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Abstract. In recent years, upwelling events of low-oxygenated deep water have been repeatedly observed in Eckernförde

Bight (EB) situated in the Baltic Sea, Germany. Many of these events were related to massive fish-kill incidents - with negative

consequences for commercial fisheries and tourism. The aim of this study is to dissect underlying mechanisms and to explore

the potential of existing monitoring programs to predict these events. Our main tool is an ultra-high spatially resolved general

ocean circulation model which drives an elementary representation of the biogeochemical dynamics of dissolved oxygen5

(dubbed MOMBE and EckO2, respectively). In addition, we integrate artificial "clocks" that measure the residence time of the

water in EB along with timescales of (surface) ventilation. We present an ensemble of hind cast model simulations, covering

the period from 2000 up to 2018, designed to cover a range of poorly known model parameters for vertical background

mixing (diffusivity) and local oxygen consumption within EB. Our results indicate that the dynamics of low (hypoxic) oxygen

concentrations in bottom waters deep inside EB is, to first order, determined by the following antagonistic processes: (1) the10

inflow of low-oxygenated water from the Kiel Bight (KB) - especially from July to October and (2) the local ventilation of

bottom waters by local (within EB) subduction and vertical mixing. Biogeochemical processes that consume oxygen locally,

are apparently of minor importance for the development of hypoxic events. Reverse reasoning suggests that subduction and

mixing processes in EB contribute, under certain environmental conditions, to the ventilation of the KB by exporting recently-

ventilated waters enriched in oxygen. A detailed analysis of the 2017 fish-kill incident highlights the interplay between westerly15

winds importing hypoxia from KB and ventilating easterly winds which subduct oxygenated water. Finally, we explore the

capabilities of - comparably computationally cheap - feed-forward artificial neuronal networks to forecast hypoxia deep in EB

based on data at a monitoring site at the entrance of EB.

1 Introduction

The sheer size of our oceans currently adds stabilizing momentum to climate change. This effect is weaker at the oceanic20

boundaries, such as the shallow coastal regions, that are in closer proximity to disruptive anthropogenic drivers and may

exhibit tipping points or thresholds which ones reached, unleash highly non-linear dynamics. Among such disruptive drivers

are marine pollution, over-fertilization and overfishing. These can put local assets such as recreational use, fish yields or (blue)

carbon sequestration at risk (see Figure 1 for a schematic of typical stressors and assets). Hence, there is growing societal need

for projection tools that can provide a base for cost-efficient adaptation and mitigation strategies in a warming world.25
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This study documents the effort to improve the current process understanding and to develop a numerical tool suited to

forecast lack of dissolved oxygen which causes intermittent and massive fish-kills in Eckernförde Bight (EB) (Figure 2). EB

is an appendix to the Kiel Bight (KB) in the german part of the Baltic Sea (Figure 3). The reasons for choosing this site

to develop a piloting workflow is threefold: First, EB is exemplarily for specific coastal regions such as the East China Sea

and Cheasapeake Bay (see Fennel and Testa, 2019, for a comprehensive summary). Similarly to these regions, the Baltic Sea30

ranks among the largest anthropogenically-induced hypoxic areas in the world (Carstensen et al., 2014) and is infamous for

vast hypoxic conditions. Second, EB has reached distressing levels of attention by the German local media, because mass

fish-kill incidents caused by a lack of dissolved oxygen have been frequent during late summer during recent years. There is

concern that this situation will deteriorate because, e.g., a warming climate reduces the capacity of sea water to hold dissolved

oxygen because its solubility is inversely related with temperature. This concern triggered an interest in projection tools by a35

governmental stakeholder (Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein, LLUR). Third,

EB hosts the monitoring station Boknis Eck (Figure 4), one of the longest-operated time series stations worldwide (e.g. Lennartz

et al., 2014). Consequently, EB is subject to an exceptional large base of observational data, facilitating the development of

numerical models and piloting approaches in general.

Typical surface concentrations of dissolved oxygen are around few hundreds mmol O2m−3, predominantly set by physical40

solubility as a function of temperature and salinity (and rather constant atmospheric concentrations). At depth, however, oxygen

sinks can accumulate oxygen deficits until critical thresholds for the survival of animal or even plants are undercut. Common

denominations for critical thresholds are: hypoxic, suboxic and anoxic conditions. Their respective values are, however, fuzzy.

