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Abstract. The spring phytoplankton bloom is a key event in temperate and polar seas, yet the mechanisms that trigger it 

remain under debate. Some hypotheses claim that the spring bloom onset occurs when light is no longer limiting, allowing 

phytoplankton division rates to surpass a critical threshold. In contrast, the Disturbance Recovery Hypothesis (DRH) 10 

proposes that the onset responds to an imbalance between phytoplankton growth and loss processes, allowing phytoplankton 

biomass to start accumulating, and this can occur even when light is still limiting. Although many studies have shown that 

the DRH explains the spring bloom onset in oceanic waters, it is less certain whether and how it also applies to coastal areas. 

To address this question at a coastal location in the Scottish North Sea, we combined 21 years (1997–2017) of weekly in situ 

data with meteorological information. The onset of phytoplankton biomass accumulation occurred around the same date each 15 

year, 16 ± 11 days (mean ± SD) after the winter solstice, when light limitation for growth was strongest. Also, negative and 

positive biomass accumulation rates (r) occurred respectively before and after the winter solstice at similar light levels. The 

seasonal change from negative to positive r was mainly driven by the rate of change in light availability rather than light 

itself. Our results support the validity of the DRH for the studied coastal region and suggest its applicability to other coastal 

areas. 20 

1 Introduction 

The spring bloom is a major seasonal feature of temperate and polar seas and plays significant ecological and 

biogeochemical roles (Townsend et al., 1994). Although scientists generally agree that this event corresponds to large 

accumulations of phytoplankton biomass, no consensus has been reached on how it is initiated, even after more than a 

century of research (Behrenfeld and Boss, 2014; Behrenfeld and Boss, 2018). Despite this ongoing discussion, all current 25 

theories attempt in essence to understand how phytoplankton biomass starts to accumulate; i.e., how the biomass 

accumulation rate (r), which is the difference between phytoplankton division and loss rates (µ and l, respectively), becomes 

positive. 
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The more traditional school of thought assumes that the spring bloom is triggered when the winter light limitation relaxes to 

a point that allows µ to surpass a critical threshold (Behrenfeld and Boss, 2014; Behrenfeld and Boss, 2018). To this pure 30 

bottom-up view belong for instance the famous Critical Depth Hypothesis (CDH, Sverdrup, 1953) and Critical Turbulence 

Hypothesis (CTH, Huisman et al., 1999). An alternative framework focuses on processes that lead to positive r by disrupting 

the equilibrium between phytoplankton division and loss processes, especially grazing and virus infections, and this 

disruption can occur even when light is still limiting. To this other view belongs the Disturbance Recovery Hypothesis 

(DRH, Behrenfeld et al., 2013; Behrenfeld and Boss, 2014). 35 

The DRH suggests that positive r observations in early winter are possible if the mixed layer deepening has a stronger 

negative impact on l, by reducing plankton encounter rates through dilution effects, than on µ, by increasing light limitation 

(Behrenfeld, 2010; Behrenfeld and Boss, 2018). Also, in opposition to the other school of thought, the DRH states that r 

follows the rate of change in division rates (dµ/dt) rather than µ itself (Behrenfeld et al., 2013; Behrenfeld and Boss, 2018). 

According to this idea, an acceleration in µ impacts the µ–l balance, allowing phytoplankton to start blooming (i.e., to start 40 

accumulating biomass). 

Although the DRH is supported by many satellite and field observations in oceanic waters (Behrenfeld and Boss, 2018), we 

are not aware of any study showing how this hypothesis explains the spring bloom onset in coastal areas. Although these 

areas cover a small percentage of the ocean surface, they are among the most productive in the world (Mann, 2009) and 

provide important ecosystem services (Barbier, 2017). However, they are also under intense human pressure, as the global 45 

population is highly concentrated along the coastline (Cloern et al., 2016). Mignot et al. (2018) suggested that in coastal 

ecosystems, low variations in the mixed layer depth would decrease the importance of plankton dilution effects, probably 

leading to no phytoplankton biomass accumulation in winter. Nevertheless, according to the DRH, an early µ acceleration 

driven for example by a seasonal improvement in light conditions (i.e., by an accelerating increase in light availability) could 

still trigger a phytoplankton biomass accumulation in winter. This is plausible considering that coastal waters usually have 50 

high nutrient and turbidity levels during winter and spring (Mann, 2009), making light the main limiting factor for 

phytoplankton growth, especially at high latitudes with low surface light intensities and stormy weather. 

