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Abstract. This study considers year-to-year and decadal variations as well as secular trends of the sea–air CO2 flux over

the 1957–2020 period, as constrained by the pCO2 measurements from the SOCATv2021 data base. In a first step, we relate

interannual anomalies in ocean-internal carbon sources and sinks to local interannual anomalies in sea surface temperature

(SST), the temporal changes of SST (dSST/dt), and squared wind speed (u2), employing a multi-linear regression. In the

tropical Pacific, we find interannual variability to be dominated by dSST/dt, as arising from variations in the upwelling of5

colder and more carbon-rich waters into the mixed layer. In the eastern upwelling zones as well as in circumpolar bands in the

high latitudes of both hemispheres, we find sensitivity to wind speed, compatible with the entrainment of carbon-rich water

during wind-driven deepening of the mixed layer and wind-driven upwelling. In the Southern Ocean, the secular increase in

wind speed leads to a secular increase in the carbon source into the mixed layer, with an estimated reduction of the sink trend

in the range 17 to 42%. In a second step, we combined the result of the multi-linear regression and an explicitly interannual10

pCO2-based additive correction into a “hybrid” estimate of the sea–air CO2 flux over the period 1957–2020. As a pCO2

mapping method, it combines (a) the ability of a regression to bridge data gaps and extrapolate into the early decades almost

void of pCO2 data based on process-related observables and (b) the ability of an autoregressive interpolation to follow signals

even if not represented in the chosen set of explanatory variables. The “hybrid” estimate can be applied as ocean flux prior for

atmospheric CO2 inversions covering the whole period of atmospheric CO2 data since 1957.15

1 Introduction

The atmospheric CO2 content has risen during the recent decades, primarily due to anthropogenic emissions (IPCC, 2013).

However, the actual rise has been co-determined by the exchange of CO2 between the atmosphere and natural systems,

notably the ocean and the land vegetation. The uptake of atmospheric CO2 into the ocean is primarily driven by the solution

disequilibrium across the sea–air interface. As the surface-ocean carbon content is lagging behind the atmospheric rise, the20

ocean uptake is, to first order, increasing in parallel with the atmospheric CO2 rise. However, natural climate variability and

anthopogenic climate change alter the uptake rate on year-to-year and decade-to-decade time scales as well as in its secular
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evolution. This leads to a feedback loop: Atmospheric CO2 influences the climate via the greenhouse effect, while the climate

in turn influences the carbon-relevant natural systems in the ocean and on land. This feedback loop can dampen or accelerate

climate change.

In order to understand the future climate trajectory, therefore, we need to quantitatively understand the carbon response of

the natural systems. For example, how will secular trends towards higher wind speeds in the Southern Ocean affect the sea–air5

CO2 exchange in this region (Le Quéré et al., 2007; Hauck et al., 2013, and many others)? While the relevant time scale is

secular (multi-decadal) trends, year-to-year or decade-to-decade variability in CO2 fluxes can be used as “natural experiments”

to understand the climatic controls of the land and ocean carbon cycle. This can be done by quantifying variations of carbon

fluxes from suitable observations, and statistically relating them to variations in quantities describing relevant environmental

conditions. Even though the climate–carbon cycle feedback loop involves the global CO2 fluxes only (because atmospheric10

CO2 is mixed globally within about one year), the statistical analysis needs to be done on a spatial scale fine enough to

accomodate the spatial inhomogeneity of the involved processes.

Suitable observational data therefore need to provide sufficient spatial and temporal detail and span several decades. Regarding

ocean CO2 fluxes, there are essentially two types of such data: (1) Sustained atmospheric CO2 measurements at various

locations worldwide (Keeling, 1978; Conway et al., 1994; Francey et al., 2003, and many more) and (2) sustained and spatially15

extensive measurements of the CO2 partial pressure (pCO2) in the surface ocean (Bakker et al., 2016). As changes and

gradients in atmospheric CO2 reflect the sum of the regional CO2 sources and sinks at the surface, atmospheric CO2 data

have been combined with simulations of atmospheric tracer transport and inverse techniques to estimate spatial and temporal

variations of the CO2 fluxes (“atmospheric inversion”, Newsam and Enting, 1988; Rayner et al., 1999; Bousquet et al., 2000;

Rödenbeck et al., 2003; Baker et al., 2006, and many others). Even though most of the atmospheric inversions start in the20

1990s or 2000s when more and more stations became operational, the longest time series of atmospheric CO2 measurements

are available since 1957 (as used in Rödenbeck et al., 2018a). However, atmospheric inversions are known to have limited

capability to correctly assign signals to land or ocean (Peylin et al., 2013). While the resulting error is relatively small for the

land fluxes, it strongly affects the estimated ocean flux variability, because the ocean variability is much smaller than the land

variability.25

Therefore, the surface-ocean pCO2 data (Bakker et al., 2016) currently provide the most detailed information about the

spatio-temporal variability of the sea–air CO2 exchange. To cope with the very inhomogeneous distribution of these pCO2 data

in space and time, including substantial gaps, several methods have been developed to map (interpolate) the data into continuous

spatio-temporal fields of pCO2 (Takahashi et al., 2009; Watson et al., 2009; Valsala and Maksyutov, 2010; Landschützer et al.,

2013; Nakaoka et al., 2013; Rödenbeck et al., 2013; Majkut et al., 2014; Iida et al., 2015; Jones et al., 2015; Zeng et al.,30

2015; Denvil-Sommer et al., 2019; Gregor et al., 2019, and several others). Most of these mappings employ either (i) an

auto-regressive interpolation that fills unobserved areas or periods based on the neighbouring data within some prescribed

correlation radii in space and time, or (ii) a regression of pCO2 against suitable explanatory variables that have been observed

more densely and over all the target period (using linear regression, neural networks, or machine learning). These two types

of mappings offer complementary advantages, as regressions against explanatory variables possess predictive skill allowing35
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to fill longer data gaps (and potentially to extrapolate into data-void periods), while auto-regressive mappings can reproduce

all signals in the data even if not represented in the chosen explanatory variables (Rödenbeck et al., 2015). From the mapped

pCO2 fields, the sea–air CO2 flux is then calculated via a gas-exchange parameterization. In addition to studying the ocean

carbon cycle, these flux estimates have also been used as an interannually varying ocean prior in atmospheric CO2 inversions

to potentially improve land CO2 flux estimates (Rödenbeck et al., 2014).5

With regard to the aim of understanding how the oceanic carbon cycle may respond to decadal and secular climatic

changes as laid out above, however, the current pCO2 mappings have two limitations. As a first limitation, the current pCO2

mappings only provide spatio-temporal variations in the pCO2 field and the sea-air CO2 flux, but do not explicitly quantify

the relationships between these variations and underlying environmental drivers. This is true even for the regressions against

explanatory variables: Even though these relationships are implicitly contained in the synaptic weights of neural networks or10

similar parameters in machine learning algorithms, they are not accessible from these algorithms in interpretable form.

The second limitation arises from the fact that very little pCO2 data exist before the mid 1980s (Bakker et al., 2016). In the

equatorial Pacific, critical due to its large variability, sufficient coverage does not start before 1992. Despite their predictive

skill, even the available pCO2 regressions against explanatory variables only cover a time period not longer or even shorter

than the pCO2 data period, some for example because chlorophyll-a data have only been available in the satellite era since15

1997. Thus, none of the currently available pCO2 mappings starts before 1980. Consequently, they cannot be used as a data-

based ocean prior in atmospheric CO2 inversions over the full period of atmospheric data (1957–present). Further, the pCO2

mappings do not cover the 1960–present period considered in ongoing synthesis projects like the annual carbon budget by the

Global Carbon Project (GCP) (Friedlingstein et al., 2020), which so far exclusively relies on process model simulations during

the first decades.20

In this study, we aim to contribute to overcome these two limitations. First, extending the CarboScope pCO2 mapping

(Rödenbeck et al., 2013, 2014), we have developed a multi-linear regression explicitly estimating the sensitivities of the carbon

sources and sinks in the oceanic mixed layer against the variations in relevant explanatory variables. Second, we have combined

this multi-linear regression with an additive auto-regressive correction into a “hybrid” mapping, inheriting the complementary

advantages of both auto-regressive and regression-based pCO2 mappings. As the regression extrapolates the variability back to25

1957 by only using explanatory variables available throughout all this time frame, the hybrid mapping yields an observation-

based estimate of the spatio-temporal variability of sea–air CO2 fluxes since 1957.

After describing the mapping methods (Sect. 2), we present the resulting interannual variations of sea–air CO2 fluxes

(Sects. 3.1–3.2). We evaluate the predictive skill of the multi-linear regression step as one of its most important requirements

(Sect. 3.3). We show the contributions of the individual environmental variables to the interannual CO2 flux variations30

(Sect. 3.4). Finally, we present spatial patterns in the regression coefficients (sensitivities) and discuss possible underlying

mechanisms controlling sea–air CO2 fluxes (Sect. 3.5). In the discussion, we consider whether the presented multi-linear

regression indeed meaningfully reflects biogeochemical processes (Sect. 4.1), which fraction of interannual variability it is

able to capture (Sect. 4.2), to which extend the sensitivities depend on time-scale (Sect. 4.3), and how some uncertainties may

affect the result (Sects. 4.4–4.5). In an appendix, we focus on the global total sea–air CO2 flux estimated by the hybrid mapping35
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in terms of its mean (Sect. A1) and secular trend (Sect. A2), discussing its uncertainty and comparing it with literature values

obtained by other methods.

2 Method

2.1 pCO2 mapping

2.1.1 Overview5

The pCO2 mapping schemes used in this study are variants of the CarboScope pCO2 mapping described in Rödenbeck et al.

(2013). The estimates are based on the pCO2 data in the SOCAT data collection version v2021 (Bakker et al., 2016, 2020).

The elements common to all mapping variants are summarized in the following and illustrated in Fig. 1; for details we refer to

Rödenbeck et al. (2013).