Here, we follow Gray et al. (2002) and define the threshold values for hypoxia as a concentration of dissolved oxygen of

2mg O2 l−1, which corresponds to≈ 60mmol O2 m−3. The relevance of this threshold is that it limits the survival of most fish45

(Hofmann et al., 2011). In addition we consider a second threshold of 4 mg O2 l−1 corresponding to≈ 120mmol O2 m−3. This

value is used as an indicator for the eutrophication of stratified water bodies (such as EB) by the Baltic Marine Environment

Protection Commission (Helsinki Commission - HELCOM, 16th Meeting of the Intersessional Network on Eutrophication

Helsinki, Finland, 29.-30. January 2020) and as such of relevance to the stakeholder LLUR.

Qualitatively, the mechanisms causing hypoxia are well known. Typically, dissolved oxygen concentrations are determined50

by antagonistic processes in the ocean: production of organic matter by autotrophs in the sun-lit surface ocean is associated

with oxygen production while remineralization of sinking organic matter is typically associated with oxygen consumption by

bacteria. Air-sea fluxes of oxygen may be in or outgoing, depending on wether the ocean’s surface is over or undersaturated.

Additional complexity is added by the ocean circulation which determines the timescales on which oxygen sources and sinks

may accumulate before the antagonistic process kicks in. The difficulty lies in reliable quantification of sources and sinks of55

oxygen with hypoxia being essentially the result of the difference of two relatively large and uncertain numbers.

Hence, reliable projections of hypoxia necessitate an exceedingly exact quantitative understanding of oxygen sources and

sinks in conjunction with ever changing ocean circulation and turbulent mixing. In a nutshell, concentrations are reset to

saturation levels at the surface and reduced by respiratory processes at depth. Hence, respiration rates along with the transport

timescales (that determine the time a water parcel may accumulate respiratory signals at depth - until it is pushed back up60
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to the well-ventilated surface layer) need to be known. Unfortunately, both, the respiration rates and transport timescales or

subsurface residence timescales, are difficult and expensive to measure in situ. This makes this type of observations very rare -

even in EB, which is renowned for its good observational data coverage. Our approach to overcome the respective limitations in

this study is to integrate an ensemble of a high-resolution coupled ocean-circulation biogeochemical model configurations, that

test through a range of mixing parameters (which determine residence timescales) and through respective parameter values65

for the biogeochemical oxygen sources and sinks. The ensemble is assessed with observations of salinity, temperature and

dissolved oxygen measurements deep inside EB. The most realistic ensemble members are then analyzed in greater detail in

order to dissect a mechanistic understanding of the processes involved in the dynamics of dissolved oxygen. Finally, we build

an artificial neuronal network (ANN) in order to forecast dissolved oxygen concentrations deep in EB based on measurements

at the entrance of EB. This approach yields a computationally cheap surrogate to the (relatively) computationally expensive70

coupled ocean-circulation biogeochemical model to the stakeholder (cf., Figure 5). Key predictors are identified by systematic

feature selection.

2 Methods

MOMBE (Modular Ocean Model Bight of Eckernförde) is a new configuration of a general ocean circulation model (GCM).

The GCM is coupled to a simple representation of biogeochemical processes by introducing an additional passive tracer, that is75

advected and mixed just like the tracers temperature and salinity but, other than that, controlled by prescribed rates of oxygen

production and consumption. Further, we introduce artificial tracers or "clocks" that estimate the residence times and the age

(i.e. the time of last contact to the surface) of water parcels. This approach facilitates the dissection between local (i.e. inside

EB) and remote (e.g., inflowing hypoxic deep water from the KB) processes that drive the oxygen dynamics. The following

subsections describe the GCM, followed by a model evaluation in Section 3. The feed-forward neuronal networks designed to80

mimic the full-fledged coupled GCM at a station deep in the Bight are described in Section 4.4.

2.1 Model Configuration

We use the Modular Ocean Model framework MOM4p1 as released by NOAA’s Geophysical Fluid Dynamics Laboratory

(Griffies, 2009). The model code and configurations are almost identical to those described in Dietze et al. (2014) and Dietze

et al. (2020). The few exceptions are listed in the following subsections. Section 2.1.1. describes the model grid, Section 2.1.285

the subgrid parameterizations, and Section 2.1.3 specifies the input data (boundary conditions). Section 2.1.4 documents the

representation of sea ice, Section 2.1.5 introduces the implementation of the residence time and age racers. The implementation

of the oxygen module is documented in Section 2.1.6.