We combined 21 years of weekly in situ data (1997–2017) and meteorological information to study how the spring 

phytoplankton bloom is initiated in the Scottish coastal North Sea. In particular, we addressed the questions: 1) Does the 

spring bloom start in winter in the absence of a deepening in the mixed layer? 2) Is light availability a main driver of the 55 

process? And 3) Does the DRH hold true? 
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2 Material and methods 

2.1 Monitoring site and environmental variables 

The time series analyzed was collected at the Marine Scotland Scottish Coastal Observatory monitoring site at Stonehaven 60 

(56° 57.8′ N, 02° 06.2′ W, northwestern North Sea), a 48 m depth coastal station located 5 km offshore (Bresnan et al., 

2016). This station has been sampled at a weekly frequency (weather permitting) since January 1997. In this study, data 

collected until December 2017 were used (Marine Scotland Science, 2018). At a local scale, this coastal area is affected by 

strong tidal currents and winds, leading to a well-mixed water column for most of the year (Bresnan et al., 2016).  

Different physicochemical variables were sampled to characterize the water column environment. Salinity, Total Oxidized 65 

Nitrogen (TOxN), and other nutrient concentrations were measured from water collected at surface and bottom depths (0–

5 m and ~45 m, respectively) using Niskin bottles. These bottles were also equipped with digital reversing thermometers to 

record water temperature. A Secchi disk was used since 2001 to estimate light attenuation (Kd) of the water column 

(Supplementary Note 1 and Figure S1). Also, water was sampled using a 10 m Lund tube to obtain integrated surface 

chlorophyll ‘a’ (Chl) concentrations and, since 2000, phytoplankton community counts using an inverted microscope at x200 70 

magnification (taxa with mean cell diameters generally > 10 μm, Table S1). For a full description of sampling and laboratory 

procedures, see Bresnan et al. (2016). Since 2015, Lund tube water samples were also analyzed using a BD AccuriTM C6 

flow cytometer to estimate pico-, and nanophytoplankton abundances, which rarely exceeded 10 μm cell diameter (for a full 

description of the flow cytometry methodology, see Tarran and Bruun, 2015). 

As light is one of the main limiting factors for phytoplankton growth in coastal waters of the North Sea (Reid et al., 1990), 75 

we also estimated daily Photosynthetic Active Radiation (PAR) at the sea surface and within the water column 

(Supplementary Notes 2–3 and Figures S2–3). First, we estimated surface PAR (PARSfc) using sunshine durations recorded 

at the Dyce meteorological station (57° 12.3' N, 2° 12.2' W, Met Office, 2012), located 27.6 km away from the Stonehaven 

site. Then, using Kd and PARSfc estimations, we calculated average attenuated PAR (PARAtt) for the top 10 m layer (where 

phytoplankton samples were collected) and for the entire water column (PARAtt,10 and PARAtt,48, respectively). Without using 80 

vertical profiles of physical variables, we could not estimate the exact mixing layer depth, which determines how deep 

phytoplankton can be moved away from surface layers and, consequently, the amount of PAR they receive. Thus, we 

calculated PARAtt,10 and PARAtt,48 to estimate the range within the actual PAR experienced by phytoplankton occurs. Both 

PARSfc and the two PARAtt are reported in µmol m−2 s−1. 