Parameterizations of sea–air gas exchange (quadratic wind speed dependence as in Wanninkhof, 1992) and solubility (Weiss,10

1974), a calculation of the chemical equilibrium of the carbonate chemistry in sea water (Orr and Epitalon, 2015), as well as a

mixed-layer budget of dissolved inorganic carbon (DIC) (Rödenbeck et al., 2013), are used to express the pCO2 field and the

sea–air CO2 flux field as a function of the ocean-internal flux of DIC, fint (Fig. 1). The ocean-internal DIC flux fint is meant to

comprise all sources and sinks of DIC into or out of the oceanic mixed layer, through biological conversion within the mixed

layer or through mixing-in of waters with different DIC concentration. It is expressed as the sum of a fixed (a-priori) flux field15

and a set of predefined spatio-temporal patterns of adjustment each scaled by an adjustable parameter (the sets of patterns

are detailed for each variant of the mapping below). Then, the mismatch between the calculated pCO2 field (at the respective

pixels and time steps containing the SOCAT pCO2 samplings) and the corresponding measured pCO2 values (black dots in

the pCO2 panel of Fig. 1) is gauged by a quadratic cost function. The (a-posteriori) estimates of the mapping are calculated

from those values of the adjustable parameters that minimize this cost function. In the example of Fig. 1, the two estimates20

(colored) follow the data points (black dots) more closely than the prior (grey).

Spatial and temporal interpolation between the very inhomogeneously sampled data is implemented in the following way.

By choosing a set of spatial patterns of adjustment that are centered at all the individual ocean pixels but simultaneously

affect the respective neighbouring pixels within some correlation radius (to be detailed below), in conjunction with additional

Bayesian terms in the cost function that penalize large adjustments to the adjustable parameters, the ocean-internal DIC flux25

field is forced to be smooth. These smoothness constraints spread the information from data-covered pixels to neighbouring

unconstrained pixels (see Fig. 5 of Rödenbeck et al., 2013), thereby interpolating spatial data gaps. (The set of patterns of

adjustment indirectly defines the Bayesian a-priori covariance matrix, see Rödenbeck, 2005, for background.) Interpolation

in time is achieved analoguously by temporal smoothness constraints (even though, for practical reasons, a mathematically

equivalent Fourier formulation is used).30

The four mapping variants used here differ in the choices of the prior for fint and the set of spatio-temporal patterns of

adjustment. Our development started from a variant (Sect. 2.1.2) essentially identical to Rödenbeck et al. (2013) used as the
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CarboScope pCO2 mapping before version v2020, except for some technical changes described later (Sect. 2.1.6–2.1.7). As

an intermediate modification, we introduced a prior stabilizing the secular trend (Sect. 2.1.3); the result of this variant will be

used to help discussing specific aspects. The main results of this study come from the multi-linear regression (Sect. 2.1.4) and

the hybrid mapping (Sect. 2.1.5). Fig. 2 summarizes the differences and the flow of information between the four variants.

2.1.2 The “Zero-prior Explicitly interannual” pCO2 mapping (ZE)5

The starting variant has a general set of (many) patterns of adjustment, allowing an arbitrary smooth spatio-temporal internal

DIC flux field fZE
int (Rödenbeck et al., 2013). This field fZE

int is implemented as the sum of a constant term (subscript ‘LT’ for

‘long-term’) and terms for seasonal (subscript ‘Seas’) and interannual anomalies (non-seasonal, subscript ‘IAV’),

fZE
int (x,y, t) = f adj

int,IAV(x,y, t) (1)

+ fADJ
int,LT(x,y) + fADJ

int,Seas(x,y,s)10

As indicated by the superscript ‘adj’ or ‘ADJ’ (difference explained below), all these terms involve degrees of freedom being

adjusted in the cost function minimization sketched above. A-priori, all adjustable terms are zero, such that the prior of fZE
int is

zero as well.

The interannual term f adj
int,IAV(x,y, t) can represent non-seasonal anomalies on all month-to-month, year-to-year, or decadal

time scales, including secular trends. The level of its temporal smoothness corresponds to a-priori correlation length scales of15

about 4 weeks, implemented through a mathematically equivalent Fourier series with dampened higher-frequency components

(where Fourier terms dampened to less than 2% are discarded entirely). This amounts to 722 scalable Fourier terms for our 71-

year calculation period 1951–2021. The seasonal term fADJ
int,Seas only contains seasonal Fourier components; thus it only depends

on the time s within the year and repeats itself every year. Along the seasonal cycle, it has the same temporal correlation

length as the interannual term of about 4 weeks, amounting to 10 scalable Fourier terms. The constant term fADJ
int,LT is not20

time-dependent by definition (1 temporal degree of freedom).

Spatially, the level of smoothness in all three terms corresponds to a-priori correlation length scales of about 640km in

longitude and latitude.

As symbolized by the capitalized superscript ‘ADJ’, the relative a-priori uncertainties of fADJ
int,LT and fADJ

int,Seas at any time step

are chosen to be larger than those of f adj
int,IAV, corresponding to larger expected amplitudes of seasonal Fourier components of fint25

compared to non-seasonal ones. In terms of the implied a-priori autocorrelation function, these enhanced a-priori uncertainties

of seasonal variations are equivalent to non-zero temporal correlations between the flux at any given time-of-year and the

same time-of-year in all other years (in addition to the 4-weeks decaying correlations mentioned above). Due to these periodic

correlations, fint in time periods without data does not fall back to the prior (here zero) but to the mean seasonal cycle fADJ
int,Seas

as constrained by the data-covered periods.30
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2.1.3 The “Explicitly interannual” pCO2 mapping (E)

In order to stabilize the secular trend in the early decades (as discussed in Sect. A2 below), we now add a fixed (ie., non-

adjustable) term (superscript ‘fix’),

fE
int(x,y, t) = f adj

int,IAV(x,y, t) (2)

+ fADJ
int,LT(x,y) + fADJ

int,Seas(x,y,s)5

+ ffix=OCIM
int,Decad (x,y, t)

Consequently, the prior of fE
int is given by this fixed term. It is obtained from the sea–air flux product by DeVries (2014,

updated), which is based on a data-driven model of time-mean ocean circulation (OCIM) applied to the rising atmospheric

CO2 boundary condition. The OCIM fluxes have been decadally smoothed (indicated by subscript ‘Decad’), because the OCIM

result originally represents sea–air fluxes including SST-related interannual variations, which are created by our parameterizations10

already (Fig. 1).

2.1.4 The “multi-linear Regression” (R)

In the third variant, the ocean-internal DIC flux is represented as

fR
int(x,y, t) =

X

i

�adj
i (x,y) ·Vi(x,y, t) (3)

+ fADJ
int,LT(x,y) + fADJ

int,Seas(x,y,s)15

+ ffix=OCIM
int,Decad (x,y, t)

Compared to Eq. (2), the degrees of freedom representing interannual variations (fint,IAV) are replaced here by a multi-linear

function involving three explanatory fields (Vi):

– Sea surface temperature (SST),

– its temporal change (dSST/dt), and20

– squared wind speed (u2).

There is a two-fold motivation behind this choice of explanatory variables: (1) Variations in carbon-relevant processes (e.g.,

carbon and nutrient input into the mixed layer, stratification, mixing, entrainment, wind-driven deepening of the mixed layer)

are expected to also be related to these variables. (2) Observation-based data sets for SST and u are available over all our

calculation period 1951–2021 (u at least from reanalysis). The specific input data sets used in our base case are given in25

Table 1.

The simultaneous use of SST and dSST/dt is motivated as it is changes in SST that are related to DIC fluxes (i.e., changes

in DIC). Moreover, the sum of SST and dSST/dt mathematically allows a temporal shift between SST and fint for a dominant

Fourier mode (similar to sine and cosine terms).
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To prevent confusion, we point out that the multi-linear regression as introduced here is set up in terms of the ocean-internal

DIC flux fint (see Sect. 2.1.1), not in terms of pCO2 or sea–air flux as done in various other studies in the literature. This

also means that important processes (SST-dependence of solubility and carbonate chemistry, wind speed dependence of gas

exchange) are not included into the regression Eq. (3), but already taken care of by the parameterizations listed in Sect. 2.1.1

and Fig. 1.5

All the explanatory fields Vi are implemented on monthly time scale, smoothed onto our daily time steps. The scaling

factors �adj
i between the internal DIC flux and these explanatory fields Vi are taken as the adjustable degrees of freedom in the

cost function minimization (very analoguous to the “NEE-T inversion” of Rödenbeck et al., 2018b). These unknown scaling

factors are allowed to vary spatially (with correlation length of about 2000km in longitude and 1000km in latitude, thus more

smoothly than the direct adjustments of fint in the explicitly interannual mapping of Sect. 2.1.3), but are constant in time (110

temporal degree of freedom per explanatory field per pixel). All three regression terms are normalized such that the a-priori

uncertainty of their global integral on July 1 (averaged over the July 1 time steps of all years within the analysis period 1957–

2020) is the same as that of fint,IAV in Eq. (2). (July 1 is an arbitrary choice, in line with the normalization with respect to the

flux at mid of the final year used in CarboScope so far).

In order to avoid influences of the spin-up transient on the regression coefficients (estimated sensitivities), the regression15

terms (first line of Eq. (3)) are only covering the analysis period 1957–2020, while the remaining years before and after are

filled by explicitly interannual degrees of freedom just as f adj
int,IAV in Eq. (2). For clarity, this detail has been omitted from Eq. (3).

In order to explore how robust the results of the multi-linear regression are, we also perform uncertainty cases where certain

set-up parameters are modified within ranges as plausible as the base case:

RegrSSTNOAA: using SST from NOAA_ERSST v5 Huang et al. (2017) as alternative data set for the explanatory variables20

SST and dSST/dt (but no change to any other SST-dependent items such as solubility);

RegrU2NCEP: using wind speeds from NCEP reanalysis (Kalnay et al., 1996) as alternative data set for the explanatory

variable u2 (but no change to wind-dependent gas exchange);

RegrAdddSSTdt2: Additional regression term (dSST/dt)2;

RegrAddU4: Additional regression term u4;25

RegrAddpaCO2: Additional regression term paCO2;

RegrNoDecad: removing any decadal variability and secular trends from the explanatory fields Vi, such that the multi-linear

regression term only represents interannual variability on a time scale of a few years;

RegrShort: shorter spatial correlation lengths for the sensitivities �adj
i (supplementary Fig. S5);

RegrLoose: a-priori uncertainty of the sensitivities increased by a factor 4 (i.e., the strength of the mathematical regularization30

is reduced);
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MLDq2: Dividing mixed-layer depth by 2;

MLDx2: Multiplying mixed-layer depth by 2;

GasexLow: Weaker gas exchange, by scaling the piston velocity field such that its global mean matches the lower limit of the

range 16.5± 3.2cm/hr (Naegler, 2009) rather than the central value;

GasexHigh: Stronger gas exchange (analoguously, using upper limit);5

GasexU3: Replacing the u2 dependence of gas exchange by a u3 dependence (while keeping the global mean piston velocity

the same).