2.1.1 Grid and Bathymetry

The bathymetric data are provided by the Federal Maritime and Hydrographic Agency (BSH, https://www.geoseaportal.de/90

mapapps/resources/apps/bathymetrie/index.html?lang=de). We use a bilinear scheme to interpolate these onto an Arakawa
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B model grid (Arakawa and Lamp, 1977). There are 165×103 grid boxes horizontally, each about 100 m × 100 m in size

(Figure 4). The total wet area of the model is 119 km2. The vertical resolution is 1 m, with a total of 31 layers. The average

water depth is 11.7 m. The bathymetry was smoothed with a filter similar to the Shapiro filter (Shapiro, 1970). The filter weights

are 0.25, 0.5 and 0.25. The filter essentially fills steep holes in the ocean floor which increases numerical stability of the GCM.95

The filter was successively applied three times, as this has proven (in Dietze and Kriest, 2012; Dietze et al., 2014, 2020) to be

a good compromise between unnecessary smoothing on the one hand and numerical instability on the other hand.

2.1.2 Subgrid Parameterisations

Even a horizontal resolution as high as 100 m horizontally and 1 m vertically fails to explicitly resolve all (turbulent) processes

of relevance for transport and mixing of substances in EB. Hence, effects of unresolved small-scale processes have to be100

parameterized. We use parameterizations and setting identical to those applied by Dietze et al. (2014) in a high-resolution model

configuration of the Baltic Sea. An exceptions it the parameter choice for the vertical background diffusivity: Holtermann et al.

(2012) estimates from measurements for deep water processes in the central Baltic Sea a vertical diffusivity of 10−5 m2 s−1

(calculated from the propagation speed of a purposely-deployed dye-like substance). Closer to coast Holtermann et al. (2012)

report much higher values. Because mapping this information on conditions in EB is difficult, we decided to test a range105

of vertical background diffusivities and to assess the respective model perfomances based on available observations. The

considered diffusivities are: 5× 10−5 m2 s−1, 1× 10−4 m2 s−1 und 5× 10−4 m2 s−1. This range comprises relatively low

diffusivities, which are characteristic for the deep central Baltic Sea, and fairly high values, which are more representative for

coastal mixing (as can be expected in the shallow Eckernförde Bight).

2.1.3 Boundary Conditions110

The atmospheric boundary conditions of our model are set by a reanalysis from the Swedish Meteorological and Hydro-

logical Institute (SMHI). We use the results of the reanalysis framework as a means to interpolate (patchy) observations in

time and space. The underlying atmospheric model features a horizontal resolution of 11 km. For the period 2000 to 2015

we use RCA4 (Samuelsson et al., 2015, 2016). RCA4 data is available only until 2015. Hence, for the period 2016 to 2018

we switched to another product: UERRA (regional reanalysis for Europe; https://cds.climate.copernicus.eu/cdsapp#!/dataset/115

reanalysis-uerra-europe-complete?tab=overview). UERRA is more advanced but does not include "spectral nudging" to the

large-scale atmospheric circulation. This detail may allow for unrealistic shifts in the trajectories of low pressure systems. For-

tunately, for the time and location under consideration here, a rough comparison with the observations from Kiel lighthouse (in

position 54.3344◦N,10.1202◦E) showed a generally good agreement between reanalysis and direct observations (not shown).

Our model configuration features rigid walls in the east, where EB is connected to the KB. We mimic the respective water120

exchange by restoring to prescribed temperature, salinity and sea surface height values at the model boundaries. For sea

surface height we restore to prescribed values taken from an oceanic reanalysis carried out with MOMBA (Dietze et al.,

2014). MOMBA differs from MOMBE in that it covers the entire Baltic Sea with a horizontal resolution of 1 nautical mile

while MOMBE introduced here covers the EB only - albeit with much higher resolution (100 m). For the sake of consistency,
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MOMBA has been integrated for the entire hindcast period 2000-2018 using the atmospheric forcing described above (which125

differs from Dietze et al., 2014). For temperature, salinity and oxygen we restore MOMBE at its horizontal boundaries with

Kiel Bight to interpolated measurements from Station Boknis Eck at the entrance of EB (Lennartz et al., 2014, http://www.

bokniseck.de/, http://doi.pangaea.de/10.1594/PANGAEA.855693).