2.2 Phytoplankton biomass accumulation rates (r) and spring bloom parameters 85 

The analysis of the spring phytoplankton bloom requires estimating changes through time in biomass accumulation rates, r 

(Behrenfeld and Boss, 2018). We first transformed Chl into carbon (C) biomass of the entire phytoplankton community 
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(Cphyto, mg C m−3) using an average seasonality of C:Chl ratios, estimated by combining microscopy and flow cytometry 

counts with cell data from the literature (Supplementary Notes 4–5, Figure S4 and Tables S1–3).  

Once Cphyto was estimated, we calculated r between two sampling dates separated by a period of time (∆𝑡𝑡 = 𝑡𝑡2 − 𝑡𝑡1) as:  90 

 

 𝑟𝑟 =
ln (𝐶𝐶𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦,2) − ln (𝐶𝐶𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦,1)

∆𝑡𝑡  (1) 

 

To filter short-term variations in phytoplankton biomass and focus on the main winter–spring phenology pattern, we chose 

∆𝑡𝑡 to match the average e-folding timescale (𝑇𝑇𝑒𝑒) of the spring bloom (Mignot et al., 2018), calculated as: 

 95 

 𝑇𝑇𝑒𝑒 =
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶 − 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝐶𝐶

ln (𝐶𝐶𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚)− ln (𝐶𝐶𝑝𝑝ℎ𝑦𝑦𝑦𝑦𝑦𝑦 𝑚𝑚𝑚𝑚𝑚𝑚) (2) 

 

where 𝑡𝑡min𝐶𝐶  and 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶  correspond respectively to the date when Cphyto was minimum and maximum between December and 

May (we considered 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶  as the timing of the spring bloom peak). The average 𝑇𝑇𝑒𝑒 was 32.1 ± 9.0 days (mean ± SD) and 

thus, we selected 𝑡𝑡2 to be the fourth sampling date after 𝑡𝑡1 (∆𝑡𝑡 = 31.4 ± 8.4 days). The possibility that using an average 

C:Chl seasonality artificially modified the general seasonal r pattern was discarded (Figure S5). 100 

We also calculated the spring bloom onset (𝑡𝑡0), defined as the first date after November when r was positive for at least 15 

consecutive days, and the date when r was maximum between December and May (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟). Before calculating 𝑡𝑡0 and 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟, 

r was linearly interpolated between sampling dates to generate daily r estimates. Also, other variables were linearly 

interpolated to estimate environmental conditions at 𝑡𝑡0 and 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟. 

2.3 Statistical analysis 105 

Seasonal mean environmental conditions were described using generalized additive models (GAMs) with a cyclic cubic 

regression spline (Wood, 2017) to identify potential factors driving the spring bloom onset. Then, to test which type of 

hypothesis better explains the spring bloom onset, we correlated r with average PAR or average rates of change in PAR 
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(dPAR/dt) around 𝑡𝑡0. PAR and dPAR/dt were averaged from 𝑡𝑡1 to 𝑡𝑡2 − 1 day (see Eq. 1), as sampling generally occurred in 

the morning (09:30 ± 1.45 h, mean ± SD). For the correlations, we excluded averages estimated with fewer than 15 PAR 110 

values. 

All analyses and plots were performed in R v4.0.3 (R Core Team, 2020), using the Rstudio interface v1.3.1093 (Rstudio 

Team, 2020) and the tidyverse packages v1.3.0 (Wickham et al., 2019). 

3 Results 

3.1 Interannual variability and seasonality of the spring bloom 115 

Phytoplankton biomass showed a clear seasonal pattern where the spring bloom was a major feature (Figure 1 and Figure 2). 

The analysis of bloom parameters revealed that although the spring bloom onset (𝑡𝑡0 ) had low interannual variability 

(January 6th ± 11 days, mean ± SD), the timing of maximum r ( 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 𝑟𝑟 , April 9th ± 18 days) and bloom peak ( 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶 , 

May 8th ± 14 days) changed more from year to year. The maximum r and peak biomass showed the strongest interannual 

variability (0.070 ± 0.020 d−1 and 309 ± 125 mg C m−3 on average, respectively). 120 

