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Abstract. Coastal ecosystems are biologically productive and their diversity underlies various ecosystem services to humans. 10 

However, large-scale species richness (SR) and its regulating factors remain uncertain for many organism groups, owing not 

least to the fact that observed SR (SRobs) is strongly dependent on sample size and inventory completeness (IC). We estimated 

changes in SR across a natural geographical gradient using statistical rarefaction and extrapolation methods, based on a large 

fish species incidence dataset compiled from Swedish fish survey databases. The data covered nearly five decades (1975-

2020), a 1,300 km north-south distance and a 10-fold salinity gradient along sub-basins of the Baltic Sea plus Skagerrak. 15 

Focusing on shallow coastal and offshore areas (<30 m depth), we calculated standardized SR (SRstd) and estimated SR (SRest), 

and related these to sub-basin annual mean salinity and water temperature. IC was high, 98.5% - 99.9%, in the 10 sub-basins 

with sufficient data for analysis. The recorded fish species were of 75% marine and 25% freshwater origin. Total fish SRobs 

was 144 for shallow coastal areas, and 110 for shallow offshore areas. Sub-basin specific SRest for coastal areas varied between 

35 ± 7 (SE) and 109 ± 6 fish species, and was ca. three times higher in the most saline (salinity 29-32) compared to the least 20 

saline sub-basins (salinity 2.7). Completing information on functional attributes showed that differences along the salinity 

gradient reflected an increased share of coastal resident fish species in lower salinities, and a higher share of migratory fish at 

higher salinities. The proportion of benthic and demersal fish species was also lower in the least saline sub-basins, and 

increased with increasing salinity. If climate change lowers the salinity regime of the Baltic Sea in the future this may hence 

influence the SR and community composition of fish. 25 
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1 Introduction 

Biodiversity is essential for ecosystem processes, and ultimately for the humans depending on these (IPBES, 2019). Coastal 

ecosystems are often biologically diverse and highly productive, providing valuable ecosystem services to humans, such as 

food, water purification and protection against floods (Griffiths et al., 2017; Kraufvelin et al., 2018; Pan et al., 2013). However, 

threats to coastal biodiversity from e.g. overfishing, habitat loss, pollution, eutrophication and climate change are many and 30 

profound (Duncan et al., 2015; Griffiths et al., 2017; Pan et al., 2013). At the same time, actually occurring coastal species 

numbers often remain uncertain (Appeltans et al., 2012). This makes improved understanding of their biodiversity especially 

important to support conservation and management measures (Pan et al., 2013; Rooney & McCann, 2012).  

Taxonomic inventories, or species censuses, are required e.g. for the analysis of biodiversity patterns, delineation of species 

ranges, and prioritization of conservation efforts (Mora et al., 2008). Species richness (SR), i.e. the number of species in an 35 

ecosystem, is a classical indicator of biodiversity, also referred to as “alpha diversity” (Gotelli & Colwell, 2001; Hill, 1973). 

However, since achieving complete species inventories is often impracticable with realistic sample efforts, most censuses 

remain incomplete and many rare species remain unknown. Consequently, it is important to consider the effect of sample size 

and inventory completeness (IC) on observed SR (SRobs) to avoid biased or misleading comparisons or interpretations (Chao 

& Chiu, 2016; Chao et al., 2020; Colwell & Coddington, 1994; Mora et al., 2008).  40 

SR is connected to several ecosystem processes, such as productivity (Duffy et al., 2017), and the efficiency of resource use 

and nutrient cycling. SR may also facilitate the simultaneous provision of several ecosystem processes, i.e. an ecosystem’s 

multifunctionality (Byrnes et al., 2014). However, since species do not contribute equally to ecosystem functioning, the 

diversity of species functional attributes adds another important dimension to ecosystem understanding (Duncan et al., 2015; 

Reiss et al., 2009). Functional diversity can enhance long-term stability, through functional redundancy and complementarity, 45 

and can help to buffer ecosystems against disturbances (O'Gorman et al., 2011).  

Salinity is a key variable influencing SR in coastal areas, as natural differences in salinity among locations function as a 

threshold or “ecological barrier” for the distribution of freshwater and marine species (Olenin & Leppäkoski, 1999; Vuorinen 

et al., 2015). At the same time, an intensified water cycle caused by global warming is currently changing the salinity regimes 

of marine and coastal ecosystems (Durack et al., 2012; Liblik & Lips, 2019; Meier et al., 2021). It is important to understand 50 

how salinity influences species’ distributions in aquatic ecosystems to be able to better predict how potential changes may 

affect ecosystem functioning.  

The Baltic Sea, one of the world’s largest brackish water bodies, exhibits a pronounced, geographically stable salinity gradient 

that is maintained by sporadic inflows of saline water from the North Sea through the Danish Straits and by freshwater input 

from large rivers, especially in the north. Hence, the Baltic Sea gradient can serve as model on the influence of salinity on 55 
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species distributions (Johannesson & Andre, 2006; Ojaveer et al., 2010), that has been studied for various organism groups. 

SRobs was often higher at the more saline conditions, e.g. for benthic bacteria, benthic macroalgae and benthic meio- and 

macrofauna (Broman et al., 2019; Klier et al., 2018; Middelboe et al., 1997). In other studies, SRobs was highest at highest 

salinity, lowest at intermediate salinity and intermediate at lowest salinity, e.g. for phytoplankton and benthic macrofauna 

(Bonsdorff, 2006; Olli et al., 2019; Zettler et al., 2014), or there was no clear trend between SRobs and salinity, e.g. for bacterio-60 

, pico- and mesoplankton (Herlemann et al., 2016; Hu et al., 2016).  

The species composition of fish in the Baltic Sea is regulated by salinity as well (Olsson et al., 2012; Pekcan-Hekim et al., 

2016), with fish SRobs generally being higher at higher compared to lower salinities (HELCOM, 2020; Hiddink & Coleby, 

2012; Lappalainen et al., 2000; MacKenzie et al., 2007; Ojaveer et al., 2010; Pecuchet et al., 2016; Thorman, 1986). Various 

studies have also reported changes in fish SRobs or species composition over time (e.g. Ammar et al., 2021; Törnroos et al., 65 

2019). However, despite concerns that fish SR may decline in the future due to decreasing upper layer salinity (e.g. MacKenzie 

et al., 2007; Pecuchet et al., 2016; Vuorinen et al., 2015), information on how the complete coastal fish assemblage varies 

spatially in relation to the Baltic Sea salinity gradient, including potential differences across functional groups, is lacking. 

Hence, there is a need to complement already existing information on the influence of salinity on various Baltic Sea organism 

groups with more complete information in relation to fish diversity, taxonomically and functionally. This kind of understanding 70 

for multiple trophic levels is needed to better understand and predict how changing salinity, in the Baltic Sea and in coastal 

areas in general (Durack et al., 2012; Liblik & Lips, 2019), may affect ecosystem structure and functioning (MacKenzie et al., 

2007). For example, if different species groups are differently affected, this may also change biotic interactions such as benthic-

pelagic coupling, with effects on exchanges of energy, mass or nutrients between benthic and pelagic habitats (Griffiths et al., 

2017). Moreover, understanding species richness at a broader, sub-regional scale is important to support analyses of potential 75 

species richness and species compositions at more local scales within each sub-basin. 

To this aim, we compiled a large dataset on fish species observations in shallow (<30 m depth) Swedish coastal and offshore 

areas, based on multiple existing sources of Swedish mapping and monitoring combined over the years 1975-2020. The 

extensive dataset covered fish species incidence information from 1,848 unique observations/fishing occasions, during which 

in total 24,415 species incidences were recorded. Geographically, the data covered 12 hydrographically distinct sub-basins, 80 

and a ca. ten-fold salinity gradient from close to freshwater conditions in the inner Baltic Sea to close to fully marine conditions 

at the Swedish west coast. Since SRobs is strongly dependent on sample size, which differed between sub-basins, we used 

statistical rarefaction-extrapolation methods to estimate IC and standardized SR per sub-basin. Further, we categorized each 

fish species according to origin (marine vs. freshwater) as well as three functional attributes based on coastal habitat preference, 

vertical preference and feeding habitat, and investigated the influence of salinity (and, for comparison, temperature) on fish 85 

SR in total and within the functional attributes. We discuss the results in the context of the regulating influence of salinity on 
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fish SR and community composition in coastal ecosystems, and potential implications for conservation and ecosystem 

management.  