2.1.4 Sea Ice

The focus of our investigation are ice-free seasons. We will show in Section 4.1 that the memory of the system under con-130

sideration, as given by residence times in Eckernförde Bight, is less than a month. This suggests that sea-ice dynamics are

rather irrelevant to the processes and seasons examined here. Even so, for the sake of completeness, we report that our ocean

component is coupled to a dynamical sea ice module, the GFDL Sea Ice Simulator (SIS). SIS uses elastic-viscous-plastic rhe-

ology adapted from Hunke and Dukowicz (1997). We use the exact same settings described in Dietze et al. (2020) (which are

identical to the settings in Dietze et al. (2014), except for switching to levitating sea ice).135

2.1.5 Artificial Clocks

In order to facilitate the dissection of local versus remote processes influencing the oceanic oxygen concentrations in EB,

we introduce two artificial tracers or "clocks" to the ocean circulation model (following and approach similar to Dietze et

al., 2009). Both clocks behave like dyes in that they are subject to transport processes just like like temperature, salinity and

dissolved oxygen. In addition to being transported, the clocks continuously count up time in every grid box. The first clock is140

reset to zero whenever a water parcel reaches the ocean surface. Thus, it measures the time elapsed since a water parcel had

been in contact with the atmosphere. This time is also referred to as the age of the water. The second clock is reset to zero at the

eastern boundaries of the model domain. Thus, it measures the time elapsed since water entered EB. This time is also referred

to as the residence time of water in EB.

The ratio between residence time and age is a measure of the importance of local processes versus remote processes: if a145

water parcel remains much longer in EB than the time has passed since the water parcel has been ventilated locally in EB, then

this may be an indication of the dominance of local (inside EB) biological respiratory processes. Conversely, if the residence

time is much shorter than the age, then the interplay between the inflowing water and the local ventilation of this water (by

"upwelling" or mixing to the surface, where it is exposed to air-sea gas exchange) dominates.

2.1.6 Oxygen150

Our dissolved oxygen module is dubbed EckO2-module (from Eckernförde O2). The module is very similar to the approach of

Bendtsen and Hansen (2013) dubbed OXYCON. A schematic representation of EckO2 is given in Figure 6. Following Bendtsen

and Hansen (2013), the local development over time of dissolved oxygen, ∂O2
∂t , is defined by:

∂O2

∂t
+ A(O2) = D(O2) +S(O2), (1)
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where A und D denote the divergence of the three-dimensional advective and diffusive fluxes as calculated by the GCM. S155

denotes biogeochemical oxygen sources and sinks given by the model parameters opro at the sunlit sea surface, by orewa at

depth below the compensation depth zco, and by orese in the lowermost wet model grid box. These parameters determine how

much oxygen is generated by primary production (opro) and how much is consumed at depth (orewa) and in the sediment

(orese). The respective parameter choices are based on literature values listed in Table 1. Following Babenerd (1991) and

based on Ærtebjerg et al. (1981) and Jacobsen (1982) we assume that the subsurface oxygen consumption rates are rather160

uniform throughout KB, EB and up into the Danish Straits. This assumption is necessitated by our lack of direct measurements

of consumption rates in EB. EckO2 prescribes climatological monthly mean consumption rates.

2.2 Observations

We use data from the regular monitoring program of the LLUR. Respective approx. monthly observations of salinity, temper-

ature and oxygen covered the entire hind-cast period at the monitoring station Buoy 2a (location marked in Figure 4).165

3 Model Evaluation

Among the challenges in simulating oxygen dynamics is that both biotic parameters (determining oxygen respiration (Sec-

tion 2.1.6)), and the antagonistic abiotic parameters (that control ventilation with surface water high in oxygen such as e.g.

vertical diffusivity (Section 2.1.2)) are uncertain. Our approach is to run an ensemble of simulations encompassing a plausible

range of settings. These settings are listed in Table 2. We compare low, medium and high levels of diffusivity (tagged HighMix,170

MedMix, LowMix, respectively) and a best guess of local biotic processes versus ignoring local biotic processes altogether

(tagged Rem, indicating "remote" forcing of hypoxia only). This section identifies the most realistic simulation(s).