Inspection of the environmental conditions during the spring bloom revealed a complex scenario (Figure 2), with fresh water 

influence (as shown by the marked lower surface than bottom salinity in some dates), an absence of thermal stratification (as 

there is almost no difference between surface and bottom temperatures), and strong light attenuation, especially during 

January–March. We observed a phytoplankton succession during the spring bloom (Figure 3), dominated by small (< 10 µm) 

taxa in winter (approximately November–March), and then by larger diatoms and dinoflagellates. 125 
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Figure 1. Changes through time in (a) chlorophyll ‘a’ (Chl) concentration, (b) log-transformed phytoplankton biomass (Cphyto) 
concentration, and (c) biomass accumulation rate (r). Blue and red areas in (c) indicate positive and negative r, respectively. Vertical gray 
stripes correspond to the estimated spring bloom span each year, from t0 to tmax C (see Methods). For 1997, we used the average date of the 
spring bloom onset estimated using the rest of the time series (January 6th).  130 
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Figure 2. Seasonal cycle of physicochemical and phytoplankton variables. (a) log-transformed phytoplankton biomass (Cphyto) 
concentration and biomass accumulation rate (r), which were used to estimate the timing of the spring bloom parameters: the spring bloom 
onset (t0), the maximum r (tmax r), and the spring bloom peak (tmax C). (b) Surface Photosynthetic Active Radiation (PAR), attenuation 
coefficient for the 0–10 m layer (Kd, 10), surface temperature and salinity (TemperatureSfc and SalinitySfc, respectively), difference between 
surface and bottom temperature and salinity (TemperatureSfc-Deep and SalinitySfc-Deep, respectively), total surface oxidized nitrogen 135 
concentration (TotOxNitSfc), and chlorophyll ‘a’ (Chl) concentration. Dots (gray or blue and red for positive and negative r, respectively) 
correspond to individual values. Black curves and the associated gray shaded areas define respectively the average seasonality and 95% 
confidence interval based on a generalized additive model (GAM). Vertical gray stripes mark the average spring bloom span. 
Average ± SD timing of different bloom parameters and associated average ± SD environmental conditions are also shown (squares and 
corresponding error bars).  140 
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Figure 3. Seasonal changes in the proportional biomass of different phytoplankton groups from 2015 to 2017. The “Others” category 
combines three phytoplankton groups identified using a flow cytometer: Coccolithophores, Cryptophytes and Phaeocystis spp. single cells. 
The large proportional biomass of this category in October–December 2017 corresponds mainly to a Phaeocystis spp. bloom. Inner white 
tick marks on the x-axis indicate those dates when data were collected, and data gaps at the beginning and end of each year appear as 
vertical white stripes. 145 

 

3.2 Effect of light on the spring bloom onset 

The estimated 𝑡𝑡0 occurred on average 16 ± 11 days after the winter solstice (Figure 2), when surface PAR was still very low 

(29.34 ± 11.16 µmol m−2 s−1 on average), light attenuation was high (average Kd,10 of 0.273 ± 0.037 m−1), and the water 

column was homogeneous (difference between surface and bottom temperature and salinity was on average -0.09 ± 0.30 °C 150 

and -0.15 ± 0.25, respectively) (Figure 2). Thus, although during the bloom onset nutrient concentrations were high (surface 

TOxN concentration was on average 7.71 ± 1.71 mmol m−3), light limitation for phytoplankton growth was strongest in the 

year. Also, we observed that the r seasonal cycle increased from maximum negative rates in October–November to 

maximum positive ones in March–April (Figure 2). However, for same time distances before and after the winter solstice 

from November to February, average light availability and nutrient conditions were similar (Figure 2 and Figure 4). 155 

In winter, for a period extending 60 days before and after the winter solstice, we observed that r was better correlated with 

the rate of change in surface and attenuated PAR (dPAR/dt) than with PAR itself (Figure 4). Specifically, we found that the 

proportion of variance in r explained by surface and attenuated dPAR/dt was 0.41 and 0.50, respectively, but the proportion 

explained by PAR itself was almost zero. The similar effect of surface and attenuated dPAR/dt on r indicates that, at a 

seasonal scale, surface PAR is the major factor driving PAR changes in time within the water column. However, Figure 4 160 

shows that water attenuation has a strong impact on the average light levels experienced by phytoplankton. In particular, for 

the period analyzed, average PAR levels assuming a homogeneous water column (PARAtt,48) remained below 