2 Methods 

2.1 Study system 90 

The Baltic Sea, an enclosed, essentially non-tidal brackish marine region with a maximum and mean depth of 460 and 54 m, 

respectively, and a water residence time of 25-40 years, is,  among the world’s largest estuaries (area: 415,000 km2; HELCOM, 

2018). Its current brackish conditions were formed by gradual narrowing of its opening to the North Sea and have been in 

place since ca. 3,000 years (Russell, 1985). Due to its geographically variable but locally relatively stable salinity conditions 

the Baltic Sea has been called a “marine-brackish-limnic continuum” (Bonsdorff, 2006). Its surface salinity changes from <3 95 

(psu) in the inner-most areas in the north and north-east to almost fully marine (ca. 29) in the Kattegat in the southwest (Table 

1). Within this gradient, the Baltic Sea can be divided into hydrographically distinct sub-basins, mostly separated by shallow 

sounds or sills. To strengthen the database with respect to higher salinity areas we additionally included a North Sea sub-basin 

adjacent to Kattegat, i.e. Skagerrak (salinity ca. 30; Table 1).  

Table 1. Salinity and temperature in Swedish coastal areas, given as mean (± SE) annual values per sub-basin across the years 1993-100 
2019. Values represent conditions by the bottom at 0-30 m depth based on data from the EU Copernicus Marine Service Information 
(CMEMS, 2021).  

Sub-basin Salinity  Temperature (°C) 

Bothnian Bay 2.68 ± 0.01 4.53 ± 0.23 

The Quark 4.26 ± 0.01 5.38 ± 0.25 

Bothnian Sea 5.10 ± 0.01 5.44 ± 0.22 

Åland Sea 5.80 ± 0.01 6.44 ± 0.25 

N Baltic Proper 6.37 ± 0.01 6.43 ± 0.22 

E Gotland Basin  6.85 ± 0.01 7.30 ± 0.24 

W Gotland Basin 6.88 ± 0.01 6.48 ± 0.20 

Bornholm Basin 7.60 ± 0.02 8.15 ± 0.24 

Arkona Basin 10.96 ± 0.07 8.92 ± 0.26 

The Sound 23.42 ± 0.14 9.72 ± 0.24 

Kattegat 29.02 ± 0.05 9.32 ± 0.21 

Skagerrak 32.40 ± 0.03 9.62 ± 0.22 

Reflecting its salinity conditions the Baltic Sea harbors a unique fish fauna with a mixture of freshwater species (e.g. pike, 

perch, pikeperch), and marine species (e.g. cod, herring; (Olsson et al., 2012). Further, many marine fish populations have 
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adapted to the brackish conditions from their Atlantic counterparts (Laikre et al., 2005), for example Baltic cod and herring 105 

populations, and one flounder species is endemic to the Baltic Sea (Momigliano et al., 2018). Hence, the Baltic Sea may also 

have a unique value as a refuge for evolutionary lineages, and constitute an important genetic resource for management and 

conservation (Johannesson & Andre, 2006).  

2.2 Species richness data 

The primary source of fish species data was the Swedish National database of coastal fish (www.slu.se/kul), which holds data 110 

from surveys encompassing coastal fish monitoring, mapping projects and surveillance programs over the entire salinity 

gradient of the Baltic Sea plus Skagerrak. Coastal areas were delineated using official national definition. Data from shallow 

depths < 30 m were selected, corresponding to the main represented sampling methods in the database (Table S1), and with 

some margin to the photic depth in the concerned coastal habitat types (Kaskela et al., 2012). Only sampling occasions with 

geographical coordinates and verified sampling references were included, giving 154,172 data entries, i.e. individual fish that 115 

had been caught and determined to species. The size of the coastal shallow areas ranged from 240 km2 (Åland Sea) to 5,798 

km2 (Bothnian Bay; Table 2). Corresponding data from shallow offshore areas (< 30 m) were also compiled for comparison 

(5,601 data entries). Further, additional data from 1) a national coastal trawl survey (n=4,420 for coastal and n=382 for offshore 

areas), 2) the ICES-coordinated International Bottom Trawl Survey (n=1,969 for coastal and n=2,099 for offshore areas) and 

3) national projects using standardized methodology (n=893 for coastal areas), all carried out in the Skagerrak, Kattegat and 120 

The Sound, were included, selecting only hauls from <30 m depth within the concerned geographical delineations. 

Corresponding trawl data (<30 m) are not collected in Swedish waters of the other sub-basins.  

Hence, data collected from multiple gears were combined, including gill nets, fyke nets, seines, trap nets, low impact 

underwater detonations and trawls, in order to maximize the chance of including different species (Table S1). The ambition to 

collate information from all available fish surveys implied some differences in predominating data collection methods across 125 

the studied geographical range. The main data sources were trawls and trap net surveys in the most saline sub-basins, i.e. 

Skagerrak, Kattegat and The Sound, and gill net surveys in the remaining sub-basins (Table S1). The analytical approach was 

chosen to encompass this variability when making comparisons among sub-basins (see Sects. 2.3 and 4).   

Observed SR, SRobs, was reported for all sub-basins, but statistical analyses and comparisons were conducted only for sub-

basins containing data from at least 25 sampling/fishing occasions. This was the case for ten coastal sub-basins (Bothnian Bay, 130 

The Quark, Bothnian Sea, Åland Sea, N Baltic Proper, W Gotland Basin, Bornholm Basin, The Sound, Kattegat and 

Skagerrak), and one off-shore sub-basin (Kattegat). This dataset is referred to as “raw data”, and contained 160,453 entries 

(i.e. fish individuals caught and determined to species) from 1,638 sampling/fishing occasions at 4,571 unique locations for 

shallow coastal areas, and 2,762 entries from 137 sampling/fishing occasions at 199 unique locations for shallow offshore 

areas.  135 
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Moreover, we searched for evidence of fish species that had remained undetected in our fish incidence database, by identifying 

fish species records from three additional sources, using the same criteria for geographical and depth delineations as above, 

i.e. 1) the SLU hosted national public database for citizens’ reporting of species observations (SLU Swedish Species 

Information Centre, https://www.artportalen.se/;  n=8,926 for coastal and n=290 for offshore areas after unreasonable species 

observations were discarded), 2) the national archive for oceanographic data hosted by the Swedish Meteorological and 140 

Hydrological Institute (SHARKweb, https://www.smhi.se/en/services/open-data/national-archive-for-oceanographic-data; 

n=1,259 for coastal and n=135 for offshore areas), and 3) published inventory data for Swedish shallow coastal areas in 

Skagerrak, Kattegat and Bornholm Basin (Pihl & Wennhage, 2002; Pihl et al., 1994; Wikström A., 2009). This “additional 

data sources” were used as complementary information on SRobs but could not be used in the statistical analysis since they 

only included presence-information for the reported species, rather than complete sampling and species incidence information. 145 

Further, our SR results were compared with the HELCOM (2020) checklist on macro-species containing information for all 

of the sub-basins and depths in the Baltic Sea region. 

