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Abstract.  15 

Large amounts of carbon flow through tropical ecosystems every year, from which a part is sequestered in biomass through 

tree growth. However, the effects of ongoing warming and drying on tree growth and carbon sequestration in tropical forest is 

still highly uncertain. Field observations are sparse and limited to a few sites while remote sensing analysis shows diverging 

growth responses to past droughts that cannot be interpreted with confidence. To reconcile data from field observations and 

remote sensing, we collated in situ measurements of stem growth and leaf litterfall from inventory plots across the Amazon 20 

region and other Neotropicsal ecosystems. This data was used to train two machine learning models and to evaluate model 

performance on reproducing stem growth and litterfall rates. The models utilized multiple climatological variables and other 

geospatial datasets (terrain, soil and vegetation properties) as explanatory variables. The output consisted of monthly estimates 

of leaf litterfall (R2 = 0.671,  NRMSE = 9.54%) and stem growth (R2 = 0.5154, NRMSE = 1110.26%) across the neotropics 

from 1982 to 2019 at a high spatial resolution (0.1°). Modelled time series allow to assess the impacts of the 2005 and 2015 25 

droughts in the Amazon basin on regional scales. Both droughts The more severe 2015 drought wereas estimated to have 

caused widespread declines in stem growth (-0.6σ ~ -1.8 σ), coinciding with enhanced leaf fall (+01.74 σ ~ +0.9σ), which were 

only locally apparent in 2005. Regions in the Amazon basin that flushed leaves at the onset of both droughts (+01.19 σ ~ 

+12.90 σ), showed positive anomalies in remotely sensed enhanced vegetation index, while sun-induced fluorescence and 

vegetation optical depth were reduced. The previously observed counterintuitive response of canopy green-up during drought 30 

in the Amazon basin detected by many remote sensing analyses can therefore be explained a result of by enhanced leaf flushing 

at the onset of a drought. The long-term estimates of leaf litterfall and stem growth point to a decline of stem growth and a 

simultaneous but weaker increase in leaf litterfall in the Amazon basin since 1982 that is not observed in long-term inventory 

plots. These trends are associated with increased warming and drying of the Amazonian climate, and could point to a further 

decline in the Amazon carbon sink strength. 35 
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1 Introduction 

Tropical forests, in particular in the Amazon basin, contribute substantially (~25%) to the terrestrial carbon sink (Brienen et 

al., 2015; Pan et al., 2011). The Amazon forest alone currently stores an estimated 100 to 115 Pg of carbon in living biomass 

and intact forests have taken up an additional net 0.43 Pg of carbon each year through tree stem growth since the 1980’s 

(Feldpausch et al., 2012; Phillips et al., 2017). It thereby acts to reduce the impact of deforestation and fossil fuel emissions 40 

on the atmospheric CO2 growth rate and mitigates global climate change (Phillips et al., 2017). Most land surface models 

project that the Amazon carbon sink will be sustained throughout the 21st century, mainly driven by the positive effect of 

elevated atmospheric CO2 on plant growth (i.e. CO2 fertilization) (Holm et al., 2020; Rammig et al., 2010). Also forest plot 

inventory data suggests a persistent carbon sink in intact Neotropical Amazonian forests (Phillips et al., 2008) although the 

sink strength (i.e. the rate of net carbon uptake) has been declining since the start of the 21st century (Brienen et al., 2015; 45 

Hubau et al., 2020). The decline of the carbon sink strength is mainly driven by increased tree mortality while tree growth 

remained relatively stable (Brienen et al., 2015). This suggests that the positive effect of elevated atmospheric CO2 on plant 

photosynthesis and growth may increasingly be cancelled out by other limiting factors, such as nutrient availability (Fleischer 

et al., 2019; Hofhansl et al., 2016; Lapola et al., 2009). Additionally, the Amazon region is experiencing a change in the 

hydrological cycle with increasing wet season precipitation and flooding, a declinee of dry season precipitation, more frequent 50 

episodic droughts and increasing regional air temperatures (Cox et al., 2008; Fu et al., 2013; Gloor et al., 2013; Janssen et al., 

2020; Jiménez-Muñoz et al., 2016). In light of these observed changes in regional climate and forest functioning, it is highly 

uncertain whether intact Neotropical Amazonian forest will continue to act as a carbon sink in the future or will become a net 

source of CO2 that will could amplify global climate change (Boisier et al., 2015; Fu et al., 2013; Janssen et al., 2020; Malhi 

et al., 2009b; Marengo et al., 2010).  55 

1.1 How sensitive is tree growth to drought in Neotropical Amazonian forests? 

Past responses of the Amazon forest productivity to droughts have been studied using satellite remote sensing analyses and 

field observations but sometimes with conflicting results. For example, many field observations show clear reductions in tree 

stem growth during drought (Feldpausch et al., 2016; Hofhansl et al., 2014; Rifai et al., 2018) while others found no reductions 

in stem growth during a drought (Doughty et al., 2015a; Phillips et al., 2009). Remote sensing studies complemented field 60 

observations and provided useful insights into the responses of forest productivity and aboveground biomass to drought over 

time on regional and global scales (e.g. Liu et al., 2018b; Saleska et al., 2007). However, as remote sensing techniques measure 

electromagnetic radiation, it is notoriously difficult to interpret an observed drought response in remote sensing data and 

translate this response into a quantifiable change in growth or ecosystem carbon uptake (Mitchard et al., 2009a, 2009b). 

Furthermore, different remote sensing sensors sometimes point to contrasting responses of forest productivity to drought and 65 

seem to be deviating from ground observations (Anderson et al., 2010). 
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The discrepancy between drought responses observed in remote sensing products can partly be explained by the range of the 

electromagnetic spectrum that the sensors utilize, so that the retrieved signal is sensitive to different vegetation properties. 

Vegetation indices derived from Mmultispectral sensors that utilize red and near-infrared bands in the spectrum are sensitive 70 

to vegetation greenness and consistently show canopy green-up during and just after drought (Gonçalves et al., 2020; Lee et 

al., 2013; Saleska et al., 2007; Yang et al., 2018). However, the apparent green-up during drought has been coined an artefact 

and has been attributed to changes in atmospheric properties during drought (Asner and Alencar, 2010; Samanta et al., 2010), 

to changes in sun-sensor geometry (Morton et al., 2014), and to structural changes in the forest canopy (Anderson et al., 2010). 

Furthermore, other evidence from remote sensing analyses also seem to contradict theis so-called Amazon green-up during 75 

drought hypothesis (Anderson et al., 2018; Xu et al., 2011). Firstly, sun-induced fluorescence (SIF), measured with 

hyperspectral sensors and regarded a good proxy of canopy photosynthesis, is generally found to decrease during drought 

(Koren et al., 2018; Lee et al., 2013; Yang et al., 2018). Secondly, remotely sensed passive and active microwave data show 

clear negative anomalies in vegetation optical depth (VOD) and radar backscatter in response to drought in the Amazon basin, 

both metrics are considered sensitive to vegetation water content and biomass (Frolking et al., 2011, 2017; Liu et al., 2018b; 80 

Saatchi et al., 2013). For example, monthly observations of remotely sensed radar backscatter showed clear negative anomalies 

during the 2015 drought in the central Amazon that were correlated to in situ observed declines of stem diameter growth (van 

Emmerik et al., 2017). There is currently a lack of integrated understanding of how observed remote sensing responses to 

drought translate into actual responses of aboveground forest growth and functioning in tropical forests. 

1.2 What is known about the drivers of stem and canopy growth? 85 

Total plant growth or biomass production is commonly divided into leaf growth, stem and branch growth, fine and coarse root 

growth, as well as reproductive growth. Next to quantifying total biomass production, it is relevant to know how biomass 

production is partitioned, because biomass in short-lived leaves and fine roots has a much shorter residence time compared to 

biomass in stems, branches and coarse roots. In Neotropical forests, the relative allocation of carbohydrates to biomass 

production in the canopy, stem and roots varies both spatially with climate and differences in soil properties (Hofhansl et al., 90 

2015, 2020) as well as over time with changes in water availability, air temperature and insolation (Doughty et al., 2014, 

2015a; Girardin et al., 2016). Stem growth is mostly estimated using a combination of dendrometer measurements and 

allometric equations (e.g. Malhi et al., 2009b). Canopy growth is often determined by quantifying the amount of litterfall that 

is collected in so-called litter traps (e.g. Chave et al., 2010). In Neotropical forest plots, stem growth increases with soil 

phosphorus availability, soil clay fraction and mean annual precipitation (Aragão et al., 2009; Banin et al., 2014; Hofhansl et 95 

al., 2015; Quesada et al., 2009; Soong et al., 2020). In contrast, the spatial variability in canopy production between sites is 

not explained by differences in mean annual precipitation or soil properties (Chave et al., 2009). Therefore, the drivers of the 

spatial variability in canopy growth across Neotropical forests remain largely unknown. 
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In humid Amazonian and other Neotropical forests, leaf flushing in the early dry season results in the increase of canopy 100 

growth and a simultaneous decline in stem growth (Doughty et al., 2014; Girardin et al., 2016; Hofhansl et al., 2014). The 

decline of stem growth during the dry season in humid forests is not related to a decline in overall biomass production but is 

related to a shift in carbohydrate allocation from the root and stem towards the canopy (Doughty et al., 2014, 2015b). In tropical 

dry forests, leaf litterfall increases in the dry season and leaf flushing is delayed until the start of the wet season when soil 

water is replenished (Sanches et al., 2008; Selva et al., 2007). Furthermore, the rate of dry season litterfall is observed to be 105 

higher near to the forest edge compared to the interior, associated with dryerdrier and warmer microclimatic conditions near 

the forest edge (Schessl et al., 2008; Sizer et al., 2000). On more wind exposed sites in the neotropics, not seasonality but the 

sporadic occurrence of tropical storms is driving the temporal variability in litterfall and canopy growth (Heineman et al., 

