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Abstract. An increasing number of dead zoning (hypoxia) has been reported as a consequence of declining levels of dissolved

oxygen in coastal oceans all over the globe. Despite substantial efforts a quantitative description of hypoxia up to a level

enabling reliable predictions has not been achieved yet for most regions of societal interest. This does also apply to Eckernförde

Bight (EB) situated in the Baltic Sea, Germany. The aim of this study is to dissect underlying mechanisms of hypoxia in EB,

to identify key sources of uncertainties and to explore the potential of existing monitoring programs to predict hypoxia - by5

developing and documenting a workflow that may be applicable to other regions facing similar challenges. Our main tool is

an ultra-high spatially resolved general ocean circulation model based on a code framework of proven versatility in that it has

been applied to various regional and even global simulations in the past. Our model configuration features a spacial horizontal

resolution of 100m (unprecedented in the underlying framework which is used in both global and regional applications) and

includes an elementary representation of the biogeochemical dynamics of dissolved oxygen. In addition, we integrate artificial10

"clocks" that measure the residence time of the water in EB along with timescales of (surface) ventilation. Our approach relies

on an ensemble of hind cast model simulations, covering the period from 2000 to 2018, designed to cover a range of poorly

known model parameters for vertical background mixing (diffusivity) and local oxygen consumption within EB. Feed-forward

artificial neuronal networks are used to identify predictors of hypoxia deep in EB based on data at a monitoring site at the

entrance of EB.15

Our results consistently show that the dynamics of low (hypoxic) oxygen concentrations in bottom waters deep inside EB is,

to first order, determined by the following antagonistic processes: (1) the inflow of low-oxygenated water from the Kiel Bight

(KB) - especially from July to October and (2) the local ventilation of bottom waters by local (within EB) subduction and verti-

cal mixing. Biogeochemical processes that consume oxygen locally, are apparently of minor importance for the development of

hypoxic events. Reverse reasoning suggests that subduction and mixing processes in EB contribute, under certain environmen-20

tal conditions, to the ventilation of the KB by exporting recently-ventilated waters enriched in oxygen. A detailed analysis of

the 2017 fish-kill incident highlights the interplay between westerly winds importing hypoxia from KB and ventilating easterly

winds which subduct oxygenated water.

1 Introduction

The impact of humans on the Earth System has reached a level of magnitude comparable to natural influences. Among the25

changes apparently accompanying our way into the Anthropocene are decreasing oxygen concentrations in the global oceans.
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This decrease in oxygen is manifesting itself most prominently in coastal regions: in the 1960s only 42 of the so-called "dead

zones", that no longer permit the survival of higher animals, have been reported. In 2008 this number has already increased to

400 (Diaz and Rosenberg, 2008). The implications can be substantial, including mass mortality of (commercial) fish, loss of

Blue Carbon (associated with seagrass habitat loss), degradation of touristic and recreational assets and release of the potent30

greenhouse gas N2O (e.g. Naqvi et al., 2010).

The Baltic Sea in central northern Europe is a prominent example of a coastal region that has been exposed to intermittent

dead zoning (i.e. hypoxic events) in the past (Zillén et al., 2008). Apparently hypoxia has increased over time in response to

anthropogenic nutrient inputs and ocean warming (Jonsson et al., 1990; Carstensen et al., 2014). Consequently, international

mitigation measures are put into action by the highly industrialized and populated bordering nations (e.g. Helsinki Convention,35

EU Marine Strategy Framework Directive, Baltic Sea Action Plan) and a discussion of geoengineering options targeted at

containing dead zoning has been unbottled (Stigebrandt and Kalen, 2013; Stigebrandt et al., 2015; Liu et al., 2020).

The mechanisms behind the dynamics of oxygen dissolved in seawater are well known: oxygen is produced as a by-product

of organic matter production by autotrophs in the sun-lit surface ocean. Organic matter is exported to depth where its rem-

ineralization is typically associated with oxygen consumption by bacteria. Air-sea fluxes of oxygen may be in- or outgoing,40

depending on wether the ocean’s surface is over- or undersaturated. Typical surface concentrations of dissolved oxygen are

around few hundreds mmolO2m
−3, predominantly set by physical solubility as a function of temperature and salinity. Addi-

tional complexity is added by the ocean circulation which determines the timescales on which oxygen sources and sinks may

accumulate before antagonistic processes set in. This holds especially for the Baltic Sea where sporadic inflows of salty and

oxygenated North Sea surface waters replace oxygen-deprived bottom waters of the Baltic Sea (Matthäus, 2006) and where45

wind-driven upwelling has been identified as a key processes effecting vertical exchange of heat and nutrients (e.g. Lehmann

and Myrberg, 2008).

Even though there is consensus regarding the underlying processes, the numerical quantitative simulation of hypoxic con-

ditions remains challenging because it is - essentially - the quest to simulate extremal (low) values, that are determined by

the difference of relatively large and uncertain numbers. This introduces high uncertainty to both to the open ocean model50

applications (e.g. Cocco et al., 2013; Dietze and Löptien, 2013; Löptien and Dietze, 2017) and Baltic Sea model applications

(Meier et al., 2011, 2012) which limits their contribution to management or geoengineering decisions of stakeholders. E.g.

it has been illustrated in a global model that deficiencies in biogeochemical model components may be compensated by de-

ficiencies in circulation model components (Löptien and Dietze, 2019) thereby obscuring even the sign of the sensitivity of

the (global) warming to come. This raises the question if it is actually feasible to reliably (i.e. getting the right answer for the55

right reason) simulate low-oxygen events in systems such as the Baltic Sea that are (1) infamous for their natural variability

(Meier et al., 2021) and (2) subject to antagonistic effects of improved management of water resources and climate change on

oxygen concentrations (e.g. Lennartz et al., 2014; Hoppe et al., 2013) - which is notoriously difficult to de-convolve (Naqvi

et al., 2010).

The present study steps forward to simulate oxygen dynamics at the exemplary site Eckernförde Bight (EB) which is an60

appendix to the Kiel Bight (KB) in the German part of the Baltic Sea (Figure 1). The EB site is special in that it hosts the
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monitoring station Boknis Eck (Figure 2), one of the longest-operated time series stations worldwide (e.g. Lennartz et al.,

2014). Consequently, EB is exceptionally well sampled which facilitates the development of numerical models and piloting

approaches which may be put to use in other coastal regions threatened by hypoxia (such as other Baltic Sea regions, the

East China Sea and Cheasapeake Bay). The overarching aim is to " ... identify critical processes ..." and to " ... provide a65

supreme dynamic test of knowledge ..." (Flynn, 2005) by simulating hypoxia in EB using a code framework that is proven

to be easily applicable globally (e.g. in Dietze et al., 2017), near-globally (e.g. in Dietze et al., 2020) and regionally (e.g. in

Dietze et al., 2014). We use an ensemble approach of a suite of regional coupled biogeochemical ocean models targeted at

dissecting uncertainties of the biogeochemical module from those of the ocean circulation module. The analyses are aided by

integrating artificial tracers measuring residence times - a concept essential to understanding hypoxia (e.g. Fennel and Testa,70

2019). Finally, we use an artificial neuronal network (ANN) to identify the critical processes that make the oxygen deficiency

deep in the EB predictable - an approach which also gives guidance on the question where uncertainty may lure.

2 Methods

MOMBE (Modular Ocean Model Bight of Eckernförde) is a new configuration of a general ocean circulation model (GCM).

The GCM is coupled to a simple representation of biogeochemical processes by introducing an additional passive tracer, that is75

advected and mixed just like the tracers temperature and salinity but, other than that, controlled by prescribed rates of oxygen

production and consumption. Further, we introduce artificial tracers or "clocks" that estimate the residence times and the age

(i.e. the time of last contact to the surface) of water parcels. This approach facilitates the dissection between local (i.e. inside

EB) and remote (e.g., inflowing hypoxic deep water from the KB) processes that drive the oxygen dynamics. The following

subsections describe the GCM, followed by a model evaluation in Section 3. Feed-forward neuronal networks designed to80

mimic the full-fledged coupled GCM at a station deep inside the Bight, are described in Section 4.4.