2.3 Analysis of species richness data 

The raw data was first summarized to a dataset of unique fish species caught per fishing/sampling occasion in presence/absence 

format, and then further aggregated to an incidence frequency format, giving the observed total incidence of each species over 150 

the number of fishing/sampling occasions. This dataset is referred to as “fish incidence database”. Each unique combination 

of a fishing/sampling location per date was defined as one sampling unit, and these were summed per sub-basin to obtain the 

sample sizes. Subsequently, incidence-based Hill diversity numbers of three orders, which differ in their propensity to include 

or exclude relatively rarer species (Hill, 1973), were calculated to quantify the species diversity of each assemblage, i.e. 1) 

species richness (SR), which counts all species equally irrespective theirincidence frequency, 2) Shannon diversity (ShD), 155 

which considers the incidence frequency and can be interpreted as the effective number of frequent species, and 3) Simpson 

diversity (SiD), which can be interpreted as the effective number of highly frequent species (Chao et al., 2014; Chao et al., 

2020; Hill, 1973). Calculations were performed using the R package iNEXT and the functions ChaoRichness, ChaoShannon 

and ChaoSimpson (Chao et al., 2020; Hsieh et al., 2016), and the Hill numbers are hereafter referred to as observed SR, ShD 

and SiD, respectively. It should be noted that, using these methods, Shannon and Simpson diversity are expressed in terms of 160 

richness, i.e. number of species, which differs from other known formats.  

SRobs is highly dependent on sample completeness (Colwell & Coddington, 1994; Hill, 1973) and may typically underestimate 

the true SR due to undetected species (also referred to as under-sampling, sampling bias or sampling problem; Chao et al., 

2014; Chao & Jost, 2015; Menegotto & Rangel, 2018). We used coverage-based rarefaction and extrapolation methods to 

correct for this effect (Chao & Jost, 2012). The Chao richness method, a non-parametric asymptotic richness estimator that is 165 

based on the frequency of rare species in the sample (Chao et al., 2014), was used to estimate the actual, asymptotic fish SR 

for each sub-basin (ChaoRichness function in the R package iNEXT; Hsieh et al., 2016), and the estimated parameters were 
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interpreted as described and exemplified in (Chao et al., 2020). The respective values are hereafter referred to as estimated 

values (i.e. SRest, ShDest and SiDest). Inventory (sample) completeness (IC) was calculated based on sample coverage (Chao & 

Jost, 2012; Hsieh et al., 2016). To compare data across sub-basins, SR, ShD and SiD were standardized to the minimum 170 

observed IC across sub-basins (estimateD function in the R package iNEXT; Hsieh et al., 2016). The respective values are 

hereafter referred to as standardized values (i.e. SRstd, ShDstd and SiDstd). Similar analyses were also conducted for SR of fish 

with different functional attributes (see Sect. 2.4). All calculations were conducted using R version 4.0.4 (R Core Team, 2021).  

2.4 Fish functional attributes 

All observed fish species were assigned functional attributes based on ecological and behavioral traits, as well as into being of 175 

either marine or freshwater origin (Kullander, 2002). The affinity of each species to different parts of the coastal habitat, or 

habitat preference, was assigned based on (Elliott & Dewailly, 1995; Pihl & Wennhage, 2002), however with certain 

adaptations to suit both marine and brackish conditions (Table S3-S6). Applied categories were: Catadromous or anadromous 

migrants (CA), using coastal habitats only when migrating between marine and freshwaters for spawning and feeding; Marine 

juvenile migrants (MJ), using coastal habitats primarily as nursery or feeding grounds; Marine visitors (MV), occurring 180 

irregularly in the coastal area, having their primary habitat in deeper waters; Marine seasonal migrants (MS), making regular 

seasonal visits to coastal habitats, usually as adults; and Coastal residents (CR), spending almost their complete life cycle in 

coastal habitats or the littoral coastal zone. The main vertical distribution of each species in the water column, considering the 

adult stage, was assigned based on (Elliott & Dewailly, 1995; Koli, 1990) as: Pelagic (P), living mainly in the water column; 

Demersal (D), mainly associated with the bottom substrate; Demersal-pelagic (DP), alternating between the water column and 185 

bottom substrate; and Benthic (B), staying close to the seabed. Main feeding habits were assigned by combining information 

on feeding guild (Elliott & Dewailly, 1995) with trophic levels (TL) and principal diet composition (Froese and Pauly, 2021), 

as: Piscivores (Pi; TL 3.6 - 4.4); Invertebrate and fish eaters (IF; TL 2.9 - 3.9); Invertebrate eaters (I; TL 2.8 – 3.9); Planktivores 

(PL; TL 3.1 - 3.2) and Omnivores (O; TL 2.8 - 3.5).  

2.5 Sea water salinity and temperature 190 

For each sub-basin, data on ambient salinity and temperature was extracted from the “Baltic Sea Physics Reanalysis” product, 

as calculated by the Swedish Meteorological and Hydrological Institute (SMHI) with the coupled physical-biochemical model 

system NEMO-SCOBI, and available from year 1993 (CMEMS, 2021). This encompassed full coverage layers with a 4 km x 

4 km grid. Monthly mean values close to the sea bed for all grid cells representing areas less than 30 m depth were first 

identified, and then used for calculating long-term means and standard deviations for the years 1993-2019.  195 
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2.6 Statistical analyses 

Linear regressions were used to analyze the relationships between salinity and temperature, respectively, and observed, 

standardized and estimated SR, ShD and SiD. To test for any additional explanatory effect of temperature, after accounting 

for the effect of salinity, we used ANOVA to compare models with salinity as the only explanatory factor with models with 

salinity plus temperature as explanatory factors. Furthermore, relationships were tested between the different functional 200 

attributes and salinity. To reduce skewness and approximate normality, left-skewed response variables were log10-transformed 

prior to analysis, or, in two cases where the response variable included zero-values, Yeo-Johnson transformed (Yeo and 

Johnson, 2000). All analyses were conducted using R version 4.0.4 (R Core Team, 2021). 

3 Results 

3.1 Salinity and temperature 205 

The annual mean salinity varied more than ten-fold in shallow coastal areas across the studied sub-basins, from 2.7 in the 

northernmost Baltic Sea to 32.4 in the Skagerrak. Across the same geographical range, the annual mean water temperature 

varied from 4.5°C in the north to ca. 9-10°C in the Sound and outwards (Table 1). 

3.2 Fish species observations and distribution 

SRobs varied from 23 (Arkona Basin) to 101 (Kattegat) in shallow coastal areas (Table 2, that also contains related information 210 

on e.g. sample size and species incidences per sub-basin), and amounted to 125 across sub-basins and years. Since IC was 

<100% (see Sect. 3.3), this can be assumed a lower bound estimate of the true SR. Indeed, the additional data sources contained 

19 more species that were not represented in the fish incidence database, resulting in a total fish SRobs of 144 in coastal areas 

(Table S3). Of the species in the fish incidence database, 49% occurred only in the higher salinity Skagerrak-Kattegat region 

including The Sound, 15% occurred only in the Baltic Sea region (i.e., inside The Sound), and 36% occurred in both these 215 

regions. The most widely ranging speciescoastal area were herring (Clupea harengus), brown trout (Salmo trutta), European 

sprat (Sprattus sprattus) and eelpout (Zoarces viviparous), with incidences reported from all 12 sub-basins (Table S2).   
For shallow offshore areas, SRobs varied from 11 (N Baltic Proper) to 74 (Kattegat; Table 2), and amounted to 96 across sub-

basins and years. The additional data sources contained information on 14 more species, resulting in a total fish SRobs of 110 

(Table S3). Of the species in the fish incidence database, 48% occurred only in the higher salinity Skagerrak-Kattegat region 220 

including The Sound, 21% occurred only in the Baltic Sea region, and 31% occurred in both regions. Herring was the only 

species reported in all the nine sub-basins for which fish incidence data for shallow offshore areas was available (Table S4).  
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Table 2. Summary information and statistics for the fish incidence database and additional data sources, representing the 12 sub-
basins and separately for Swedish shallow coastal and offshore areas (<30 m depth: Observations and estimated inventory 225 
completeness (IC) are given for all sub-basins. Standardized (SRstd) and estimated (SRest) values were calculated for sub-basins with 
sample size >25 fishing/sampling occasions. SRstd was calculated for an IC of 98.5%, which was the lowest IC among sub-basins with 
sufficient data (i.e. Åland Sea coastal areas: For comparison, SRobs if also including presence information from additional data 
sources (not included in the statistical analyses, see Sect. 2.2), and for whole sub-basins in the Baltic Sea according to HELCOM 
(2020, across countries and depths) are given as well. NA: not applicable; n.d.: not determined. 230 