To help in the discussion of specific aspects, we performed further test cases (not necessarily as plausible as the base case):

RegrOnlySST, RegrOnlydSSTdt, RegrOnlyU2: The explanatory variables were used individually, i.e., the regression terms

of the remaining two were omitted;10

RegrAddChl_98r19: Addition of Chl-a as a further explanatory variable (Fig. S7). Chlorophyll concentration has been taken

from the GlobColour project (Maritorena et al., 2010), which combined retrievals from the SeaWiFS (NASA), MODIS

(NASA), MERIS (ESA), OLCI (ESA), and VIIRS (NOAA/NASA) satellites into a harmonized data set; as the Chl-a

data are only available for the years 1998–2019, the regression is restricted to this period (plus spin-up and spin-down

periods);15

RegrHeat_85r09: replacing dSST/dt with the net sea–air heat flux taken from the OAFlux project (Yu and Weller, 2007),

regression period restricted to 1985–2009 according to the availability of the heat flux data set;

RegrCurl_88r18: replacing u2 with windstress curl calculated from Cross-Calibrated Multi-Platform (CCMP) v2.0 wind

speeds (Atlas et al., 2011), regression period restricted to 1988–2018 according to the availability of CCMP;

98r19, 85r09, 88r18: Using the same regression terms as in the base case, but restricting the time period of regression to the20

same years as used for RegrAddChl_98r19, RegrHeat_85r09, and RegrCurl_88r18, respectively.

2.1.5 The “Hybrid” pCO2 mapping (H)

The final variant aims to combine the temporal extrapolation capability of the multi-linear regression (Sect. 2.1.4) and the

flexibility to reproduce observed signals of the explicitly interannual mapping (Sect. 2.1.3). Technically being an explicitly

interannual mapping itself, its representation of the ocean-internal DIC flux,25

fH
int(x,y, t) = f adj

int,IAV(x,y, t) (4)

+ f adj
int,LT(x,y) + f adj

int,Seas(x,y,s)

+ ffix=R
int (x,y, t)

is similar to Eq. (2), but with the following changes:
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– the result of the multi-linear regression (Sect. 2.1.4) is used as prior for the internal DIC flux (ffix=R
int (x,y, t)), and

– as the long-term mean and the mean seasonal cycle are now already contained in ffix=R
int (x,y, t), they are not adjusted

again, i.e., the only degrees of freedom being adjusted in the hybrid run are interannual corrections to the internal

DIC flux (however, as the term f adj
int,IAV was introduced to denote non-seasonal anomalies only, we still need the terms

f adj
int,LT(x,y) and f adj

int,Seas(x,y,s) to obtain a complete Fourier series, where the lower-case superscript ‘adj’ indicates that5

the a-priori uncertainty of these terms is not enhanced, in contrast to Sect. 2.1.2).

Due to this construction, the hybrid result will fall back to the multi-linear regression during periods without data, but it

is nevertheless able to fit pCO2 signals on month-to-month, year-to-year, and decadal time scales that have not yet been

reproduced via the explanatory variables of the multi-linear regression.

For assessing uncertainties, the hybrid mapping was re-run also with several of the uncertainty cases of the regression as10

listed in Sect. 2.1.4. Part of the set-up changes (mixed-layer depth, gas exchange) also affect the hybrid calculation itself.

Note that the hybrid run is mathematical equivalent to estimating an additive correction to the multi-linear regression from

the pCO2 residuals of the multi-linear regression. That is, the signals being used by the hybrid run are those that could not

yet be explained by the multi-linear regression. The hybrid run is thus similar to a hypothetical joint run simultaneously

having regression degrees of freedom (like the multi-linear regression) and explicitly interannual degrees of freedom (like the15

explicitly interannual estimate). We abandoned the concept of such a joint run, however, because it would face two problems:

(1) its result would depend on the relative a-priori weighting between the two groups of degrees of freedom, for which there

is no clear information; and (2) the explicitly interannual degrees of freedom would necessarily also absorb part of the signals

actually proportional to the explanatory variables. Running the multi-linear regression and the hybrid step sequentially, as done

here, reduces both problems.20

2.1.6 The Pre-mapping (P): Determining the linearization of the carbonate chemistry

In contrast to Rödenbeck et al. (2013), we now allow for the secular trend in the Revelle factor. We deem this necessary due to

our longer period of interest 1957–2020, during which the mixed-layer carbon content notably increased, leading to shifts in

the relation between variations in the ocean-internal DIC flux (fint) and the sea–air CO2 flux. As our scheme extrapolates the

seasonality (and in the “multi-linear regression” also the interannual variations) from the data-constrained recent decades to25

the almost unconstrained earlier decades through correlations in fint (see the last paragraph of Sect. 2.1.2), the shifting relation

has the potential to alter the amplitude of flux variations in the earlier decades.

As in Rödenbeck et al. (2013), the non-linear dependence of pCO2 on DIC is linearized around reference fields pCO2Ref

and DICRef,

pCO2 = pCO2Ref +
✓

dpCO2

dDIC

◆
(DIC�DICRef) (5)30

The linearization is needed to be able to use the fast minimization algorithm in the CarboScope software. Previously in

Rödenbeck et al. (2013), the reference fields pCO2Ref and DICRef were temporally constant, had been taken from observation-

based data sets not guaranteed to be mutually consistent, and the derivative (dpCO2/dDIC) had been calculated from these
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via approximation formulas. In order to now include the secular trend in Revelle factor (and simultaneously to remove the

mentioned approximations), we employ the mocsy package (Orr and Epitalon, 2015), which provides routines to accurately

calculate pCO2 and (dpCO2/dDIC) from a given field of DIC (and from fields of Alkalinity, SST, salinity, silicate, phosphate,

and air pressure, which we take from external sources, Table 1). Using an adjusted Newton algorithm calling mocsy iteratively,

we obtain an algorithm to calculate (reference) DIC and (dpCO2/dDIC) from a given (reference) pCO2 value at each location5

and time (box L in Fig. 2). The pCO2Ref field is obtained as the posterior pCO2 field of a “pre-mapping” run (P, the leftmost

one in Fig. 2). The pCO2Ref and (dpCO2/dDIC) fields used in this pre-mapping run, in turn, are calculated from a preliminary

reference identical to atmospheric pCO2. This yields a reasonable starting point, because the atmospheric pCO2 field does

already contain the secular CO2 rise, which is the most important feature in this context.

Potentially, we might expect to need a loop with further pre-mappings, each getting its pCO2Ref field from the posterior10

pCO2 field of the respective previous one. However, we confirmed by explicit testing that the fields are not appreciably altered

any more after the first pre-mapping; thus a single pre-mapping is sufficient.

All other mapping runs of this study use the same spatio-temporal linearization fields pCO2Ref, DICRef, and (dpCO2/dDIC)

as calculated by the pre-mapping.

2.1.7 Technical details common to all variants15

In contrast to Rödenbeck et al. (2013), the calculation period of all runs starts in 1951. This allows the initial transient of

the mixed-layer DIC budget equation to decay by 1957 (start year chosen in light of the potential use of the results as prior

in atmospheric inversions). As in Rödenbeck et al. (2013), the calculation period includes one more year (“spin-down”, here

2021) after the valid period constrained by the data (until end of 2020), in order to avoid numerical edge effects.

In order to cover all the calculation period since 1951, we now use SST from Hadley EN.4.2.1 (Good et al., 2013) and sea20

ice concentration from HadISST 2.2.0.0. (Titchner and Rayner, 2014, accessed on 2020-06-05 from https://www.metoffice.

gov.uk/hadobs/hadisst2/data/HadISST.2.2.0.0_sea_ice_concentration.nc.gz).

Compared to Rödenbeck et al. (2013), the spatial resolution of all the mapping calculations has been increased to 2.5�

longitude ⇥ 2� latitude (previously on the grid of the TM3 atmospheric transport model, 5� ⇥ 4�). Moreover, the adjustments

are now done over the entire ocean (i.e., we do not fix part of the temporally ice-covered regions any more).25

2.2 Gauging the predictive skill of the multi-linear regression

In order to test whether the multi-linear regression against explanatory variables (Sect. 2.1.4) is actually meaningful, we

determine its predictive skill. For this, the multi-linear regression is re-run 6 times, each time omitting the pCO2 data from one

of the 5-year periods 1985–1989, 1990–1994, 1995–1999, 2000–2004, 2005–2009, or 2010–2014. That is, each of the 6 test

runs possesses an artificial data gap of 5 years, a duration chosen to be longer than typical features of year-to-year variability30

like El Niño. We can then compare the predictions during the data gaps with the results of the completely constrained run.
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3 Results

The main results of this study are of two different types:

– From the multi-linear regression, we obtain spatial maps of the sensitivities �i (Eq. (3)) relating the variations in the

surface-ocean carbon system to variations in SST, dSST/dt, and u2.

– The hybrid mapping yields a spatio-temporal estimate of the sea–air CO2 flux over 1957–2020, in particular its evolution5

from year to year.

For easier exposition, we start with a time-series view of the sea–air CO2 flux, and only then present the contributions of the

various environmental conditions to this variability as determined by the regression.

3.1 Sea–air CO2 flux variations estimated by the hybrid mapping

Fig. 3 shows estimated interannual (i.e., slower-than-seasonal) variations of the sea–air CO2 flux, subdividing the ocean into10

basins and latitude bands. We first focus on the hybrid mapping (blue) as our most comprehensive mapping variant (Sect. 2.1.5).

The most prominant feature of interannual variability is the secular trend towards more CO2 uptake in all ocean regions.

Considering variations around this secular trend, the tropical Pacific is the region providing the largest contribution to total

ocean variability (compare Quéré et al., 2000), both on decadal time scale and on year-to-year time scale. The year-to-year

variations are strongly tied to El Niño as indicated by the background stripes (Feely et al., 1999). When considering trends15

within individual decades, the decadal increase in the CO2 sink slowed down in the 1990s and early 2000s, and accelerated

again afterwards (Landschützer et al., 2016; DeVries et al., 2019), even though these decadal trends seem to be the consequence

of pronounced anomalies on the faster year-to-year time scale rather than representing actual slowlier decadal variations.