2015; Liu et al., 2018a; Veneklaas, 1991). Finally, hot and dry conditions associated with the warm phase (El Niño) of the El 

Niño Southern Oscillation (ENSO) and tropical North Atlantic sea surface temperature anomalies (Marengo et al., 2011) have 110 

been linked to periods of elevated litterfall (Detto et al., 2018; Thomas, 1999) and reduced stem growth in Neotropical forests 

(Feldpausch et al., 2016; Rifai et al., 2018; Vasconcelos et al., 2012). However, it is still uncertain whether drought-induced 

changes in biomass production that were observed in inventory plots across the Amazon basin, occurred on a larger regional 

scale in Neotropical forestsforests across the entire basin. 

 115 

The aims of this study are to develop (1) examine, based on a novel dataset of stem growth and leaf litterfall observations 

across the Amazon forest and other Neotropical ecosystems, and examine  (21) how leaf litterfall, leaf flushing and stem 

growth change in response to drought in the Amazon forest. Furthermore, we aim to, (32) reconcile in situ measurements of 

leaf litterfall, leaf flushing and stem growth with remote sensing analysisdata, and (43) use an empirical model to estimate the 

impact of historical droughts and long-term climate trends in the Amazon basin on aboveground biomass production. 120 

2. Methods 

2.1 Inventory data 

We searched the available literature using the Google, Google Dataset Search and Google Scholar search engines for reported 

stem growth and litterfall data collected between 1981 and 2019 at sites across tropical and sub-tropical South and Central 

America between 30º south and 30 º north. The search timespan was chosen to match that of the ERA5-Land climate dataset 125 

that provided the explanatory variables in the empirical models (see section 2.4). Search terms included: leaf litterfall, litterfall, 

litterfall production, stem growth, diameter growth, tree growth. Also, the Spanish and Portuguese literature was searched for 

studies that reported litterfall production with the key words: producción de hojarasca and produção de serapilheira, 

respectively. 

  130 
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Monthly values of stem growth and litterfall were extracted from existing datasets as well as published manuscripts and 

compiled into a new dataset together with the month and year of observation, site name, location and data source (see 

Supplementary datasetData availability). The majority of monthly data was extracted from published figures in individual 

manuscripts using a publicly available digitizing tool (Rohatgi, 2018). When the measurement time spanned multiple months 

or years, for example tree census data (e.g. Brienen et al., 2015), instead of a well-defined year and month of observation, we 135 

included the start and end date of the census interval in the dataset. Total fine litterfall (including leaves, fruits, flowers and 

twigs) and leaf litterfall were, whenever possible, separately retrieved from the literature. When only leaf litterfall or total fine 

litterfall was provided in the original study, which was the case for 123 out of 211 studies that reported litterfall data, the 

missing litterfall data was estimated from a linear relationship between leaf litterfall and total fine litterfall (R2 = 0.93, p < 

0.01, n = 3034, Figure S1). All litterfall and stem growth data was converted to Mg C ha-1 month-1 using 50% carbon content 140 

per unit of biomass. The database counted included 7228 individual observations of litterfall and 2732 observations of stem 

growth that were retrieved from 246 studies conducted at 814 sites in the neotropics. 

 

Litterfall observations can be used to estimate canopy growth at a specific site on multi-year timescales. However, monthly 

litterfall cannot be directly used to estimate monthly canopy growth as shed leaves are not instantly replaced by the same 145 

amount of newly flushed leaves. Therefore, we estimated monthly leaf flushing or leaf growth following Doughty & Goulden 

(2009) as: 

 

𝐿𝑒𝑎𝑓𝑓𝑙𝑢𝑠ℎ =
∆𝐿𝐴𝐼

𝑆𝐿𝐴
+ 𝐿𝑒𝑎𝑓 𝑙𝑖𝑡𝑡𝑒𝑟𝑓𝑎𝑙𝑙             (1) 

 150 

where 𝐿𝑒𝑎𝑓 𝑙𝑖𝑡𝑡𝑒𝑟𝑓𝑎𝑙𝑙 is the measured leaf litterfall (Mg C ha-1 month-1), SLA is the specific leaf area (m2 Mg-1 C) and ∆LAI 

the monthly change in leaf area index (m2 ha-1 month-1). Specific leaf area data was extracted from the global gridded plant 

traits product of Butler et al. (2017). Monthly LAI was extracted for each site from July 1981 until December 2018 from the 

Global Data Set of Vegetation Leaf Area Index (LAI3g) (Zhu et al., 2013). The LAI3g is a validated global product developed 

using multi-spectral remote sensing data in a neural network algorithm, showing reasonable accuracy (RMSE = 0.68 m2 m-2) 155 

at ground truthing sites in various biomes and no saturation of LAI in dense broadleaf tropical forests (Zhu et al., 2013).  

In addition to leaf flushing, we estimated the proportion of mature leaf area as: 

 

𝐿𝐴𝐼𝑚𝑎𝑡𝑢𝑟𝑒 = ∑ (𝐿𝑒𝑎𝑓𝑓𝑙𝑢𝑠ℎ ∗ 𝑆𝐿𝐴)𝑛                  (2)

−2

𝑛=−5

 

 160 

In Neotropical humid forests, newly flushed leaves take approximately two months to fully mature and reach their optimal 

photosynthetic capacity about 2-5 months after leaf flushing (Albert et al., 2018). Therefore, the sum of leaf area flushed 
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between 2 and 5 months in the past, here termed the mature leaf area, was thought to be a proxy of canopy photosynthetic 

capacity and canopy greenness. 

2.2 Geospatial data and derived features 165 

Properties that were not observed at the field plots included in the database dataset (see section 2.1) were extracted from 

multiple gridded geospatial datasets, including soil properties, plant traits standing biomass and climate data (Table 1). We 

included a broad range of geospatial datasets variables that could possibly be used to predict the spatial and temporal variability 

in stem growth and leaf litterfall. However, the remote sensing products that were used in the comparison with the model 

output, the MODIS EVI, the vegetation optical depth and sun-induced fluorescence (see section 2.3), were not used as 170 

explanatory variables in the model to prevent interdependencies to occur between the model output and the remote sensing 

data.    

  

Climate variables were retrieved as monthly averages from January 1981 to September 2019 at a 0.1° horizontal resolution 

from the ERA5-Land reanalysis dataset (Hersbach et al., 2020). In addition, hourly averages of instantaneous 10-meter wind 175 

gust were retrieved from January 1979 to September 2019 at a 0.25° horizontal resolution from the ERA5 dataset. From the 

hourly averages of wind gust, the maximum wind gust in each month was calculated, which is expected to be a good indicator 

of sporadic high litterfall following tropical cyclones (e.g. Whigham et al., 1991). 

 

Table 1 Geospatial datasets used as explanatory variables in the XGBoost models. In brackets the native horizontal resolution of the 180 
dataset if a spatially aggregated product was used. The SoilGrids dataset (Hengl et al., 2017) contains data from seven soil layers at 

different depths below the surface. For this study, these layers were merged into two layers with a shallow soil layer (L1-L3) and a 

deep soil layer (L4-L7).    