Sub-basin Location 

Size 

of 

area 

<30 

m 

(km

2) 

Species incidence data set 
Statistical 

estimations 
Additional data sources 

Sample size 

(i.e. 

fishing/sampli

ng occasions) 

Species 

incidence

sa  

SRo

bs  

Singleto

ns  

Doubleto

ns  

IC 

(%) 

SRst

d 

(wit

h 

CI)  

SRe

st (± 

SE)
b 

SRobs plus 

“species 

presence” 

observatio

ns from 

additional 

data 

sources 

SRobs all 

countries 

and depths 

(HELCOM 

2020)% 

Bothnian 

Bay 

Coastal 5798 70 553 29 4  0 99.3 242528 
35 ± 

7 
34 

51 

Offshore 1376 4 23 8 1 1 n.d. n.d. n.d. 11 

The Quark 
Coastal 1350 71 754 30 4 2 99.5 262428 

34 ± 

5 
35 

56 

Offshore 356 NA NA NA NA NA NA NA NA NA 

Bothnian 

Sea 

Coastal 2986 194 2 222 42 2  0 99.9 373638 
43 ± 

2 
50 

74 

Offshore 918 17 87 24 5  3 n.d. n.d. n.d. 24 

Åland Sea 
Coastal 240 31 394 32 6  3 

98.5

* 

322835

* 

38 ± 

6 
45 

71 

Offshore 28 NA NA NA NA  NA NA NA. NA NA 

N Baltic 

Proper 

Coastal 2156 77 1 046 42 6 3 99.4 363438 
48 ± 

6 
56 

67 

Offshore 218 4 11 4 0  2 n.d. n.d. n.d. 5 

E Gotland 

Basin 

Coastal 936 13 94 25 8 5 n.d. n.d. n.d. 37 
82 

Offshore 2148 6 45 14 4 3 n.d. n.d. n.d. 14 

W 

Gotland 

Basin 

Coastal 5382 411 5 123 53 6 2 99.9 393840 
62 ± 

10 
60 

67 

Offshore 1525 4 20 7 1  2 n.d. n.d. n.d. 8 

Bornholm 

Basin 
Coastal 972 68 837 46 5  1 99.4 424044 

58 ± 

17 
59  
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Offshore 2213 14 121 28 8 6 n.d. n.d. n.d. 31 104 

Arkona 

Basin 

Coastal 297 7 67 23 7 7 n.d. n.d. n.d. 37 
110 

Offshore 1390 17 234 30 7 5 n.d. n.d. n.d. 30 

The Sound 
Coastal 380 119 1 373 61 8 4 99.4 545157 

69 ± 

7 
70 

144 

Offshore  NA NA NA NA NA NA NA NA NA NA 

Kattegat 

Coastal 1906 353 6 012 101 11 8 99.8 787680 
109 

± 6 
114 

178 

Offshore 1304 137 2 039 74 15 12 99.3 645968 
83 ± 

6 
77 

Skagerrak 
Coastal 1085 230 3 195 69 13 3 99.6 525053 

90 ± 

16 
106 

NA 

Offshore 80 5 65 30 14 6 n.d. n.d. n.d. 60 
a Sum of the number of species observed across all sampling occasions. Please note that this does not correspond to “entries” 

in Sect. 2.2, which is individual fish caught and determined to species.  
b Considered a lower bound estimate (Chao et al., 2020) 

3.3 Inventory completeness 

The fish species IC in shallow coastal areas varied from 98.5% in the Åland Sea to 99.9% in the W Gotland Basin and the 235 

Bothnian Sea, based on analysis of data from the ten sub-basins with a sample size >25 fishings/samplings, suggesting that ca. 

0.1-1.5% of statistically likely existing species remained undetected (Table 2). The species accumulation curves (SAC) show 

the SRobs at the conducted sample sizes, and SR estimated for hypothetical smaller and larger sample sizes, including 95% 

confidence intervals. According to these, the steepest increase of accumulated species occurred with the first ca. 20 samplings 

in all sub-basins, and coastal fish SR was highest in the Kattegat, followed by the Skagerrak and The Sound, and lowest in the 240 

other seven sub-basins (i.e. confidence intervals not overlapping, Fig. 1a).  

The SAC’s also visualize differences in IC between sub-basins. For the three most saline sub-basins, Skagerrak, Kattegat and 

The Sound, the SACs were still clearly increasing with increasing sample size even when extrapolating to double the actual 

sample size. Hence, SRest for these sub-basins are more uncertain and more likely biased low than for sub-basins where the 

curve flattened, illustrating a more complete inventory, e.g. W Gotland Basin and The Bothnian Sea (Fig. 1a). SRest, estimated 245 

based on extrapolation of the information in the fish incidence database, were similar to SRobs if complementing the incidence 

data with records from the additional data sources (Table 2).  
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Figure 1. Sample-size-based sampling curves with 95% confidence intervals (shaded areas), showing rarefaction/interpolation (solid) 250 
and extrapolation (dotted) line segments for (a) species richness (SR), (b) Shannon diversity (the effective number of frequent species 
in the assemblage, ShD) and (c) Simpson diversity (the effective number of very frequent species in the assemblage, SiD) of fish in 
coastal areas of the 10 analyzed sub-basins. The intersection points between solid and dotted lines represent the observed values. 
Legend acronyms are AL: Åland Sea, BB: Bornholm Basin, BoB: Bothnian Bay, BoS: Bothnian Sea, BP: N Baltic Proper, KAT: 
Kattegat, SKA: Skagerrak, TQ: The Quark, TS: The Sound and WGB: W Gotland Basin. 255 

For shallow offshore areas, only one sub-basin had enough data to conduct statistical rarefaction and extrapolation (i.e., 

Kattegat, Table 2). IC amounted to 99.3%, and also here SRest was similar to SRobs when incidence data and species presence 

information from additional sources were combined (Table 2). A comparison of SRest offshore areasuggests that, in Kattegat, 

fish SR is ca. 30% higher in coastal compared to offshore areas. A comparison based on SRobs when complementing the 

incidence data with additional data sources suggests ca. 50% higher SR in the coastal compared to offshore shallow Kattegat 260 

waters (Table 2).  
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Table 3. Shannon diversity (ShD) and Simpson diversity (SiD) for coastal and offshore areas. Calculated values are given for all sub-
basins, and standardized (std) and estimated (est) values are given for the sub-basins with a sample size ≥ 25 fishings/samplingsShD 
gives the effective number of frequent species (the exponential of Shannon’s entropy index), and SiD the effective number of highly 265 
frequent species (the inverse of Simpson’s concentration index) in the assemblage (Chao et al. 2020, Chao et al. 2014). NA: not 
applicable; n.d.: not determined.  

Sub-basin Area 

Shannon Diversity  Simpson diversity  

Calculated 

ShD 

ShDstd (with upper and 

lower confidence 

limits) 

ShDest 

(± SE) 

Calculated 

SiD 

SiDstd (with upper and 

lower confidence 

limits) 

SiDest 

(± SE) 

Bothnian 

Bay 

Coastal 19 191820 20 ± 1 16 161517 16 ± 1 

Offshore 8 n.d. n.d. 7 n.d. n.d. 

The Quarka Coastal 18 181718 18 ± 1 15 151416 15 ± 0.3 

Bothnian 

Sea 

Coastal 28 272628 28 ± 0.4 23 232223 23 ± 0.4 

Offshore 20 n.d. n.d. 18 n.d. n.d. 