3.2 How do the year-to-year sea–air CO2 flux variations estimated by regression and hybrid mapping compare with

each other?20

In addition to the variations of the sea–air CO2 flux estimated by the hybrid mapping (blue), Fig. 3 also shows those estimated

by the multi-linear regression (Sect. 2.1.4, orange) and the explicitly interannual pCO2 mapping (Sect. 2.1.3, green). From the

late 1980s onwards, when progressively more pCO2 data are available to constrain interannual variations explicitly, the hybrid

mapping (blue) shows some corrections over the multi-linear regression (orange). For the large El Niño-related variability in

the tropical Pacific, these corrections are generally small compared to the estimated variations themselves. This indicates that25

the multi-linear regression already captures a notable fraction of the year-to-year flux variations in this region, even though

it underestimates the size of most of these anomalies (the interannual standard deviation 1985–2019 from the multi-linear

regression is only about 82% of that from the hybrid mapping in the tropical Pacific). Fig. 4 (dots) confirms that the hybrid

mapping fits the pCO2 data closely (the blue dots are located right under the black dots), while the multi-linear regression

(orange dots) also follows the variability in the data (black dots) but does not match them as closely as the hybrid mapping.30
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In the intermediate and high latitudes (top and bottom panels of Fig. 3), in contrast, the multi-linear regression (orange) does

not pick up most of the year-to-year anomalies. This may indicate that the set of explanatory variables used in the regression

misses essential modes of variability there. On the other hand, some of the variations estimated with explicitly interannual

degrees of freedom (green and blue) may also be spurious effects from the temporally very uneven data coverage.

Although the hybrid mapping (blue) has the same interannual degrees of freedom (i.e., the same flexibility) as the explicitly5

interannual mapping, it does not always bring the fluxes back to the explicitly interannual result (green), especially in the

region south of the tropical Pacific (Fig. 3). Since the two estimates are actually very close to each other where data exist (as

illustrated in Fig. 4: the green dots are essentially invisible under the co-located blue and black dots, despite the differences

between the green and blue lines), the differences in areal averages as in Fig. 3 reflect differences in data-void areas/periods

being filled by the mappings. However, while the explicitly interannual mapping falls back to the unconstrained prior, the10

hybrid mapping falls back to the multi-linear regression which is at least indirectly constrained via the statistical relationships

between the ocean-internal DIC flux and the chosen explanatory variables (Sect. 3.3 below). This may also prevent some undue

spatial extrapolation from the tropical Pacific into unconstrained areas by the explicitly interannual scheme. Thus, we expect

the hybrid mapping (blue) to be more realistic than either of the multi-linear regression and the explicitly interannual mapping.

3.3 How much predictive skill does the multi-linear regression have?15

The results of the multi-linear regression (and thus the hybrid mapping during poorly constrained periods) are only meaningful

if the regression actually possesses some predictive skill to bridge unconstrained periods. In order to test this, we performed

runs with artificial data gaps of 5 years length (Sect. 2.2). Fig. 5 illustrates this using runs discarding all pCO2 data during 1995–

1999. As the explicitly interannual mapping draws all information about year-to-year variations from the data and therefore

does not have any predictive skill, it essentially defaults to the prior (having upside-down El Niño response as it misses any20

variations related to the ocean-internal sources and sinks) during the data gap (Fig. 5 left), except for a shift in long-term

mean (see Sect. 2.1.2, last paragraph, for explanation). In contrast, the multi-linear regression (middle) almost completely

reconstructs the 1995–1999 flux variations, based on the relationships between the ocean-internal DIC flux and the driving

variables learned on the basis of the remaining data outside 1995–1999.

As demonstrated by Fig. S1 in the supplement, this predictive skill holds generally for all parts of the ocean and other 5-year25

data gaps. This means that no particular pCO2 data point is causing features in the variability and the estimated sensitivities

(Sect. 3.5 below) by its own.

In view of applying the multi-linear regression as a prior of the hybrid mapping, the predictive skill is only meaningful to

the extent that the multi-linear regression is actually able to explain all signals in the data. For example, since the regression

underestimates the year-to-year anomalies in the tropical Pacific compared to the explicitly interannual estimate as discussed30

above, it will fill data gaps with too small an amplitude (Fig. 5, right). Even though this is still a clear qualitative improvement

compared to the explicitly interannual mapping (left), it indicates that the variability extrapolated into the earlier decades

without data will likely be underestimated, too.
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3.4 How do the three explanatory variables contribute to the interannual variations estimated by the multi-linear

regression?

When disregarding the secular increase in the ocean carbon sink, the largest year-to-year variations of the regionally integrated

sea–air carbon flux are found in the tropical Pacific (Fig. 3). Correspondingly, the year-to-year variations in the ocean-internal

carbon flux (fint) from the three terms in the multi-linear regression (Eq. (3)) are largest in the tropics as well (Fig. 6, left).5

Of the three explanatory variables, the contribution of year-to-year variability in temporal SST changes (dSST/dt, black) is

the largest. Concurrent with the warming (dSST/dt>0) at the onset of each El Niño event (grey background stripes), we find a

negative carbon flux anomaly (reduction of the carbon source in this region) because smaller amounts of cold, carbon-rich water

are upwelling. At the end of each El Niño event, we find an analoguous coupling of the cooling (dSST/dt<0) and an additional

carbon source to the mixed layer. The contribution of year-to-year variability in SST itself (red) is second largest in the tropics,10

causing anomalous carbon sinks during El Niño events and anomalous carbon sources during La Niña conditions afterwards.

This could be interpreted as a small correction to the dSST/dt contribution: the sum of the dSST/dt and SST contributions (not

shown) is similar to the dSST/dt contribution alone, but slightly shifted in time by a few months. The smallest contribution to

the year-to-year variability in the tropics is estimated for squared wind speed (u2, light blue), with a temporal pattern relatively

similar to that of the SST contribution. Due to the co-variation between SST and u2 on year-to-year time scale, these two15

explanatory variables could be partly confounded by the regression, though their respective spatial patterns are different (see

below).

In the high-latitude bands, the wind speed contribution is estimated to be larger than in the tropics, now on the same order of

magnitude as the SST and dSST/dt contributions or even larger. As a notable feature in the Southern Ocean (bottom left panel

of Fig. 6), the secular increase in wind speed leads to a secular increase in the carbon source into the mixed layer. Across our set20

of uncertainty cases listed in Sect. 2.1.4, the linear trend of the wind speed contribution over the 1960–2019 period in the ocean

south of 45�S is estimated in the range 0.002 to 0.005(PgC yr�1) yr�1 (see supplementary Fig. S3, bottom, light blue bars).

As a secular trend in fint (bottom left in Fig. 6) causes a secular trend in sea–air flux of the same size (bottom right), it represents

a reduction by 17 to 42% of the increase in the Southern Ocean sink strength (relative to the trend of �0.012(PgC yr�1) yr�1

estimated by OCIM). A slowing-down of the Southern Ocean sink increase (compared to the increase expected from rising25

atmospheric CO2) has also been found in model simulations and attributed to an increase in upwelling of old carbon by the

accelerating winds (Le Quéré et al., 2007; Hauck et al., 2013, and many others). We need to note, however, that our multi-linear

regression estimates the wind-speed related trend only indirectly: As the sensitivites �u2 are presumably largely constrained

by year-to-year variations (because they do not change much if the linear trend of the explanatory variables is removed, see

sensitivity case RegrNoDecad, Sect. 4.3), the slope of the secular trend can only be correct to the extent that the sensitivity30

�u2 is identical for year-to-year and secular variations.

The year-to-year anomalies from the fint contributions (Fig. 6, left) carry through to the sea–air CO2 flux (right) in a delayed

and dampened fashion, due to the buffer effect of carbonate chemistry in combination with the limited gas exchange. We also
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note again that the sea–air CO2 flux contains additional year-to-year variability from solubility and gas exchange anomalies as

represented by the involved parameterizations (also see Fig. 1).

3.5 Patterns of the sensitivity of ocean-internal DIC sources and sinks to interannual variations of SST, dSST/dt, and

u2 estimated by the multi-linear regression

The estimated sensitivities of the ocean-internal DIC flux (fint) against interannual variations in the chosen explanatory5

variables of the multi-linear regression (sea surface temperature SST, temporal changes in sea surface temperature dSST/dt,

and squared wind speed u2) are shown in Fig. 7. Here we consider the most prominent features in these sensitivity patterns and

mention oceanic processes that are compatible with these and may thus control surface-ocean biogeochemistry. Even though

regression analysis cannot proof causation, we will argue later (Sect. 4.1) why such a tentative attribution may be meaningful

here. Also see Sects. 4.3–4.5 for further discussion on uncertainties.10

3.5.1 Sensitivity of fint to dSST/dt

We start with dSST/dt (Fig. 7, top) as the explanatory variable contributing the largest year-to-year variability (Sect. 3.4).

Events of decreasing SST are estimated to be associated with more positive ocean-internal DIC fluxes in the tropical Pacific

(within a tilted band located around the equator in the western tropical Pacific and around about 15�S in the eastern tropical

Pacific) and in most parts of the higher latitudes in both hemispheres (blue and cyan areas in Fig. 7 top). Such a correlation15

would arise from variations in the upwelling of waters that are both colder and more carbon-rich than the mixed layer.

In the rest of the ocean, the absolute value of the sensitivity �dSST/dt is small (light blue or light red). We assume that these

sensitivities mainly reflect insignificant correlations, especially due to the higher uncertainty in regions of sparse data coverage

or in regions where dSST/dt is mainly driven by atmospheric heating or cooling. In particular, positive sensitivities are not

compatible with any known oceanic mechanism.20

3.5.2 Sensitivity of fint to SST

The estimated sensitivity �SST between the interannual varitions of the ocean-internal DIC flux and SST itself is rather patchy,

with both positive and negative areas (Fig. 7, middle). This may reflect that various biological processes contribute to fint,

depending on temperature in different ways and thus potentially cancelling each other. For example, carbon fixation (Net

Primary Productivity, NPP) will envigorate with increasing temperature (until a threshold is reached); as NPP represents a sink25

(i.e., a negative contribution to fint), it would thus cause negative �SST sensitivities. Carbon export (or export ratio at least) is

generally anticorrelated with temperature (Laws et al., 2000), thus causing positive �SST sensitivities, though also the opposite

behaviour seems possible.

Positive interannual sensitivity to SST would also be compatible with a nutrient effect. Upwelling both decreases SST and

increases the availability of nutrients. Thus, negative anomalies in SST tend to be associated with higher biological production,30

thus enhanced removal of carbon (negative anomalies in fint). However, upwelling also brings up carbon, which is usually
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assumed to dominate the carbon signal. For example, Hauck et al. (2013) showed that –in the model– in the Southern Ocean

south of 55� S, there would be more biological export per increase in the Southern Annular Mode (SAM) which goes along

with more upwelling. Yet, this is still controversially discussed.

