B2, were found to be statistically 885 
significant and the plots feature only differences for which the t-test locally rejected the null-hypothesis. We found 886 
even small inter-simulation differences statistically significant because these differences were less affected by 887 
internal variability. In our model setup, the marine biogeochemistry does not feedback on the physical climate. 888 
Consequently, the climate variability and climate trends are the same in all experiments and the interannual 889 
variability in the biogeochemical parameters—which is predominantly driven by the physical climate 890 
variability—is also virtually the same. As illustrated in Figure B1, any uncertainty related to internal climate 891 
variability is effectively removed in the computation of the inter-experiment differences. In this manner, we were 892 
able to obtain statistically robust results for short time-slices without having to perform multi-member simulation 893 
ensembles for each experiment.     894 
Detectability of inter-simulation differences does, however, not guarantee that the differences are large enough to 895 
be competitive with real-world internal variability to have real-world implications. Therefore, we additionally 896 
compared the inter-simulation differences against the internal variability of the absolute field (i.e., not the 897 
difference field). We estimated the joint internal variability of the absolute field for N-year time averages as 898 
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where 𝜎" and 𝜎$ are the interannual standard deviations for experiment A and B, respectively. As for the t-test, 900 
we removed the externally forced signal by subtracting the linear trend of the annual timeseries prior to computing 901 
standard-deviations if N>20. On all difference plots we marked the areas where inter-simulation differences 902 
exceed 𝜎!!" and thus are large enough to have real-world implications. 903 
 904 
Table B1: Global and regional statistics of simulated primary production. Shown are the time-mean µ and twice its 905 
standard-deviation sµ (rounded up to two decimals) derived from annual values. The this and tfut denote the time 906 
periods 1950–1999 and 2050–2099, respectively. Values in brackets denote relative changes in percentage. 907 
 908 

Variable Experiment Period Region µ ± 2 sµ  
RMSE of PP 
(mol C m-2 yr-1) 

REF 2003–2012 Global 10.70 ± 0.18 
Continental margins 28.96 ± 0.18  

FIX Global 10.31 ± 0.21 
Continental margins 27.43 ± 0.19  

FIX-REF Global -0.39 ± 0.04 
Continental margins -1.52 ± 0.04 

 PP  
(Pg C yr-1) 

REF 2003–2012 Global 40.06 ± 0.50 
FIX 42.99 ± 0.51 
FIX-REF 2.93 ± 0.02 

PP  
projection 
(Pg C yr-1) 

REF this Arctic 0.08 ± 0.01 
tfut 0.15 ± 0.01  
tfut-this 0.07 ± 0.01 

FIX this 0.10 ± 0.01 
tfut 0.18 ± 0.01 
tfut-this 0.08 ± 0.01 

FIX-REF tfut-this 0.01 ± 0.01 
PP projection 
(Pg C yr-1) 

REF this Global 
 

41.14 ± 0.26 
tfut 38.90 ± 0.23 
tfut-this -2.24 ± 0.37 

FIX this 43.99 ± 0.26 
tfut 42.06 ± 0.24 
tfut-this -1.93 ± 0.38 

RUN tfut-this -1.82 ± 0.38 
GNS -1.57 ± 0.38 
FIX-REF 0.31 ± 0.01 
GNS-REF 0.66 ± 0.02 

 909 
Table B2: Global and regional statistics of simulated ocean carbon uptake. Shown are the time-mean µ and twice its 910 
standard-deviation sµ (rounded up to two decimals) derived from annual values. The this and tfut denote the time 911 
periods 1950–1999 and 2050–2099, respectively. Values in brackets denote relative changes in percentage. 912 
 913 

Variable Experiment Period Region µ ± 2 sµ 
RMSE of C 
uptake  
(mol C m-2 yr-1) 

REF 2003–2012 
 

Global 0.84 ± 0.05 
Subpolar North Atlantic 0.73 ± 0.09 

FIX Global 0.83 ± 0.05 
Subpolar North Atlantic 0.67 ± 0.08 

FIX-REF Global -0.01 ± 0.01 
Subpolar North Atlantic -0.06 ± 0.01 

(8.2±0.1%) 
C uptake 
(Pg C yr-1) 

REF 2003–2012 
 

Global 
 

2.77 ± 0.06 
FIX 2.86 ± 0.07 
FIX-REF 0.09 ± 0.01 

(3.1±0.1%) 
C uptake 
projection 
(Pg C yr-1) 

