Variations in and environmental controls of primary productivity in the Amundsen Sea

Jianlong Feng 1, Delei Li 2,3, Jing Zhang 1, Liang Zhao 1*

1 Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China
2 CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China

*Corresponding author, Key Laboratory of Marine Resource Chemistry and Food Technology (TUST), Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, PR China. Telephone number: 86-18698004519, Email address: zhaoliang@tust.edu.cn

Abstract: The Amundsen Sea is one of the regions with the highest primary productivity in the Antarctic. To better understand the role of the Southern Ocean in the global carbon cycle and in climate regulation, a better understanding of the variations in and environmental controls of primary productivity is needed. Using cluster analysis, the Amundsen Sea was divided into nine bioregions. The biophysical differences among bioregions enhanced confidence to identify priorities and regions to study the temporal and spatial variations in primary productivity. Four nearshore bioregions with high net primary productivity or rapidly increasing rates were selected to analyze
temporal and spatial variations in primary productivity in the Amundsen Sea. Due to changes in net solar radiation and sea ice, primary production had significant seasonal variation in these four bioregions. The phenology had changed at two bioregions (3 and 5), which has the third and fourth highest primary production, due to changes in the dissolved iron, nitrate, phosphate, and silicate concentrations. Annual primary production showed increasing trends in these four bioregions. The variation in primary production in the bioregion (9), which has the highest primary production, was mainly affected by variations in sea surface temperatures. In the bioregion which has the second-highest primary production (8), the primary production was significantly positively correlated with sea surface temperature and significantly negatively correlated with sea ice thickness. The long-term changes of primary productivity in bioregions 3 and 5 were thought to be related to changes in the dissolved iron, nitrate, phosphate, and silicate concentrations, and dissolved iron was the limiting factor in these two bioregions. Bioregionalization not only disentangle multiple factors that control the spatial differences, but also disentangle limiting factors that affect the phenology, decadal and long-term changes in primary productivity.

Keywords: Amundsen Sea; primary productivity; bioregions; dissolved iron

Plain Language Summary

Although some studies have been conducted on primary productivity in the Amundsen Sea, it is still one of the least studied regions in the Southern Ocean. The spatial differences and mechanisms that drive differences in phenology, decadal and long-term changes in primary productivity are still not clear. In this work, we used
bioregionalization to provide a basis for understanding variations in primary productivity in the Amundsen Sea. Due to changes in the dissolved iron, nitrate, phosphate, and silicate concentrations, the phenology of primary production had changed at two bioregions, which have third and fourth highest primary production (3 and 5). Annual primary production showed increasing trends from 1993 to 2015 in near shore bioregions due to changes in SST, sea ice, and dissolved iron. The dissolved iron was thought to be the limiting factor of long-term change in two bioregions 3 and 5. Bioregionalization was proven to be an effective method to disentangle multiple limiting factors that affect spatial differences, the phenology, decadal and long-term changes in primary productivity.

Introduction

The Southern Ocean, also known as the Antarctic Ocean, encompasses 10% of the global ocean and contains parts of the South Pacific Ocean, the South Atlantic Ocean, the South Indian Ocean, and the marginal seas around Antarctica, such as the Ross Sea, Weddell Sea, and the Amundsen Sea. The Southern Ocean contains 40% of the total oceanic inventory of anthropogenic carbon dioxide (Khatiwala et al., 2009), and plays an important role in Earth’s climate regulation, especially by neutralizing the effects of rising carbon dioxide concentrations and rising global temperatures (Reid et al., 2009; Ma et al., 2012; Bijma et al., 2013; Petrou et al., 2016). The Amundsen Sea lies between the Cape Flying Fish and Cape Dart on Slip Island, and is one of the most rapidly
warming regions on Earth (Figure 1) (Bromwich et al., 2013), and it is one of the least
studied Antarctic continental shelf regions (Griffiths 2010; Pabis et al., 2014).

Primary productivity plays an important role in the transformation of dissolved
elements in the ocean and in ocean-atmosphere carbon exchange (Amthor and
Baldocchi, 2001). Previous studies have indicated that the phenology, decadal and long-
term changes in primary productivity in the Southern Ocean have been and will
continue to be affected by the current and predicted changes in ocean circulation and
hydrology associated with climate variability (Lannuzel et al., 2007; Herraiz-
Borreguero et al., 2016; Kim and Kim, 2021). Significant spatial differences exist in
the changes in primary productivity in the Southern Ocean, both over large latitudinal
scales and at regional scales (Arrigo et al., 2008; Ardyna et al., 2017). These spatial
differences are related to nutrient availability (mainly iron and possibly nitrate and
silicic acid), temperature, light availability, and mortality factors (Boyd, 2002;
Behrenfeld and Boss, 2014; Arrigo et al., 2015). These factors are controlled by vertical
mixing, advection, sea ice cover, and seasonal variations in solar irradiance (Ardyna et
al., 2017). However, studies of the primary productivity of the Southern Ocean have
been limited in their ability to assess spatial variabilities over both short and long
timescales for a variety of different reasons (Arrigo et al., 2008). Primary productivity
also shows significant spatial differences in the Amundsen Sea, the Amundsen Sea
Polynya is the region of particularly high productivity in the Southern Ocean (Arrigo
and van Dijken, 2003; Lee et al., 2012). Although some studies have been conducted
on primary productivity in the Amundsen Sea (Arrigo and van Dijken, 2003; Arrigo et
al., 2012; Lee et al., 2012; Park et al., 2017; Lim et al., 2019; Kwon et al., 2021), the spatial differences and mechanisms that drive differences in phenology, decadal and long-term changes in primary productivity are still not clear.