Åland Seaa Coastal 21* 222022 ∗ 22 ± 1 18* 181719* 18 ± 1 

N Baltic 

Proper 

Coastal 26 252426 26 ± 1  22 222122 22 ± 0.4 

Offshore 4 n.d. n.d. 4 n.d. n.d. 

E Gotland 

Basin 

Coastal 18 n.d. n.d. 15 n.d. n.d. 

Offshore 12 n.d. n.d. 10 n.d. n.d. 

W Gotland 

Basin 

Coastal 31 292930 31 ± 0.2 26 252526 26 ± 0.3 

Offshore 6 n.d. n.d. 6 n.d. n.d. 

Bornholm 

Basin 

Coastal 32 313032 33 ± 1 27 262527 27 ± 1 

Offshore 19 n.d. n.d. 15 n.d. n.d. 

Arkona 

Basin 

Coastal 18 n.d. n.d. 15 n.d. n.d. 

Offshore 21 n.d. n.d. 18 n.d. n.d. 

The Sounda Coastal 34 333234 35 ± 1 26 252426 26 ± 1 

Kattegat 
Coastal 51 494850 51 ± 1 38 373738 38 ± 0.4 

Offshore 32 313033 33 ± 1 24 242425 25 ± 0.4 

Skagerrak 
Coastal 33 323133 34 ± 1 25 252426 25 ± 0.3 

Offshore 25 n.d. n.d. 22 n.d. n.d. 
a No offshore areas occur in these sub-basins.  

3.4 Shannon and Simpson diversity 

Rarefaction and extrapolation SACs carried out for Shannon diversity (ShD) show that the effective number of frequently 270 

recorded fish species was quite well captured by the samplings in all analyzed sub-basins, illustrated by SACs with small 

remaining slopes at extrapolated higher sample size. As for SRobs, ShD was highest in Kattegat, while the remaining nine sub-

basins clustered in two separate groups. The lowest ShD’s were noted for the Åland Sea, The Quark and Bothnian Bay (Fig. 
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1b, Table 3). The effective number of highly frequent species, i.e. Simpson diversity (SiD), was also well captured in all sub-

basins, being highest in Kattegat, while SiD in the remaining sub-basins clustered in four groups (Fig. 1c, Table 3).  275 

3.5 Standardized and estimated species richness  

To compare coastal fish SR, ShD and SiD across sub-basins, we estimated their standardized values against the minimum 

observed IC in any of the sub-basins. This represented a standardization to the IC of the Arkona Basin data (98.5%; Tables 2 

and 3). SRstd was ca. three times higher in the relatively more saline Kattegat (SRstd = 78) compared to the least saline Bothnian 

Bay (SRstd = 24), as also confirmed by comparing the respective SRest values (Table 2). The differences were smaller for ShD 280 

and SiD. For example, based on SiDstd and SiDest, the effective number of highly frequent species was ca. two times higher in 

coastal areas of the Kattegat compared to the Bothnian Bay (Table 3). This implies, as also seen from the SACs (Fig. 1), that 

the frequent and most frequent fish species were captured quite well by the samplings for all sub-basins, and that remaining 

uncertainties in differences across the salinity gradient is mostly due to uncertainty in the numbers of rare and very rare fish 

species.  285 

3.6 Relationships of SR with salinity and temperature 

Species richness increased with increasing mean water salinity, which explained 37-55% of the variance in the data based on 

SRobs, ShDobs and SiDobs. Using the standardized or estimated values, i.e. values corrected for sample size, resulted in stronger 

correlations, i.e. higher explained variance (40-77%; Fig. 2, Table 4). SRobs, ShDobs and SiDobs were not correlated with mean 

water temperature, but, using the standardized and estimated values, correlations with temperature were also significant 290 

(explaining 48-77% of the variance; Fig. 2, Table 4). The slope estimates of the linear regressions differed more across 

observed, standardized and estimated values for SR than for ShD and SiD (Fig. 2, Table 4). In all cases, adding temperature 

as explanatory variable to the regression models with salinity as explanatory variable did not improve the model (all P>0.14).  

3.7 Fish functional attributes  

74% and 26% of the fish species recorded in shallow coastal areas were of marine and freshwater origin, respectively (based 295 

on the incidence data, i.e. SRobs of 92 vs. 33 species; Table S2). In the most saline sub-basins, i.e. Skagerrak and Kattegat, the 

SRstd of marine fish species was seven to ten times higher than that of freshwater fish species. The SRstd of marine vs. freshwater 

fish were rather similar in the central Baltic Sea, while in the northernmost and least saline sub-basins, i.e. Bothnian Sea, The 

Quark and Bothnian Bay, the SRstd of freshwater fish species exceeded the SRstd of marine fish species by two to three times. 

In total, the marine fish SRstd decreased by a factor of 8-11 along the salinity gradient, from 39 and 57 marine species (SRstd) 300 

in Skagerrak and Kattegat to 5 in the Bothnian Bay. Freshwater fish SRstd increased by a factor of 2-4 along the same gradient 

(Fig. 3, Table S2). These distributional patterns of freshwater vs. marine fish species were also reflected by negative univariate 
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correlations of freshwater SR (obs, std and est) with salinity, and positive univariate correlations of marine SR with salinity 

(Fig. S1, Table 5).  

Table 4. Statistical indicators for the correlations between fish species richness (SR), Shannon Diversity (ShD) and Simpson Diversity 305 
(SiD), and salinity or annual mean water temperature in coastal areas of the studied sub-basins. The linear regressions were carried 
out separately for observed (obs), standardized (std) and estimated (est) values in each case. n.s.=not significant.  

Response 

variable  

Salinity Water temperature 

Parameters  

(± SE) 

Adjusted 

R2 
P-value 

Parameters  

(± SE) 

Adjusted 

R2 
P-value 

SR 

obs 
log10(y)=1.5 (±0.1) + 0.014 

(±0.004)*x 
0.55 0.004 

log10(y)=1.2 

(±0.2) + 0.06 

(±0.03)*x 

0.21 
n.s. 

(0.078) 

std 
log10(y)=1.45 (±0.04) + 0.012 

(±0.002)*x 
0.70 0.002 

log10(y)=1.1 

(±0.1) + 0.07 

(±0.01)*x 

0.77 0.001 

est 
log10(y)= 1.57 (±0.04) + 0.014 

(±0.002)*x 
0.77 0.001 

log10(y)=1.2 

(±0.1) + 0.08 

(±0.02)*x 

0.76 0.001 

ShD 

obs y=19.3 (±3.2) + 0.7 (±0.2)*x 0.48 0.007 
y=5.0 (±10.6) + 

3.1 (±1.4)*x 
0.25 

n.s. 

(0.055) 

std y= 21.0 (±2.9) + 0.6 (±0.2)*x 0.54 0.009 
y=2.3 (±7.6) + 

3.7 (±1.0)*x 
0.57 0.007 

est y=21.7 (±3.1) + 0.7 (±0.2)*x 0.55 0.009 
y=1.4 (±7.9) + 

4.0 (±1.1)*x 
0.58 0.006 

SiD 

obs y=17.1 (±2.5) + 0.4 (±0.2)*x 0.37 0.022 
y=7.8 (±7.8) + 

2.0 (±1.0)*x 
0.19 

n.s. 