As the statistical inference by our regression can only respond to the sum of all contributing processes, we therefore cannot

draw specific conclusions from the estimated �SST pattern. In addition, the regression may adjust �SST to effectively shift the5

dSST/dt contribution in time (Sect. 3.4).

3.5.3 Sensitivity of fint to u2

Higher wind speeds are estimated to be associated with more positive ocean-internal DIC fluxes (stronger sources into or

weaker sinks out of the mixed layer) along the equator in the Pacific, in the eastern upwelling zones of the North Pacific, South

Pacific, and South Atlantic, as well as in circumpolar bands in the high latitudes of both hemispheres (red and yellow areas in10

Fig. 7 bottom). Such a positive sensitivity is compatible with wind-driven deepening of the mixed layer, Ekman pumping, or

speeding up of the wind-driven upwelling, such that more carbon-rich waters are mixed in from below during stronger winds.

In contrast, higher wind speeds tend to be associated with more negative ocean-internal DIC fluxes (i.e., weaker sources or

stronger sinks) at the western extratropical fringes of all ocean basins (blue areas). In these regions of mode water formation,

higher wind speeds lead to more subduction of anthropogenic CO2 away from the surface into the ocean interior.15

3.5.4 Additional variability of the sea–air flux

We note again that the sensitivities discussed here are those of the ocean-internal DIC sources and sinks fint (Fig. 1, bottom

panel). The sea–air CO2 fluxes contain additional variability also driven by interannual variations in SST (e.g., via the changes

in CO2 solubility) or in wind speed (via the piston velocity of gas exchange). As this additional variability is already generated

by the parameterizations contained in our algorithm (Sect. 2.1.1), these processes are, within uncertainties, not reflected in the20

sensitivities against SST or u2 again.

4 Discussion: Robustness of the multi-linear regression

4.1 How meaningful is the multi-linear regression in terms of biogeochemical processes?

Statistical inferences by multi-linear regression are at the risk of overfitting, i.e. adjustment of coefficients to follow minor

signals in the data, or even noise. If that was the case, the estimated sensitivities would not reflect underlying biogeochemical25

processes. Various findings indicate however that the results of the presented multi-linear regression do reflect actual signals:

– The patterns of the sensitivities (Fig. 7), at least those with respect to dSST/dt and u2, are quite systematic spatially, and

in many respects interpretable (Sect. 3.5). This is especially true in the tropical Pacific, but also throughout the entire

ocean.
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– Test regression runs only using a single one of the explanatory variables yield sensitivities very similar to the base case

using all explanatory variables (supplementary Fig. S2). This indicates that the regression terms are essentially mutually

independent, such that each explanatory variable picks up a more or less unique portion of the signals contained in the

data.

– The regression possesses predictive skill (Sect. 3.3 above), which also means that it does not depend on any particular5

portion of the pCO2 data or the explanatory fields alone.

– The estimates are relatively robust against alternative data sets for the explanatory variables (cases RegrSSTNOAA and

RegrU2NCEP in supplementary Fig. S4). This corroborates that the regression is likely not dominated by any particular

feature in these fields.

– The regression hardly responds to a 4-fold change in the regularization strength (case RegrLoose in supplementary10

Fig. S4). In the overfitting regime, one would expect a substantial dampening effect when the regularization is stronger.

– The regression results are quite robust against further changes in the set-up (supplementary Figs. S4, S5, and S6).

The relatively small set of explanatory variables used here (Sect. 2.1.4) is certainly helpful to avoid overfitting (compare, e.g.,

Thacker, 2012). For example, in test runs with seasonally resolved (rather than temporally constant) sensitivity coefficients,

the data could be fitted more closely, but the predictive skill deteriorated (not shown).15

4.2 Which fraction of the year-to-year variability can be captured by the multi-linear regression?

As seen in Fig. 3 and quantified explicitly in Fig. 8 (top), the amplitude of year-to-year variability in the global sea–air CO2

flux estimated by our multi-linear regression (orange) is lower than that estimated by the hybrid mapping possessing the

degrees of freedom to follow any interannual signals (blue). This indicates that the pCO2 data also contain signals of year-to-

year variability that cannot be represented in terms of the variations contained in the set of explanatory variables used in the20

regression. Possibly, however, the hybrid mapping may also exaggerate the amplitude of signals by spreading them over too

large an area in data-poor parts of the ocean.

The situation is different in the tropical Pacific (Fig. 8, bottom). Here, the multi-linear regression (orange) already captures

a large part of the variability found in the hybrid mapping (blue). This indicates that our explanatory variables are reasonably

suited to represent the ENSO-related variability dominating in this region.25

To elucidate the ability of the multi-linear regression to capture year-to-year anomalies, we compare it with other pCO2

mappings based on linear or non-linear regressions of pCO2 (itself) against various sets of explanatory variables (Landschützer

et al., 2013; Iida et al., 2020; Denvil-Sommer et al., 2019; Gregor et al., 2019). Globally (Fig. 8, top), the variability obtained

by the other pCO2 mappings (salmon) is larger than that from our multi-linear regression (orange). Closer inspection (not

shown) reveals that these larger amplitudes mostly reflect variability on multi-year (decade-to-decade) time scales occurring30

coherently in both northern and southern extratropics, while the multi-linear regression does not inolve such globally correlated

contributions. Accordingly, when splitting up the global flux into regional contributions, the amplitudes from the other pCO2
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mappings and our multi-linear regression are quite comparable. For example, in the tropical Pacific (Fig. 8, bottom) our

regression yields year-to-year variability larger than any of the other pCO2 mappings considered. Based on reconstructions

of model-based pseudo data, Gloege et al. (2021) found for one of the other methods included in Fig. 8 that the amplitude of

Southern Ocean decadal variability was overestimated by 15 to 58%.

Could alternative or additional explanatory variables help to capture a larger fraction of variability by the multi-linear5

regression?

– As the explanatory variables of the base case are all physical variables, we tested using chlorophyll-a concentration as

a biological variable (run RegrAddChl_98r19, supplementary Fig. S7). A practical problem with chlorophyll-a is that

data sets are only available for the most recent years (from 1998); therefore it is not used in our base case. The test

suggests, however, that chlorophyll is not actually adding much information about the year-to-year variations in the sea–10

air CO2 flux beyond what is already provided by the explanatory variables of the base case (SST, dSST/dt, and u2).

A reason may be that chlorophyll variability is already covered in the other variables, as nutrients are also a function

of upwelling and stratification etc. It is also important to keep in mind that chlorophyll concentration is not directly

observed but indirectly inferred from optical properties of the seawater, such that the chlorophyll data may contain

substantial variability unrelated to the carbonate system.15

– Conceivably, more general non-linear relationships between pCO2 and the explanatory variables may allow to capture

signals not represented in linear relationships as used in our base case. Uncertainty cases involving additional regression

terms proportional to (dSST/dt)2 (run RegrAdddSSTdt2) and (u2)2 (run RegrAddU4), respectively, only marginally

increase year-to-year variability (within the narrow band in Fig. S4). Also from the set of other pCO2 mappings (salmon

in Fig. 8), there is no indication that the non-linear regressions (CMEMS-FFNN, CSIR-ML6, and MPI-SOMFFN) would20

generally capture more variability than the linear ones (JMA-MLR and ours). We conclude that non-linearities in the

pCO2 relationships are not essential for explaining year-to-year anomalies in the pCO2 field on regional scale.

– Using heat flux as explanatory variable instead of dSST/dt (RegrHeat_85r09) deteriorates the ability of the multi-linear

regression to reproduce ENSO-related variability (supplementary Fig. S8).

– Replacing u2 by the windstress curl (RegrCurl_88r18) does not change the flux IAV much (supplementary Fig. S10). A25

further alternative explanatory variables may be "Ekman pumping", which however diverges at the equator, and was not

tested.

A common methodological feature of all present-day regression-based pCO2 mappings including ours is that the carbon

variables are only related to the concurrent values of the explanatory variables, disregarding any dependence on past values

of the explanatory variables possible due to memory effects. This might be a serious limitation, but allowing for memory30

effects is not straightforward. For example, regression terms with lagged explanatory variables would only allow discrete

lag times, and using an extensive spectrum of lag times would possibly exceed the number of well-determined degrees of

freedom. Theoretically, fitting comprehensive process models (GOBMs) to the pCO2 data would include emerging memory
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effects, but this faces various conceptual and computational challanges (see a recent application of a low-dimensional Green’s

function approach by Carroll et al., 2020). (Note that the amplitudes simulated by the hindcast GOBMs included in Fig. 8 are

roughly similar to those from our multi-linear regression and smaller than those from the hybrid scheme.) If memory effects are

important, they are evidently not yet adequately captured by those elements in our algorithm that do represent history effects

(the budget equation accumulating past fint contributions, the seasonal “history flux” (Rödenbeck et al., 2013), and the use of5

both SST and dSST/dt as explanatory variables).

4.3 To which extend depend the sensitivities �i on time-scale?

In our formulation of the regression (Eq. (3)), the sensitivities �i are applied to the fields Vi of the explanatory variables

including all their variations on year-to-year, decadal, and secular time scales. Conceivably, however, the relationships between

fint and the explanatory variables may differ for year-to-year, decadal, or secular variations. In ocean areas where the data10

period is long enough to possibly constrain decadal time scales directly, the estimates may therefore reflect some mixture of

time scales, which would be hard to interpret.

We assessed this by the uncertainty case RegrNoDecad where any decadal variability (including any secular trend) has been

removed from the 3 explanatory variables. As this case can only pick up year-to-year signals to constrain the sensitivities,

any changes compared to the base case may indicate such potential time scale conflicts. In most regions, this is not evident15

(supplementary Fig. S6). Exceptions are the southern Pacific and the tropical Indian (for the wind-speed sensitivity �u2 ) and

the western tropical Pacific (for the SST sensitivity �SST). As the explanatory variable dSST/dt, which dominates the large

tropical variability, does not have much secular trend, it is not prone to time-scale dependence anyway.

An alternative way to assess the impact of secular trends in the explanatory variables is the uncertainty case RegrAddpaCO2

having an additional regression term proportional to atmospheric CO2 (paCO2). As paCO2 is rising steadily over the calculation20

period, this run is able to adjust the secular trend independently of the trends in SST, dSST/dt, or u2, thus breaking any potential

time scale conflicts. Indeed, the sensitivities estimated by RegrAddpaCO2 (not shown) are similar to those from the base case

as well, and any differences from the base case are similar to those of RegrNoDecad.

We note that in ocean areas with data periods of a few years only, a possible time-scale dependence will not affect the

sensitivities themselves, but it may still affect secular trends in the fluxes if sensitivities estimated for year-to-year variations25

are applied to secular trends in the explanatory variable. We do not have a means to detect whether this is the case.