Bioregionalization is one method used to define ecosystems. Under this approach, regions are defined based on physical and biological properties, the method can be defined as the process of delineating the continuous spatial coverage of contiguous spatial units that support distinct biological assemblages (Costello, 2009; Koubbi et al., 2011; Roberson et al., 2017). Usually, the spatial units are delineated using geophysical and biological observation data, modeled data, or a combination of both (Grantham et al., 2010). The obtained bioregions can be used for monitoring and reporting the state of the environment, modeling and predicting the effects of climate changes and identifying priority areas for protection (Gregr and Bodtker, 2007; Spalding et al., 2007; Rice et al., 2011). In recent years, the delimitation of marine bioregions has also been used to disentangle multiple limiting factors that affect the efficiency of biological pumps mediated by phytoplankton (Longhurst, 2007; Ardyna et al., 2017), the spatial and temporal changes of key ecological parameters (Bowman et al., 2018). In the Southern Ocean, bioregionalization has been widely used to identify representative areas for protection at broad and regional scales, such as in Southern Ocean (Grant et al., 2006), Ross Sea region (Sharp et al., 2010), and Weddell Sea (Teschke et al., 2016). Delineating the effects of environmental forcing on temporal and spatial variations in primary productivity remains challenging and requires novel approaches. We used bioregionalization to provide a basis for understanding variations in primary...
productivity in the Amundsen Sea.

In this paper, we conducted a cluster analysis using variables from the Global Ocean Reanalysis and Simulations (GLORYS) dataset to obtain a bioregional map of the Amundsen Sea. Using the bioregionalization outputs, we analyzed the limiting factors that affect spatial differences, the phenology, decadal and long-term changes in primary productivity in the Amundsen Sea.

2. Data and Methodology

2.1 Data

The physical and ecological variables used in the bioregionalization were derived from the Global Ocean Reanalysis and Simulation Version 4 (GLORYS2v4) dataset (https://resources.marine.copernicus.eu/?option=com_csw&task=results&pk_vid=f205f72451b76b161622075614d28a7a). GLORYS2v4 is an ocean reanalysis, which is a scientific method that produces a comprehensive records of how ocean properties are changing over time. This reanalysis is performed with NEMOv3.1 ocean model in configuration ORCA025_LIM. The vertical grid has 75 levels with partial steps at the bottom. GLORYS2v4 has assimilated observations, containing delayed time along-track satellite Sea Level Anomaly, Sea Ice Concentration, Sea Surface Temperature, and in situ profiles of temperature and salinity from CORA4 database. The monthly mean values from 1993 to 2015 with a resolution of 1/4°×1/4° were used in this work. *In situ* observed temperature and salinity data were acquired during the ANTXXVI/3 from the research ice breaker Polarstern (Gohl, 2010). The Climate Data Record (CDR)
of sea ice concentration from obtained from NSIDC (Meier et al., 2017). Chlorophyll-a data were obtained from the Ocean Colour Climate Change Initiative (OC-CCI, http://www.esa-oceancolour-cci.org) project.

Previous studies have shown that variables obtained from GLORY2v4 perform well against observations in the Amundsen Sea (Uotlia et al., 2019; Huang et al., 2020). In this work, we also compare the temperature, salinity, sea ice concentration, and chlorophyll against observations in the Amundsen Sea (shown in Supplementary Figure S1-S3). Results showed that comparisons between the GLORYS2v4 and in situ / satellite measurements of the temperature, salinity, sea ice concentration, and chlorophyll show a good agreement. Also, the mixed layer depths were calculated according to Patel (2021) at the S01 section (Figure S1). The mixed layer depths obtained from the observations ranged from 4 to 24 m with a mean of 15 m. At the same time, the mixed layer depths obtained from GLORYS2v4 ranged from 5 to 27 m with a mean of 17 m. The above results enhanced the confidence in the quality of the GLORYS2v4 to get the bioregions in the Amundsen Sea.

