1 Supplementary Information

Probe	Specificity	% Formamide in hybridization buffer	Probe sequence (5′-3′)	Publication	
ANME-1-350	ANME-1	40%	AGT TTT CGC GCC TGATGC	(Boetius et al., 2000)	
ANME-2-538	ANME-2	40%	GGC TAC CAC TCG GGC CGC	(Treude et al., 2005)	
EUB338 I-III	Most bacteria	35%	GCT GCC TCC CGT AGG AGT GCA GCC ACC CGT AGG TGT GCT GCC ACC CGT AGG TGT	(Daims et al., 1999)	
Ma450	Alpha-MOB	20%	ATC CAG GTA CCG TCA TTA TC	(Eller and Frenzel, 2001)	
Mgamma84	Gamma-	20%	CCA CTC GTC AGC GCC CGA	(Eller and Frenzel, 2001)	
Mgamma705	MOB		CTG GTG TTC CTT CAG ATC		
NON338	Negative control	35%	ACT CCT ACG GGA GGC AGC	(Wallner et al., 1993)	

2 Table S1. Specifics of the CARD-FISH probes applied.

3

4 Table S2. Experimental setups to quantify methane oxidation potential and the influence of 5 different electron acceptors on methane oxidation.

Setup	Stock solution	Treatment	Conditions	Depths	
dark			dark		
nitrate	5 mM 100 at.% ¹⁵ NO ₃ -	40 µM	dark	3, 4, 5, 7 & 9 m	
nitrite	5 mM 100 at.% ¹⁵ NO ₂ -	20 µM	dark		
AQDS ¹	10 g l ⁻¹ AQDS	44 mg l ⁻¹	dark		
light			light	- 3, 4 & 5 m	
oxygen	saturated O ₂ solution	15 µM	dark		
Humics ²	2 g l ⁻¹ LHA	125 mg l ⁻¹	dark		
Fe(III)	100 mM ferrihydrite suspension ³	100 µM	dark	5, 7 & 9 m	
Mn(IV)	100 mM birnessite suspension ⁴	100 µM	dark		

6 ¹AQDS: anthraquinone-2,6-disulfonate (J&K Scientific)

7 ²Leonardite Humic Acid Standard (purchased from the International Humic Substances Society)

8 ³ferrihydrite was synthesized according to Cornell and Schwertmann (Cornell and Schwertmann, 2003)

⁹ ⁴birnessite was synthesized according to Golden et al. (Golden et al., 1987)

- 10 **Table S3.** Methane oxidation rates as determined by linear regression analysis in the incubation
- 11 experiments with substrate additions.

	Water column depth						
	3	4	5	7	9		
Control (dark)	0.99 ± 0.06	0.53 ± 0.04	$0.60\pm\!\!0.01$	0.86 ± 0.06	0.49 ± 0.23		
Light	3.87 ± 0.06	0.86 ± 0.03	0.55 ± 0.02	-	-		
Oxygen	1.79 ± 0.22	0.64 ± 0.08	0.59 ± 0.01	-	-		
AQDS	0.78 ± 0.06	0.58 ± 0.02	0.71 ± 0.01	1.09 ± 0.03	0.71 ± 0.10		
Leonardite humic acid	-	-	1.14 ± 0.02	1.23 ± 0.32	0.39 ± 0.17		
Mn(IV) (Birnessite)	-	-	0.48 ± 0.04	0.69 ± 0.14	0.65 ± 0.22		
Fe(III) (Ferrihydrite)	-	-	0.80 ± 0.12	1.29 ± 0.07	0.25 ± 0.06		
NO ₂ -	0.94 ± 0.02	0.38 ± 0.02	0.41 ± 0.04	1.54 ± 0.11	0.24 ± 0.06		
NO ₃ -	0.69 ± 0.14	0.47 ± 0.02	0.66 ± 0.04	0.93 ± 0.04	0.19 ± 0.06		

12

- 13 Fig. S1. Detailed view of dissolved oxygen (A) and PAR (B) profiles near the oxycline of Lake
- 14 Lovojärvi. For full water column profiles, see Fig. 2.

19

Fig. S3. Depth profiles of (A) DIC and δ^{13} C-DIC, (B) conductivity and turbidity and (C) pH. Note the

 $21 \qquad \text{scale of the pH x-axis starts at 6. DIC-Dissolved inorganic carbon.}$

Fig. S4. Relative abundance of Alphaproteobacteria, Rhizobiales and *Methylocystaceae* reads

25 according to 16S rRNA sequencing.