2.1 Model Configuration

We use the Modular Ocean Model framework MOM4p1, as released by NOAA’s Geophysical Fluid Dynamics Laboratory

(Griffies, 2009). Model code and configuration are almost identical to those described in Dietze et al. (2014) and Dietze et

al. (2020). The few exceptions are listed in the following subsections. Section 2.1.1. describes the model grid, Section 2.1.285

the subgrid parameterizations, and Section 2.1.3 specifies the input data (boundary conditions). Section 2.1.4 documents the

representation of sea ice. Section 2.1.5 introduces the implementation of the residence time and age racers. The implementation

of the oxygen module is documented in Section 2.1.6.

2.1.1 Grid and Bathymetry

The bathymetric data are provided by the Federal Maritime and Hydrographic Agency (BSH, https://www.geoseaportal.de/90

mapapps/resources/apps/bathymetrie/index.html?lang=de). We use a bilinear scheme to interpolate these onto an Arakawa

B model grid (Arakawa and Lamp, 1977). There are 165×103 grid boxes horizontally, each about 100m × 100m in size
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(Figure 2). The total wet area of the model is 119 km2. The vertical resolution is 1m, with a total of 31 layers. The average

water depth is 11.7m. The bathymetry was smoothed with a filter similar to the Shapiro filter (Shapiro, 1970). The filter weights

are 0.25, 0.5 and 0.25. The filter essentially fills steep holes in the ocean floor which increases numerical stability of the GCM.95

The filter was successively applied three times, as this has proven (in Dietze and Kriest, 2012; Dietze et al., 2014, 2020) to be

a good compromise between unnecessary smoothing on the one hand and numerical instability on the other hand.

2.1.2 Subgrid Parameterisations

Even a horizontal resolution as high as 100 m horizontally and 1 m vertically fails to explicitly resolve all (turbulent) processes

of relevance for transport and mixing of substances in EB. Hence, effects of unresolved small-scale processes have to be100

parameterized. We use parameterizations and setting identical to those applied by Dietze et al. (2014) in a high-resolution model

configuration of the Baltic Sea. An exceptions it the parameter choice for the vertical background diffusivity: Holtermann et al.

(2012) estimates from measurements for deep water processes in the central Baltic Sea a vertical diffusivity of 10−5 m2 s−1

(calculated from the propagation speed of a purposely-deployed dye-like substance). Closer to coast Holtermann et al. (2012)

report much higher values. Because mapping this information on conditions in EB is difficult, we decided to test a range105

of vertical background diffusivities and to assess the respective model perfomances based on available observations. The

considered diffusivities are: 5× 10−5m2 s−1, 1× 10−4m2 s−1 und 5× 10−4m2 s−1. This range comprises relatively low

diffusivities, which are characteristic for the deep central Baltic Sea, and fairly high values, which are more representative for

coastal mixing (as can be expected in the shallow Eckernförde Bight).

2.1.3 Boundary Conditions110

The atmospheric boundary conditions of our model are set by a reanalysis from the Swedish Meteorological and Hydro-

logical Institute (SMHI). We use the results of the reanalysis framework as a means to interpolate (patchy) observations in

time and space. The underlying atmospheric model features a horizontal resolution of 11 km. For the period 2000 to 2015

we use RCA4 (Samuelsson et al., 2015, 2016). RCA4 data is available only until 2015. Hence, for the period 2016 to 2018

we switched to another product: UERRA (regional reanalysis for Europe; https://cds.climate.copernicus.eu/cdsapp#!/dataset/115

reanalysis-uerra-europe-complete?tab=overview). UERRA is more advanced but does not include "spectral nudging" to the

large-scale atmospheric circulation. This detail may allow for unrealistic shifts in the trajectories of low pressure systems. For-

tunately, for the time and location under consideration here, a rough comparison with the observations from Kiel lighthouse (in

position 54.3344◦N,10.1202◦E) showed a generally good agreement between reanalysis and direct observations (not shown).

A key element of regional ocean-circulation model configurations are artificial boundary conditions introduced to limit the120

model domain. Typically, the choice of the extend of the model domain is enforced by computational capabilities rather than by

scientific necessity. This can be problematic because boundary conditions are known to introduce spurious effects (e.g. Jensen,

1998; Blayo and Debreu, 2005; Herzfeld et al., 2011). Our choice is pragmatic in that we choose a rigid wall (such as Carton

and Chao, 1999; Dietze et al., 2014). In combination with our spacial discretization (Arakawa B Arakawa and Lamp, 1977)
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this necessitates a no-slip boundary condition which removes kinetic energy. By this choice, we may underestimate the effect125

of water entering and leaving the EB. This factor will be considered when analysing the model results.

The water exchange across the rigid wall boundary condition is mimicked by restoring to prescribed temperature, salinity

and sea surface height values at the model boundaries only. There is no restoring inside EB and there are no tides because the

impact of tides is negligible in the Baltic Sea. For sea surface height we restore to prescribed values taken from an oceanic

reanalysis carried out with MOMBA (Dietze et al., 2014). MOMBA differs from MOMBE in that it covers the entire Baltic130

Sea with a horizontal resolution of 1 nautical mile while MOMBE introduced here covers the EB only - albeit with much

higher resolution (100m). For the sake of consistency, MOMBA has been integrated for the entire hindcast period 2000-2018

using the atmospheric forcing described above (which differs from Dietze et al., 2014). For temperature, salinity and oxygen

we restore MOMBE at its horizontal boundaries with Kiel Bight to interpolated measurements from Station Boknis Eck at the

entrance of EB (Lennartz et al., 2014, http://www.bokniseck.de/, http://doi.pangaea.de/10.1594/PANGAEA.855693).135

2.1.4 Sea Ice

The focus of our investigation are ice-free seasons. We will show in Section 4.1 that the memory of the system under con-

sideration, as given by residence times in Eckernförde Bight, is less than a month. This suggests that sea-ice dynamics are

rather irrelevant to the processes and seasons examined here. Even so, for the sake of completeness, we report that our ocean

component is coupled to a dynamical sea ice module, the GFDL Sea Ice Simulator (SIS). SIS uses elastic-viscous-plastic rhe-140

ology adapted from Hunke and Dukowicz (1997). We use the exact same settings described in Dietze et al. (2020) (which are

identical to the settings in Dietze et al. (2014), except for switching to levitating sea ice).

2.1.5 Artificial Clocks

In order to facilitate the dissection of local versus remote processes influencing the oceanic oxygen concentrations in EB,

we introduce two artificial tracers or "clocks" to the ocean circulation model (following and approach similar to Dietze et145

al., 2009). Both clocks behave like dyes in that they are subject to transport processes just like like temperature, salinity and

dissolved oxygen. In addition to being transported, the clocks continuously count up time in every grid box. The first clock is

reset to zero whenever a water parcel reaches the ocean surface. Thus, it measures the time elapsed since a water parcel had

been in contact with the atmosphere. This time is also referred to as the age of the water. The second clock is reset to zero at the

eastern boundaries of the model domain. Thus, it measures the time elapsed since water entered EB. This time is also referred150

to as the residence time of water in EB.

2.1.6 Oxygen

Our dissolved oxygen module is dubbed EckO2-module (from Eckernförde O2). The module is very similar to the OXYCON

approach Bendtsen and Hansen (2013) used also in Lehmann et al. (2014). A schematic representation of EckO2 is given in

Figure 3. Following Bendtsen and Hansen (2013), the local development over time of dissolved oxygen, ∂O2

∂t , is defined by:155
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∂O2

∂t
+A(O2) =D(O2)+S(O2), (1)

where A und D denote the divergence of the three-dimensional advective and diffusive fluxes as calculated by the GCM. S

denotes biogeochemical oxygen sources and sinks given by the model parameters opro at the sunlit sea surface, by orewa at

depth below the compensation depth zco, and by orese in the lowermost wet model grid box. These parameters determine how

much oxygen is generated by primary production (opro) and how much is consumed at depth (orewa) and in the sediment160

(orese). The respective parameter choices are based on literature values listed in Table 1. Following Babenerd (1991) and

based on Ærtebjerg et al. (1981) and Jacobsen (1982) we assume that the subsurface oxygen consumption rates are rather

uniform throughout KB, EB and up into the Danish Straits. This assumption is necessitated by our lack of direct measurements

of consumption rates in EB. EckO2 prescribes climatological monthly mean consumption rates.