As variables measured at the ocean surface are strongly correlated with processes at depth, the surface variables can reflect the properties of the water column (Longhurst, 2007; Oliver and Irwin, 2008). Therefore, the variables of the first layer were used in this work. The extents of all variables were clipped to match the study area, ranging from 80° to 150°W and 55° to 80°S. In addition to total primary production of phytoplankton (nppv in table 1), other physical and biological variables were also selected. These variables were selected according to two principles: first, variables
selected by other studies conducted in the Southern Ocean were also selected in this work, including the sea surface temperature (SST), sea surface height (SSH), salinity, water depth, sea ice persistence index, sea bottom temperature, and chlorophyll (Table 1); second, variables that could affect primary productivity were also selected, including the mixed layer depth, and dissolved iron (Table 1). The parameters used in the clustering analysis contained the average states of the variables (mean value across the time series), their variability (annual maximum mean, annual minimum mean, long-term change rate), and topographic gradient. The sea ice persistence index was calculated from the proportion of the overall time during which the grid was covered by sea ice. All variables were standardized to zero means and unit standard deviations to eliminate issues associated with units of measurement.

2.2 Methodology

Bioregions were obtained in this work using cluster methods. Cluster analysis is a class of techniques in which a set of objects or cases classified in the same group (called a cluster) are more similar to each other than to those in other groups. One advantage of cluster techniques is that they allow for areas with similar characteristics to be defined regardless of their location, thereby producing results representative of intrinsic spatial patterns and environmental variables (Leathwick et al., 2003; Snelder et al., 2007). Cluster analysis has been commonly used to identify bioregions and is still widely used today (Milligan and Cooper, 1987; Ebach et al., 2015; Roberson et al., 2017; Bloomfield et al., 2018). For the Southern Ocean, physical and biological variables,
including the water temperature, salinity, depth, chlorophyll, and sea-ice information, were used to obtain the bioregions to facilitate systematic planning for the protection of marine habitat diversity (Grant et al., 2006; Sharp et al., 2010; Teschke et al., 2016; Godet et al., 2020). In this work, hierarchical clustering and the K-means clustering method were selected to obtain bioregions in the Amundsen Sea. K-means clustering is a data-mining method that classifies objects into K clusters, objects within a given cluster are more similar to each other (in the multivariate space) than to those in other clusters. This approach has been successfully applied in the North Atlantic (Lacour et al., 2015), the Southern Ocean (Ardyna et al., 2017), and the Mediterranean Sea (Mayot et al., 2016; Pamiéri et al., 2018) as well as at the global scale (D’Ortenzio et al., 2012). The number of K categories used for the K-means clustering was determined using the hierarchical clustering method, which depends on the pairwise distances between data points to merge or divide data into a series of clusters (Fraley and Raftery, 1998).

3. Results and Discussion

3.1 Primary productivity in the Amundsen Sea

The mean value (Figure 2A) and seasonality amplitude (Figure 2B) of primary production in the Amundsen Sea were calculated using the data obtained from GLORYS2V4. The spatial differences were quite significant in the Amundsen Sea, and the mean primary production values of the Amundsen Sea ranged from 1.5 to 14 mgC m$^{-3}$ day$^{-1}$. In most areas, the mean value was less than 3 mgC m$^{-3}$ day$^{-1}$. The primary
production was largest in Pine Island Bay, and minimum values occurred on the two areas adjacent to Pine Island Bay, with a mean value of less than 2 mgC m$^{-3}$ day$^{-1}$. This distribution was consistent with other studies about primary production in the Amundsen Sea (Park et al., 2019). The seasonality amplitude of primary production (Figure 2B) ranged from 10 to 100 mgC m$^{-3}$ day$^{-1}$ and showed some similar spatial characteristics with the mean values, the amplitude was also largest in Pine Island Bay. However, the spatial variations in the seasonality amplitude were more complicated than those of the mean value. The seasonality amplitude was not the smallest in the two areas adjacent to Pine Island Bay, featuring a mean value less than 2 mgC m$^{-3}$ day$^{-1}$.

The annual primary production showed an increasing trend from 1993 to 2015 (Figure 2C). The primary production was relatively large from 2000 to 2006; reached a maximum in 2004, and displayed low values from 1993 to 1996; a minimum occurred in 1994. Furthermore, the progressive $UF(t)$ and the retrograde $UB(t)$ series of the sequential Mann-Kendall test (Mann, 1945; Kulkarni and von Storch, 1999) were calculated against time for the annual mean primary production (Figure 2D). The results showed that primary production featured an increasing trend in general. The positive trend was significant after 1999, and no mutation existed in the annual primary production. Primary production exhibited clear seasonal variability (Figure 2E), it began to increase in August, reached a maximum in December, and began to decrease after December. From April to September, the primary production was less than 2 mgC m$^{-3}$ day$^{-1}$. The monthly primary production varied greatly in the summer months, and the amplitude was largest in December (ranging from 4.5 to 14.5 mgC m$^{-3}$ day$^{-1}$). Above
results were in consistent with previous studies using observations (Arrigo and van Dijken, 2003; Park et al., 2017; Lim et al., 2019; Kwon et al., 2021), and enhanced the confidence in the data quality and in the analysis.