Figure 7 shows Taylor diagrams which compare simulated and observed temperature, salinity and oxygen. The simulations

with high diffusivity (HiMix and HiMixRem) feature the lowest performance in reproducing the observed variability of temper-

ature, salinity and oxygen. This is consistent with an assessment of simulated velocities by Marlow (2020). The more realistic175

simulations LoMix and HiMix are very similar - irrespective of wether we account for local sources and sinks of oxygen or

not. We conclude (from Figure 7) that the lower values for the diffusivity are more realistic and that local sources and sinks

of oxygen are apparently of minor importance within EB. This suggests that hypoxic events in EB are "imported" rather than

driven by local oxygen consumption.

Figure 8 shows simulated and observed oxygen concentrations at the bottom of the monitoring station Buoy 2a for the years180

2000 - 2015. Shown are the respective months April to October. November to March are omitted because these months feature

high concentrations of dissolved concentrations beyond our scope of interest. The overall impression is that the model retraces

the dynamics of temperature, salinity and oxygen reasonably well. Figure 9 provides a more quantitative estimate of the fidelity

in reproducing hypoxic events (as defined by the 120 mmol O2 m−3 introduced in Section 1) at the monitoring station Buoy 2a.

It shows sensitivity and specificity achieved with the simulations LoMix and MedMix that account for local sources and sinks185
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of oxygen: LoMix typically simulates ≈ 70% true positives and ≈ 10% false positives. MedMix, in comparison, simulates only

several % false positives but fails to identify every third event ( i.e., ≈ 70% true positives).

4 Results

As a first step, we explore the simulated residence and ventilation timescales (Section 4.1) which provide a base for under-

standing the dynamics behind our hind cast, presented in Section 4.2. A complementary case study of the intense hypoxic190

event 2017 (related to the mass fish kill incidence depicted in Figure 2) is presented in Section 4.3. Section 4.4 describes the

application of artificial intelligence for feature selection and extraction of the predictive capability of monitoring data at Station

Boknis Eck at the entrance of EB to forecast hypoxia within EB at the monitoring station Buoy 2a.

4.1 Residence and Ventilation Times

The estimates of residence and ventilation times are calculated with "artificial clocks", as described in Section 2.1.5. Both195

model versions LoMix and MedMix show similar results: the water with the longest residence time is found at the end of EB in

the interior close to the city Eckernförde (Figure 10). Typical values are of the order of one month for both exemplary months,

August and October. Overall, MedMix shows lower values than LoMix indicating that vertical diffusive processes promote the

horizontal exchange of water between EB and KB. This makes sense because the longest residence times can be found at the

surface (Figure 11), suggesting that, on average, water enters the Bight at depth and leaves the Bight at the surface. A stronger200

vertical diffusivity is then associated with an accelerated rate of surface water renewal by deep water with shorter residence

times.

The distribution of ventilation times or age is similar to that of residence times in that the highest values are generally found

within the Bight towards Eckernförde (Figure 12). The horizontal gradient is more pronounced in the simulation with lower

mixing, while higher prescribed vertical background mixing equalizes the effective ventilation processes horizontally. In terms205

of vertical distribution age has, in contrast to the residence time, high values at depth and low at the surface - where it is reset

to zero (Figure 13).

In summary, we find that residence times and age are of similar magnitude. This suggests that the first order control of

processes that determine oxygen concentrations in EB is an antagonistic interplay of inflowing water (generally low in oxygen)

and the local aeration by vertical exchange with oxygenated surface waters. Biogeochemical processes in the interior of EB are210

apparently of minor importance for the oxygen dynamics within EB.