REF tfut-this Global 
 

1.25 ± 0.03 
FIX 1.28 ± 0.04 
RUN 1.29 ± 0.04 
GNS 1.13 ± 0.04 
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FIX-REF 0.03 ± 0.01 
GNS-REF -0.11± 0.03 

 914 

 
Figure B1. Global integrated primary production (PP) time-series from single experiments (top) versus difference 
between two experiments (bottom). The PP variability of REF and FIX closely follow each other because the 
simulations feature the exact same physical variability. As a result, the interannual variability largely cancels out 
in the computation of FIX-REF differences and the FIX-REF difference times-series exhibits a standard-deviation 
that is an order of magnitude smaller than the standard-deviations of REF and FIX.  

Appendix C – Comparison between NEWS 2 dataset and measurement-based riverine data 915 

Table C1: Comparison between NEWS 2 dataset (Mayorga et al., 2010) and measurement-based (provided 916 
by PARTNERS Project; Holmes et al., 2012) riverine dissolved inorganic nitrogen (DIN) and dissolved organic 917 
nitrogen (DON) in the 6 largest Arctic rivers around year 2000. 918 

River DIN 
(Pg N yr-1) 

DON 
(Pg N yr-1) 

NEWS 2 Measurement NEWS 2 Measurement 
Ob  89 86 102 110 
Yenisei 47 51 132 111 
Lena 30 33 88 135 
Kolyma 9  7  21  17  
Yukon 5 26 14 47 
Mackenzie 22 27 62 31 

Note that the data from NEWS 2 are for the year 2000, while measured data from PARTNERS Project are calculated over 919 
1999–2008 (missing discharge data restricted the Yukon estimates to 2001–2008). 920 

Code and data availability 921 
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Figure 1: Schematic illustration of the spin-up and integration procedure following the experimental design 
described in Section 2.4. 
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Figure 2: Time series of global riverine fluxes of nutrient and carbon to the ocean according to the 
configuration of six model experiments (FIX, RUN, GNa, GNg, GNo and GNt). The grey and red 
curves are the annual and 11-year running mean fluxes, respectively, in RUN. DIN: dissolved 
inorganic nitrogen; DIP: dissolved inorganic phosphorus; DIC: dissolved inorganic carbon; TA: 
alkalinity; DSi: dissolved silicon; POM: particulate organic matter; DOM: dissolved organic matter; 
Fe: dissolved iron.  
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Figure 3: Vertically integrated primary production averaged over the 2003–2012 period of (a) the 
mean of three satellite-based climatologies derived from MODIS retrievals, (b) the difference 
between REF and satellite-based estimates, (c) the difference between FIX and REF. In panel c, 
only significant differences are plotted, and dots denote areas where the signal is larger than the 
standard-deviation of the absolute field (see details in Appendix B). 
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Figure 4: Annual mean air-sea CO2 fluxes over the 2003–2012 period of (a) the observational based 
estimates of Landschützer et al. (2017), (b) REF, (c) the difference between FIX and REF, (d) the 
difference between FIXnoc and REF, and (e) the difference between FIX and FIXnoc. Contour lines in 
(c) are the differences between REF and Obs, purple lines (0.6 mol C m-2 yr-1) indicate where REF 
overestimates C uptake compared to Obs and grey lines (-0.6 mol C m-2 yr-1) indicate the opposite. In 
panels c-e, only significant differences are plotted, and dots denote areas where the signal is larger 
than the standard-deviation of the absolute field (see details in Appendix B). 

 1315 

Deleted: 1316 
Formatted Table
Deleted: -1317 

Deleted: 51318 
Deleted: green1319 
Deleted: 51320 



 

 
 
 
 
 

Formatted: Header

Deleted: 33¶

 