Note that our choice of oxygen consumption rates (Table 2) corresponds to a best guess at the higher end of published165

estimates (Table 1). To this end the simulations including these local sources and sinks of oxygen provide an upper bound on

the effects of local biotic processes on local oxygen dynamics in EB. A lower bound is explored by setting local consump-

tion/production to zero.

2.2 Observations

We use data from the regular monitoring program of the LLUR. Respective approx. monthly observations of salinity, temper-170

ature and oxygen covered the entire hind-cast period at the monitoring station Buoy 2a (location marked in Figure 2). Typical

surface concentrations of dissolved oxygen are around few hundreds mmolO2m
−3, predominantly set by physical solubility

as a function of temperature and salinity (and rather constant atmospheric concentrations). At depth, however, oxygen sinks can

accumulate oxygen deficits until critical thresholds for the survival of animal or even plants are undercut. Common denomina-

tions for critical thresholds are: hypoxic, suboxic and anoxic conditions. Their respective values are, however, fuzzy. Here, we175

follow Gray et al. (2002) and define the threshold values for hypoxia as a concentration of dissolved oxygen of 2mgO2 l
−1,

which corresponds to ≈ 60mmolO2 m
−3. The relevance of this threshold is that it limits the survival of most fish (Hofmann

et al., 2011). In addition we consider a second threshold of 4mgO2 l
−1 corresponding to ≈ 120mmolO2 m

−3. This value is

used as an indicator for the eutrophication of stratified water bodies (such as EB) by the Baltic Marine Environment Protec-

tion Commission (Helsinki Commission - HELCOM, 16th Meeting of the Intersessional Network on Eutrophication Helsinki,180

Finland, 29.-30. January 2020) and as such of relevance to the stakeholder LLUR.

3 Ensemble Generation

Among the challenges in simulating oxygen dynamics is that both biotic parameters (determining oxygen respiration (Sec-

tion 2.1.6)), and the antagonistic abiotic parameters (that control ventilation with surface water high in oxygen such as e.g.

vertical diffusivity (Section 2.1.2)) are uncertain. Our approach is to run an ensemble of simulations encompassing a plausible185
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range of settings. These settings are listed in Table 2. We compare low, medium and high levels of diffusivity (tagged HighMix,

MedMix, LowMix, respectively) and, further, simulations which totally neglect local sources and sinks of oxygen (tagged Rem

for "remote biotic effects only") versus those featuring a best guess of local sources and sinks that is on the higher end of

published estimates (cf. Table 1 with Table 2). This section identifies the most realistic simulations which will be considered

in the following. The ultimate goal is to chose parameter settings which cover the contemporary uncertainty range.190

Figure 4 shows Taylor diagrams which compare simulated and observed temperature, salinity and oxygen. The simulations

with high diffusivity (HiMix and HiMixRem) feature the lowest performance in reproducing the observed variability of tem-

perature, salinity and oxygen. This is consistent with an assessment of simulated velocities by Marlow (2020). We thus discard

these simulations from the analysis. The more realistic simulations LoMix and HiMix are very similar - irrespective of wether

we account for local sources and sinks of oxygen or not. We conclude (from Figure 4) that the lower values for the diffusivity195

are more realistic and that local sources and sinks of oxygen are apparently of minor importance within EB.

Figure 5 shows simulated and observed oxygen concentrations at the bottom of the monitoring station Buoy 2a for the years

2000 - 2015. Shown are the respective months April to October. November to March are omitted because these months feature

high concentrations of dissolved concentrations beyond our scope of interest. The overall impression is that the model retraces

the dynamics of temperature, salinity and oxygen reasonably well. Figure 6 provides a more quantitative estimate of the fidelity200

in reproducing hypoxic events (as defined by the 120mmolO2 m
−3 introduced in Section 1) at the monitoring station Buoy 2a.

It shows sensitivity and specificity achieved with the simulations LoMix and MedMix that account for local sources and sinks

of oxygen: LoMix typically simulates ≈ 70% true positives and ≈ 10% false positives. MedMix, in comparison, simulates only

several % false positives but fails to identify every third event ( i.e., ≈ 70% true positives).

4 Results205

We start with exploring the simulated residence and ventilation timescales (Section 4.1) for the simulations LoMix and MedMix.

This provides a base for understanding the dynamics behind our hind cast, presented in Section 4.2. A complementary case

study of the intense hypoxic event 2017 is presented in Section 4.3. Section 4.4 describes the application of artificial intelligence

for feature selection and extraction of the predictive capability of monitoring data at Station Boknis Eck at the entrance of EB

to forecast hypoxia within EB at the monitoring station Buoy 2a.210

4.1 Residence and Ventilation Times

The estimates of residence and ventilation times are calculated with "artificial clocks", as described in Section 2.1.5. Both

model versions LoMix and MedMix show similar results: the water with the longest residence time is found at the end of EB in

the interior close to the city Eckernförde (Figure 7). Typical values are of the order of one month for both exemplary months,

August and October. Overall, MedMix shows lower values than LoMix indicating that vertical diffusive processes promote the215

horizontal exchange of water between EB and KB. This makes sense because the longest residence times can be found at the

surface (Figure 8), suggesting that, on average, water enters the Bight at depth and leaves the Bight at the surface. A stronger

7



vertical diffusivity is then associated with an accelerated rate of surface water renewal by deep water with shorter residence

times.

The distribution of ventilation times or age is similar to that of residence times in that the highest values are generally found220

within the Bight towards Eckernförde (Figure 9). The horizontal gradient is more pronounced in the simulation with lower

mixing, while higher prescribed vertical background mixing equalizes the effective ventilation processes horizontally. In terms

of vertical distribution age has, in contrast to the residence time, high values at depth and low at the surface - where it is reset

to zero (Figure 10).

In summary, we find that residence times and age are of similar magnitude. This suggests that the first order control of225

processes that determine oxygen concentrations in EB is an antagonistic interplay of inflowing water (generally low in oxygen)

and the local aeration by vertical exchange with oxygenated surface waters. Biogeochemical processes in the interior of EB are

apparently of minor importance for the oxygen dynamics within EB.

4.2 The Typical Seasonal Cycle inside EB

Figure 5 shows a comparison between the observed and simulated temporal evolution of dissolved oxygen concentrations at230

the bottom of the monitoring station Buoy 2. Most prominent is a pronounced seasonal cycle. The generic explanation for

such seasonal cycles in such latitudes is that temperatures and biomass production in the surface waters ramps up in spring -

driven by enhanced levels of photosynthetically available radiation (note, however that there is an ongoing discussion on this

issue Behrenfeld, 2010; Arteaga et al, 2020; Smetacek, 1985). The biomass eventually sinks to depth where it degrades and

issues oxygen consumption. Later in the season, the water column stratifies and the surface layer heats up, effectively creating235

a barrier to the exchange of bottom water (deprived in oxygen) and the oxygenated surface waters. As autumn approaches, the

surface ocean cools again and weakens the stratified barrier to vertical mixing. This facilitates the wind-driven mixing events

that come along with more unstable autumn weather. In winter, convective mixing homogenizes the entire (rather shallow)

water column vertically (e.g., Fennel and Testa, 2019; Petenati, 2017). Apparently the model captures this dynamic well, i.e.,

the ensemble mean of LoMix and MedMix features a high visual correspondence between the respective curves in Fig. 5 (see240

Figure 4 for more quantitative estimate).