3.2 Bioregion classification and characterization

To obtain the number of clusters (K), hierarchical clustering was carried out in the Amundsen Sea. The dendrogram obtained from the hierarchical clustering algorithm was used to guide the clustering process (Figure 3). Norse (2010) indicated that if K is too large, important details are overlooked; if K is too small, the result is an unmanageable number of decision-making groups. To obtain a more reasonable result, K-means cluster analyses were carried out twice ($K=6$ and $K=9$) (Figure 4). The results show that spatial distribution had similar characteristics between the $K=6$ and $K=9$ results. But differences also existed, when $K=9$ was selected, the coastal area was divided into 2 bioregions (9-8 and 9-9). When $K=6$ was selected, the coastal area was divided into 1 bioregion (6-6). The northern boundary area was divided into two bioregions (6-2 and 6-3) when $K=6$, while it was divided into three bioregions (9-4, 9-6, and 9-7) when $K=9$. When $K=6$, the central region was divided into two bioregions (6-1 and 6-2), and when $K=9$, the central region was divided into three bioregions (9-1, 9-2, and 9-3). For comparison, the mean values of the variables in different bioregions were calculated (6-6, 9-8 and 9-9; 6-3, 9-4, and 9-7) (Table 2). The results showed that the differences in the physical variables were small among bioregions 6-6, 9-8, and 9-
9, while the differences in the biological variables were quite pronounced. The mean values of \(chl \) and \(nppv \) were significantly smaller in the 9-8 bioregion than those in the 6-6 and 9-9 bioregions. The differences in biological variables among bioregions 6-3, 9-4, and 9-7 were small, while the differences in physical variables were quite clear, especially the \(mlp \), \(ssh \), and \(fice \) variables. The above results indicated that the bioregions obtained from \(K=9 \) can describe the detailed differences in \(fice \), \(mlp \), \(chl \) and \(nppv \) more clearly than the bioregions obtained from \(K=6 \). All these variables are important in a spatial analysis of primary production in the Amundsen Sea; therefore, we ultimately selected the resulting bioregions when \(K=9 \).

The parameters that characterize the key properties of each bioregion differed among the bioregions (Figure 5). Here, we listed four levels of each parameter to help characterize each bioregion relative to the study area: the maximum value, the second-highest value, the minimum value, and the second-lowest value. Bioregions 8 and 9 are associated with the continental shelf and slope edge down to approximately 300 m. The Amundsen Sea Polynya is located in this region (Swalethorp et al., 2019), and these two bioregions are the areas through which the coastal current flows in the Amundsen Sea (Kim et al., 2016). Bioregions 8 and 9 showed some similar features; they were both distinguished by low \(tem \), low \(mlp \), low \(sal \), high \(chl \), high \(nppv \), high \(fe \), and low \(dep \) values. There were also some differences between bioregions 8 and 9; bioregion 9 had the lowest \(bot \) value, while bioregion 8 had the second-highest \(bot \) value. The \(fice \) values of bioregion 8 were higher than those of bioregion 9, the \(tem \) values of bioregion 8 were lower than those of bioregion 9, bioregion 9 had the second-highest longitudinal
gradient, and bioregion 8 had the second-lowest latitudinal gradient. Although bioregion 8 had the second-highest $nppv$ value, the $nppv$ value of bioregion 9 (8.51 mgC m$^{-2}$ day$^{-1}$) was much higher than that of bioregion 8 (5.86 mgC m$^{-2}$ day$^{-1}$).

Bioregion 5 was located within the continental slope, and its boundary was mostly consistent with the Antarctic Slope Front (Martinson, 2012). Bioregion 5 was distinguished by the lowest tem, lowest mlp, second-lowest ssh, highest bot, highest ice, lowest chl, and lowest $nppv$ values and the lowest latitudinal gradient and highest longitudinal gradient. In this bioregion, Circumpolar Deep Water (CDW) intrudes onto the shelf, after which it mixes with surrounding water and masses to become Modified Circumpolar Deep Water (MCDW) (Arneborg et al., 2012; Stalaurent et al., 2017).

MCDW is a potential source of dissolved iron fueling primary productivity in bioregions 8 and 9 (St-Laurent et al., 2017; Dinniman et al., 2020).