10 µmol m−2 s−1.  
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Figure 4. Linear relationships in winter (60 days before and after the winter solstice) between (a) phytoplankton biomass accumulation 
rate (r) and average Photosynthetic Active Radiation (PAR) at the sea surface (PARSfc), for the 0–10 m layer (the layer where 165 
phytoplankton was sampled, PARAtt,10), or for the entire water column (i.e., 0–48 m depth, PARAtt,48), or between (b) r and average rates of 
change in PAR (dPARSfc/dt, dPARAtt,10/dt, and dPARAtt,48/dt). The shaded area represents the 95% confidence interval associated with the 
estimated linear correlation (black line). The equation, proportion of variance explained (R2), and p-value (P) of the relationships are 
shown. Horizontal and vertical dashed lines indicate zero rates.  
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4 Discussion 170 

The spring bloom onset occurred just after the winter solstice in most years at the studied coastal site. This remarkable 

regularity contrasts with the larger interannual variability in timing and especially in magnitude of the maximum biomass 

accumulation rate (r) and bloom peak biomass. The observed early winter initiation contradicts Mignot et al.’s (2018) 

expectations for waters without the dilution effects associated with the mixed layer deepening, indicating the operation of 

other processes. We found that changes from negative to positive biomass accumulation rates around the winter solstice 175 

followed seasonal variations in dPAR/dt rather than PAR itself. 

During winter, surface nutrient concentrations remained high and light was probably the main limiting factor for 

phytoplankton growth at Stonehaven. Although this is the norm in most temperate and polar areas (Simpson and Sharples, 

2012; Behrenfeld and Boss, 2014), winter light levels might be especially limiting in the Scottish North Sea due to several 

factors: its high latitude, frequent storminess, and strong light attenuation due to elevated turbidity (Reid et al., 1990), which 180 

might increase in the future (Wilson and Heath, 2019). Also, the observed vertical homogeneity of the water column 

probably indicates an intense turbulent mixing that keeps phytoplankton cells moving between surface and bottom layers, 

throughout the vertical light gradient (Reid et al., 1990; Simpson and Sharples, 2012). Consequently, winter PAR levels for 

the entire water column are well below optimal irradiances for maximum growth rates in most phytoplankton taxa (Edwards 

et al., 2015). Therefore, it could be surprising that the spring bloom onset usually occurred just after the winter solstice, 185 

when phytoplankton division rates (µ) suffer the strongest light limitation. Even more, r was negative during the weeks 

before the solstice and changed to positive some days after the solstice. Thus, r cannot just depend on µ, as mean seasonal 

PAR levels (and probably the associated µ) are similar at same time distances before and after the winter solstice. These 

observations contradict the expectations of the more traditional hypotheses about the spring bloom onset (e.g., Sverdrup, 

1953). 190 

Another consequence of the low winter light experienced by phytoplankton is that µ would be expected to respond almost 

linearly to changes in PAR (Edwards et al., 2015). Thus, the positive linear relationship between r and dPAR/dt estimated 

around the solstice, mostly driven by seasonal changes in surface PAR, is probably reflecting the covariation of r with dµ/dt. 