4.4 Spurious effects from uncertainties in the parameterizations

Errors in the sea–air CO2 flux resulting from deficiencies in our chosen parameterizations of solubility and gas exchange lead

to compensating spurious contributions to fint, because it is the sum of both fluxes which changes the mixed-layer carbon

content in our budget equation (see Fig. 1 or Rödenbeck et al., 2013). This will then also lead to spurious contributions to the30

estimated sensitivities �i. For example, spurious u2 sensitivity may arise if the wind speed dependence of our gas exchange

parameterization is not strong enough such that it is re-inforced by additional changes in the ocean-internal carbon flux (or vice

versa).
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Luckily, the interannual variability of the sea–air CO2 flux is much smaller than that of fint due to the buffer effect (see

Fig. 1). Therefore, in relative terms, the error in the sea–air CO2 flux translates into a much smaller error in fint and in the

sensitivities �i.

4.5 Spurious effects from missing interannual alkalinity variations

The estimated ocean-interanl DIC flux fint –and thus the estimated sensitivities �i in the regression– contain some spurious5

contributions to compensate any errors in our representation of carbonate chemistry, because the pCO2 data constrain the

pCO2 field rather than the DIC field (Fig. 1). Even though we represent the carbonate chemistry –up to the linearization– by

exact equations (Sect. 2.1.6), some error arises because we only use a seasonal alkalinity climatology, while alkalinity also

varies interannually due to (1) changing degrees of dilution due to freshwater fluxes (evaporation, precipitation, ice formation,

and ice melt), as well as (2) mixing-in of alkalinity-rich deep waters.10

(1) Freshwater fluxes do not only dilute alkalinity but also DIC, in equal proportions. On the other hand, the sensitivities of

pCO2 against changes in alkalinity and DIC are almost equal in absolute value but of opposite sign (Sarmiento and Gruber,

2006). Therefore, the total effect of freshwater fluxes on pCO2 is small compared to that on alkalinity and DIC, respectively.

Therefore, as we neglect both the freshwater contributions to fint and the freshwater-related alkalinity variations, the combined

error in pCO2 should be small.15

(2) Alkalinity variations related to mixing from below are linked to DIC variations as well, because deep waters are rich in

both DIC and alkalinity, compared to the mixed layer. In contrast to the freshwater effects, however, the regression terms �iVi

in Eq. (3) do contain mixing contributions to fint, such that the absence of the corresponding alkalinity variations does affect our

pCO2 field being matched to the data. On the seasonal time scale (where there is no problem anyway as we are using a monthly

alkalinity climatology), alkalinity variations in the tropical and subtropical oceans are dominated by freshwater effects; only20

at higher latitudes, alkalinity variations are increasingly affected by mixing (Lee et al., 2006). For the interannual time scales

relevant here, the relative role of mixing is unclear. A better understanding –and hopefully solution– of this problem remains

for further work.

We note that the spurious compensatory contributions to fint do not affect the pCO2 field being constrained by the observations.

Thus, they essentially do not affect the estimated sea–air CO2 fluxes either.25

4.6 How well constrained is the secular flux trend?

As discussed in more detail in the appendix (Sect. A2), the secular trend is mostly determined through the prior derived from

the OCIM estimate based on ocean-interior data (DeVries, 2014, updated). Due to the lack of pCO2 data in the early decades,

the mapping does not add credible information about the secular trend. Due to some slight inconsistency in the use of the prior,

the secular trend is even slightly overestimated (Sect. A2); this remains to be addressed in future versions of our flux product.30
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5 Conclusions

In this study, we considered the interannual variability of the sea–air CO2 flux over the 1957–2020 period, constrained by

the pCO2 measurements from the SOCATv2021 data base (Bakker et al., 2016). Extending the pCO2 mapping scheme

of Rödenbeck et al. (2013, 2014), we employed (1) a multi-linear regression against interannual anomalies of sea surface

temperature (SST), the temporal changes of SST (dSST/dt), and squared wind speed (u2), and (2) a subsequent explicitly5

interannual additive correction, yielding a “hybrid” estimate of spatio-temporal variations in the contemporary sea–air CO2

flux.

– According to our multi-linear regression, interannual variability in the tropical Pacific is dominated by a positive correlation

of ocean-internal DIC fluxes to dSST/dt, as arising from variations in the upwelling of colder and more carbon-rich

waters into the mixed layer.10

– In the eastern upwelling zones as well as in circumpolar bands in the high latitudes of both hemispheres, we find a

positive sensitivity to wind speed, compatible with the entrainment of carbon-rich water during wind-driven deepening

of the mixed layer. To the extent that this sensitivity inferred from year-to-year variations also applies to secular trends,

the wind trend in the Southern Ocean (south of 45 � S) implies a wind-related reduction of the flux trend by about 17 to

42% (less strong increase in sink).15

– As a pCO2 mapping method, the hybrid mapping combines (a) the ability of regression to bridge data gaps and

extrapolate into the early decades without much pCO2 data constraint and (b) the ability of an autoregressive interpolation

to follow signals even if not represented in the chosen set of explanatory variables. This way, at least the large contributions

of the tropical Pacific to the global year-to-year variability of the oceanic CO2 exchange can be extrapolated over all the

1957–2020 period, even though the extrapolated variability prior to about 1985 is probably underestimated.20

Appendix A: The global ocean carbon sink estimated by the hybrid mapping

Here we discuss the global total of the sea–air CO2 flux as estimated by the hybrid mapping, and compare it to various literature

estimates. In order to allow a quantitative comparison, we focus on specific features, namely the mean flux (Sect. A1) and the

secular flux trend (Sect. A2).

A1 The mean sink (1994–2007)25

Fig. 9 shows the contemporary global sea–air CO2 flux estimated by the hybrid mapping (blue solid bar) averaged over the

1994–2007 period. According to the set of uncertainty cases shown (blue hashed bars), the uncertainty in the mean flux from

the hybrid mapping is dominated by the uncertainty of gas exchange (cases GasexLow, GasexHigh, and GasexU3; diagonally

hashed bars), while all other uncertainty cases do not affect the mean sink estimate very much.
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The spread between the flux estimates from other pCO2 mapping methods (group of salmon bars) together with the base

case of our hybrid mapping (solid blue bar) only indicates uncertainties due to the mapping algorithms, as all the estimates use

the same global scaling of the piston velocity from Naegler (2009). Notably, this spread does not exceed the differences due to

scaling sea–air gas exchange within the uncertainty range of Naegler (2009) (cases GasexLow, GasexHigh).

The comparison between the results of the hybrid mapping and further literature values is hampered as pCO2 mappings are5

estimating the total contemporary net CO2 flux (Fnet) through the sea–air interface, while other methods may only include

certain components of it. Adopting the notation by Hauck et al. (2020), Table 3 gives the six components of Fnet and their

respective inclusion in the literature estimates considered here (note that the terms “anthropogenic” or “contemporary” are also

defined differently in part of the literature).

From the increase in the anthropogenic carbon inventory in the ocean between the extensive ocean surveys in 1994 and10

2007, Gruber et al. (2019) estimate an anthropogenic CO2 uptake of Fant,ss +Fant,ns =�2.6±0.3PgC yr�1 over the interjacent

period, shown in Fig. 9 as long-dashed line. This estimate conceptually differs from the hybrid mapping by the river-induced

flux Friv,ss + Friv,ns and the non-steady state modifications Fnat,ns to the natural sea–air fluxes, while Fnat,ss is zero at the global

scale (Table 3). The river-induced flux is very uncertain, with literature estimates ranging between 0.45± 0.18PgC yr�1

(Jacobson et al., 2007) and 0.78± 0.41PgC yr�1 (Resplandy et al., 2018), though the real uncertainty may be even larger.15

If the Gruber et al. (2019) estimate is shifted by a mid-range river-induced value of 0.62PgC yr�1 (resulting in the dotted

line), the base-case value from the hybrid estimate is matched more closely. Nevertheless, given the uncertainty ranges of gas

exchange, river-induced outgassing, and the Gruber et al. (2019) estimate, we cannot draw any conclusions from the remaining

difference.

The CO2 flux difference between the hybrid estimate and the dotted line in Fig. 9 may also contain a contribution from20

systematic differences between pCO2 in the bulk ocean water (as typically measured at a few meters depth) and pCO2 at the

diffusive surface layer (as relevant for gas exchange), arising due to systematic differences in water temperature and salinity

(Woolf et al., 2016). Further, the cooler ocean skin temperature translates the atmospheric pCO2 to a different concentration

than that implicitly calculated based on bulk temperature (Robertson and Watson, 1992). Watson et al. (2020) estimated that the

sum of these two effects would shift pCO2-based estimates of the mean global CO2 flux by �0.8 to �0.9PgC yr�1 (stronger25

sink). So far, however, it is unclear how well the water temperature at the relevant vertical positions can actually be determined

(an important source of uncertainty not included in Watson et al. (2020)’s range) and how it varies in space and time. In any

case, we note that our study mainly considers the variability of the flux, for which the effect of a time-constant correction as in

Watson et al. (2020) would cancel out.

Fig. 9 further shows the global fluxes simulated by a set of Global Ocean Biogeochemical Models (GOBMs) collated in30

the annual Global Carbon Budget (Friedlingstein et al., 2020, mint green). Like OCIM or Gruber et al. (2019), the GOBMs

results do not include the river-induced flux component, but they do conceptually include the non steady-state modification

Fnat,ns of carbon uptake and natural carbon cycling (Table 3). The range of results covered by the GOBMs slightly exceeds the

range of the hybrid estimates due to the gas exchange uncertainty. The median of the GOBM ensemble and the pCO2 mapping

ensemble differ by less than the mid-range river-induced value of 0.62PgC yr�1.35
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A2 The secular sink trend (1960–2019)

Regarding the 1960–2019 secular sink trend, our estimate from the hybrid mapping (1) is not able to add much independent

information, and (2) even slightly overestimates this trend relative to OCIM used in the prior:

(1) According to Fig. 10 (top), the 1960–2019 trend from the base case (blue solid bar) is quite similar to that of the base-case

prior (grey open bar). Among the uncertainty cases (blue hashed bars), largest deviations are seen when mixed-layer depth is5

changed (MLDq2 and MLDx2); these deviations are in fact mostly inherited from their respective priors as well (not shown).