Bioregions 1, 2, 3, 4, 6, and 7 were located in the abyssal plain. Bioregion 3 was distinguished by the second-lowest mlp, the lowest ssh and the second-lowest chl and $nppv$ values. Bioregion 3 was therefore assumed to be closely associated with the Ross Gyre (Dotto et al., 2018). The Ross Gyre is formed by the interaction between the Antarctic Circumpolar Current and the Antarctic Continental Shelf and rotates clockwise. The northern boundary of bioregion 1 mostly consisted of winter sea ice (Comiso et al., 2003). Bioregion 2 was distinguished by the second-lowest bot, the second-lowest fe, and the second-lowest annual maximum chl values. The sea ice of bioregion 2 decreased from 1993 to 2015, and the rate of sea ice decrease was the largest in bioregion 2 among all bioregions. Bioregions 4, 6, and 7 were located at the northern
boundary of the study region, and these bioregions are the areas through which Antarctic Circumpolar Current flows. Bioregion 6 was distinguished by the highest tem, the highest mlp, the highest ssh, the lowest $fice$, the highest sal and the lowest dep values.

Bioregion 4 was distinguished by the second-highest tem, the second-highest mlp, the second-highest ssh, the second-lowest $fice$, the second-highest sal, and the second-lowest dep values. Bioregion 7 was distinguished by the lowest fe value the lowest longitudinal gradient, and the lowest long-term change rate of tem.

The above results indicated that the bioregions differed in their physical and biological characteristics (including primary productivity). These bioregions can be used to study the temporal and spatial variations in primary productivity in the Amundsen Sea. Furthermore, the 9 bioregions had biophysical significance; therefore, they are also useful for systematic conservation planning of marine protected areas (MPAs) in the Amundsen Sea (Fraschetti et al., 2008; Treml and Halpin, 2012).

3.3 Variations in primary productivity

In the Amundsen Sea, intense phytoplankton blooms occasionally develop, making primary productivity highly variable both temporally and spatially (Moore and Abbott, 2000; Arrigo et al., 2008) (Figure 2B). Our results outlined in section 3.2 indicated that the 9 obtained bioregions can be used to reflect the temporal differences in primary productivity in the Amundsen Sea. The mean value, annual maximum mean, and long-term change rate of primary production were calculated in the 9 bioregions and are
shown in Figure 6. The results showed that the mean and annual maximum mean values of primary production in bioregions 8 and 9 were significantly larger than those in other bioregions. This is because the polynyas in the Amundsen Sea are located in bioregion 8 and 9. The long-term change rate of bioregion 9 was the largest, followed by those of bioregions 3 and 5. Therefore, bioregions 3, 5, 8, and 9 were selected as typical bioregions with which to analyze variations in primary productivity in the Amundsen Sea.

Primary productivity exhibited clear seasonal variability in these four bioregions (Figure 7). The primary production was large from November to March, and the monthly variations were more significant in bioregions 8 and 9 than in the other bioregions. From April to October, the differences among these 4 bioregions became small, and primary production in these 4 bioregions was less than 1 mgC m$^{-3}$ day$^{-1}$.

Seasonal variations in primary productivity in the Amundsen Sea were mainly caused by changes in net solar radiation, sea ice, and iron (Moore and Abbott, 2000; Stammerjohn et al., 2015; Wu and Hou, 2017; St-Laurent et al., 2019). In the Amundsen Sea, the sea ice coverage increased after March and reached a maximum value in austral winter (Figure 8). After September, the sea ice coverage decreased and reached a minimum value in austral summer. The production of meltwater, the generation of a stratified surface layer, and the release of biogenic elements (such as iron) increased phytoplankton growth and accumulation within the marginal ice zone (Ritterhoff and Zauke, 1997; Smith Jr and Comiso, 2008; St-Laurent et al., 2019). The net solar radiation of the Southern Ocean has significant seasonal variations and is higher in
spring (September to November) and summer (December to February) and lower in autumn (March to May) and winter (June to August). At the same time, sea ice coverage can regulate the availability of irradiance to phytoplankton in the Amundsen Sea. Under the effects of polar night and large sea ice coverage, the primary production was close to 0 from May to September in these four bioregions. Results also showed that the dissolved iron also exhibited clear seasonal variability. The iron reached a maximum in November, and then decreased, it reached its minimum in February (Figure 8). Previous studies of the coastal polynya also found that the phytoplankton bloom is primarily light-limited in its early stages, but as the pool of dissolved iron is depleted by phytoplankton uptake, there is a transition towards iron limitation (St-Laurent et al., 2019; Twelves et al., 2020).