Product name Variables Horizontal 

resolution 

Temporal 

coverage  

Data source 

Plant traits Specific leaf area (m2 kg-1) 0.5° ~56 km - (Butler et al., 2017) 
 Leaf nitrogen (mg g-1) 

Leaf phosphorous (mg g-1) 

 

ESA CCI 

Aboveground 

biomass 

 

Aboveground biomass (Mg ha-1) 500 m (100 m) 2017 ESA Climate Change 

Initiative 

(Santoro and Cartus, 2019) 
 

NASA Vegetation 

Continuous Field v1 

(VCF5KYR) 

 

Percentage tree cover (%) 0.05° ~5.6 km 1982-2016 (Hansen and Song, 2018) 

ALOS elevation and 

terrain 

Elevation (m above sea level) 1 km (90 m) 2006-2011 (Tadono et al., 2014) 

Slope (°) 

Aspect (°) 

 

SoilGrids - global 

gridded soil data, 

Available soil water capacity (%)  1 km (250 m) - (Hengl et al., 2015, 2017) 
Cation exchange capacity (cmol kg-1) 
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second version 

(2017) 

Bedrock depth (cm) 

Clay, sand and silt fractions (%) 

pH measured in water (index)  

Organic carbon content (g kg-1) 

Total nitrogen (g kg-1) 

GFPLAIN250m 

 

Floodplain presence 250 m - (Nardi et al., 2019) 

ERA5 hourly 

averaged data from 

1979 to present 

 

Instantaneous 10 meter wind gust (m s-1) 0.25° ~28 km 01-01-1979 

01-09-2019 

 

(Hersbach et al., 2020) 

ERA5-Land 

monthly averaged 

data from 1981 to 

present 

10 meter  windspeed (m s-1)* 0.1°  ~11 km  01-01-1981 

01-09-2019 

(Hersbach et al., 2020) 
Dewpoint temperature at 2m (K) 

Temperature at 2m (K) 

Evaporation (m of water equivalent) 

Leaf area index high vegetation (m2 m-2) 

Surface latent heat flux (J m-2) 

Surface net solar radiation (J m-2) 

Surface sensible heat flux (J m-2) 

Total precipitation (m) 

Volumetric soil water in four layers (m3 m-3) 

Skin reservoir content (m) 

 

The number of explanatory variables, from here on called features, was further expanded by calculating derived features from 185 

the aforementioned datasets. Providing the empirical model with a large variety of often related features helps building 

performant models with a relatively low number of dependent variables (Guyon and Elisseeff, 2003). The soil C:N ratio was 

calculated by dividing soil organic carbon content (g kg-1) by soil total nitrogen content (g kg-1) from the SoilGrids dataset 

(Hengl et al., 2017). Furthermore, the leaf N:P ratio was calculated from the leaf nitrogen (mg g-1) and leaf phosphorus content 

(mg g-1) present in the global gridded plant trait dataset (Butler et al., 2017). The gridded leaf N:P ratio was included into the 190 

empirical model as the gradient in plant available phosphorus is a key driver of forest structure and productivity across the 

Amazon basin (Quesada et al., 2012). Finally, the distance to the forest edge was calculated from the 500-meter horizontal 

resolution aboveground biomass map as the Euclidean distance between every cell and the nearest cell with an aboveground 

biomass value below an arbitrary threshold of 50 Mg biomass ha-1 (considered not forest). Because of the relatively high 

horizontal resolution (500 m) of the aboveground biomass map, the distance to the forest edge could not only identify the 195 

distance to large clearings and transitions to more open biomes but also the distance to smaller clearings and rivers. 

 

To further expand the number of features available to train the model and to include historical climate data to the model, all 

monthly climate data up to 1 year in the past were separately added to the model. In this way, the model cannot only choose 

to use, for example, total precipitation in the present month but also the total precipitation in the previous month and the total 200 

presentation in the same month one year in the past to model stem growth and leaf litterfall in that particular month. 
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2.3 Remote sensing data 

Reconciling differences between remote sensing observations from different sensors, as well as reconciling field and remote 

sensing observations required long-term records of remote sensing products from different sensors. The enhanced vegetation 

index (EVI) from the moderate resolution imaging spectroradiometer (MODIS) vegetation index product (MOD13C2 version 205 

6) was used as an indicator of vegetation greenness (Gao et al., 2000). EVI is regarded as an improved vegetation index 

compared to the normalized difference vegetation index (NDVI), as it relies on the blue band next to the red and near infrared 

bands and uses aerosol resistance coefficients in its formulation (Huete et al., 2000). The data were acquired from the website 

of the United States Geological Survey on a 0.05° grid with a 16 day temporal resolution from February 2000 up to April 2020. 

The pixel reliability layer that comes with MOD13C2 product was used to mask out all EVI pixels with unreliable data, keeping 210 

only the most reliable data (pixel reliability = 0) (Didan, 2015). Hereafter, Tthe images were averaged to monthly values to be 

able to compare the EVI to the empirically modelled stem growth, leaf litterfall and leaf flushing data. 

 

In addition, we used remotely sensed sun-induced fluorescence (SIF) data as a proxy of canopy photosynthesis. The SIF data 

used was retrieved from the recent Sun-Induced Fluorescence of Terrestrial Ecosystems Retrieval version 2 dataset (SIFTER 215 

v2). The SIF measurements are derived from hyperspectral observations of the  GOME-2 sensor onboard the Metop-A satellite 

(Schaik et al., 2020). Monthly point observations of SIF (January 2007 - December 2016) were projected on a 0.5° global grid 

and spatially aggregated to monthly averages for comparison with the field data and other remote sensing datasets. 

 

Finally, monthly data was also available for vegetation optical depth (VOD), a passive microwave product (Liu et al., 2013; 220 

Meesters et al., 2005). VOD is directly proportional to the vegetation water content, and therefore sensitive to canopy density 

and biomass (Jackson and Schmugge, 1991; Meesters et al., 2005; Owe et al., 2001). Furthermore, the advantage of also using 

VOD compared to the MODIS EVI is that VOD is unaffected by cloud cover. VOD has been used recently to study vegetation 

phenology (Jones et al., 2011, 2014) and to monitor global vegetation dynamics (Andela et al., 2013; Liu et al., 2007, 2013, 

2015) and deforestation (van Marle et al., 2016). We used C band (June 2002 – December 2018) and X band (December 1997 225 

– December 2018) VOD data from the global long-term Vegetation Optical Depth Climate Archive (Moesinger et al., 2020). 

2.4 Data analysis 

Machine learning enables integrating the different spatial and temporal scales inherent to the field observations in a single 

method and making predictions based on the trends identified in the data.  Extreme gradient boosting (XGBoost), a machine 

learning method for classification and regression (Chen and Guestrin, 2016) was used to upscale in situ measurements to 230 

estimate monthly leaf litterfall and stem growth rates for the neotropics from 1982 to 2019. 
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The XGBoost algorithm was selected for its demonstrated performance when applied to similar environmental science 

problems such as soil mapping (Hengl et al., 2017) and estimating evapotranspiration (Fan et al., 2018). Like other boosting 

algorithms, XGBoost uses an ensemble of weak prediction models, iteratively building each new model to improve the 235 

prediction of the ensemble of previous models. In essence, XGBoost constructs a series of relatively shallow regression trees 

that provide a continuous output value at each leaf, these output values are summed over all regression trees to derive the final 

prediction. The output value of each regression tree is scaled by a predetermined factor η (learning rate) which reduces the 

weight of the individual tree. Adjusting this factor vigilantly ensures a smooth descent of the loss function (Chen and Guestrin, 

2016). Besides the learning rate, XGBoost enables the use of multiple other regularization options. The parameters modulating 240 

the regularization options in the model (so-called hyperparameters) are tuned to make the final model more robust and prevent 

overfitting on the training data. Here, we use the R package xgboost (Chen et al., 2020) to construct the model and the R 

package mlr (Bischl et al., 2020) to tune hyperparameters and select the final features used in the model. 

 

Two XGBoost models were constructed, to estimate monthly leaf litterfall and stem growth separately. Before setting up the 245 

models, the stochastic behaviour present in the monthly timeseries of leaf litterfall and stem growth was reduced by using a 

moving average filter with a window size of 3 months. The 3- month window size, the lowest possible window size, was 

chosen to reduce the sometimes large month to month variation in leaf litterfall and stem growth while maintaining sufficient 

variation between consecutive months to identify extremes.  Furthermore, positive outliers, defined as values higher than 3 

times the standard deviation above the mean, were omitted. The monthly climate data linked to the stem growth and leaf 250 

litterfall observations spanning multiple months to years was averaged using the start date and end date of the observation 

interval. To account for the difference in observation timespan, weights were assigned to the observations in the model as 

following: 

 

   𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡 = 1 + 𝑙𝑛(𝑛𝑚𝑜𝑛𝑡ℎ𝑠)                             (3)  255 

 

where 𝑛𝑚𝑜𝑛𝑡ℎ𝑠 is the length of the time interval in months. By using the natural logarithm to assign weights, observations 

covering multiple months to years were assigned 2 to 5 times the weight of a monthly observation. This was preferred in 

contrast to assigning weights directly proportional to the length of the time interval as this would inflate the importance of a 

few sites with very long observation time intervals in the model. 260 

 

Model performance was evaluated by dividing all leaf litterfall and stem growth data into a training dataset containing 60% of 

all observations at each site and a test dataset containing the remaining 40% of the observations. The initial XGBoost model 

was constructed using the default learning rate (0.3) and the best model iteration was estimated using a 10-fold cross-validation 

of the training data, selecting the iteration with the lowest root mean squared error (RMSE) on the cross-validated data. Next, 265 

we filtered out 80% of the initial 235 features with the lowest feature importance (gain) to reduce the dimensionality of the 
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data and speedup subsequent tuning. Hyperparameter tuning of all the model parameters was done by random search using 

1000 iterations and 10- fold cross-validation. Subsequently, feature selection was done to select a maximum of 20 features for 

each model with the updated hyperparameters and random search using 1000 iterations and 10- fold cross-validation. 