(2) Fig. 10 (top) further reveals that the prior (grey open bar) has a slightly steeper trend than the OCIM estimate (magenta),

even though the prior has been derived from OCIM (Sect. 2.1.3). This discrepancy arises because we are using OCIM’s sea–air

fluxes as a prior of the ocean-internal flux fint, even though these two quantities differ by the carbon accumulation in the mixed

layer. Since the carbon accumulation accelerates (following the accelerating increase in atmospheric pCO2), this not only leads10

to a difference in mean flux (Fig. 9) but also to a difference in trend. Due to the lack of information to correct the 1960–2019

secular trend from the pCO2 data as discussed unter (1), this issue leads to an overestimation of the trend in the hybrid estimate

compared to OCIM. Most GOBMs (mint green) simulate an even flatter 1960–2019 trend than OCIM.

Looking at the linear trend over the better constrained more recent period 1990–2019 (Fig. 10, bottom), the estimate from

the hybrid mapping becomes more independent from the prior. The pCO2-based hybrid estimates tend to show steeper trends15

than both OCIM and the GOBM simulations. Most other pCO2 mappings (salmon) estimate the trend to be even more negative

than the hybrid mapping. However, given the substantial pentade-to-pentade variations in the global flux (as reflected in the

error bars), it is not fully clear how well defined the trend over the 1990–2019 period actually is.

The level of constraint in the trend over the different periods is corroborated by the “zero-prior” mapping not using the

secular trend from OCIM as prior (Fig. 11): Even though the zero-prior explicitly interannual mapping (violet) and the explicitly20

interannual mapping (green) start from priors with very different secular trends (shown in dark and light grey, respectively),

their estimated multi-decadal trends during the recent decades are still very close: In well-constrained regions like the tropical

Pacific (bottom panel) they are practically identical, while some deviations occur in poorly constrained regions such as the

Indian Ocean, adding up to the slight deviations in the global total flux (top). Only in the early decades where there are

hardly any pCO2 data to constrain the estimates, the two mappings stick to the differing multi-decadal trends (and also to the25

year-to-year variations) of their respective priors.

As the better-constrained trend over the recent decades (after about 1992) is essentially the same as that in the prior of the

explicitly interannual mapping, the flat multi-decadal trend of the zero-prior mapping in the early decades is very unlikely to

be true. This illustrates that a prior with the correct secular trend (such as the OCIM result used here) is indeed needed to

extrapolate the ocean CO2 sink into the data-poor first decades of our extended period of interest 1957–2020.30
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Data availability

The sea–air CO2 flux estimates, mapped pCO2 fields, as well as some auxiliary fields are available from the CarboScope

website under http://www.bgc-jena.mpg.de/CarboScope/?ID=oc_v2021 where “oc_v2021” can be replaced by the other RunIDs

from Table 2. Further results can be made available upon request.
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Table 1. Input data sets

Quantity Data set Reference Pre-treatment, original resolution, remarks Used for

pCO2 SOCATv2021 Bakker et al. (2016, 2020),

http://www.socat.info/

Data are used having WOCE-flag = 2 and valid

fields for fugacity, temperature, and salinity.

Values below 200 µatm or above 600 µatm have

been excluded as being local compared to the

grid cells. Values have been transferred from

fugacity to partial pressure by dividing by

0.996.

Main constraint

Ocean fraction Earth2014 Hirt and Rexer (2015),

http://ddfe.curtin.edu.au/models/

Earth2014/data_1min/masks/

MSK2014_landtypes.1min.geod.bin,

accessed 2020-11-12

10⇥ 10;

using land type 2 (“ocean bathymetry”)

Param.

SST Hadley EN.4.2.1 (g10) Good et al. (2013) Param., Expl. var.

Ice-free fraction HadISST 2.2.0.0. Titchner and Rayner (2014),

https://www.metoffice.gov.uk/hadobs/

hadisst2/, accessed 2020-06-05

1�⇥ 1�, monthly Param.

MLD LOCEAN de Boyer Montégut et al. (2004) 2�⇥ 2�, monthly climatology;

using “temperature criterion”

Param.

u JRA55-do v1.5.0 Tsujino et al. (2018) 0.5625�⇥ 0.5625�, 3-hourly Param., Expl. var.

Sea-level press. JRA55-do v1.5.0 Tsujino et al. (2018) 0.5625�⇥ 0.5625�, 3-hourly Param.

Atm. XCO2 Jena CarboScope Rödenbeck et al. (2018b) 5�⇥ 3.83�, daily; Param.

sEXTALL_v2021 atmospheric inversion

Alk CDIAC Lee et al. (2006) 1�⇥ 1�, monthly climatology Param.

Salinity WOA01 Conkright et al. (2002) 1�⇥ 1�, monthly climatology;

via Lee et al. (2006)

Param.

PO4, Si WOA05 Garcia et al. (2006) 1�⇥ 1�, monthly Param.

Sea–air CO2 flux OCIM DeVries (2014, updated) 2�⇥ 2�, monthly;

using “total flux”, decadally smoothed

Prior

Glossary: LOCEAN = Laboratoire d’océanographie et du climat: expérimentations et approches numériques; NCEP = National Centers for Environmental Prediction; SOCAT = Surface

Ocean CO2 Atlas; WOCE = World Ocean Circulation Experiment; WOA = World Ocean Atlas; Param. = Parameterizations; Expl. var. = Explanatory variable
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Table 2. Mapping runs used in this study. The main results are given in bold; the other runs are used to assess uncertainty (“uncertainty cases”,
Sect. 2.1.4), to illustrate specific points of discussion (“test cases”, Sect. 2.1.4), or to assess predictive skill (“cross-validation”, Sect. 2.2).

Run Representa- Special feature (if any) CarboScope RunID
tion of fint

Pre-mapping Eq. (3) Lin. of C chem. around paCO2 ocP_v2021
Zero-prior expl. interann. pCO2 map. Eq. (1) ocZE_v2021
Explicitly interannual pCO2 mapping Eq. (2) ocE_v2021
Expl. interann. map. (cross-validation) Eq. (2) No pCO2 data 1995–1999 ocE_CrossVal5yr1995_v2021
Multi-linear pCO2 regression Eq. (3) ocR_v2021
Multi-linear regr. (uncertainty case RegrSSTNOAA) Eq. (3) SST from NOAA_ER ocR_RegrSSTNOAA_v2021
Multi-linear regr. (uncertainty case RegrU2NCEP) Eq. (3) u2 from NCEP reanalysis ocR_RegrU2NCEP_v2021
Multi-linear regr. (uncertainty case RegrAdddSSTdt2) Eq. (3) Added (dSST/dt)2 regression term ocR_RegrAdddSSTdt2_v2021
Multi-linear regr. (uncertainty case RegrAddU4) Eq. (3) Added u4 regression term ocR_RegrAddU4_v2021
Multi-linear regr. (uncertainty case RegrAddpaCO2) Eq. (3) Added paCO2 regression term ocR_RegrAddpaCO2_v2021
Multi-linear regr. (uncertainty case RegrLoose) Eq. (3) 4-fold a-priori sigma of regr. terms ocR_RegrLoose_v2021
Multi-linear regr. (uncertainty case RegrShort) Eq. (3) 3-fold shorter a-pr. correlation length ocR_RegrShort_v2021
Multi-linear regr. (uncertainty case RegrNoDecad) Eq. (3) No decadal variab. in explanat. var. ocR_RegrNoDecad_v2021
Multi-linear regr. (uncertainty case MLDq2) Eq. (3) Halved mixed-layer depth ocR_MLDq2_v2021
Multi-linear regr. (uncertainty case MLDx2) Eq. (3) Doubled mixed-layer depth ocR_MLDx2_v2021
Multi-linear regr. (uncertainty case GasexLow) Eq. (3) Reduced piston velocity ocR_GasexLow_v2021
Multi-linear regr. (uncertainty case GasexHigh) Eq. (3) Enhanced piston velocity ocR_GasexHigh_v2021
Multi-linear regr. (uncertainty case GasexU3) Eq. (3) Piston velocity prop. to u3 ocR_GasexU3_v2021
Multi-linear regr. (test case RegrOnlySST) Eq. (3) SST regression term only ocR_RegrOnlySST_v2021
Multi-linear regr. (test case RegrOnlydSSTdt) Eq. (3) dSST/dt regression term only ocR_RegrOnlydSSTdt_v2021
Multi-linear regr. (test case RegrOnlyU2) Eq. (3) u2 regression term only ocR_RegrOnlyU2_v2021
Multi-linear regr. (test case RegrAddChl_98r19) Eq. (3) Added Chl-a regression terma ocR_RegrAddChl_98r19_v2021
Multi-linear regr. (test case 98r19) Eq. (3) Regr. 1998–2019 only ocR_98r19_v2021
Multi-linear regr. (test case RegrHeat_85r09) Eq. (3) Repl. dSST/dt by the sea–air heat fluxa ocR_RegrHeat_85r09_v2021
Multi-linear regr. (test case 85r09) Eq. (3) Regr. 1985–2009 only ocR_85r09_v2021
Multi-linear regr. (test case RegrCurl_88r18) Eq. (3) Replacing u2 by windstress curla ocR_RegrCurl_88r18_v2021
Multi-linear regr. (test case 88r18) Eq. (3) Regr. 1988–2018 only ocR_88r18_v2021
Multi-linear regr. (cross-validation) Eq. (3) No pCO2 data 1985–1989 ocR_CrossVal5yr1985_v2021
Multi-linear regr. (cross-validation) Eq. (3) No pCO2 data 1990–1994 ocR_CrossVal5yr1990_v2021
Multi-linear regr. (cross-validation) Eq. (3) No pCO2 data 1995–1999 ocR_CrossVal5yr1995_v2021
Multi-linear regr. (cross-validation) Eq. (3) No pCO2 data 2000–2004 ocR_CrossVal5yr2000_v2021
Multi-linear regr. (cross-validation) Eq. (3) No pCO2 data 2005–2009 ocR_CrossVal5yr2005_v2021
Multi-linear regr. (cross-validation) Eq. (3) No pCO2 data 2010–2014 ocR_CrossVal5yr2010_v2021
Hybrid pCO2 mapping Eq. (4) oc_v2021
Hybrid mapping (uncertainty case RegrSSTNOAA) Eq. (4) SST from NOAA_ER oc_RegrSSTNOAA_v2021
Hybrid mapping (uncertainty case RegrU2NCEP) Eq. (4) u2 from NCEP reanalysis oc_RegrU2NCEP_v2021
Hybrid mapping (uncertainty case RegrLoose) Eq. (4) 4-fold a-priori sigma of regr. terms oc_RegrLoose_v2021
Hybrid mapping (uncertainty case RegrShort) Eq. (4) 3-fold shorter a-pr. correlation length oc_RegrShort_v2021
Hybrid mapping (uncertainty case RegrNoDecad) Eq. (4) No decadal variab. in explanat. var. oc_RegrNoDecad_v2021
Hybrid mapping (uncertainty case MLDq2) Eq. (4) Halved mixed-layer depth oc_MLDq2_v2021
Hybrid mapping (uncertainty case MLDx2) Eq. (4) Doubled mixed-layer depth oc_MLDx2_v2021
Hybrid mapping (uncertainty case GasexLow) Eq. (4) Reduced piston velocity oc_GasexLow_v2021
Hybrid mapping (uncertainty case GasexHigh) Eq. (4) Enhanced piston velocity oc_GasexHigh_v2021
Hybrid mapping (uncertainty case GasexU3) Eq. (4) Piston velocity prop. to u3 oc_GasexU3_v2021
Hybrid mapping (cross-validation) Eq. (4) No pCO2 data 1995–1999 oc_CrossVal5yr1995_v2021

a Regression run only over 1998–2019, 1985–2009, or 1988–2018, respectively
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Table 3. The components of the contemporary net sea–air CO2 flux (Fnet) according to Hauck et al. (2020), and whether or not they are

included in the individual estimates shown in Fig. 8, Fig. 9, and Fig. 10

Component Definition Included in

of Fnet This

study

(Fnet)

OCIM

“anthr.”