Figure 5: (a) Globally integrated annual mean primary production over 1950–1999 (blue), over 2050–2099 (red) 
and the differences between these two time periods (yellow) for all experiments; note that the positive numbers in 
the y axis (marked with stars) are scaled by minus 38 Pg C yr-1 so that the negative numbers are visible; (b) Same 
as 8a) but for the Arctic Ocean (ocean area north of the Bering Strait on the Pacific side and north of 70°N on the 
Atlantic side) for the same time periods as in (a). 
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Figure 6: The difference in vertically integrated primary production between 2050–2099 and 1950–1999 time 
periods in (a) REF, (b) FIX, and (c) the difference between (b) and (a). In panel c, only significant differences 
are plotted, and dots denote areas where the signal is larger than the standard-deviation of the absolute field 
(see details in Appendix B).    
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Figure 7: (a) Globally integrated annual mean ocean carbon uptake over 1950–1999 (blue), over 2050–2099 (red) 
and the differences between these two time periods (yellow) for all experiments; (b) Same as (a) but for the Arctic 
Ocean (ocean area north of the Bering Strait on the Pacific side and north of 70°N on the Atlantic side) for the 
same time periods as in (a). 
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Figure 8: Differences in annual mean air-sea CO2 fluxes (mol C m-2 yr-1) between 2050–2099 and 
1950–1999 periods in (a) REF, (b) FIX, (c) the difference between FIX and REF, (d) the difference 
between FIXnoc and REF, and (e) the difference between FIX and FIXnoc. In panels c-e, only 
significant differences are plotted, and dots denote areas where the signal is larger than the standard-
deviation of the absolute field (see details in Appendix B). 
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Figure 9: (a-d) Projected changes in vertically integrated primary production (mol C m-2 yr-1) in four GNS 
experiments between 2050–2099 and 1950–1999 periods; (e-h) The difference in projected changes in vertically 
integrated primary production (mol C m-2 yr-1) between each GNS experiment and FIX. In panels e-h, only 
significant differences are plotted, and dots denote areas where the signal is larger than the standard-deviation of 
the absolute field (see details in Appendix B). 
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Figure 10: Projected changes in annual mean air-sea CO2 fluxes (mol C m-2 yr-1) in four GNS experiments between 
2050–2099 and 1950–1999 periods; (e-h) The difference in projected changes in annual mean air-sea CO2 fluxes 
(mol C m-2 yr-1) between each GNS experiment and FIX. In panels e-h, only significant differences are plotted, and 
dots denote areas where the signal is larger than the standard-deviation of the absolute field (see details in 
Appendix B). 
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Figure 11: Time-series of integrated annual primary production and ocean carbon uptake during 1850–2099 in 
FIX and RUN (a, c) globally and (b, d) on continental shelves. 
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Figure 12: Schematic drawing of impact of riverine nutrients input on future projections of marine primary 
production. (a, b) Decline in nutrients supply into subtropical surface waters, due to the upper-ocean warming and 
increased vertical stratification, which is projected by models to reduce primary production over the 21st century. 
(c, d) Riverine nutrients input into surface coastal waters alleviates the nutrient limitation and lessen the projected 
future decline in primary production.  
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Table 1.  Brief introduction to future scenarios for river nutrient export used in Global NEWS 2 (Seitzinger et al., 1366 
2010) 1367 

Scenario Agricultural trends Sewage 
Adapting Mosaic (GNa) 
a world with a focus on regional and 
local socio-ecological management 

-medium productivity increase 
-2% of cropland area for energy crops 
-fertilizer efficiency: moderate increase 
in N and P fertilizer use in all countries; 
better integration of animal manure and 
recycling of human N and P from 
households with improved sanitation but 
lacking a sewage connection 
 

-constant fraction of population 
with access to sanitation and 
sewage connection 
-moderate increase in N and P 
removal by wastewater 
treatment 

Global Orchestration (GNg) 
a globalized world with an economic 
development focus and rapid economic 
growth 

-high productivity increase 
-4% of cropland area for energy crops 
-fertilizer efficiency: no change in 
countries with a soil nutrient surplus; 
rapid increase in N and P fertilizer use in 
countries with soil nutrient depletion  

-towards full access to improved 
sanitation and sewage 
connection 
-rapid increase in N and P 
removal by wastewater 
treatment 

Order from Strength (GNo) 
a regionalized world with a focus on 
security 

-low productivity increase 
-1% of cropland area for energy crops 
-fertilizer efficiency: no change in 
countries with a soil nutrient surplus; 
moderate increase in N and P fertilizer 
use in countries with soil nutrient 
depletion 

-same as GNa 

Technogarden (GNt) 
a globalized world with a focus on 
environmental technology 

-medium-high productivity increase 
-28% of cropland area for energy crops 
-fertilizer efficiency: rapid increase in N 
and P fertilizer use in countries with a 
soil nutrient surplus; rapid increase in 
countries with soil nutrient depletion 

-same as GNg 
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