(0.087) 

std y=18.4 (±2.3) + 0.4 (±0.1)*x 0.41 0.027 
y=6.0 (±5.9) + 

2.4 (±0.8)*x 
0.48 0.016 

est y=18.7 (±2.5) + 0.4 (±0.2)*x 0.40 0.031 
y=5.3 (±6.2) + 

2.6 (±0.8)*x 
0.48 0.016 

 

Concerning habitat preference, half of the fish species in Swedish shallow coastal areas were classified as being coastal resident 

species (CR; based on incidence data only, SRobs: 63 species, Table S2). This group dominated coastal fish assemblages in all 310 

sub-basins, with CR SRstd of 19-30 across sub-basins (Fig. 4, Table S2), and was not linearly related to salinity (Table 5). A 

similar result was noted for catadromous or anadromous fish species, with SRstd between 2 and 6 in each sub-basin that was 

not related to salinity (Tables S2, 5). In the more saline sub-basins, fish species classified as marine visitors or as marine 

juvenile or seasonal migrants contributed significant numbers to the SRstd, while these species groups did not exist or 

contributed only little to the SRstd in the Baltic Sea region (Fig. 4, Table S2). Reflecting this pattern, the SR of marine migrating 315 
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or visiting fish species (i.e. MJ, MS and MV) was significantly positively related to salinity in most cases, with the strongest 

correlations for marine juvenile visitors (MJ; Fig. S2, Table 5).   

 
Figure 2. Scatterplots of the fish species richness estimates against mean salinity (left column) and mean water temperature (right 
column), with total species richness (log10-transformed; a and d), Shannon diversity (effective number of frequent species; b and e) 320 
and Simpson diversity (effective number of highly frequent species; c and f: Each plot shows the observed, standardized and 
estimated values, and, when significant (P<0.05), the linear regression lines (solid) and 95%-confidence intervals (shaded areas 
surrounded by dashed lines: The different lines and shaded confidence intervals are partly overlying each other within the panels 
in some cases, indicating very similar regression statistics. For regression equations and statistics, see Table 4.  

Concerning vertical distribution, benthic fish species (B) were important contributors to SRstd in the sub-basins of higher 325 

salinity, but only few or no fish species belonged to this group in the less saline sub-basins (Fig. 5; Table S2). A similar, though 

less pronounced, distribution pattern was also found for demersal fish species (D). Accordingly, the SR of these groups were 

positively related to salinity in all cases (i.e. for SRobs, SRstd and SRest, Fig. S3; Table 5). The SR of demersal-pelagic (DP) fish 

species varied between sub-basins with a SRstd of 6-16, not related to salinity. A similar picture was found for pelagic fish 

species (P), where SRstd varied between 5-12 across sub-basins (Fig. 5, Table S2) and was not related to salinity (Fig. S3, Table 330 

5).   
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The two most common feeding groups observed in shallow coastal areas, across all sub-basins, were invertebrate and fish 

eating species (IF) as well as invertebrate feeders (I). The third-most represented feeding group was piscivorous fish species 

(Pi), followed by planktivorous and omnivorous species in lower and often similar SRstd (Fig. 6, Table S2). SRstd of Pi and IF 

increased with increasing salinity, and SRstd and SRest of I increased with increasing salinity (Fig. S4, Table 5). 335 

Table 5. Statistical relationships between observed (obs), standardized (std) and estimated (est) SR for fish functional attributes in 
Swedish shallow coastal areas and salinity. When YJ(y), the response variable was Yeo-Johnson transformed (Yeo and Johnson, 
2000). n.s.=not significant. 

Response variable Parameters (± SE) R2 P-value 

Origin 

Marine 

obs log10(y)=1.0 (± 0.1) + 0.03 (± 0.01)*x 0.74 <0.001 

std log10(y)=0.9 (± 0.1) + 0.03 (± 0.01)*x 0.71 0.001 

est log10(y)=1.1 (± 0.1) + 0.03 (± 0.01)*x 0.66 0.003 

Freshwater 

obs y=22.0 (± 3.0) -0.6 (± 0.2)*x 0.39 0.018 

std y=19.0 (± 1.1) – 0.4 (± 0.1)*x 0.84 <0.001 

est y=25.4 (± 2.5) – 0.5 (± 0.2)*x 0.47 0.017 

Habitat preference 

CR 

obs y=25.3 (± 4.6) + 0.1 (± 0.3)*x -0.08a n.s. (0.661) 

std y=26.5 (± 2.0) – 0.1 (± 0.1)*x -0.04a n.s. (0.538) 

est y=32.5 (± 3.0) + 0.1 (± 0.2)*x -0.10a n.s. (0.665) 

CA 

obs log10(y)=0.4 (± 0.1) + 0.01 (± 0.01)*x -0.10a n.s. (0.351) 

std log10(y)=0.5 (± 0.1) + 0.005 (± 0.004)*x -0.10a n.s. (0.314) 

est log10(y)=0.5 (± 0.1) + 0.006 (± 0.005)*x -0.10a n.s. (0.287) 

MJ 

obs log10(y)=0.14 (± 0.13) + 0.04 (± 0.01)*x 0.60 0.002 

std log10(y)=0.57 (± 0.09) + 0.016 (± 0.004)*x 0.69 0.025 

est log10(y)=0.43 (± 0.07) + 0.018 (± 0.004)*x 0.84 0.007 

MS 

obs y=0.7 (± 0.6) + 0.3 (± 0.04)*x 0.79 <0.001 

std y=2.4 (± 1.0) + 0.2 (± 0.1)*x 0.67 0.029 

est y=3.0 (± 1.4) + 0.2 (± 0.1)*x 0.55 n.s. (0.056) 

MV 

obs YJ(y)=-1.0 (± 0.2) + 0.09 (± 0.01)*x 0.81 <0.001 

std y=-3.4 (± 7.1) + 0.7 (± 0.3)*x 0.65 n.s. (0.123) 

est y=-6.5 (± 10.8) + 1.3 (± 0.4)*x 0.72 n.s. (0.100) 

Vertical distribution 

B 

obs YJ(y)=-1.0 (± 0.2) + 0.09 (± 0.01)*x 0.76 <0.001 

std log10(y)=0.3 (± 0.1) + 0.031 (± 0.004)*x 0.91 0.001 

est log10(y)=0.4 (± 0.1) + 0.039 (± 0.004)*x 0.95 <0.001 

D 

obs log10(y)=1.0 (± 0.1) + 0.02 (± 0.01)*x 0.44 0.011 

std log10(y)=0.97 (± 0.04) + 0.013 (± 0.013)*x 0.70 0.002 

est log10(y)=1.1 (± 0.1) + 0.014 (± 0.004)*x 0.54 0.010 

DP 
obs y=13.1 (± 2.1) – 0.1 (± 0.1)*x -0.10a n.s. (0.679) 

std y=13.9 (± 1.3) – 0.1  (± 0.1)*x 0.16 n.s. (0.136) 
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est y=15.5 (± 1.8) – 0.03 (± 0.11)*x -0.12a n.s. (0.792) 

P 

obs log10(y)=0.8 (± 0.1) + 0.006 (± 0.004)*x 0.07 n.s. (0.203) 

std log10(y)=0.80 (± 0.05) + 0.004 (± 0.003)*x 0.06 n.s. (0.243) 

est log10(y)=0.9 (± 0.1) + 0.008 (± 0.004)*x 0.27 
n.s. 

(0.072) 

Feeding habit 

Pi 

obs log10(y)=0.70 (± 0.06) + 0.018 (± 0.004)*x 0.63 0.001 

std log10(y)=0.69 (± 0.06) + 0.014 (± 0.004)*x 0.64 0.004 

est log10(y)=0.76 (± 0.06) + 0.020 (± 0.004)*x 0.77 0.001 

IF 

obs y=8.7 (± 1.8) + 0.7 (± 0.1)*x 0.75 <0.001 

std y=9.9 (± 1.1) + 0.4 (± 0.1)*x 0.81 <0.001 

est y=10.7 (± 1.9) + 0.8 (± 0.1)*x 0.84 <0.001 

I 

obs log10(y)=0.8 (± 0.2) + 0.02 (± 0.01)*x 0.16 n.s. (0.108) 

std log10(y)=0.85 (± 0.04) + 0.015 (± 0.003)*x 0.79 <0.001 

est log10(y)=0.93 (± 0.04) + 0.018 (± 0.002)*x 0.86 <0.001 

PL 

obs log10(y)=0.5 (± 0.1) + 0.007 (± 0.004)*x 0.12 n.s. (0.142) 

std log10(y)=0.4 (± 0.1) + 0.008 (± 0.003)*x 0.36 0.041 

est log10(y)=0.5 (± 0.1) + 0.007 (± 0.004)*x 0.20 n.s. (0.108) 

O 

obs y=3.6 (± 0.9) – 0.1 (± 0.1)*x -0.03a n.s. (0.419) 

std y=3.2 (± 0.5) + 0.1 (± 0.04)*x 0.23 n.s. (0.131) 

est y=3.5 (± 0.5) + 0.1 (± 0.04)*x 0.33 n.s. (0.080) 
aAdjusted R2 can turn negative for multiple R2 close to zero.  