Based on the hind cast simulation from 2000-2015 hypoxic events at Station Buoy 2a are most common in August and

October with a local minimum of occurrences in September (Figure 11). This is inconsistent with the generic explanation

outlined above, where a period of ever decreasing levels of dissolved oxygen ends in autumn when increasing winds and a

pronounced air-sea heat transfer promotes net ventilation. So why do hypoxic conditions deep in EB at Station Buoy 2a become245

more frequent after the September setback, despite increasing winds and decreasing thermal stratification? The histograms

of bottom oxygen concentrations observed at Station Boknis Eck, situated at the entrance to EB (and used to prescribe the

conditions of water flowing into EB in the model), suggest: particularly low oxygen concentrations are more frequent in

October than in August (Figure 12). Hence, water entering EB from KB in October are more likely to "import" hypoxia.

Note that these considerations are inline with simulations LowMixrem/LowMix and MedMixrem/MedMix each of which pairs250

showing in Figure 4 very little effect of local oxygen consumption within EB - even though: (1) the respective biotic local
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oxygen consumptions are chose to represent the upper limit of published estimates and (2) the water exchange with KB is

hampered by a rigid wall boundary condition.

We conclude: the typical oxygen deficit in late summer is imported along with water from the KB, rather than being produced

locally in EB. The following Section 4.3 will elucidate the underlying succession of events by means of a detailed case study.255

4.3 Hypoxic Event 2017

In fall 2017 a particularly pronounced hypoxic event occurred and led to a mass fish kill incidence. In the following, we analyze

this event in the MOMBE LoMix simulation.

Figure 13 shows a sequence of snapshots of simulated hypoxia in EB, starting August 20th and ending at peak conditions

on September 10th. Over the course of these several weeks, EB looses oxygen and hypoxic waters apparently enter the Bight260

at the bottom from the east and moves upwards. The notion of "imported" hypoxic conditions is backed by the Hovmoeller

Diagrams of simulated age and residence times at the monitoring station Buoy 2a in Figure 14: during the buildup of the hy-

poxic event in EB, the residence time features a local minimum deep inside EB. This suggests the prevalence of water masses

"recently-imported" from KB (Figure 14 b). Simultaneously, the age features a maximum (Figure 14 a), indicating that the

"recently-imported" hypoxic waters are well-shielded from ventilation by oxygenated surface waters. Further evidence is pro-265

vided by Figure 15, showing that the oxygen decline in EB is contemporaneous with winds blowing out of the Bight. These

winds drive an overturning circulation, shown in Figure 16, with surface waters being pushed out of the Bight and bottom

waters, for continuity reasons, being sucked into the Bight at depth. Consequently, we find in Figure 15 that the oxygen decline

at the entrance of the Bight (at Station Boknis Eck) occurs earlier than the oxygen decline inside the Bight (at Station Buoy 2a)

- just as expected in a system where water enters the Bight at the bottom.270

During the relaxation phase, that terminates the 2017 hypoxic event, the processes are reversed: Figure 17 shows that the

winds are blowing consistently into the Bight for more than a week. Consequently, water is pushed into the Bight at the

surface, having nowhere to go. Some of the well-oxygenated surface water is subducted to depth and subsequently leaves EB

at depth. Just as expected, the increase in oxygen at the monitoring station Buoy 2a inside the Bight occurs earlier than the275

corresponding oxygen increase at the entrance Station Boknis Eck). The oxygen levels at Boknis Eck now lag behind Buoy 2a

by approximately one week.

In summary, we identified a governing mechanism by which EB is - depending on wind direction - either: (1) impacted by

imported low oxygenated waters from KB or (2) being flushed by oxygenated surface water, that is subducted to depth in the

interior of EB and is exported at depth to KB - whereby EB is effectively ventilating KB.280

Open question, however, remain. Of particular interest is the questions why some years are hit especially hard by hypoxia

and wether such events are predictable days or weeks in advance. Such predictions may, e.g., allow for netting and landing of

doomed fish. The following section applies Artificial Intelligence (AI) to pursue these questions.
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4.4 AI-based feature selection and time series prediction

The following section explores the statistical relations between the simulated time series at Station Buoy 2a deep in the Bight285

and Boknis Eck at the entrance of the Bight. The major aims are: (1) To gain further mechanistic insight. (2) To develop a sur-

rogate models for the stakeholder that may be implemented on off-the-shelf desktop computers, smart phones or even on very

low cost (< 10,- Euros) embedded devices rather than necessitating access to a super-computing facility (as is the case with

the full-fletched coupled model). This section is motivated by recent and encouraging success in emulating general circulation

models (e.g Castruccio et al., 2014), ecosystem models (e.g. Fer et al., 2018), the tremendous success in machine learning and290

data-driven methods in fluid dynamics (as summarized e.g. by Brunton et al., 2020) and the sneaking suspicion that " ... the

most pressing scientific and engineering problems of the modern era are not amenable to empirical models or deviations of

first principles ..." (Brunton et al., 2020b).

In the following, we describe the application of shallow and deep feed-forward artificial neuronal networks (ANNs) to295

forecast bottom oxygen concentrations deep inside EB at the monitoring station Buoy 2a two weeks in advance from the

atmospheric conditions and the regularly sampled monitoring station Boknis Eck at the entrance of the Bight. The forecast

range is chosen as a compromise between the time needed for mitigation measures (e.g. by netting and landing of doomed

fish) and forecast accuracy which typically degrades with forecasting range. During the course of this exercise we will use

different combinations of predictors (or input data) and test their impact on the forecast skill - a processes also referred to as300

capacity estimation and feature selection (e.g., Sbalzarini et al., 2002). Note, however, that a comprehensive analysis of time

series forecasting, which must include traditional statistical approaches in addition to machine learning methods (Makridakis

et al., 2018), is beyond the scope of this manuscript.

4.4.1 Capacity Estimation and Feature Selection

For training the ANNs, we draw our training (80%) and validation data (20%) randomly from the 2000 to 2016 model hind305

cast. We hand-design features (input data) and test their respective capacity to forecast bottom oxygen concentrations at Station

Buoy 2a (target data). Hand-designed features are "... two edged swords" (e.g. Reichstein et al., 2019): they can be seen as an

advantage because they give us control of the explanatory drivers which may be used to promote system understanding. On the

other hand, hand-designed features are typically suboptimal. To this end our results here provide a lower bound on the potential

of ANNs for the task at hand.310

The ANN is trained using the Levenberg-Marquardt algorithm (Marquardt, 1963) applied to neuronal network training fol-

lowing (Hagan and Menhaj, 1994) and (Hagan et al., 1996). Each training is repeated 30 times, each of which may yield

(slightly) differing results because: depending on the (random) initialization of weights, the algorithm may terminate in poten-

tially differing local optima of the cost function. As cost-function we choose mean-squared errors (calculated from MOMBE

output and the ANN prediction designed to mimic the MOMBE output). Figure 18 shows respective cost as errors relative to a315

naive biweekly persistency forecast based on bottom oxygen concentrations at the monitoring station Boknis Eck: apparently
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the ANN’s performance converges at 45% relative to the persistency forecast. Defining this as the Pareto Frontier suggests a

Pareto Optimal of 56% - which corresponds to one or two nodes. The idea of opting for a rather parsimonious two-node model

that scores 80% of the Pareto Frontier rather than 100% is to reduce the risk of overfitting which may hinder generalization.

Further, parsimonious models are easier to interpret than their complex counterpart such that their robustness is easier to assess.320

This is especially important because we have no straightforward way to extract human semantics from the "rules" the neuronal

network learned during the optimization process that related our input features to the target bottom oxygen concentrations at

Station Buoy 2a.

We start with a shallow (one input, one hidden and one output layer) ANN utilizing the full vertical profiles of temperature,

salinity and oxygen along with a biweekly wind forecast totaling at 106 input features (given by the three 1-m resolution325

vertical profiles of temperature, salinity and oxygen down to 26 m depth and the 14-daily forecasts of zonal and meridional

winds each). This setup is based on an optimistic estimate of the number of features available to stakeholders. Specifically, we

assume to have access to a correct biweekly wind forecast along with one full vertical profile of each temperature, salinity and

oxygen at the monitoring station Boknis Eck located at the entrance of EB (i.e., the 106 features introduced above).