Furthermore, to derive an estimate of model uncertainty, two additional XGBoost models were trained and similarly tuned to 270 

estimate the model error, which is defined as the squared difference between the observed value and the predicted value in the 

test dataset. The final models with the tuned hyperparameters and the 20 selected features were also trained on a separate 

training dataset containing data from 60% of the sites (instead of 60% of the data from each site) to validate model performance 

for between site variation. In this second validation procedure, complete time series of 60% of the sites were used as training 

data to estimate complete time series for 40% of the remaining sites (Figure S2). 275 

 

To evaluate the drought responses of modelled stem growth, leaf litterfall and leaf flushing, two rectangular drought areas 

were delineated within the Amazon basin for the 2005 and the 2015 drought period. First, the drought period was identified 

for both droughts using the average ERA5 topsoil moisture content for the entire Amazon basin. For each month in the time 

series, the seasonally detrended topsoil moisture content was calculated by subtracting the monthly average and dividing by 280 

the standard deviation of that month. The drought period was defined as the consecutive months with a topsoil moisture content 

below one standard deviation (σ) compared to its monthly average. Subsequently, a rectangular area was delineated that 

overlapped those areas within the Amazon basin that showed a topsoil moisture content < 1.5 σ averaged over the entire 

drought period. 

 3. Results 285 

3.1 Model evaluation and feature importance 

The two XGBoost models, one for stem growth (NRSME = 101.26%) and one for leaf litterfall (NRMSE = 9.54%), showed a 

comparable accuracy across the 40% of the data that were used to evaluate the models (Figure 1a, 1c). The model predicting 

stem growth showed less uncertainty in absolute metrics (RMSE = 0.06 Mg C ha-1 month-1) compared to the model predicting 

leaf litterfall (RMSE = 0.08 Mg C ha-1 month-1). However, the range in observed values and the explained variation was smaller 290 

for the stem growth model (R2 = 0.5154) compared to the leaf litterfall model (R2 = 0. 671). The XGBoost models validated 

for estimating between site variation, in which the test data did not include the same sites as the training data, showed lower 

performance in estimating stem growth (RMSE = 0.06 Mg C ha-1 month-1, R2 = 0.41, Figure S2 a) and especially leaf litterfall 

rates (RMSE = 0.12 Mg C ha-1 month-1, R2 = 0.4, Figure S2 b). This additional model validation reveals that the two models 

perform better when trained on incomplete time series from all available sites compared to complete time series from a 295 

selection of sites. This in turn suggests that the drivers of the temporal variation in stem growth and especially leaf litterfall 

are well represented by the set of features used in the models while the drivers of the spatial variation are not fully included.           
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In both models, high rates of stem growth and leaf litterfall were consistently underestimated while relatively low values were 

overestimated (Figure 1a, 1c). This is a common problem in machine learning as the variance of the model estimates is always 300 

lower (unless the fit is perfect) compared to the variance of the observations resulting in the model estimates moving closer to 

the observed mean. The underestimation of high values and overestimation of low values of stem growth and leaf litterfall is 

a limitation of this method when using it to study extreme events like droughts, when extreme responses of stem growth and 

leaf litterfall are expected. Therefore, the results presented here should be considered a conservative or lower bound estimate 

of the actual responses of leaf litterfall and stem growth to drought that are observed. 305 

 

The number of observations of leaf litterfall and stem growth per year wereare not evenly distributed over time in the dataset 

(Figure S3 a). The frequency of leaf litterfall and stem growth measurements in the dataset increased in the 1980’s and the 

1990’s to a maximum in the first decade of the 21st century and has since steadily declined (Figure S3 a), presumably as a 

proportion of the more recent data has not yet been published or is still under embargo. Despite the increase in observation 310 

frequency over time, the model uncertainty, expressed as the NRMSE, has significantly increased over time since the 1980’s, 

both for leaf litterfall (r = 0.6, p < 0.001) and stem growth (r = 0.4, p < 0.05, Figure S3 b). Suggesting that the model estimates 

of leaf litterfall and stem growth are relatively more uncertain in recent years compared to the 1980’s and 1990’s.     

 

Of the 235 features that were used in the first XGBoost models, only 20 features were used in the two final models. These 315 

features have been ranked based on their importance (gain) in these final models and the top tens of most important features 

in both models are shown (Figure 1b, 1d). The most important features explaining the spatial and temporal variability in stem 

growth and leaf litterfall that were used in both models included the distance to the forest edge, terrain elevation, soil moisture 

content, vapour pressure deficit, sensible heat flux, solar radiation, soil pH, leaf nitrogen : phosphorus ratio content, and 

specific leaf areapercentage tree cover. Additional features explaining stem growth included precipitation and 320 

runoffevaporation, terrain aspect, bedrock depth, air temperature and evaporation, and leaf N:P ratio and soil pH (Figure 1b). 

The spatial and temporal variability in leaf litterfall was further explained by features including aboveground biomass, 

meteorological variables such as dewpoint and air temperature and net solar radiation wind speed and soil properties such as 

cation exchange capacity, C:N ratio, soil nitrogen content and soil sand clay fraction (Figure 1d). Although the importance of 

some of these features in the models might represent a causal link with either stem growth or leaf litterfall, we cannot conclude 325 

from this empirical analysis that this is the case. 
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Figure 1 Model evaluation and feature importance. The scatterplots on the left side of the figure (a, c) show the predicted biomass 

production versus the measured biomass production of the test data that was used to validate the stem growth (a) and leaf litterfall 330 
(b) models. The dashed black line is the 1:1 line and the solid black line the least squares linear regression fit. The bar graphs on the 

right side of the figure (b, d) show the feature importance (gain) of the top 10 features selected for the final models. Feature names 

are detailed in Table 1. Features with lags indicate the value of that climate variable a given number of months in the past (e.g. 

precipitation lag 11 is the monthly precipitation 11 months in the past). 

 335 
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3.2 Long-term stem growth and leaf litterfall rates across the neotropics 

Distinct spatial patterns in stem growth and leaf litterfall rates across the neotropics arose in the long-term (1982-2019) model 

predicted estimatesdata (Figure 2). The range of predicted leaf litterfall rates (0.8 ~ 5.0 9 Mg C ha-1 year-1) across the Neotropics 

was more thanalmost  two times as large as the range of predicted stem growth (1.04 ~ 3.16 Mg C ha-1 year-1), in accordance 

with the observed difference in the range of the field data (Figure 1a, 1b). Although the spatial patterns in stem growth and 340 

litterfall rates differed, some general trends can be identified. Relatively low rates of predicted stem growth and leaf litterfall 

are observed in the open savanna and xeric shrub ecosystems of the Neotropics such as the Cerrado and Caatinga in Brazil, 

the Llanos savanna in Venezuela and the Beni savanna in Bolivia (Figure 2a , 2b). Furthermore, low stem growth and leaf 

litterfall rates are also observed in the montane environments of the Andes (Figure 2a, 2b). Relatively high rates of predicted 

stem growth are found in Central America, along the Pacific coast of Colombia and in the northern and western Amazon basin 345 

(Figure 2a). Leaf litterfall showed relatively high rates in the remaining Atlantic forest fragmentss of south-eastern Brazil, in 

Central America and across the forest covered Amazon basin (Figure 2b). 

 

As the range in predicted leaf litterfall rates was much larger than the range in predicted stem growth rates, the spatial variability 

in leaf litterfall rates largely drives the spatial variability in aboveground biomass production (defined as the long-term sum of 350 

leaf litterfall and stem growth) across the Neotropical ecosystems (Figure 2c). Furthermore, the predicted stem growth and 

leaf litterfall data shows that in areas with a relatively low aboveground biomass production, for example in the Cerrado region 

and the Andes, the contribution of stem growth to the total aboveground biomass production is relatively large (> 0.45). In 

contrast, in areas where aboveground biomass production is relatively high, for example in the Amazon basin and Central 

America, the contribution of stem growth to the total aboveground growth is relatively low (< 0.45, Figure 2d). Also 355 

noteworthy is that the always wet north-western Amazon basin, that experiences no seasonality in precipitation (Sombroek, 

2001), shows relatively high stem growth and low leaf litterfall rates compared to the other regions within the basin (Figure 

2a, 2b). These results suggest that as productivity increases in these Neotropical ecosystems, an increasingly larger proportion 

of available carbohydrates is allocated to the production of leaves. 

 360 

The estimated model uncertainty (RMSE) of the stem growth and leaf litterfall models showed similar spatial patterns as the 

long-term averages with a high RMSE in highly productive regions and low RMSE in less productive regions (Figure S4 a ,b). 