GOBMs Gruber

et al.

(2019)2

Fant,ss CO2 uptake in direct response to the anthropogenic increase in

atmospheric CO2 hypothetically under constant pre-industrial

circulation

X X X X

Fant,ns modifications of Fant,ss due to anthropogenic climate change and

natural climate variability

X (X)1 X X

Fnat,ss steady-state natural fluxes under constant pre-industrial climate

conditions; supposed to be zero in the global sum

X X

Fnat,ns modifications of Fnat,ss due to anthropogenic climate change and

natural climate variability

X (X)1 X

Friv,ss steady-state outgassing of carbon transported into the ocean by

rivers, minus the carbon sedimented at the ocean floor

X

Friv,ns modifications of Friv,ss due to climate change and variability as

well as anthropogenic land-use changes

X

1for a mean ocean circulation over the industrial era, i.e., the variations are due to temperature and piston velocity variations only; 2mean 1994–2007 flux only
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Figure 1. Illustration of the quantities involved in the mixed-layer scheme (time series panels), and the calculations done to connect them
(thick-framed boxes). At the arrows on the right of each calculation box, we give its most important environmental input fields (see Table 1).
The time series represent the example pixel enclosing the TAO140W mooring location (140� W, 2� N) in the tropical Pacific; they are taken
from the results of this study but shown here for illustration only. Left: Quantities on the original daily time steps, plotted for 5 example years.
Right: The same quantities displayed as smoothed yearly averages, which is the way all results will be shown in this paper. The background
shading indicates the ENSO phase (Multivariate El Niño Index (MEI) by Wolter and Timlin, 1993).
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Figure 2. Information flow between the presented mapping runs. Thick-framed boxes denote calculations, with arrows denoting their input

and output data sets (mostly spatio-temporal fields). The violet, green, orange, and blue arrows represent the spatio-temporal sea–air CO2

fluxes estimated by our main mapping runs MZE, ME, MR, and MH (these same 4 colors are also used in all line plots in this paper).

All mapping runs use the SOCAT data base of pCO2 measurements (point data, black) as their primary information source. The runs are

algorithmically identical, except for the representation of the ocean-internal DIC sources/sinks (fint) and the corresponding set of adjustable

unknowns; this part of the mapping algorithm has therefore been represented explicitly as separate parts of the boxes at their left-hand

sides, labelled by the respective equation number. Runs MZE and ME are using the representations with explicit interannual degrees of

freedom, either without fint prior (Eq. (1)), or using the decadally smoothed OCIM result as fint prior (cyan, Eq. (2)). Run MR is using the

representation involving regression terms (Eq. (3)), which requires the explanatory variables (magenta) as further input fields; it uses the

same fint prior as the run ME. The representation of fint in the “hybrid” run MH again has explicit interannual degrees of freedom, but no

long-term and seasonal degrees of freedom (Eq. (4)). Importantly, it uses the ocean-internal DIC sources/sinks estimated by the “multi-linear

regression” MR as its fint prior (cyan again). All mapping calculations use the various input fields shown in Fig. 1 which are however omitted

here for clarity.

More technically, the mappings also need a linearization of the non-linear dependence of pCO2 on DIC, consisting of three fields (the

derivatives dpCO2/dDIC as well as reference fields for pCO2 and DIC) together depicted by the grey arrows. Box L denotes the calculation

of dpCO2/dDIC and the reference DIC field from a reference pCO2 field (light blue) as described in Sect. 2.1.6 (the further input fields

required by this calculation are not depicted). For the main mappings MZE, ME, MR, and MH, the reference pCO2 field comes from the

data-based estimate of the pre-mapping MP. The linearization for MP, in turn, uses the atmospheric pCO2 field as pCO2 reference (light

blue again).
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Figure 3. Yearly sea–air CO2 flux as estimated from pCO2 data by the explicitly interannual mapping (green, discarded before 1985 when
the data constraint is very weak), the multi-linear regression (orange), and the hybrid mapping (blue). Fluxes have been integrated over a set
of regions subdividing the ocean into basins (left to right) and latitude bands (top to bottom). For better temporal orientation across panels,
the grey vertical background stripes indicate the positive phases of El Niño-Southern Oscillation according to the Multivariate El Niño Index
(MEI) by Wolter and Timlin (1993). 35
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Figure 4. Estimated pCO2 in the tropical Pacific, averaged spatially and over calendar years. The coloured lines give full regional averages

from the explicitly interannual mapping (green), the multi-linear regression (orange), and the hybrid mapping (blue). The coloured dots are

from the same estimates, but averaged only over the pixels and time steps covered by pCO2 data in the respective year. The smaller black

dots give the corresponding averages over the data. We note that the green, blue, and black dots are not visible individually because they

are almost exactly located on top of each other, indicating that the model–data residuals of the explicitly interannual and hybrid mappings

are very small. The differences between dots and lines reflect the bias of the incompletely sampled average compared to the full regional

average, which the mapping algorithm is trying to address.
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Figure 5. Interannual variations of the sea–air CO2 flux in the tropical Pacific estimated by the explicitly interannual mapping (left), the

multi-linear regression (middle), and the hybrid mapping (right), either using all pCO2 data (base cases, color) or all data but the ones during

1995–1999 (black)
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Figure 6. Estimated contributions of the three explanatory variables in the multi-linear regression (as well as the prior, plotted here without
its mean) to the ocean internal DIC flux (left) and sea–air CO2 flux (right) in 5 latitudinal bands (top to bottom). Curves show interannual
variations as in Fig. 3, the background shading indicates the El Niño phase. In contrast to Fig. 3, fluxes are given in per-area units here, to
strengthen the local process perspective; this shifts the relative amplitudes of variability between the regions and allows to use the same y
axis in all panels. 38
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Figure 7. Estimated sensitivities of the ocean-internal DIC flux fint against interannual variations in the temporal changes in sea surface

temperature (top), in the sea surface temperature itself (middle), and in squared wind speed (bottom). Positive (negative) sensitivities mean

that increases in the respective explanatory variable are associated with a stronger source (stronger sink) of DIC in the mixed layer.
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Figure 8. Amplitudes of variability of the sea–air CO2 flux on year-to-year time scales around its secular trend, from the multi-linear

regression (orange group of bars; solid: base case, hashed: uncertainty cases) and the hybrid mapping (blue) compared to other pCO2

mapping methods (salmon; CMEMS v2020 (Denvil-Sommer et al., 2019), CSIR-ML6 v2020 (Gregor et al., 2019), JMA-MLR v2020

(Iida et al., 2020), and MPI-SOMFFN v2020 (Landschützer et al., 2013)) as well as the ocean biogeochemical process models collated

in Friedlingstein et al. (2020) (mint green). The amplitudes are represented by temporal standard deviations of detrended yearly fluxes over

the 1990–2019 period. The top panel gives the global flux, the bottom panel the tropical Pacific.
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Figure 9. Mean global sea–air CO2 flux over 1994–2007 from the hybrid mapping (blue group of bars; solid: base case, hashed: uncertainty

cases), compared to other pCO2 mapping methods (salmon; CMEMS v2020 (Denvil-Sommer et al., 2019), CSIR-ML6 v2020 (Gregor et al.,

2019), JMA-MLR v2020 (Iida et al., 2020), and MPI-SOMFFN v2020 (Landschützer et al., 2013)), and the ocean biogeochemical process

models collated in Friedlingstein et al. (2020) (not including a river-induced sea–air flux [see Table 3], mint green). To the left of the hybrid

mapping, we also give OCIM (DeVries, 2014, updated; total contemporary flux) as well as intermediate results from this study. The long-

dashed horizontal line indicates the estimate of �2.6± 0.4PgCyr�1 from ocean interior data by Gruber et al. (2019, anthropogenic carbon

only), and the dotted line the same estimate shifted by 0.62PgCyr�1 (mid of Jacobson et al. (2007) and Resplandy et al. (2018)) as an

assumed contribution from outgassing of terrestrial carbon transported to the ocean by rivers. Positive fluxes denote oceanic CO2 outgassing

into the atmosphere, negative fluxes denote CO2 sinks into the ocean.
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Figure 10. Secular linear trend of the global sea–air CO2 flux over 1960–2019 (top) and over the more recent 1990–2019 period better

constrained by pCO2 data (bottom), from the same estimates as in Fig. 9. The error bars give the formal error of the slope calculated from

5-year flux averages, i.e., they reflect the uncertainty due to the pentadal variability around the linear trend, thereby roughly taking into

account the serial correlations of the flux e.g. on the El Niño time scale
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Figure 11. Interannually filtered sea–air fluxes as in Fig. 3 (2 example panels only) estimated by the zero-prior explicitly interannual pCO2

mapping (violet) and the explicitly interannual pCO2 mapping (green), as well as their respective priors (dark and light grey, respectively;

note that the designation “zero-prior” refers to fZE,pri
int = 0, while the a-priori sea–air fluxes shown here are in fact non-zero owing to the rise

in atmospheric CO2 and the variations in SST). The line width roughly distinguishes the early period with insufficient data constraint (thin)

and the more recent period with better constraint (thick). Vertical background stripes as in Fig. 3
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