Figure 18 suggests that the Pareto Frontier is at 45% corresponding to a 55% reduction in error relative to the persistence330

model. 80% of this yields a Pareto Optimal of 56%. This corresponds to one or two nodes. Additional tests with deeper ANN’s

featuring up to 10 hidden layers with two nodes were unsuccessful in that respective errors were always higher than 50%. We

conclude that a simple two node shallow ANN features already a reasonable performance and two input features, of the 106

tested, may suffice to capture the main effects.

Table 3 summarizes our effort to identify the most predictive features by backward elimination (e.g. Dietterich, 2002). Using335

combinations of only 15 features comprised of biweekly zonal windspeed and the bottom values of either temperature, salinity

or oxygen yielded a moderate degrade in performance of only 10% (Table 3 entries 2 to 4). Pushing further we identified a

combination of two features only that are, on the one hand, within this 10% degradation and, on the other hand, especially

easy to measure for stakeholders: surface and bottom temperature at Station Boknis Eck. Counter to intuition adding wind

forecasts does not improve the ANNs fidelity (compare entries 5 and 6 in Table 3). Even so, the ANN fits the training and340

validation data remarkably well (Figure 19). We conclude that the ANN’s biweekly forecast exploits links other than those

being direct consequences of the wind driven inflow versus ventilation mechanism identified in Section 4.3. Section 4.4.2 puts

this exploitation to the test using independent test (model) data.

4.4.2 ANN Generalization

This section discusses the fidelity of the two-node ANN using simulated bottom and surface temperature identified in Sec-345

tion 4.4.2 as being parsimonious but - even though - yielding reasonable results compared to more complex architectures, such

as deeper nets using more nodes and input data. Here, we use independent test data covering the years 2016 to 2018 of our

hindcast simulation. This data has neither been used in training nor during validation so far. To rate the forecast it is compared

to the "persistence model", which assumes that the oxygen concentrations at station Boknis Eck appear two weeks later at

station Buoy 2a (green line in Figure 20). The first striking impression of the close-ups in Figure 20 is that all years feature a350
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similar seasonal decline in bottom oxygen in autumn and this decline generally closely resembles the oxygen decline in Boknis

Eck two weeks in advance. Large interannual differences, however, occur in the onset of the trend reversal. This "return-point"

in time is not captured well by the persistency model. These results are consistent with our results in Section 4.3 showing that

the decline is driven by the import of low-oxygenated waters from KB. Ventilation, however, takes place in the interior of the

Bight and its signal reaches Station Boknis Eck at the entrance afterwards - such that we indeed expect no predictive power355

of the persistency model under these circumstances. To this end, our ANN clearly outperforms the persistency model in that

it predicts an earlier and more realistic recovery of oxygen values during end of summer / beginning of autumn - despite the

ANN also exclusively relying on data at the entrance at Station Boknis Eck.

The ANN essentially and successfully links information regarding season ("derived" from sea surface temperature) and

stratification ("derived" from the temperature difference between surface and depth) at the entrance of the Bight with oxygen360

concentration in the interior of the Bight - without utilizing information on winds. This clearly emphasizes the role of strati-

fication in putting an end to hypoxic events: EB is in the latitudes of prevailing westerlies with "prevailing" entailing that the

local winds shift back and forth as the weather systems travel east. Any of these wind shifts from westerly to easterly may end

an hypoxic event in EB - if the stratification is weak enough (and winds are strong enough) such that oxygenated surface water

can be pushed to depth. In a nutshell: if the stratification has sufficiently weakened you know that that the next wind shift will365

subduct oxygenated water thereby ending the hypoxic event.

In summary, the ANN features a remarkable performance given that it simply relies on two temperature measurement at

the entrance of the Bight. This performance is owed to the importance of stratification in setting the length of hypoxic events:

Eroding stratification preconditions the wind-driven downwelling or subduction of oxygenated surface waters which ends

hypoxic events. Given that the EM is positioned in the prevailing westerlies the winds regularly change to easterlies - but this370

does only drive substantial oxygenation (replacement) of bottom waters if the stratification is weak enough to be penetrated.

Hence, the high explanatory power of surface and bottom temperature at the entrance of EB to predict the dynamics of hypoxia

deep in EB.

5 Discussion

Oxygen concentrations are controlled by the antagonistic interplay of respiration and ventilation processes - both of which may375

respond antagonistically to climate change and improved management of water resources (e.g. Lennartz et al., 2014; Hoppe

et al., 2013).

Our model-based analysis suggest that the variability in the occurrence of hypoxic conditions in EB is correlated with the

a high variability in wind-driven ventilation rather than with a high variability in local respiration. This result is in agreement

with Ærtebjerg et al. (2003), who examined the massive 2002 (one of the worst ever documented) oxygen deficit event that380

encompassed the Kattegat, the Belt Sea and the Western Baltic Sea. Back then, Ærtebjerg et al. (2003) found no evidence for

anomalous respiration patterns i.e. metrics like anthropogenic phosphate loads and the evolution of the phytoplankton spring
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bloom appeared to have stayed - in contrast to the oxygen concentration - within typical bounds. This, in turn, highlighted the

importance of the variability of ventilation in shaping hypoxic events.

In our model frameworks we distinguish between two types of ventilation: for one, vertical mixing driven by isotropic385

turbulence and composed of a parameterization of constant background mixing complemented by a surface mixed layer model

that mimics the effect of convection, shear-instability and wind-induced turbulence (more specifically we use the KPP scheme

of Large et al., 1994). Vertical mixing is difficult to constrain in models because direct observations of turbulence are rare and

additional complexity arises from numerical subtleties in models (e.g. Burchard et al, 2008). That said, we use the fidelity of

simulated temperatures as a proxy for the realism of mixing rates: our simulations LoMix and MedMix featuring a vertical390

diffusivity of 5× 10−5m2 s−1 and 10−4m2 s−1 both fit the observations inside the Bight reasonably well. The respective

correlation coefficients are ≈ 0.9 at a simulated standard deviation scoring ≈ 90% of the observed (Figure 4). This is roughly

consistent with an estimate inferred from the rate of spreading of a deliberately released substance from Holtermann et al.

(2012) who report a basin-scale Baltic Sea vertical diffusivity of the order of 10−5m2 s−1 with dramatically increasing values

in proximity to the coast.395

The other type of ventilation that is of relevance in our coupled ocean-circulation biogeochemical model is the explicitly

resolved (i.e., not parameterized) wind-driven overturning circulation in EB (Figure 16). There is consensus that wind-driven

vertical circulation is a key mechanism in the Baltic Sea (e.g. Lehmann and Myrberg, 2008) including EB (Karstensen et al.,

2014). Wind-driven vertical circulation is associated with upwelling only most of the times - simply because upwelled waters

are typically cold and nutrient-rich which may be easily traced by satellites resolving cold filaments and spawning phytoplank-400

ton blooms both in space and time. Less prominent is the effect of wind-induced downwelling. Driven by a convergence of

surface water such events typically do not manifest themselves in surface properties and, consequently, are rarely discussed. A

closer look into our simulated seasonal cycles of the years 2016, 2017 and 2018 (Figure 20), however, showcases the importance

of (often-ignored) wind-driven downwelling in controlling hypoxia in EB: we find that the minimum oxygen concentration is

mainly set by the timing of the first overturning event in late summer / beginning of autumn when winds push surface wa-405

ters into the Bight where it is subducted, overcomes the vertical stratification and replaces deoxygenated bottom waters with

recently oxygenated surface waters. This explicitly resolved overturning cycle expands over the whole Bight and apparently

exports oxygenated bottom waters thereby ventilating KB. Given the reasonable representation of the seasonal cycles during

the 2000 to 2016 period (Figure 5) we conclude that our coupled ocean-circulation biogeochemical model resolves the major

processes at play - although at a high computational cost.410

Further mechanistic insight resulted from an exploration of the relations between simulated time series at Station Buoy 2a in

the interior of EB and biweekly lagged series at station Boknis Eck at the entrance of the Bight using an ANN: Counter to our

intuition, an ANN fed with information on stratification (i.e. bottom and surface temperature whose difference is a measure

of stratification) at the entrance of the Bight and season (i.e. surface temperature which is strongly correlated to season) only,

performs surprisingly well without access to wind forecasts - even though the major mechanism behind the oxygen variability415

is wind-driven. This highlights the importance of the preconditioning that has to precede a ventilating overturning event: In

EB, deoxygenation continues almost monotonically until destabilizing buoyancy fluxes have eroded the stability of the water
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column to a point where the next shift to easterly wind can replace the denser bottom waters with lighter surface waters.