The results also showed that the phenology changed over the study period in bioregions 3 and 5 (Figure 9). In bioregion 3, primary production reached a maximum in January before 1998, while after 1998, maximum primary production occurred in December. In bioregion 3, the primary production rates in November and December increased significantly after 1998. In bioregion 5, primary production reached its maximum in January before 2001; after 2001, the maximum primary production occurred in December. In bioregion 5, primary production increased significantly in November and December after 2001. These variations in primary production in bioregions 3 and 5 were thought to be related to the changes in iron, nitrate, phosphate, and silicate (Figure 10). The melting of the ice shelf increases iron availability due to the meltwater pump effect and due to the release of iron entrained at the glacier bed (Twelves et al., 2021).
In bioregion 3, the dissolved iron concentrations increased significantly in November and December after 1998; these increased values were more than 2 times higher than those recorded before 1998. Alderkamp et al. (2015) indicated that primary productivity would be stressed by low iron concentrations during December and January in the Amundsen Sea. Increased dissolved iron concentrations resulted in increased primary production in November and December after 1998. In bioregion 5, the dissolved iron concentrations also increased in November and December after 1998, and the nitrate, phosphate, and silicate concentrations increased significantly in November and December after 2000. The changes in dissolved iron, nitrate, phosphate, and silicate resulted in increased primary production in November and December after 2000. Kwon et al. (2021) also found that the increase in iron can lead to a shift in the bloom peak timing to earlier than January in the Amundsen Sea continental shelf water (mostly in bioregion 5) using a 1-D pelagic ecosystem model.

The changes in primary production from 1993 to 2015 in bioregions 3, 5, 8, and 9 were also analyzed (Figure 11). The results showed that primary production showed positive linear trends in these four bioregions, and these trends were significant at the 95% confidence level in bioregions 3, 5, and 9. Bioregion 9 had the fastest growth rate, and the decadal variations in bioregion 9 were also larger than those in the other 3 bioregions. Primary production reached highest in 2006 and was relatively low in 1994, 1999, 2000, and 2015. The increasing trend observed in bioregion 8 was not significant, but the interannual variations were more significant in bioregion 8 than those in bioregions 3 or 5. The interannual and decadal variations between bioregion 8 and
bioregion 9 were quite similar, with a correlation coefficient of approximately 0.75
(calculated using the time series after long-term trend removal). In bioregion 9, a
significant positive correlation existed between primary production and sea surface
temperatures in summer (from November to March), and the correlation coefficient was
0.46. In bioregion 8, the interannual and decadal variations in primary production were
positively correlated with the sea surface temperature in summer, and the correlation
coefficient was 0.45. These variations in primary production were also significantly
negatively correlated with sea ice thickness, and the correlation coefficient was -0.54.
Therefore, the changes in primary production recorded in bioregions 8 and 9 may have
been caused by changes in the sea surface temperatures in summer in these areas.

Previous studies have shown that SSTs can impact rates of products directly through
the relationship between temperature and phytoplankton metabolic rate; SSTs can also
affect surface ocean stratification and sea ice distributions (Arrigo et al., 2008). The
decline in sea ice thickness can increase the light availability, which has significant
effects on the blooms in the nearshore and coastal polynyas in the Amundsen Sea
(Venables et al., 2013; Schofield et al., 2015; Oliver et al., 2019; St-Laurant et al., 2018).
The growth rate of primary production in bioregion 3 was larger than that in bioregions
5 and 8. This primary production rise accelerated before 2000, while after 2000, no
significant long-term change was observed in bioregion 3. Primary production rose with
fluctuations in bioregion 5 and reached a maximum in 2005. The decadal and long-term
changes in primary production recorded in bioregions 3 and 5 were thought to be related
to changes in dissolved iron. The correlation coefficients between primary production
and dissolved iron were 0.96 in bioregion 3 and 0.59 in bioregion 5, indicating that dissolved iron was an important factor limiting primary productivity. The dissolved iron concentrations in bioregions 8 and 9 were the highest in the Amundsen Sea area (Figure 5), so dissolved iron was not the limiting factor for primary productivity in these two bioregions. The spatial differences in the limitation of dissolved iron on the primary productivity of the Amundsen Sea were consistent with previous results (Gerringa et al., 2012; Yager et al., 2012; Alderkamp et al., 2015). We also found that the primary production was significantly positively correlated with nitrate, phosphate, and silicate in bioregions 3 and 5. The correlation coefficients were all larger than 0.6 in bioregions 3 and 5. The changes in nitrate, phosphate, and silicate may have also contributed to the observed decadal and long-term changes in primary productivity. However, the Southern Ocean is the largest high-nutrient region (Lee et al., 2012). And the differences in nitrate, phosphate, and silicate were quite small among these four bioregions. So compared with bioregion 8 and 9, the nitrate, phosphate, and silicate were not thought to be limiting factors of primary productivity in bioregions 3 or 5.

4. Conclusion

The Amundsen Sea is one of the least-studied regions in the Southern Ocean and has significant spatial differences in primary productivity. In this work, we used bioregionalization to provide a basis for understanding the temporal and spatial variations in primary productivity in the Amundsen Sea.
The spatial differences were quite significant in the Amundsen Sea; in most areas, the mean primary production was less than 3 mgC m$^{-3}$ day$^{-1}$. However, near the coast of Pine Island Bay, mean primary production reached 14 mgC m$^{-3}$ day$^{-1}$. The annual mean primary production showed an increasing trend from 2013 to 2015. Primary production exhibited clear seasonal variabilities and was largest in December at approximately 10 mgC m$^{-3}$ day$^{-1}$.