However, after adjusting the RMSE for the average seasonal range in values observed (the annual amplitude), it becomes clear 

that the relative error (NRMSE) is actually higher in the unproductive regions, especially in the Andes (Figure S4 c, d). While 

the leaf litterfall and stem growth models show good performance in the majority of pixels in the study area (NRMSE < 15%), 365 

some high altitude areas within the Andes show a relatively low performance (NRMSE > 50%). For the Amazon basin (black 

contour) the average estimated NRMSE is 12.5% for the leaf litterfall model and 16.4% for the stem growth model. This means 
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that on average, the error of the model estimates across the Amazon basin is less than 20% of the average seasonal variability 

in leaf litterfall and stem growth.     
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Figure 2 Predicted stem growth (a), leaf litterfall (b) and total aboveground biomass production (c) and the contribution of stem 

growth to the aboveground biomass production (d) across the neotropics from 1982 to 2019. Site locations where stem growth (n = 

458) (a) and leaf litterfall (n = 377) (b) were measured are depicted as solid black circles. Country borders and the extent of the 

Amazon basin are marked by thin and thick black lines, respectively. 375 
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3.3 Aboveground growth responses to the drought of 2015 

The predicted monthly stem growth and leaf litterfall data were used to estimate the impact of the 2015 drought in the Amazon 

region. Across the entire Amazon basin, leaf fall generally showed positive anomalies while stem growth showed negative 

anomalies during the 2015 drought (August 2015 to January 2016, Figure 3a & 3c). However, significant regional differences 

in the responses of leaf fall, leaf flushing and stem growth to the 2015 drought were observed within the Amazon basin (Figure 380 

3). A combination of positive seasonal anomalies in leaf fall and leaf flushing and negative anomalies in stem growth during 

the 2015 drought were mainly observed in the eastern Amazon that was delineated as the drought area (red rectangle in Figure 

3 and 4). This area experienced the most significant negative anomalies in top-soil volumetric moisture content and positive 

anomalies in net solar radiation (Figure 4a & 4b). During the height of the drought in November 2015, precipitation (-1.7 σ) 

and soil moisture (-2.6 σ) were significantly lower in the drought area compared to their monthly average, while air temperature 385 

(+2.7 σ, not shown), vapor pressure deficit (+2.8 σ) and solar radiation (+2.1 σ) were all significantly higher compared to their 

monthly average (Figure 5c). In the western Amazon, that experienced less severe drought conditions in 2015 (Figure 4), leaf 

fall and leaf flushing were also enhanced while stem growth showed no apparent negative nor positive anomalies (Figure 3). 

 

 390 

From August 2015 to January 2016 stem growth was on average significantly lower (-1.8 σ) in the drought area while leaf fall 

was higher (+01.94 σ) compared to the long-term averages of stem growth and leaf fall for these months (Figure 5a). In the 

dry season following the 2015 drought, from July 2016 to December 2016, stem growth was also significantly reduced in the 

droughted area affected by drought (-2.1 σ) while leaf fall was again elevated (+1.7 σ) compared to their long-term averages. 

These results point to a possible lagged effect of the 2015 drought on leaf fall and stem growth.Predicted stem growth remained 395 

lower in the drought area after the end of the drought in the remaining 11 months of 2016 (-1.5 σ, Figure 5a). Furthermore,  

lLeaf flushing was higher than the monthly average at the onset (+21.90 σ in August 2015) and end of the drought (+10.80 σ 

in January 2016) following the first rain events (not shownFigure S5). During the height of the drought (-1.3 σ in November 

2015, Figure 5) leaf flushing was lower than the monthly average (-1.1 σ in November 2015, Figure 5). 

 400 

In the drought area, anomalously high leaf flushing at the onset of the 2015 drought resulted in an above average mature leaf 

area (i.e. the sum of leaf area flushed in the past 2-5 months), in the second half of the drought (+1.3 8 σ in October September 

2015 - January 2016, Figure 5a). The spatial pattern of the positive anomalies in mature leaf area coincided with positive 

anomalies in MODIS EVI (Figure 3d & 4c). Green-up during drought was visible as positive anomalies in predicted mature 

leaf area and EVI in eastern Colombia and in the central Brazilian Amazon, roughly the west half of the delineated drought 405 

area (Figure 3d & 4c). However, in the east half of the drought area, mainly negative anomalies in EVI, leaf flushing and 

mature leaf area were visible (Figure 3b, 3d & 4c). This area experiences a relatively long dry season (≥ 4 months) compared 



19 

 

to the forest in the west (< 3 months) (Sombroek, 2001), suggesting that forests experiencing a short dry season green-up 

during drought while forests experiencing a longer dry season generally show browning in response to drought. 

  In contrast, t 410 

The X band vegetation optical depth (VOD) and sun-induced fluorescence (SIF) showed widespread negative anomalies in 

the drought area (-0.8 σ and -2.4 σ in September - November, respectively) during the height of the 2015 drought (Figure 4c 

& 5b). Note the contrast in the observed responses between the moist tropical forest of the Amazon basin (inside the black 

contour line) with the Cerrado and Caatinga regions,  located to the south and south-east of the Amazon basin of in eastern 

Brazil. In the dryerdrier Cerrado and Caatinga regions, both leaf flushing, mature leaf area, VOD and EVI all show clear 415 

negative anomalies during the 2015 drought (Figure 3 & 4). 
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 420 

Figure 3 Average anomalies in leaf fall, leaf flushing, stem growth and mature leaf area during the 2015 drought (August 2015 – 

January 2016) compared to their long-term averages (1982-2019). Leaf fall (a) and stem growth (c) were directly retrieved from the 

long-term monthly model estimates. Leaf flush (b) was calculated from monthly predicted leaf fall (a) and changes in LAI (Eq. 1). 

Mature leaf area (d) is the sum of new leaf area flushed in the previous 2 to 5 months (Eq. 2). Country borders and the extent of the 

Amazon basin are marked by thin and thick black lines, respectively. The red rectangle delineates the drought area for which further 425 
results are reported.      
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Figure 4 Standardized anomalies in net solar radiation (a), soil moisture (b), enhanced vegetation index (c) and X band vegetation 

optical depth (d) during the 2015 drought (August 2015 – January 2016) compared to their long-term monthly averages. Soil 430 
moisture anomalies are calculated from the ERA-5 volumetric soil moisture in the first soil layer (L1). Country borders and the 

extent of the Amazon basin are marked by thin and thick black lines, respectively. The red rectangle delineates the drought area for 

which further results are reported.         
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 435 
Figure 5 responses of aboveground growth and remotely sensed vegetation properties to the 2015 El NiñoENSO drought and key 

climatic variables. All graphs show the trend in the standardized seasonal anomaly, the deviation from the monthly mean divided 

by the standard deviation of that month. Leaf fall and stem growth (a) are derived from the two separate XGBoost models providing 

monthly values from January 1982 until September 2019. Mature leaf area (a) is the sum of flushed leaves from 2 to 5 months in the 

past  440 
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3.4 Aboveground growth responses to the drought of 2005 

The long-term records of predicted leaf litterfall, leaf flushing and stem growth enable looking back at changes in estimated 

growth that occurred in response to other historic droughts. The drought of 2005 has beenis considered a particularly severe 

drought in the western Amazon and was the first major drought captured by the MODIS sensors which led to the first 445 

observations of Amazon forest green-up during drought (Saleska et al., 2007). 

  

Similar to the 2015 drought, the estimated leaf litterfall showed widespread positive anomalies in the 2005 drought area (Figure 

6 a). However, in contrast to 2015, stem growth does not show consistent negative anomalies across the drought area (Figure 

6 c). Leaf flushing shows mainly positive anomalies in the west of the drought area and negative anomalies in the east (Figure 450 

6 b) while mature leaf area shows positive anomalies in south of the study area and negative anomalies in the north (Figure 6 

d). we find that 

 

The new generation of algorithms and the longer time-series of MODIS EVI data confirm the findings of Saleska et al. (2007), 

i.e., that EVI was significantly and consistently higher during the 2005 drought, compared to the long-term average (Figure 455 

7c). EVI was significantly elevated before and at the onset of the 2005 drought (+1.94 σ) in March to May 2005 and remained 

higher during the height of the 2005 drought (+1.3 σ) in June to August 2005 (Figure 8b). Similar to 2015, we find that X band 

VOD was significantly lower in the drought area during the height of the 2005 drought (-1.2 σ) in June to August 2005 while 

C band VOD did not show a clear effect of the 2005 drought (Figure 8b). 

 460 

During the 2005 drought (June-September), precipitation (-1.5 σ) and soil moisture (-1.3 σ) were lower compared to their 

monthly averages in the drought area (Figure 7b & 8c). Air temperature (+0.9 σ), vapour pressure deficit (+1.4 σ) and solar 

radiation (+1.3 σ) were all higher during the 2005 drought compared to their monthly averages (Figure 7a & 8c). The duration 

of the 2005 drought (~4 months) was shorter compared to the 2015-2016 drought (~6 months) and when comparing the 

seasonal anomalies of the climatic variables in the drought areas, the 2015 drought was clearly more severe and more 465 

anomalous compared to the 2005 drought (Figure 5c & 8c). Approximately one year after the 2005 drought, another short 

drought hit this part of the Amazon basin, with significant negative anomalies in top-soil moisture content (-2.3 σ) and 

precipitation (-1.3 σ) and positive anomalies in VPD (+1.9 σ) between May and July 2006.  