4.2 The Typical Seasonal Cycle inside EB

Figure 8 shows a comparison between the observed and simulated temporal evolution of dissolved oxygen concentrations at

the bottom of the monitoring station Buoy 2. Most prominent is a pronounced seasonal cycle. The generic explanation for

such seasonal cycles in such latitudes is that temperatures and biomass production in the surface waters ramps up in spring -215

driven by enhanced levels of photosynthetically available radiation (note, however that there is an ongoing discussion on this
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issue Behrenfeld, 2010; Arteaga et al, 2020; Smetacek, 1985). The biomass eventually sinks to depth where it degrades and

issues oxygen consumption. Later in the season, the water column stratifies and the surface layer heats up, effectively creating

a barrier to the exchange of bottom water (deprived in oxygen) and the oxygenated surface waters. As autumn approaches, the

surface ocean cools again and weakens the stratified barrier to vertical mixing. This facilitates the wind-driven mixing events220

that come along with more unstable autumn weather. In winter, convective mixing homogenizes the entire (rather shallow)

water column vertically (e.g., Fennel and Testa, 2019; Petenati, 2017). Apparently the model captures this dynamic well, i.e.,

the ensemble mean of LoMix and MedMix features a high visual correspondence between the respective curves in Fig. 8 (see

Figure 7 for more quantitative estimate).

Based on the hind cast simulation from 2000-2015 hypoxic events at Station Buoy 2a are most common in August and225

October with a local minimum of occurrences in September (Figure 14). This is inconsistent with the generic explanation

outlined above, where a period of ever decreasing levels of dissolved oxygen ends in autumn when increasing winds and a

pronounced air-sea heat transfer promotes net ventilation. So why do hypoxic conditions deep in EB at Station Buoy 2a become

more frequent after the September setback, despite increasing winds and decreasing thermal stratification? The histograms

of bottom oxygen concentrations observed at Station Boknis Eck, situated at the entrance to EB (and used to prescribe the230

conditions of water flowing into EB in the model), suggest: particularly low oxygen concentrations are more frequent in

October than in August (Figure 15). Hence, water entering EB from KB in October are more likely to "import" hypoxia.

We conclude: the typical oxygen deficit in late summer is imported along with water from the KB, rather than being produced

locally in EB. The following Section 4.3 will elucidate the underlying succession of events by means of a detailed case study.

4.3 Hypoxic Event 2017235

In fall 2017 a particularly pronounced hypoxic event occurred and led to a mass fish kill incidence (Figure 2). In the following,

we analyze this event in the MOMBE LoMix simulation.

Figure 16 shows a sequence of snapshots of simulated hypoxia in EB, starting August 20th and ending at peak conditions

on September 10th. Over the course of these several weeks, EB looses oxygen and hypoxic waters apparently enter the Bight

at the bottom from the east and moves upwards. The notion of "imported" hypoxic conditions is backed by the Hovmoeller240

Diagrams of simulated age and residence times at the monitoring station Buoy 2a in Figure 17: during the buildup of the hy-

poxic event in EB, the residence time features a local minimum deep inside EB. This suggests the prevalence of water masses

"recently-imported" from KB (Figure 17 b). Simultaneously, the age features a maximum (Figure 17 a), indicating that the

"recently-imported" hypoxic waters are well-shielded from ventilation by oxygenated surface waters. Further evidence is pro-

vided by Figure 18, showing that the oxygen decline in EB is contemporaneous with winds blowing out of the Bight. These245

winds drive an overturning circulation, shown in Figure 19, with surface waters being pushed out of the Bight and bottom

waters, for continuity reasons, being sucked into the Bight at depth. Consequently, we find in Figure 18 that the oxygen decline

at the entrance of the Bight (at Station Boknis Eck) occurs earlier than the oxygen decline inside the Bight (at Station Buoy 2a)

- just as expected in a system where water enters the Bight at the bottom.

250
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During the relaxation phase, that terminates the 2017 hypoxic event, the processes are reversed: Figure 20 shows that the

winds are blowing consistently into the Bight for more than a week - a situation comparably uncommon in these latitudes of

prevailing westerlies. Consequently, water is pushed into the Bight at the surface, having nowhere to go. Some of the well-

oxygenated surface water is subducted to depth and subsequently leaves EB at depth. Just as expected, the increase in oxygen

at the monitoring station Buoy 2a inside the Bight occurs earlier than the corresponding oxygen increase at the entrance Station255

Boknis Eck). The oxygen levels at Boknis Eck now lag behind Buoy 2a by approximately one week.

In summary, we identified a governing mechanism by which EB is - depending on wind direction - either: (1) impacted by

imported low oxygenated waters from KB or (2) being flushed by oxygenated surface water, that is subducted to depth in the

interior of EB and is exported at depth to KB - whereby EB is effectively ventilating KB.