 340 
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Figure 3. Map of the study area covering the Baltic Sea and the Skagerrak, color-coded by mean salinity. Bar plots show standardized 
fish species richness for each of the ten analyzed sub-basins, separately for species of freshwater (F) and marine (M) origin. SR was 
standardized across sub-basins to similar inventory completeness (Table S2: Black lines indicate the positions of the sub-basins, but 345 
the exact sampling sites were spread across the shallow areas of each of the sub-basins.  
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Figure 4. Map of the study area covering the Baltic Sea and the Skagerrak, color-coded by mean salinity. Bar plots show standardized 
fish species richness for each of the ten analyzed sub-basins, separately by habitat preference category, as CR: coastal resident, CA: 350 
catadromous or anadromous migrants, MJ: marine juvenile migrants, MS: marine seasonal migrants and MV: marine visitors. SR 
was standardized across sub-basins to similar inventory completeness (Table S2: Black lines indicate the positions of the sub-basins, 
but the exact sampling sites were spread across the shallow areas of each of the sub-basins. 
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Figure 5. Map of the study area covering the Baltic Sea and the Skagerrak, color-coded by mean salinity. Bar plots show standardized 355 
fish species richness for each of the ten analyzed sub-basins, separately by vertical distribution category, with B: benthic, D: 
demersal, DP: demersal-pelagic and P: pelagic fish species. SR was standardized across sub-basins to similar inventory completeness 
(Table S2). Black lines indicate the positions of the sub-basins, but the exact sampling sites were spread across the shallow areas of 
each of the sub-basins. 
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 360 
Figure 6. Map of the study area covering the Baltic Sea and the Skagerrak, color-coded by mean salinity. Bar plots show standardized 
fish species richness for each of the ten analyzed sub-basins, separately by feeding category, with trophic level increasing from left 
to right, and PL: planktivores, O: omnivores, I: invertebrate eaters, IF: invertebrate and fish eaters and Pi: piscivores. SR was 
standardized across sub-basins to similar inventory completeness (Table S2). Black lines indicate the positions of the sub-basins, but 
the exact sampling sites were spread across the shallow areas of each of the sub-basins. 365 

4 Discussion 

Data from species censuses have been called “probably the most basic data in ecology”, as they are widely useful for example 

to define species ranges and biodiversity patterns, and support conservation efforts (Gaston & Blackburn, 2000). A limitation 

for the use of taxonomic inventory data for biodiversity purposes, however, is their completeness, i.e. the fraction of species 

in a given location that has been sampled (Mora et al., 2008). In this study, the coastal fish taxonomic IC was found to be 370 

≥98.5% for the 10 analyzed sub-basins. This is high compared to a 2008 assessment of marine fish species census data 
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worldwide, where global IC averaged 79%, indicating that ca. 21% of fish species still remained to be described. Marine fish 

IC exceeded 80% in less than 2% of marine areas worldwide, and the highest IC of 92% was found for reef-associated species 

(Mora et al., 2008). Similarly, a 2012 global assessment concluded that ca. 77% of global marine fish SR were known to that 

date. Consequently, the rate of new fish species descriptions continues to be high, with e.g. 1,577 new marine fish species 375 

globally described during the years 1999-2008 (Appeltans et al., 2012). A comparison between the estimated SR per sub-basin 

(statistical extrapolation of the fish incidence data) and the corresponding compilation of total observed species richness, i.e. 

also including species presence information from additional data sources than systematic sampling, yielded a mean ratio of 

1.07 ± 0.03 (Table 2). This suggests that the overall observed fish species lists for Swedish shallow coastal areas are close to 

complete for all analyzed sub-basins, and, in reverse, that the SR values estimated based on the fish incidence database (SRest) 380 

were realistic. 
The SR of frequent and very frequent species (i.e. Shannon and Simpson diversity, ShD and SiD) were generally well described 

by the sample sizes available to date in the studied sub-basins, with calculated ShD and SiD being similar to both standardized 

and estimated values (where effects of differing sample sizes are considered; Table 3). This indicates that the remaining 

uncertainty in the fish SRobs is caused by a potential number of undetected rare species. This is a typical pattern, since well-385 

known species are usually common and have large geographical ranges, whereas newly discovered species are usually (more) 

locally rare and geographically concentrated (Appeltans et al., 2012; Mora et al., 2008; Pimm et al., 2014).  

The most recent check-list of Baltic Sea macrospecies, i.e. containing fish species reported across Baltic countries at both 

shallow and deeper water depths but excluding the Skagerrak, currently contains 242 fish species (HELCOM, 2020). In our 

analyses of Swedish shallow coastal areas the total fish SRobs amounted to 144 (i.e., fish incidence data plus presence only data 390 

from additional data sources), also if Skagerrak is excluded. Comparing the sample-size corrected estimates of SR in coastal 

areas (SRest) with HELCOM (2020) suggests that ca. 50-90% of the so far reported Baltic Sea fish species are currently found 

in Swedish shallow coastal areas, depending on sub-basin (data from 1975-2020).  

Our study reinforces that SRobs is strongly dependent on IC, and that comparing SRobs of species assemblages without 

accounting for this effect can lead to biased or even misleading conclusions (Chao & Chiu, 2016; Chao & Jost, 2015; Chao et 395 

al., 2020; Colwell & Coddington, 1994; Colwell et al., 2012; Gotelli & Colwell, 2001; Hill, 1973; Hsieh et al., 2016; Menegotto 

& Rangel, 2018; Mora et al., 2008; Pimm et al., 2014). Instead, when sample sizes are not uniform among sites or over time, 

SRobs need to be corrected for IC before valid conclusions can be made. However, such methods have so far only rarely been 

used for coastal and estuarine fish assemblages (Waugh et al., 2019).  

Besides the effects of sample size, SR and IC might in this study also have been differentially influenced by variation in fishing 400 

methods, as the predominating methods differed across sub-basins. Multi-mesh gill nets dominated in seven of the statistically 

analyzed sub-basins, while trap nets and trawls dominated in the other three (Table S1). One “sample” represents a different 

effort depending on the gear used and method, and each gear has a specific selectivity and efficiency, which strictly does not 

allow for direct comparison (Bergström et al., 2013; Waugh et al., 2019). For example, at the Swedish west coast, gill nets 

typically sample more species and individuals while fyke nets are more selective towards demersal and demersal-pelagic 405 
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species (Bergström et al., 2013). Merging the multi-gear data into one analysis may have caused a certain bias in this regard. 

However, we argue that our approach was feasible given that the fishing methods used in the different sub-basins are optimized 

for the locally prevailing conditions, i.e. aiming to sample the existing assemblages as completely as possible (Bergström et 

al., 2013), as additional data from relevant trawl surveys were also included, and considering the long time horizon of data 

collection. Further supporting our approach, biodiversity metrics that were standardized against catch size revealed no 410 

consistent differences when comparing gill and fyke net samplings at the Swedish west coast (Bergström et al., 2013). Our 

assumption also appears justified given that SRest was similar to SRobs including additional data sources (i.e. incidence data 

plus presence observations, Table 2), giving confidence that the potentially introduced bias due to differing fishing gear and 

methods did not strongly influence the general patterns and results of this comparative and large-scale statistical analysis.  