 

In the entire drought area, leaf flushing was significantly higher at the onset (+10.19 σ in June 2005) and at the end of the 470 

drought (+0.7 8 σ in August - September – October 2005) and lower at the height of the drought (-1.3 σ in July 2005) compared 

to the long-term monthly average (Figure 8a). The enhanced leaf flushing at the end of the 2005 drought also marked the end 
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of the 2005 dry season with the first rain events occurring in August (not shown). Enhanced leaf flushing at the onset of the 

2005 drought resulted in a higher mature leaf area (+1.1 0 σ in August 2005) at the end of the drought (Figure 6b & 8a).  

 475 

Compared to 2005, the above-ground growth responses were more pronounced during the short 2006 drought following the 

drought of 2005, with significant positive anomalies in leaf fall (+1.2 σ) and leaf flushing (+1.0 σ) and negative anomalies in 

stem growth (-1.2 σ) and X band VOD (-1.6 σ) in May to July 2006 (Figure 8a). Enhanced leaf flushing during and following 

this short 2006 drought resulted in higher than average mature leaf area (+1.5 σ) and EVI (+0.8 σ) in the months following the 

drought from August to November 2006 (Figure 8). Also similar to 2015, leaf fall was elevated while stem growth was lower 480 

during the 2015 drought (+0.9 σ and -0.6, respectively, in June to September 2005). Stem growth remained lower a full year 

after the drought (Figure 5a). 

  

The new generation of algorithms and the longer time-series of MODIS EVI data confirm the findings of Saleska et al. (2007), 

i.e., that EVI was significantly and consistently higher during the 2005 drought, compared to the long-term average (Figure 485 

7c). EVI was significantly elevated before and at the onset of the 2005 drought (+1.94 σ) in March to May 2005 and remained 

higher during the height of the 2005 drought (+1.3 σ) in June to August 2005 (Figure 8b). Similar to 2015, we find that X band 

VOD was significantly lower in the drought area during the height of the 2005 drought (-1.2 σ) in June to August 2005 while 

C band VOD did not show a clear effect of the 2005 drought (Figure 8b). 

 490 

During the 2005 drought (June-September), precipitation (-1.5 σ) and soil moisture (-1.3 σ) were lower compared to their 

monthly averages in the drought area (Figure 7b & 8c). Air temperature (+0.9 σ), vapour pressure deficit (+1.4 σ) and solar 

radiation (+1.3 σ) were all higher during the 2005 drought compared to their monthly averages (Figure 7a & 8c). The duration 

of the 2005 drought (~4 months) was shorter compared to the 2015-2016 drought (~6 months) and when comparing the 

seasonal anomalies of the climatic variables in the drought areas, the 2015 drought was clearly more severe and more 495 

anomalous compared to the 2005 drought (Figure 5c & 8c). 
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Figure 6 Average anomalies in leaf fall, leaf flushing and stem growth and mature leaf area during the 2005 drought (June – 

September 2005) compared to their long-term monthly averages (1982-2019). Leaf fall (a) and stem growth (c) were directly retrieved 500 
from the long-term monthly model estimates. Leaf flush (b) was calculated from monthly predicted leaf fall (a) and changes in LAI. 

Mature leaf area (d) is the sum of new leaf area flushed in the previous 2 to 5 months. Country borders and the extent of the Amazon 

basin are marked by thin and thick black lines, respectively. The red rectangle delineates the drought area for which further results 

are reported.          
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 505 
Figure 7 Seasonal anomalies in net solar radiation (a), soil moisture (b), enhanced vegetation index (c) and X band vegetation optical 

depth (d) during the 2005 drought (June  – September 2005) compared to their long-term monthly averages (1982-2019). Soil 

moisture anomalies are calculated from the ERA-5 volumetric soil moisture in the first soil layer (L1). Country borders and the 

extent of the Amazon basin are marked by thin and thick black lines, respectively. The red rectangle delineates the drought area for 

which further results are reported.            510 
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Figure 8 responses of aboveground growth and remotely sensed vegetation properties to the 2005 drought (June – September 2005) 

and key climatic variables. All graphs show the trend in the standardized seasonal anomaly, the deviation from the monthly mean 

divided by the standard deviationdeviation of that month. Leaf fall and stem growth (a) are derived from the two separate XGBoost 515 
models providing monthly values from January 1982 until September 2019. Mature leaf area (a) is the sum of flushed leaves from 2 

to 5 months in the past.  
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3.5 Long-term trends and ENSO effects on aboveground growth 

The predicted long-term monthly estimates of stem growth and leaf litterfall values were seasonally detrended (i.e. subtracting 

the monthly average to omit seasonality) to identify long-term trends and multi-year fluctuations in aboveground biomass 520 

production (Figure 9). The following statistics are derived from the timeseries that have been seasonally detrended and which 

have been smoothened using a moving average (Figure 9, black line). The seasonally detrended data suggests a significant 

increase of leaf production (r = 0.61, p < 0.001, 5.96∙10-3 ±0.37∙10-3 Mg C ha-1 yr-2) in the Amazon basin between 1982 and 

2019 (Figure 9a). However, this increase in leaf litterfall is partly offset by a decline in stem growth in the same period (r = -

0.52, p < 0.001, -1.96∙10-3 ±0.15∙10-3 Mg C ha-1 yr-2, Figure 9b).  525 

 

To more appropriately compare the empirically modelled trends in stem growth change to the trends in stem growth found in 

a network of forest plots across the Amazon basin (e.g. Brienen et al., 2015; Hubau et al., 2020), the modelled monthly stem 

growth values were also extracted for the locations of these inventory plots (Figure S6). Also at the locations of the inventory 

plots, the long-term model estimates show a significant decline in stem growth, very similar to the trend for the entire Amazon 530 

basin (r = -0.58, p < 0.001, -2.26∙10-3 ±0.15∙10-3 Mg C ha-1 yr-2). (r = -0.38, p < 0.001, -1.84∙10-3 ±0.5∙10-3 Mg C ha-1 yr-2) of 

aboveground biomass production in the Amazon basin since 1982 (Figure 9c). This change in biomass production is driven by 

a decline in stem growth (r = -0.57, p < 0.001, -3.04∙10-3 ±0.21∙10-3 Mg C ha-1 yr-2) which offsets the observed increase of leaf 

production (r = 0.27, p < 0.001, 1.22∙10-3 ±0.21∙10-3 Mg C ha-1 yr-2) between 1982 and 2019 (Figure 9a & 9b). 

  535 

The significant decline of stem growth and increase of leaf litterfall over time in the Amazon basin is possibly driven by the 

warming and drying of the Amazonian climate. While surface air temperature was found to have increased between 1982 and 

2019 (r = 0.58, p < 0.001, 1.97∙10-2  ±0.13∙10-2 °C yr-1) top-soil volumetric moisture content declined (r = -0.52, p < 0.001, -

3.35∙10-4 ±0.26∙10-4 m3 m-3 yr-1, Figure 9d). However, distinct regional differences are visible in the trends of leaf litterfall, 

stem growth, top-soil volumetric moisture content and vapour pressure deficit (Figure S27). While the central Brazilian 540 

Amazon shows a significant (p < 0.05) drying trend coinciding with a clear positive trend in leaf litterfall and a negative trend 

in stem growth, large areas within Suriname, Guyana and eastern Venezuela show regional wetting and also a significant 

increasing trend of stem growth and leaf litterfall. 

  

Superimposed on the long-term trends is the short-term variability in leaf litterfall, stem growth and aboveground biomass 545 

production that seem strongly related to El Niño oscillationsENSO  (Figure 9d). Here, the multi-variate ENSO index is used 

as a measure of ENSO phase and intensity (Wolter and Timlin, 2011). The strong coupling between ENSO and the empirically 

modelled leaf litterfall and stem growth ratesThis is to be expected as the climate variables used to estimate leaf litterfall and 

stem growth are also strongly impacted by ENSO. Nonetheless,  However, iit is still noteworthy that three major El Niño 
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ENSO related droughts in 1997, 2010 and 2015 can be identified as periods with high temperatures, relatively low soil 550 

moisture, high leaf litterfall and, low stem growth and low total aboveground biomass production (Figure 9).  
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Figure 9 Long-term predictions of seasonally detrended anomalies in aboveground growth, air temperature and soil moisture across 

the Amazon basin and the relation with the multivariate ENSO index (Wolter and Timlin, 2011). Black lines are the 9 month moving 555 
average of the anomalies and the dark grey uncertainty bands show the moving standard deviation of the same data. Red dashed 

lines represent the least squares linear regression fit through the averaged time-series. Test statistics are provided for both the linear 

regression of the moving average (black) and the original monthly data (grey).   
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4. Discussion 560 

4.1 Drought effects on leaf phenology and canopy productivity in Neotropical forests 

This study aimed to investigate how leaf litterfall, leaf flushing and stem growth change in response to drought in Neotropical 

forestAmazonian forests. The long-term empirically modelled estimates of leaf fall showed that during the peak of the 2005 

and 2015 droughts in the Amazon basin, leaf fall was significantly higher compared to its monthly averages in these months. 