This relationship between r and dµ/dt has also been observed in oceanic waters of temperate and polar regions (see for 

example Behrenfeld, 2014; Behrenfeld et al., 2016; Arteaga et al., 2020) and fits within the framework of the Disturbance 195 

Recovery Hypothesis (DRH, Behrenfeld et al., 2013; Behrenfeld and Boss, 2014). Such relationship requires a tight coupling 

between division and loss processes (Behrenfeld and Boss, 2018). In particular, the dynamics of small phytoplankton 

(< 10 µm) are tightly coupled with those of microzooplankton grazers due to their fast ingestion and growth rates (Hansen et 

al., 1997; Haraguchi et al., 2018), allowing them to consume most phytoplankton primary production in the ocean, including 

coastal habitats (Calbet and Landry, 2004). Also, a Holling III functional response seems to best describe the grazing 200 

behavior of microzooplankton (Liu et al., 2021), which might be key at low winter food concentrations to allow 
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phytoplankton biomass to accumulate (Freilich et al., 2021). At Stonehaven, we observed that small phytoplankton 

dominated the winter community biomass, as also occurs in other temperate oceanic and coastal areas (see for instance 

Haraguchi et al., 2018; Bolaños et al., 2020). 

In addition to light variations, other factors might contribute to the observed seasonal pattern in biomass accumulation 205 

around the spring bloom onset. For instance, Rose and Caron (2007) showed that decreasing temperatures impact more 

negatively microzooplankton than phytoplankton growth rates (although see Chen et al., 2012), which could favor the bloom 

initiation. However, we observed that water temperatures decrease until a seasonal minimum around two months after r 

becomes positive, suggesting a lesser role than light variations. Also, the southward coastal flow characteristic of the study 

area (León et al., 2018) could contribute to the bloom onset delay with respect to the winter solstice (16 days on average) by 210 

bringing waters with lower phytoplankton biomass concentrations. This could occur in winter as the further north the spring 

bloom occurs in the North Sea, the longer it takes to reach a certain biomass level (Henson et al., 2009). Additionally, 

although we analyzed the spring bloom as an aggregate community phenomenon, we recognize the importance of the 

seasonal phytoplankton succession (Lewandowska et al., 2015). In particular, we hypothesize that to keep µ accelerating in 

response to the seasonal light improvement, it is necessary that a succession of species with traits suited to each new 215 

environmental condition occurs during the bloom progression (Behrenfeld et al., 2016), consistent with the complex changes 

in group composition observed (Figure 3). 

One limitation of our study is using an average seasonality of C:Chl ratios to estimate phytoplankton biomass for all years, 

as these ratios change in response to environmental conditions (Geider, 1987). Alternatively, some studies have proposed 

models that calculate C:Chl based on environmental conditions (e.g., Geider, 1987; Cloern et al., 1995). This approach is not 220 

possible in our case as we cannot determine the mixing layer depth in summer and, consequently, the amount of light 

experienced by phytoplankton. Nevertheless, for the winter period analyzed, when the mixing layer usually extends the 

entire water column, biomass estimated assuming a homogeneous water column and using C:Chl models (Geider, 1987; 

Cloern et al., 1995) were very similar to those calculated using a constant C:Chl seasonality (Figure S6). Also, measuring 

PAR in situ would have improved the accuracy of our PAR estimations. However, we think our results were not importantly 225 

affected by this as we were mainly interested in the seasonal pattern around the spring bloom onset. Nevertheless, 

disentangling local from larger-scale processes is probably crucial to deeply understand the intra and interannual variability 

of the whole spring bloom in this complex hydrographic ecosystem (Blauw et al., 2018). This could be achieved through 

dynamic 3-D models that consider advection and incorporates processes at very different spatiotemporal scales. 

  230 
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5 Conclusions 

Overall, we showed that the spring bloom onset in a generally well-mixed coastal location of the North Sea supports the 

Disturbance Recovery Hypothesis (DRH). Nevertheless, the mechanisms described in other competing hypotheses such as 

the Critical Depth Hypothesis (CDH, Sverdrup, 1953) or the Critical Turbulence Hypothesis (CTH, Huisman et al., 1999) 

might contribute to the spring bloom development in later stages by a fast (albeit temporary) increase in both light 235 

availability and division rates (Morison et al., 2020; Mojica et al., 2021), as described for oceanic waters by Mignot et al. 

(2018) and Yang et al. (2020). Our results suggest that the DRH might also explain the spring bloom onset in other coastal 

areas or lakes, and that this onset can occur in early winter despite the absence of a mixed layer deepening. 
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