Open question, however, remain. Of particular interest is the questions why some years are hit especially hard by hypoxia260

and wether such events are predictable days or weeks in advance. Such predictions may, e.g., allow for netting and landing of

doomed fish. The following section applies Artificial Intelligence (AI) to pursue these questions.

4.4 AI-based feature selection and time series prediction

The following section explores the statistical relations between the simulated time series at Station Buoy 2a deep in the Bight

and Boknis Eck at the entrance of the Bight. The major aims are: (1) To gain further mechanistic insight. (2) To develop a sur-265

rogate models for the stakeholder that may be implemented on off-the-shelf desktop computers, smart phones or even on very

low cost (< 10,- Euros) embedded devices rather than necessitating access to a super-computing facility (as is the case with

the full-fletched coupled model). This section is motivated by recent and encouraging success in emulating general circulation

models (e.g Castruccio et al., 2014), ecosystem models (e.g. Fer et al., 2018), the tremendous success in machine learning and

data-driven methods in fluid dynamics (as summarized e.g. by Brunton et al., 2020) and the sneaking suspicion that " ... the270

most pressing scientific and engineering problems of the modern era are not amenable to empirical models or deviations of

first principles ..." (Brunton et al., 2020b).

In the following, we describe the application of shallow and deep feed-forward artificial neuronal networks (ANNs) to

forecast bottom oxygen concentrations deep inside EB at the monitoring station Buoy 2a two weeks in advance from the275

atmospheric conditions and the regularly sampled monitoring station Boknis Eck at the entrance of the Bight. The forecast

range is chosen as a compromise between the time needed for mitigation measures (e.g. by netting and landing of doomed

fish) and forecast accuracy which typically degrades with forecasting range. During the course of this exercise we will use

different combinations of predictors (or input data) and test their impact on the forecast skill - a processes also referred to as

capacity estimation and feature selection (e.g., Sbalzarini et al., 2002). Note, however, that a comprehensive analysis of time280

series forecasting, which must include traditional statistical approaches in addition to machine learning methods (Makridakis

et al, 2018), is beyond the scope of this manuscript.
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4.4.1 Capacity Estimation and Feature Selection

For training the ANNs, we draw our training (80%) and validation data (20%) randomly from the 2000 to 2016 model hind

cast. We hand-design features (input data) and test their respective capacity to forecast bottom oxygen concentrations at Station285

Buoy 2a (target data). Hand-designed features are "... two edged swords" (e.g. Reichstein et al., 2019): they can be seen as an

advantage because they give us control of the explanatory drivers which may be used to promote system understanding. On the

other hand, hand-designed features are typically suboptimal. To this end our results here provide a lower bound on the potential

of ANNs for the task at hand.

The ANN is trained using the Levenberg-Marquardt algorithm (Marquardt, 1963) applied to neuronal network training fol-290

lowing (Hagan and Menhaj, 1994) and (Hagan et al., 1996). Each training is repeated 30 times, each of which may yield

(slightly) differing results because: depending on the (random) initialization of weights, the algorithm may terminate in poten-

tially differing local optima of the cost function. As cost-function we choose mean-squared errors (calculated from MOMBE

output and the ANN prediction designed to mimic the MOMBE output). Figure 21 shows respective cost as errors relative to a

naive biweekly persistency forecast based on bottom oxygen concentrations at the monitoring station Boknis Eck: apparently295

the ANN’s performance converges at 45% relative to the persistency forecast. Defining this as the Pareto Frontier suggests a

Pareto Optimal of 56% - which corresponds to one or two nodes. The idea of opting for a rather parsimonious two-node model

that scores 80% of the Pareto Frontier rather than 100% is to reduce the risk of overfitting which may hinder generalization.

Further, parsimonious models are easier to interpret than their complex counterpart such that their robustness is easier to assess.

This is especially important because we have no straightforward way to extract human semantics from the "rules" the neuronal300

network learned during the optimization process that related our input features to the target bottom oxygen concentrations at

Station Buoy 2a.