A pelagic bioregional map of the Amundsen Sea was obtained using cluster analysis. The Amundsen Sea was divided into 9 bioregions using hierarchical clustering and the K-means clustering method. The key properties of bioregions were characterized using different parameters. All bioregions had biophysical significance and could reflect spatial differences in physical and ecological characteristics, such as the topography, currents, upwelling, and Ross Gyre. Furthermore, the obtained bioregions could also be used for systematic conservation planning of marine protected areas (MPAs) in the Amundsen Sea.

Bioregions 3, 5, 8, and 9 were selected to analyze variations in primary productivity in the Amundsen Sea. The phenology changed in bioregions 3 and 5, and these changes were thought to be related to changes in dissolved iron, nitrate, phosphate, and silicate. Primary production showed positive linear trends in these four bioregions. Bioregion 9 had the fastest growth rate, and this trend was significantly positively correlated with changes in the summer sea surface temperatures. In bioregion 8, the interannual and decadal variations in primary production were also positively correlated with the sea surface temperatures in summer. The long-term primary changes recorded in bioregions
3 and 5 were thought to be related to changes in the dissolved iron concentrations, indicating that dissolved iron was the limiting factor for primary productivity in these two bioregions.

Above results indicated that in addition to be used in the systematic conservation planning of marine protected areas, bioregionalization is also an effective method to disentangle multiple limiting factors that affect spatial differences, the phenology, decadal and long-term changes in the physical and ecological variables, such as the primary productivity.

Data availability

The Global Ocean Reanalysis and Simulation Version 4 (GLORYS2v4) dataset can be accessed from https://resources.marine.copernicus.eu/?option=com_csw&task=results&pk_vid=f205f745b1b61622075614d28a7a.

Author contributions

JF wrote the first version of the manuscript, DL performed addition analyses, JZ made figures, and LZ revised the text.

Competing interests

The authors declare that they have no conflict of interest.
Acknowledgment

This study was supported by impact and response of Antarctic seas to climate change under contract RFSOCC2020-2022-No.18, and National Science Foundation of Tianjin (19JCZDJC40600).

References

Global Change Biology, 24(7), 3065-3078.

warming regions on Earth. Nature Geoscience, 6, 139-145

Gerringa, L. J. A., Alderkamp, A. C., Laan, P., Thuróczy, C. E., De Baar, H. J. W., Mills,

Rice, J., Gjerde, K.M., Ardon, J., Arico, S., Cresswell, I., Escobar, E., Grant, S.,

Snelder, T. H., Leathwick, J., Dey, K., Rowden, A. A., Weatherhead, M. A., Fenwick,
G. D., Francis, M. P., Gorman, R. M., Grieve, J. M., Hadfield, M. G., Hewitt, J. E.,
Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., FerdaNa, Z., Finlayson, M.,
Halpern, B.S., Jorge, M.A., Lombana, A.L., Lourie, S.A., Martin, K.D., McManus, E.,
bioregionalization of coastal and shelf areas. Bioscience 57, 573-583. http://dx.doi.org/10.1641/B570707
Stammerjohn, S. E., Maksym, T., Lowry, K. E., Arrigo, K. R., Yuan, X., Raphael, M.,
Randall-Goodwin, E., Sherrell, R. M., Yager, P. L. 2015. Seasonal sea ice changes in
the Amundsen Sea, Antarctica, over the period of 1979-2014. Elementa: Science of the
Anthropocene. 3: 000055.
Pathways and supply of dissolved iron in the Amundsen Sea (Antarctica). Journal of
Geophysical Research: Oceans, 122(9): 7135−7162.
St-Laurent, P., Yager, P. L., Sherrell, R. M., Oliver, H., Dinniman, M. S., &
Stammerjohn, S. E. 2019. Modeling the Seasonal Cycle of Iron and Carbon Fluxes in
the Amundsen Sea Polynya, Antarctica. Journal of Geophysical Research: Oceans,
124(3), 1544-1565
Swalethorp, R., Dinasquet, J., Logares, R., Bertilsson, S., Kjellerup, S., Krabberød, A.
K., Moksnes, P. O., Nielsen, T. G., Riemann, L. 2019. Microzooplankton distribution
in the Amundsen Sea Polynya (Antarctica) during an extensive Phaeocystis antarctica bloom. Progress in Oceanography, 170, 1-10.

Tables:

Table 1. Variables from GLORYS2V4 used in pelagic bioregionalization

<table>
<thead>
<tr>
<th>Physical</th>
<th>Biological</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (tem)</td>
<td>Total Chlorophyll (chl)</td>
</tr>
<tr>
<td>Salinity (sal)</td>
<td>Total primary production of</td>
</tr>
<tr>
<td>Sea surface height (ssh)</td>
<td>phytoplankton (nppv)</td>
</tr>
<tr>
<td>Density ocean mixed layer thickness (mlp)</td>
<td>Dissolved Iron (fe)</td>
</tr>
<tr>
<td>Sea floor potential temperature (bot)</td>
<td></td>
</tr>
<tr>
<td>Ice concentration (fice)</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Mean values of variables at different bioregions.