Because synoptic weather systems and associated wind directions have a lifetime of the order of a week in EB, forecasts based

on state of preconditioning are, on average, accurate within a week.420

So although the wind-driven upwelling and, especially, the downwelling (wich traditionally is not so much in focus because

its effects are not as evident at the easy-to-observe surface) is the key process driving oxygen dynamics, we identified the

stratification to be the ultimate gatekeeper for determining the length and severity of seasonal hypoxia in EB. This results

relates hypoxia in EB directly with climate change because increased oceanic stratification is driven by a warming atmosphere.

But caveats remain. Among those is the influence of the waste water treating facility Kiel Bülk. Kiel Bülk serves 310.000425

citizens and discharges 19×106m3 treated sewage per year to the sea close to our model boundary. Our model calculations do

not account for this because we lack respective data on sewage composition. The following back-of-the-envelope calculation

based on published data covering an extreme event puts the potential influence of Kiel Bülk into perspective: Haustein (2002)

documents a discharge corresponding to 24.4 tons of COD (chemical oxygen demand) for the extreme heavy rain event of July

18, 2002. This corresponds to 7.6 105molO2. Our model domain covers roughly a wet area of 120km2 with an average depth430

of 11.7m, corresponding to a volume of 1.4 109m3. Hence, assuming that currents swept the entire discharge of July 18th into

EB where it spread out homogeneously yields a reduction of only 1mmolO2 m
−3. This is negligible - to the extent that the

assumption of instantaneous homogeneous distribution over the entire Bight holds.

Another issue that surfaced in the review process is boundary conditions. Our model domain ends east of Middelgrund with

a rigid wall which introduces spurious effects. Note that this applies to all boundary conditions (e.g. Blayo and Debreu, 2005;435

Herzfeld et al., 2011; Jensen, 1998) because there is, inevitably, a price to be payed for the benefit of not having to resolve the

entire ocean (and pay the associated computational cost). In our case the Arakawa B model grid (Arakawa and Lamp, 1977)

discretization necessitates a no-slip boundary condition effectively taking kinetic energy out of the system. Even so we find that

the thereby (spuriously) damped circulation is the key process in that it, on the one hand, imports hypoxia into EB and, on the

other hand, subducts oxygenated surface waters. We argue that this result is robust towards the choice of boundary condition440

because open boundary conditions (as opposed to the rigid wall we use here) are prone to allow an even more vivid circulation.

6 Conclusions

Oxygen concentrations are controlled by the antagonistic interplay of respiration and ventilation processes - both of which may

respond antagonistically to climate change and improved management of water resources (e.g. Lennartz et al., 2014; Hoppe

et al., 2013). The quantitative estimation of respective sensitivities is painstaking also because of the systems intrinsic large445

natural variability (e.g. Meier et al., 2021). But it is without alternative if well-intentioned policy is to effectively combat coastal

hypoxia in a warming world featuring already more than 60 patents on artificial downwelling techniques Liu et al. (2020).

We set out to dissect the mechanisms driving hypoxic events and associated fish-kills in EB and to identifiy the major

sources for uncertainties in the underlying model. We developed the high-resolution coupled ocean-circulation biogeochemical

model MOMBE and integrated an ensemble of hind cast simulation covering the years 2000 to 2018. Our analysis based on450
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simulated and observed oxygen, temperature and salinity along with artificial model tracers quantifying residence times and

local ventilation (ideal age) revealed the two major and antagonistic processes determining oxygen variability in EB: (1) The

oxygen deficit in EB which builds up every summer is imported from KB. The prevailing westerlies push surface water out

of the Bight. Its replacement enters the Bight at depth which, in summer, taps into the oxygen depleted deep(er) KB. Local

oxygen consumption in EB plays a minor role in shaping hypoxic events. (2) Intermittent easterly winds subduct oxygenated455

surface water at the end of the Bight - once the vertical stratification has been sufficiently degraded in late summer / beginning

of August. The subducted water ventilates the entire EB and, as it is exported to KB, contributes to ventilating KB.

Further, we explored the predictability of hypoxia in the interior of EB (at Station Buoy 2a) based on data from the entrance

(at Station Boknis Eck). The rationale was to identify main controlling mechanisms and to develop a computationally cheap

forecasting tool for stakeholder. Successful experiments with an Artificial Neuronal Network, trained with data from the cou-460

pled MOMBE model revealed in a backward elimination exercise that surface and bottom temperature on their own (taken at

a monitoring station at the entrance of EB) provide enough information for a reasonable biweekly forecast of bottom oxygen

concentrations deep in EB. This finding traces the severity of hypoxia in late summer as being a consequence of a wind-induced

subduction of surface water that is delayed (or advanced) by the state of stratification. More specifically we identified a system

where the severity of seasonal hypoxia is clearly controlled by wind-induced downwelling gatekept by stratification.465

Our approach to simulate local hypoxia with high-resolution models and then identify the key processes by ways of machine

learning is versatile in that it may easily be applicable to other regions affected by hypoxic conditions. Given that there are

already more than 60 artificial downwelling techniques patented (Liu et al., 2020) - which may or may not be put to work to

contain coastal hypoxia in our warming future - we rank a more comprehensive quantitative system understanding of local

hypoxia all over the world among pressing societal questions.470

Code and data availability. The circulation model code MOM4p1 is distributed by NOAA’s Geophysical Fluid Dynamics Laboratory (http:

//www.gfdl.noaa.gov/fms). We use the original code without applying any changes to it. Meridional sections and bottom values of simu-

lated oxygen concentrations, temperature, salinity, residence time and age have been visualized for the hind cast period 2000-2018 for the

stakeholder. They are archived under https://doi.org/10.5281/zenodo.4271941 and accessible via https://doi.org/10.5281/zenodo.4271941.

The Boknis Eck Time-Series Station is run by the Chemical Oceanography Research Unit of the GEOMAR Helmholtz Centre for Ocean475
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Table 1. Estimates of oxygen consumption and production converted to respective model parameters of the EckO2 module. Conversions may

include devision by the average water depth and area of Eckernförde Bight (see Section 2.1.1), a O2:C ratio of 1.1 and a C:P ratio of 106.