Furthermore, estimated leaf fall was also elevated during other historical droughts in 1987, 1997 and 2009-2010 across the 565 

Amazon basin (Figure 9). These results confirm earlier site specific studies that reported elevated leaf litterfall during drought 

(Bonal et al., 2008; Rice et al., 2008; Roberts et al., 1990; Wieder and Wright, 2001) and during periods of warm and dry 

conditions associated with a strong El Niño event (Detto et al., 2018; Thomas, 1999). A straightforward explanation of the 

observed increase in leaf litterfall during drought is that leaf shedding directly reduces tree water use. Next to a progressive 

closure of the leaf stomata to limit transpiration, many Neotropical tree species are found to shed their leaves and thereby 570 

reduce the demand of water during drought (Wolfe et al., 2016). Therefore, leaf shedding in trees helps to limit transpiration 

during drought and maintain the hydraulic integrity of the water transporting tissue (Janssen et al., 2020; Wolfe et al., 2016). 

Although there is a large variability of drought avoidance and drought tolerance strategies within Amazonian tree species, with 

some trees maintaining transpiration and leaf area during drought (Bonal et al., 2000a; Brum et al., 2018, 2019; Janssen et al., 

2020, 2019; Maréchaux et al., 2018; Oliveira et al., 2019), if a proportion of trees shed their leaves to avoid dehydration, all 575 

other things being equal, this will show up as increased leaf litterfall on the stand scale.. 

  

In contrast to leaf litterfall, the estimated seasonally detrended timeseries of leaf flushing showed positive anomalies in the 

early and final months of the 2005 and 2015 droughts (Figure 5a, 8a). Especially the pulse of newly flushed leaves in the early 

months of the 2005 and 2015 droughts resulted in above-average mature leaf area (i.e. the sum of leaf area flushed in the past 580 

2-5 months) during the peak of both the droughts. A similar response of leaf flushing was observed during the short drought 

of 2006 (Figure 8).  Leaf flushing at the onset of botha droughts is in apparent contradiction with the observed enhanced leaf 

shedding, which wais presumably drought-induced to limit transpiration. However, these results can be reconciled as 1) the 

timing of enhanced leaf flushing at the onset and end of the drought was different from the peak in enhanced leaf litterfall 

during the height of the drought, and 2) leaf litterfall and leaf flushing often simultaneously occur in wet neotropical forests, 585 

evensometimes on the same tree or even the same branch (Borchert, 1994). Enhanced leaf flushing at the onset of athe drought 

in wet forests can be explained by maintained water uptake through deep soil water access in the early months of thea drought 

(Bonal et al., 2000c; Brum et al., 2019; Meinzer et al., 1999; Nepstad et al., 1994). Furthermore, leaf photosynthetic capacity 

declines with leaf age (Albert et al., 2018; Kitajima et al., 2002; Menezes et al., 2021) and the capacity of stomates to close 

under dry conditions also declines with leaf age (Reich and Borchert, 1988). Therefore, the shedding of old leaves and flushing 590 
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of new leaves with high photosynthetic capacity and highly responsive stomates might be a suitable strategy for tropical trees 

to adopt during drought.  

 

 Those areas in the Amazon basin that experienced increased leaf flushing and showed a higher mature leaf area in 2005 and 

2015 also showed higher values of the MODIS enhanced vegetation index (EVI). These results therefore corroborate the 595 

finding that during the 2005 and 2015 droughts, large areas within the Amazon basin showed a green-up, visible as positive 

anomalies in the MODIS EVI (Saleska et al., 2007; Yang et al., 2018). Furthermore, these findings support in situ observations 

that showed that leaf flushing was significantly enhanced at the end of the 2015 drought in the central Amazon, resulting in 

higher mature leaf area, associated with positive EVI anomalies in the year following the drought (Gonçalves et al., 2020). 

However, enhanced leaf flushing, higher mature leaf area and positive anomalies in the MODIS EVI during the 2015 drought 600 

occurred mainly in ever wet forest of the central Amazon experiencing a short dry season (< 3 months). The eastern part of 

the basin that experiences a moderate to long dry season (> 3 months) (Sombroek, 2001), actually showed negative anomalies 

or no change in leaf flushing, mature leaf area and EVI (Figure 3a, 3d & 4c). These results suggest that leaf flushing and 

canopy green-up in response to drought only occurs in ever wet forests which do not experience a regular dry season. 

   605 

Vegetation indices, such as the EVI and the normalized difference vegetation index (NDVI) are sensitive to vegetation 

chlorophyll content or “greenness” and have often been used to assess the effect of drought on the Amazon forest canopy. The 

earliest effects of droughts observed with satellites occurred during the 1983 and 1987 El NiñoENSO events, which caused 

negative anomalies in the NDVI from the NOAA Advanced Very High Resolution Radiometer (AVHRR) (Asner et al., 2000; 

Batista et al., 1997). However, a later El NiñoENSO related drought in 1997 resulted in positive AVHRR NDVI anomalies 610 

across the Amazon basin (Dessay et al., 2004). Furthermore, during the 2005 drought, positive anomalies in MODIS EVI were 

visible across the south-western Amazon, suggesting that the forest canopy greens-up in response to drought (Liu et al., 2018b; 

Saleska et al., 2007). This finding has been disputed and was contributed attributed to insufficient atmospheric correction 

(Asner and Alencar, 2010; Samanta et al., 2010), sun-sensor geometry (Morton et al., 2014) and structural changes in the forest 

canopy (Anderson et al., 2010). However, our results suggest that the observed green-up during the 2005 and especially the 615 

later 2015 droughts might not be an artefact in the remote sensing data but an actual result of increased leaf flushing at the 

onset of drought. 

  

It is noteworthy that droughts in which green-up has been observed (1997, 2005, 2006, and 2015) occurred during the second 

half of the year (June – December), which is encompasses the dry season and early wet season in the eastern Amazon 620 

(Sombroek, 2001). Contrastingly, droughts in which no green-up was observed (1983, 1987, 2010) occurred predominantly in 

the first half of the year and therefore in the wet season. As leaf exchange in the Amazon basin occurs in the dry season, 

drought conditions might accelerate leaf flushing synchronous to the general phenology in the dry season but not in the wet 

season. That green-up during drought occurs despite the observed positive anomalies in leaf litterfall suggests that during 
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drought, older leaves with lower photosynthetic capacity and higher NIR near-infrared absorptance (Doughty and Goulden, 625 

2009; Kitajima et al., 2002; Roberts et al., 1998) are shed, while newly flushed leaves are maintained. When taking into account 

the time that newly flushed leaves need to fully expand and attain their highest photosynthetic capacity, which is 2-5 months 

(Albert et al., 2018; Gonçalves et al., 2020; Restrepo-Coupe et al., 2013), it can be argued that the observed green-up is not a 

direct effect of drought but rather a consequence of the environmental conditions at the onset of the drought. 

 630 

Earlier studies hypothesized that increased incoming solar radiation during drought, as a result of a decline in cloud cover, 

might be driving the observed green-up (Saleska et al., 2007). Indeed, both spatial as well as temporal correlations between 

photosynthetic active radiation (PAR) and EVI were found in response to the 2015 drought (Yang et al., 2018). Lengthening 

of the photoperiod has been recognized as a key environmental cue for leaf abscission and flushing across evergreen tropical 

forests (Borchert et al., 2002, 2015; Elliott et al., 2006). Reduced cloud cover and increased direct solar radiation reaching the 635 

forest canopy at the onset of an atmospheric drought, when soil water is still readily available, might therefore present an 

environmental cue for leaf flushing. This mechanism might explain the positive anomalies in leaf flushing observed at the 

onset of the 2005 and 2015 droughts (Figure 5a, 8a). Next to insolation, trees need to be well hydrated to enable cell expansion, 

bud break and consequently leaf flushing (Borchert et al., 2002). Also the presence of older leaves in the canopy can inhibit 

leaf flushing (Borchert et al., 2002). Therefore, the excessive shedding of older leaves during the height of the 2005 and 2015 640 

droughts and tree rehydration following the first rain events (not shownFigure S5) could have acted as a strong environmental 

cue for the second leaf flushing events that were was observed at the end of the 2015 both droughts (Figure 5a & 8a) (Gonçalves 

et al., 2020). 