<table>
<thead>
<tr>
<th></th>
<th>ALL</th>
<th>6-6</th>
<th>9-8</th>
<th>9-9</th>
<th>6-3</th>
<th>9-4</th>
<th>9-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>tem (K)</td>
<td>273.86</td>
<td>271.56</td>
<td>271.53</td>
<td>271.57</td>
<td>276.42</td>
<td>277.07</td>
<td>276.0 3</td>
</tr>
<tr>
<td>mlp (m)</td>
<td>66.66</td>
<td>42.71</td>
<td>43.51</td>
<td>43.14</td>
<td>94.69</td>
<td>112.43</td>
<td>67.24</td>
</tr>
<tr>
<td>ssh (m)</td>
<td>-1.25</td>
<td>-1.59</td>
<td>-1.59</td>
<td>-1.60</td>
<td>-0.43</td>
<td>-0.77</td>
<td>-1.08</td>
</tr>
<tr>
<td>bot (K)</td>
<td>273.46</td>
<td>273.34</td>
<td>274.06</td>
<td>272.97</td>
<td>273.33</td>
<td>273.32</td>
<td>273.6 3</td>
</tr>
<tr>
<td>ice</td>
<td>0.59</td>
<td>0.96</td>
<td>0.97</td>
<td>0.95</td>
<td>0.12</td>
<td>0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>sal</td>
<td>33.65</td>
<td>33.22</td>
<td>33.31</td>
<td>33.19</td>
<td>33.92</td>
<td>33.99</td>
<td>33.86</td>
</tr>
<tr>
<td>chl (mg m⁻³)</td>
<td>0.38</td>
<td>0.72</td>
<td>0.57</td>
<td>0.76</td>
<td>0.33</td>
<td>0.32</td>
<td>0.36</td>
</tr>
<tr>
<td>nppv (mgC m⁻³ day⁻¹)</td>
<td>3.64</td>
<td>8.01</td>
<td>5.86</td>
<td>8.51</td>
<td>2.99</td>
<td>3.12</td>
<td>3.19</td>
</tr>
<tr>
<td>fe (mmol m⁻³)</td>
<td><0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.003</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
</tr>
<tr>
<td>depth (m)</td>
<td>-3000</td>
<td>-144</td>
<td>-295</td>
<td>-86</td>
<td>-4448</td>
<td>-3276</td>
<td>-4613</td>
</tr>
</tbody>
</table>
Figures

Figure 1. Locations of the Southern Ocean, Weddell Sea, Rose Sea, and Amundsen Sea
Figure 2. Primary production in the Amundsen Sea, (A) mean value of primary production; (B) seasonality amplitude of primary production; (C) annual values of (black line) and long-term changes in (black dashed line) primary production; (D) MK-values (y-axes) obtained from the sequential Mann-Kendall test against time for annual primary production; (E) monthly primary production values (black line) and amplitudes of the monthly values (black broken line).
Figure 3. Dendrogram obtained from hierarchical clustering. The dotted lines ($K=6$ and $K=9$) show the levels at which the dendrogram was cut to produce the groups.
Figure 4. Six bioregions identified in the K-means cluster analysis (A); 9 bioregions identified in the K-means cluster analysis (B)
Figure 5. Parameters that characterize the key properties of bioregions, showing the maximum value (red), the second-highest value (yellow), the minimum value (blue) and the second-lowest value (green) of each parameter, including the annual maximum mean (A), annual minimum mean (B), and long-term change rate (C) (dep-A: latitudinal gradient, dep-B: longitudinal gradient).
Figure 6. Mean values (A), annual maximum mean values (B), and long-term change rates (C) of primary production in 9 bioregions.
Figure 7. Monthly mean net primary productivity values in bioregions 3, 5, 8, and 9 from 1993 to 2015.

Figure 8. Monthly mean ice concentration and dissolved iron in bioregions 3, 5, 8, and 9 from 1993 to 2015.
Figure 9. Changes in monthly net primary productivity values in bioregions 3, 5, 8, and 9 from 1993 to 2015 (the colors represent different years).
Figure 10. Changes in monthly Fe values in bioregions 3 (a) and 5 (b) from 1993 to 2015; changes in monthly nitrate anomalies in bioregions 3 (c) and 5 (d); changes in monthly phosphate anomalies in bioregions 3 (e) and 5 (f); and changes in monthly
Figure 11. Annual net primary productivity rates (full line) in bioregions 3, 5, 8 and 9 from 1993 to 2015, the dotted lines indicate the linear trends (numbers are the change rates).