Reference Description opro orewa orese

[mmolO2
m2 day

] [mmolO2
m3 day

] [mmolO2
m2 day

]

Babenerd (1991) In-situ measurements during summer stratification 1985

& 1986 at the monitoring station Boknis Eck

3.75

Bendtsen and Hansen (2013) Prescribed parameters in a model of the Baltic Sea-

North Sea transition which yielded a good fit to ob-

served oxygen concentrations

2.75 0.36 3.1

Rahm (1987) Budget calculations for the Baltic Proper 0.26

Noffke et al. (2016) In-situ measurements with a lander in the Eastern Got-

land Basin

5.8 - 20.8

Pers and Rahm (2000) Budget calculations for the Baltic Proper 1.1 - 2.4

Smetacek (1980, 1985) In-situ measurements in the western Kiel Bight with de-

tritus traps in June (assuming negligible fraction of per-

manent burial)

1.6

Smetacek (1980, 1985) In-situ measurements in the western Kiel Bight with de-

tritus traps in August (assuming negligible fraction of

permanent burial)

6.3

Haustein (2002) Average (dry days) oxygen consumption equivalent of

Kiel Bülk sewage effluent, distributed evenly over Eck-

ernförde Bight

0.04

Haustein (2002) Episodic, extreme discharge event during 18th and 19th

July 2002 of the Kiel Bülk sewage plant, converted into

oxygen consumption equivalent distributed evenly over

Eckernförde Bight

0.36

Nausch et al. (2011) Average Kiel Bülk sewage phosphorous effluent, con-

verted into oxygen consumption assuming that it fuels

organic matter production that is remineralized in Eck-

ernförde Bight

0.03

Nausch et al. (2011) Phosphorous loads of rivulet Schwentine that drains

into Kiel Bight, converted into oxygen consumption as-

suming that it fuels organic matter production that is

entirely remineralized at depth in Eckernförde Bight

0.18
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Table 2. List of model parameter settings for the EckO2-module and diffusive background mixing in MOMBE. κv refers to vertical back-

ground mixing (diffusivity). opro, orewa and orese refer to monthly (one value per month starting with the January value) oxygen production,

water column oxygen respiration and oxygen consumption by the sediment, respectively (cf. Figure 3). Values for orewa and orese are derived

from the published estimates listed in Table 1. opro is calculated as residual assuming instant equilibration of sedimentary fluxes.

tag description κv opro orewa orese

m2 s−1 [mmolO2 m
−2 day−1] [mmolO2 m

−3 day−3] [mmol2 m
−2 day−1]

LoMix Low vertical background

mixing of momentum and

tracers. Local oxygen con-

sumption/production rates

at the upper limit of pub-

lished estimates.

5× 10−5 48 47 47 46 46 45 48

50 50 49 48 48

3.8 3.8 3.8 3.8 3.8 3.8

3.8 3.8

4 3.5 3 2.5 2.1 1.6

3.95 6.3 5.8 5.4 4.9

4.4

LoMixRem Low vertical background

mixing of momentum and

tracers. No local oxygen

consumption/production.

5× 10−5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

MedMix Medium vertical back-

ground mixing of mo-

mentum and tracers.

Local oxygen consump-

tion/production rates at the

upper limit of published

estimates.

1× 10−4 48 47 47 46 46 45 48

50 50 49 48 48

3.8 3.8 3.8 3.8 3.8 3.8

3.8 3.8

4 3.5 3 2.5 2.1 1.6

3.95 6.3 5.8 5.4 4.9

4.4

MedMixRem Medium vertical back-

ground mixing of mo-

mentum and tracers. No

local oxygen consump-

tion/production.

1× 10−4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

HiMix High vertical background

mixing of momentum and

tracers. Local oxygen con-

sumption/production rates

at the upper limit of pub-

lished estimates.

5× 10−4 48 47 47 46 46 45 48

50 50 49 48 48

3.8 3.8 3.8 3.8 3.8 3.8

3.8 3.8

4 3.5 3 2.5 2.1 1.6

3.95 6.3 5.8 5.4 4.9

4.4

HiMixRem High vertical background

mixing of momentum and

tracers. No local oxygen

consumption/production.

5× 10−4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
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Table 3. Capacity estimation of input features. This table relates the fidelity of biweekly walk-forward ANN forecast of bottom oxygen

concentrations at the monitoring station Buoy 2a with data from Station Boknis Eck fed to the ANN. The average of windspeed squared

refers to respective biweekly forecast of zonal winds. The error is the RMS deviation between the (computationally cheap) ANN projection

and simulated (computationally expensive; full-fledged coupled biogeochemical ocean circulation model) bottom oxygen concentrations at

Buoy 2a relative to the respective RMS of the persistence model (which naively assumes that Boknis Eck bottom oxygen concentrations will

persist for 14 days at Buoy 2a.

Input Features Error [%]

average of zonal and meridional windspeed squared, full vertical profiles (26 depth levels) of

O2, temperature and salinity

54

average of zonal windspeed squared, bottom O2 64

average of zonal windspeed squared, bottom salinity 65

average of zonal windspeed squared, bottom temperature 62

average of zonal windspeed squared, surface and bottom temperature 58

surface and bottom temperature 58
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Figure 1. Overview map. The colors indicate water depth in m.

24



1 Zielsetzung

Abnehmende Sauerstoffkonzentrationen in den Ozeanen führen zu wachsender Besorgnis - sowohl in
der Öffentlichkeit als auch bei Wissenschaftlern (z.B. Sonderforschungsbereich - SFB 754). Dieser Sau-
erstoffrückgang ist am ausgeprägtesten in Küstenregionen: in den 1960er Jahren wurden nur 42 der so-
genannten ”Todeszonen”, die das Überleben von höhere Tieren unmöglich machen, gemeldet. 2008 war
diese Zahl bereits auf 400 gestiegen (IPCC 2013).

Die Kooperation ’Frühwarnsystem Upwelling (FRAM)’ beschäftigt sich mit der Zunahme anoxischer
Ereignisse in der Eckernförder Bucht. Hier kam es in den letzten Jahren vermehrt zu Upwelling von sau-
erstoffarmem Tiefenwasser, was u.a. ein massives Fischsterben zur Folge hatte. Das Kooperationsprojekt
FRAM hat sich deshalb zum Ziel gesetzt, Entstehung und Auswirkungen dieser Ereignisse besser zu
verstehen und, idealerweise, zu prognostizieren.

Zu diesem Zweck wurde ein hochaufgelöstest Zirkulationsmodell für die Bucht aufgesetzt. In Kombina-
tion mit den Messdaten des GEOMAR Institutes sollen geplante Hindcast-Simulationen helfen, Szenarien
zu ermitteln, unter denen ein Upwelling von sauerstoffarmem Tiefenwasser in der Eckernförder Bucht
erfolgt.

2 Stand der Modellierung
2.1 Das neue hochauflösende Modell MOMBE

Die Grundlage für das neu entwickelte Modell der Eckernförder Bucht (MOMBE), ist das Ostseemo-
dell MOMBA. Das Ozean-Zirkulationsmodell MOMBA wurde 2013/14 von H. Dietze, U. Löptien and K.
Getzlaff in Zusammenarbeit mit dem Schwedischen Meteorologischen und Hydrologischen (SMHI) ent-
wickelt (Dietze et al. (2014), Dietze und Löptien (2016)). Das Modellgebiet umfasst die gesamte Ost-
see, während die Nordsee in vereinfachter Form repräsentiert wird. Um trotzdem realistische Salzwasser-
einströme simulieren zu können, wird die Oberflächenauslenkung am Eingang zur Nordsee als Funktion
lokaler Luftdruckgradienten auf der Nordhemisphäre vorgeschrieben.

Abb.1: (a) Bathymetrie im Bereich der Eckernföder Bucht. (a) In diesem Projekt entwickelte hoch-
aufgelöste Konfiguration MOMBE. (b) Ostsee Modell MOMBA.

Die hochaufgelöste, neu entwickelte regionale Modelkonfiguration MOMBE (cf. entsprechende Bathy-
metrie in Abbildung 1a) ist in die gröber aufgelöste Modelkonfiguration MOMBA genested (cf. entspre-
chende Bathymetrie in Abbildung 1b). Die Auflösung innerhalb der Eckernförder Bucht konnte mit diesem
Ansatz um etwa einen Faktor 20 erhöht werden, ohne exzessiven Rechenaufwand betreiben zu müssen.
Die horizontale und vertikale Auflösung in der Eckernförder Bucht wurde auf 100 m bzw. 0.5 m eingestellt.