4.2 Drought effects on stem growth in Neotropical forests 

In contrast to the observed leaf flushing and leaf fall responses to drought, stem growth is significantly reduced in the drought 645 

areas of the Amazon basin during the 2015 drought and to a lesser extent in 2005 and 2006 (Figure 3c & 6c). Other historical 

droughts in the Amazon basin in 1987, 1997 and 2009-2010 are clearly visible in the long-term estimates as periods of reduced 

soil moisture and reduced stem growth across the Amazon basin (Figure 9). These results generally confirm site specific studies 

that found significant stem growth reductions in Neotropical forests in response to drought. These include the 1997 and 2010 

droughts in Costa Rica (Clark et al., 2003; Hofhansl et al., 2014), the 2008 drought in French Guiana (Stahl et al., 2010; 650 

Wagner et al., 2013), and the 2010 and 2015 droughts across the Amazon basin (van Emmerik et al., 2017; Feldpausch et al., 

2016; Rifai et al., 2018). The lack of a clear negative and long-term impact of the relatively short 2005 drought on modelled 

estimated stem growth in the Amazon basin might explain why field observations failed to observed significant declines in 

stem growth during the 2005 drought (Phillips et al., 2009). The relative importance of drought duration, intensity and timing 

(wet season or dry season) in limiting stem growth in tropical forests remains unclear and the interactions between drought 655 

and local conditions (e.g. topography, water table depth, soil water holding capacity) still need to be disentangled.   
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Stem growth reductions in response to drought can be expected as tree water status and stem growth are tightly coupled. Firstly, 

stem wood and bark can store substantial amounts of water, which contribute 5-30% to daily water use in Neotropical tree 

species (Meinzer et al., 2003; Oliva Carrasco et al., 2015). About 50% of stem wood and bark volume consists of water which 660 

can in part be withdrawn during drought (Dias and Marenco, 2016; Poorter, 2008). The loss of water from elastic tissue can 

result in a decline of stem growth or even a decline of stem girth (Baker et al., 2002; van Emmerik et al., 2017; Reich and 

Borchert, 1982; Stahl et al., 2010). These elastic changes in stem volume arising from changes in stem wood and bark water 

content do not represent actual changes in secondary growth. However, these elastic changes are often unintentionally present 

in dendrometer measurements and therefore also in our dataset. Secondly, tissue dehydration during drought can cause cell 665 

turgor loss in the vascular cambium, limiting cell division and therefore actual secondary growth (Borchert, 1994; Körner and 

Basel, 2013; Muller et al., 2011; Worbes, 1999). Therefore, it is reasonable to assume that water availability directly reduced 

stem growth during drought. 

   

The long-term estimates of stem growth in this study point to a significant negative trend in stem growth in the Amazon basin 670 

between 1982 and 2019 (Figure 9b), which was not found in a basin-wide network of inventory plots for a similar timespan 

(1983-2011) (Brienen et al., 2015; Hubau et al., 2020). This is surprising as 60% of the data from these same inventory plots 

are used to train the stem growth model and were therefore expected to show similar long-term trends. As the plot scale data 

is very similar, this discrepancy has to be explained by the method of upscaling these plot scale observations. Firstly, the model 

provides stem growth estimates for more than 54 thousand grid cells covering the entire Amazon basin whereas the measured 675 

stem growth rates are measured at around 320 inventory plots scattered across the basin (Brienen et al., 2015). However, a 

spatial bias alone does not seem to be causing the discrepancy as a similar negative trend in estimated stem growth was visible 

at the locations of the inventory plots (Figure S6). Secondly, the majority of  stem growth observations from inventory plots 

are from the 2000’s and 2010’s (Figure S3) while the model estimates go back to 1982. If this temporal bias is a factor causing 

the discrepancy, it suggests that stem growth in the inventory plots was underestimated in the 1980’s and 1990’s or that more 680 

productive plots were included in recent years. However, this temporal bias should have been corrected for in the trend analyses 

of Brienen et al. (2015) (see also Brienen et al,. 2015 Extended data Figure 3). Finally, as the model uses the ERA5 long-term 

reanalysis data of surface air temperature, precipitation and soil moisture to estimate stem growth, trends in the stem growth 

estimates are therefore reflecting the trends in the climate data (Figure 9). As stem growth in the Amazon basin generally 

declines in the dry season when soil moisture is low and air temperatures are high (e.g. Doughty et al., 2014; Girardin et al., 685 

2016; Janssen et al., 2020a) a trend in soil moisture and temperature might therefore result in a predicted trend in stem growth 

which might not necessarily be reflecting the actual trend in stem growth. This would mean that the XGBoost models 

exaggerate the contribution of the changing climate variables on the long-term trends in stem growth. Therefore, data from 

tree census data from permanent inventory plots (Brienen et al., 2015; Hubau et al., 2020) is essential to be able to accurately 

model and upscale stem growth at multi-decal timescales 690 
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4.3 What are satellite sensors actually sensing?  

The controversy surrounding the observation of Amazon canopy green-up during drought is mainly caused by differences in 

sensor sensitivity and the interpretation of the retrieved signals. Generally, canopy green-up is observed in multi-spectral 

remote sensing data during or following major droughts in the Amazon forest that are timed in or at the end of the regular dry 

season (Gonçalves et al., 2020; Lee et al., 2013; Liu et al., 2018b; Saleska et al., 2007; Yang et al., 2018). Our results support 695 

this canopy green-up and attribute it to enhanced leaf flushing at the onset of a drought and subsequent leaf maturation in the 

following months (Figure 5a & 8a). However, canopy green-up does not necessarily have to result in, or be a consequence of, 

an increase in canopy photosynthesis or gross primary productivity. Indeed, in situ leaf scale photosynthesis is generally 

observed to decline during drought in Neotropical forests (Bonal et al., 2000b; Doughty et al., 2014; Janssen et al., 2020; Stahl 

et al., 2013). This is confirmed by satellite observations of  negative anomalies in sun-induced fluorescence during drought 700 

(see also Figure 5b), which is considered a proxy of canopy photosynthesis (Koren et al., 2018; Lee et al., 2013; Yang et al., 

2018). The observed decline in leaf-level photosynthesis during the 2015 drought in the central Amazon has been attributed to 

progressive stomatal closure and not to changes in leaf chemistry (Santos et al., 2018). These results suggest that despite 

canopy green-up, photosynthesis might well be downregulated during drought because of stomatal limitations (Janssen et al., 

2020; Santos et al., 2018). 705 

  

The analysis of changes in X band vegetation optical depth (VOD) in the area affected by drought in 2005, 2006 and 2015 

(Figures 4d & 7d) confirms earlier results from passive and active microwave remote sensing studies that showed negative 

anomalies of VOD and radar backscatter in response to historical droughts in the Amazon basin (van Emmerik et al., 2017; 

Frolking et al., 2011, 2017; Lee et al., 2013; Liu et al., 2013, 2018b; Saatchi et al., 2013). During the 2015 drought in the 710 

central Amazon, van Emmerik et al. (2017) found that remotely sensed Ku band radar backscatter declined during the drought 

which was strongly correlated to in situ observed declines in stem girth. In contrast to vegetation indices from multi-spectral 

remote sensing, passive and active microwave remote sensing is generally sensitive to vegetation biomass and water content 

and not vegetation greenness (Frappart et al., 2020; Liu et al., 2013; Meesters et al., 2005). Furthermore, X band VOD has 

been found to be strongly dependent on leaf water potential in temperate forests in North America (Momen et al., 2017). 715 

Therefore, the negative anomalies in VOD and radar backscatter in response to drought are likely signalling a decline in 

vegetation water content during drought (Momen et al., 2017) and can therefore be used as a rough proxy of tree water status 

and stem growth. Remotely sensed data can be extremely useful in identifying vegetation responses to extreme events like 

droughts on large spatial scales. However, as sensors are sensitive to different vegetation properties, the interpretation of 

observed responses should always be done most with utmost carefully and preferably in a multi-sensor comparison.  720 
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5. Conclusions  

Long-term monthly estimates of stem growth, leaf fall and flushing indicate that Amazon green-up during drought is a legacy 

effect of enhanced leaf flushing at the onset of a drought and cannot be considered a proxy of canopy photosynthesis, 

aboveground biomass production or forest health in evergreen Neotropical forest. Separating photosynthesis, vegetation water 

status and canopy greenness as three sometimes independent properties of the vegetation allows for explaining apparent 725 

discrepancies in drought responses visible in remote sensing data (e.g. Lee et al., 2013; Liu et al., 2018b). To exemplify, 

Anderson et al. (2010) found that areas that showed the highest EVI green-up during the 2005 drought also experienced the 

highest rates of drought-induced tree mortality. Our results confirm that drought stress induced reductions in stem growth often 

coincide with enhanced leaf flushing and canopy greening during drought, which doare not necessarily  have to be 

physiologically contradicting.  730 

  

Our results also point to a long-term (1982-2019) decline in stem growth rates across the Amazon basin, which appears to be 

driven by increased warming and drying of the Amazonian climate. While still uncertain, this decline of carbon sequestration 

in woody stem growth over time (-1.96∙10-3 ±0.15∙10-3 Mg C ha-1 yr-2-3.04∙10-3 Mg C ha-1 yr-2) is significantly less compared 

to the trend of increasing carbon release through tree mortality (25.5∙10-3 Mg C ha-1 yr-2) found in a network of forest inventory 735 

plots (Brienen et al., 2015). As tree mortality is elevated during and following drought  (Feldpausch et al., 2016; Phillips et al., 

2009) it is of critical importance to study the drivers of drought sensitivity and drought-induced tree mortality in Neotropical 

tropical forests to be able to project future changes in the carbon sink strength of the Amazon basin.    
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