As anticipated based on earlier Baltic Sea studies on fish (e.g. Hiddink & Coleby, 2012; Ojaveer et al., 2010; Olsson et al., 415 

2012) and other organism groups (e.g. Broman et al., 2019; Zettler et al., 2014), salinity was positively correlated with coastal 

fish SR (Table 4), with fish SR increasing ca. threefold across the ca. 10-fold salinity gradient (Table 2). That clear 

predominance of marine species in the most saline sub-basins compared to freshwater species in the inner parts of the Baltic 

Sea is in agreement with the fact that salinity functions as threshold or “ecological barrier” for the distribution of many 

freshwater and marine species (Olenin & Leppäkoski, 1999; Vuorinen et al., 2015). It also corroborates patterns earlier reported 420 

for fish SRobs in three Baltic sub-basins (Hiddink & Coleby, 2012) and estuaries in general (Whitfield, 2015). The  relatively 

small number of freshwater fish species incidences observed in the higher salinity sub-basins in our study (Fig. 3) likely stems 

from sampling close to freshwater tributaries, and reflects that many freshwater fish species can withstand extended exposure 

to certain salinity levels (<ca. 9) and tolerate brief exposure to higher salinities (>ca. 15; Peterson & Meador, 1994). 

While temperature did not significantly correlate with observed SR, ShD or SiD, it was positively related with the standardized 425 

and estimated values (Table 4), which may indicate a temperature effect on fish biodiversity. Similarly, temperature has shown 

positive correlations with SRobs in North Atlantic demersal and benthopelagic fish assemblages (Gislason et al., 2020), and 

with fish SRobs in the coastal Norwegian Skagerrak (Lekve et al., 2002) as well as in estuaries worldwide (Vasconcelos et al., 

2015), all being examples of the often found general pattern that broader-scale SR co-varies with climatic variables such as 

temperature (Currie et al., 2004). However, given the clear relationship between salinity and the incidences of freshwater vs. 430 

marine fish species across the studied sub-basins (Fig. 3), we consider the studied salinity gradient to represent a case where 

the “physiological tolerance hypothesis” applies strongly, i.e. that SR in a particular area is limited by the number of species 

that can tolerate the local salinity conditions (Currie et al., 2004). In accordance, the regression models with salinity alone did 

not improve by adding temperature as additional explanatory variable. This conclusion is in agreement with observations from 

estuaries that fish SR is influenced by the broader distributions and habitat preference patterns of marine and freshwater species 435 

that can colonize these areas (Vasconcelos et al., 2015).  

In compiling data from the last nearly five decades we assumed that salinity changes during this time period (1975-2020) have 

been minor compared to the pronounced spatial salinity gradient. According to monitoring data, changes in salinity have been 

noted between ca. +3 psu in the Kattegat and ca. -1 psu in the Bothnian Sea during 1980-2015 (Ammar et al., 2021), which 
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can be considered small compared to the spatial salinity gradient ranging from 2 to 29. Moreover, fish populations often show 440 

a lag of several years before biological changes following abiotic, environmental changes can be recorded (Daan et al., 2005). 

Considering temporal patterns in SR and community composition, it was earlier reported that the observed fish SR increased 

in Kattegat, Arkona Basin and the central Baltic during 2001-2008 (Hiddink & Coleby, 2012), and that the observed SR of 

demersal fish increased in the Baltic Proper and the Bothnian Sea during ca. 1971-2013 (Törnroos et al., 2019). First-time 

observations of known fish species in sub-basins where they were not previously caught have been related to increasing spring 445 

temperatures (+3-6 °C during 1980-2015; (Ammar et al., 2021). Such potential temporal patterns were not analyzed here, 

where we merged the fish incidence data across years to narrow down likely SR estimates for different sub-basins and focused 

on large-scale spatial patterns.  

Concerning habitat preferences, a higher proportion of resident fish species was found in the less saline sub-basins. This agrees 

with with the observed predominance of freshwater species in these areas, while clearly migrating species are often of marine 450 

origin (here classified as either marine juvenile migrants, marine seasonal migrants or marine visitors) and cannot tolerate low 

salinity. The pattern is also in line with life strategies of fishes in marine coastal areas and European estuaries generally, having 

an important role for ecological connectivity between open and coastal ecosystems (Franco et al., 2008). Concerning feeding 

habits, relatively more species were higher trophic-level feeders in the more saline sub-basins, while a more even distribution 

of feeding groups emerged towards less saline areas (Fig. 6, Table 5). Comparative analyses between coastal and offshore 455 

areas could only be conducted for the Kattegatt, indicating a lower fish SR in the shallow offshore. This could be related to a 

higher habitat complexity and more variable substrates in the coastal area, supporting more species (Bonsdorff, 2006).  

Benthic and demersal fish SR decreased with decreasing salinity, corroborating previous results where demersal fish SRobs 

decreased from the saline Kattegat to the less saline northern Baltic Proper (Pecuchet et al., 2016). This pattern further 

corresponds with that the observed SR of benthic meio- and macrofauna, which are the dominating prey for benthic fish, also 460 

decreased with decreasing salinity in the Baltic Sea (Broman et al., 2019; Zettler et al., 2014). Taken together, and given that 

most Baltic Sea fish species feed on benthic invertebrates during at least part of their life cycle (Snickars et al., 2015), these 

patterns suggest that the strength of biological benthic-pelagic coupling through fish predation also likely differs along the 

Baltic Sea salinity gradient.   

5 Conclusions 465 

Since fish SR and a number of functional attributes changed along the salinity gradient, respective changes in the coastal fish 

communities may be foreseen if climate change further alters salinity conditions in the Baltic Sea. While the confidence in 

future salinity projections remains low (HELCOM, 2021), recent ensemble simulations estimate that the two main drivers of 

climate-related changes in salinity in the Baltic Sea region, increasing river runoff (leading to lower salinity) and sea level rise 

(leading to higher salinity), approximately compensate each other, and may result in no net salinity changes (Meier et al., 470 

2021). Mean (depth-integrated) observed Baltic Sea salinity did not change during 1982-2016, however, vertical changes were 
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observed with freshening trends of the upper layer down to 40-50 m depth in most sub-basins, and increasing salinity below 

the halocline in the deep layer of some sub-basins (Liblik & Lips, 2019). Hence, if not considering potential phenotypical 

acclimation or genetic adaptation, an upper layer freshening would, based on the results from this and earlier studies (e.g. 

Hiddink & Coleby, 2012; MacKenzie et al., 2007; Pecuchet et al., 2016), likely lead to less species-rich native fish communities 475 

in shallow coastal areas, where more and more marine species are excluded. Further, successful recovery of marine overfished 

species may become less probable while certain freshwater fish species may be favored (MacKenzie et al., 2007; Peterson & 

Meador, 1994). Indeed, marine fish species were negatively affected by a period of freshened conditions in the Baltic Sea 

during the ca. 1970-90s (Ojaveer & Kalejs, 2005). Benthic fish species, being mostly of marine origin, may be especially 

vulnerable to freshening in the Baltic Sea region where their proportion in the fish assemblage is already relatively low to date.  480 

Besides salinity changes, fish SR and distribution may also be influenced by other climate-change related processes, including 

warming and resulting higher deep-water oxygen consumption rates, or changes in the Baltic Sea circulation (HELCOM, 2021; 

MacKenzie et al., 2007). Increasing water temperatures have already been linked to increased observed fish SR in the adjacent 

North Sea (Hiddink & Ter Hofstede, 2008), and in the Kattegat (Hiddink & Coleby, 2012). Further ecosystem-based 

assessments are needed to obtain realistic predictions of the net effect of such ongoing environmental changes on future fish 485 

SR/community composition and on how they may interact with human activities such as fishing patterns, and with conservation 

needs for biodiversity management. 
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