1

Model	Bathymetry

Tonne 2a

Boknis Eck

Figure 2. Model bathymetry. The horizontal and vertical resolution are 100 m and 1 m, respectively. The northern and eastern boundaries

are closed (rigid walls). Sea surface height, temperatures and salinities around the closed boundaries are restored to prescribed values. Grey

circles depict the locations of the observational sites at the entrance and deep inside EB. Mittelgrund is a shallow. Note that the region east

of the orange rectangular is discarded in all following plots because it is essentially determined by our boundary conditions rather than by

intrinsic model dynamics.
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sediment

sea	surface

compensation
depth	zco [m]

nominal	vertical	bounds	
of	model	grid	box

nominal	vertical	bounds	
of	model	grid	box

nominal	vertical	bounds	
of		model	grid	box

Sun
air-sea	O2 exchange	kgt [m/day]

orese sedimentary	O2	
respiration [molO2/m2/yr]

nominal	vertical	bounds	
of	model	grid	box

nominal	vertical	bounds	
of	model	grid	box

nominal	vertical	bounds	
of	model	grid	box

Figure 3. Schematic of dissolved oxygen module EckO2. EckO2 calculates sinks and sources of oxygen throughout the water column for

every grid box. These terms are then passed to the 3-dimensional general ocean circulation that handles the effect of advection and diffusion.

The velocity of the air-sea gas exchange is determined by the piston velocity kgt. Above the compensation depth zco, primary production

produces oxygen at a rate prescribed by the model parameter opro. Below the compensation depth zco, respiration of organic matter con-

sumes dissolved oxygen at a rate prescribed by orewa. At the bottom, prescribed oxygen fluxes orese mimic the oxygen consumption of

the sediment that is fuelled by the transfer across the water-sediment boundary. Table 2 summarizes respective parameter settings.
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Figure 4. Model assessment (Taylor Plots) at Station Buoy 2a in the interior of EB (Figure 2). Observational data and model output refer to

the 2000 to 2015 period. The simulation tags are defined in Table 2: LoMix, MedMix and HiMix denote the levels of diffusive background

mixing. Rem indicates remote effects of biogeochemical sources and sinks of oxygen only (i.e. no local oxygen consumption in EB.
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Figure 5. Simulated and observed oxygen concentrations at the bottom (20 m depth) of the monitoring station Buoy 2a. Panel a, b and c refer

to oxygen concentrations, temperature and salinity, respectively. Red crosses denote observations. The black line denotes the ensemble mean

of the simulations MedMix and LowMix. The grey line envelopes the ensembles’ extremes at any given time. The horizontal dashed cyan and

green lines in panel a show 120 and 60mmolO2 m
−3 hypoxia thresholds, respectively.
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Figure 6. Fidelity of hindcasted hypoxic events (oxygen threshold of 120mmolO2 m
−3) at Station Buoy 2a.
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Figure 7. Simulated climatological estimate of the residence time of water parcels in EB. The units are days elapsed since the water flushed

into the Bight. The estimate refers to the longest residence time found in local water columns. Panels (a) and (b) refer to August calculated

by the simulations LowMix and HiMix, respectively. Panels (c) and (d) refer to October calculated by the simulations LowMix and HiMix,

respectively. Note that the model domain extends beyond the eastern boundary shown here (see also Figure 2).
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Figure 8. Simulated climatological estimate of the residence times of water parcels in EB. The units are days elapsed since the water

flushed into the Bight. Shown are sections along EB. Panels (a) and (b) refer to August calculated by the simulations LowMix and HiMix,

respectively. Panels (c) and (d) refer to October calculated by the simulations LowMix and HiMix, respectively. Note that the model domain

extends beyond the eastern boundary shown here (see also Figure 2).
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Figure 9. Simulated climatological estimate of local ventilation. The color shading denotes the time elapsed (age) since bottom water has

been in contact with the atmosphere in units days. Panels (a) and (b) refer to August calculated by the simulations LowMix and HiMix,

respectively. Panels (c) and (d) refer to October calculated by the simulations LowMix and HiMix, respectively. Note that the model domain

extends beyond the eastern boundary shown here (see also Figure 2).
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Figure 10. Simulated climatological estimate of local ventilation. The color shading denotes the time elapsed (age) since water parcels

have been in contact with the atmosphere in units days. Shown are sections along EB. Panels (a) and (b) refer to August calculated by

the simulations LowMix and HiMix, respectively. Panels (c) and (d) refer to October calculated by the simulations LowMix and HiMix,

respectively. Note that the model domain extends beyond the eastern boundary shown here (see also Figure 2).
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Figure 11. Simulated climatological (2000 - 2015) occurrence of hypoxia at the monitoring station Buoy 2a. Occurrence refers to the sum

of suboxic (i.e., <120mmolO2 m
−3) model grid boxes, identified in climatological daily model output. From November to June no suboxic

conditions were absent.
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Figure 12. Histogram of observed climatological bottom oxygen concentrations at Boknis Eck (capped at 100mmolO2 m
−3).
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Figure 13. Simulation (LoMix) of the 2017 hypoxic event. The colors refer to oxygen concentrations in mmolO2 m
−3. The contours in

cyan and magenta show the 60 and 120mmolO2 m
−3 isolines. The left column (Figures a to d) show oxygen concentrations on the sea

floor. The right column (Figure e to h) shows a section through the Bight with the city of Eckernförde to the left and the entrance to the Bight

to the right. (Corresponding animations featuring daily resolution named LowMix_O2_Bottom_2015.m4v and LowMix_O2_zonal_2017.m4v

are archived at https://doi.org/10.5281/zenodo.4271940.) Note that the model domain extends beyond the eastern boundary shown here (see

also Figure 2).
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Figure 14. Hovmoeller Diagrams of simulated water age and residence time at the monitoring station Buoy 2a (panel a and b, respectively).

The oval marking in August - September highlights the 2017 hypoxic event. The vertical gray line marks the start of the relaxation phase,

ending the hypoxic event.
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Figure 15. Simulated temporal evolution of wind direction, wind speed and bottom oxygen concentrations during the buildup of the 2017

hypoxic event. Panel a, b and c show wind direction, wind speed and bottom oxygen concentrations at the entrance (Station Boknis Eck) and

deep inside EB (Station Buoy 2a).
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Figure 16. Simulated, daily mean zonal currents during the buildup of the 2017 hypoxic event shown in Figures 13, 14, and 15. Green to

blue colors characterize flows to the east (towards the KB). Yellow to red colors indicate flows to the west (into EB). The unit is km per day.

The depicted section has an extension of ≈ 13km. Note that the model domain extends beyond the eastern boundary shown here (see also

Figure 2).
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Figure 17. Simulated temporal evolution of wind direction, wind speed and bottom oxygen concentrations during the relaxation phase that

terminates the 2017 hypoxic event. Panel a, b and c show wind direction, wind speed and bottom oxygen concentrations at the entrance

(Station Boknis Eck) and deep inside EB (Station Buoy 2a).
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Figure 18. ANN error relative to naive persistency forecast versus the number of neurons in the hidden layer. The black line features the best

ANN parameter setting found within an ensemble of 30 optimizations for each of the number of neurons tested. The grey bars denote the

ensemble’s standard deviations.

40
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Figure 19. Walk-forward performance of ANN based on training and testing data (corresponding to 80% and 20% of the data shown here).

The black line shows bottom oxygen concentrations at Station Buoy 2a as simulated with the full-fledged and computationally expensive 3-D

coupled ocean-circulation biogeochemical model. Each of the red dots denotes a respective biweekly walk-forward (computationally cheap)

ANN forecast utilizing surface and bottom temperatures at Station Boknis Eck only. For comparison, the green line features a naive biweekly

persistency forecast based on bottom oxygen concentrations at Station Boknis Eck.
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Figure 20. Walk-forward validation (generalization) of ANN. The panels a, b, and c refer to year 2016, 2017, 2018. The black line shows

bottom oxygen concentrations at the monitoring station Buoy 2a as simulated with the full-fledged and computationally expensive 3-D

coupled ocean-circulation biogeochemical model. Each of the red dots denotes a respective biweekly walk-forward (computationally cheap)

ANN forecast utilizing surface and bottom temperatures at Station Boknis Eck only. The green line features a naive biweekly persistency

forecast based on bottom oxygen concentrations Station Boknis Eck for comparison.
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