We start with a shallow (one input, one hidden and one output layer) ANN utilizing the full vertical profiles of temperature,

salinity and oxygen along with a biweekly wind forecast totaling at 106 input features (given by the three 1-m resolution

vertical profiles of temperature, salinity and oxygen down to 26 m depth and the 14-daily forecasts of zonal and meridional305

winds each). This setup is based on an optimistic estimate of the number of features available to stakeholders. Specifically, we

assume to have access to a correct biweekly wind forecast along with one full vertical profile of each temperature, salinity and

oxygen at the monitoring station Boknis Eck located at the entrance of EB (i.e., the 106 features introduced above).

Figure 21 suggests that the Pareto Frontier is at 45% corresponding to a 55% reduction in error relative to the persistence

model. 80% of this yields a Pareto Optimal of 56%. This corresponds to one or two nodes. Additional tests with deeper ANN’s310

featuring up to 10 hidden layers with two nodes were unsuccessful in that respective errors were always higher than 50%. We

conclude that a simple two node shallow ANN features already a reasonable performance and two input features, of the 106

tested, my suffice to capture the main effects.

Table 3 summarizes our effort to identify the most predictive features by backward elimination (e.g. Dietterich, 2002). Using

combinations of only 15 features comprised of biweekly zonal windspeed and the bottom values of either temperature, salinity315

or oxygen yielded a moderate degrade in performance of only 10% (Table 3 entries 2 to 4). Pushing further we identified a
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combination of two features only that are, on the one hand, within this 10% degradation and, on the other hand, especially

easy to measure for stakeholders: surface and bottom temperature at Station Boknis Eck. Counter to intuition adding wind

forecasts does not improve the ANNs fidelity (compare entries 5 and 6 in Table 3). Even so, the ANN fits the training and

validation data remarkably well (Figure 22). We conclude that the ANN’s biweekly forecast exploits links other than those320

being direct consequences of the wind driven inflow versus ventilation mechanism identified in Section 4.3. Section 4.4.2 puts

this exploitation to the test using independent test (model) data.

4.4.2 ANN Generalization

This section discusses the fidelity of the two-node ANN using bottom and surface temperature identified in Section 4.4.2 as

being parsimonious but - even though - yielding reasonable results compared to more complex architectures, such as deeper325

nets using more nodes and input data. Here, we use independent test data covering the years 2016 to 2018 of our hindcast

simulation. This data has neither been used in training nor during validation so far. To rate the forecast it is compared to the

"persistence model", which assumes that the oxygen concentrations at station Boknis Eck appear two weeks later at station

Buoy 2a (green line in Figure 23). The first striking impression of the close-ups in Figure 23 is that all years feature a similar

seasonal decline in bottom oxygen in autumn and this decline generally closely resembles the oxygen decline in Boknis Eck330

two weeks in advance. Large interannual differences, however, occur in the onset of the trend reversal. This "return-point"

in time is not captured well by the persistency model. These results are consistent with our results in Section 4.3 showing

that the decline is driven by the import of low-oxygenated waters from KB. Ventilation, however, takes place in the interior

of the Bight and its signal reaches Station Boknis Eck at the entrance afterwards - such that we indeed expect no predictive

power of the persistency model under these circumstances. To this end, our ANN outperforms the persistency model in that335

it predicts an earlier and more realistic recovery of oxygen values during end of summer / beginning of autumn - despite the

ANN also exclusively relying on data at the entrance at Station Boknis Eck. The ANN essentially links information regarding

season ("derived" from sea surface temperature) and stratification ("derived" from the temperature difference between surface

and depth) at the entrance of the Bight with oxygen concentration in the interior of the Bight - without utilizing information

on winds. In summary, the ANN features a remarkable (and counter intuitive) performance given that it simply relies on two340

temperature measurement at the entrance of the Bight.

5 Discussion

Oxygen concentrations are controlled by the antagonistic interplay of respiration and ventilation processes. Our model-based

analysis suggest that the variability in the occurrence of hypoxic conditions in EB is correlated with the a high variability

in wind-driven ventilation rather than with a high variability in local respiration. This result is in agreement with Ærtebjerg345

et al. (2003), who examined the massive 2002 (one of the worst ever documented) oxygen deficit event that encompassed the

Kattegat, the Belt Sea and the Western Baltic Sea. Back then, Ærtebjerg et al. (2003) found no evidence for anomalous respira-

tion patterns i.e. metrics like anthropogenic phosphate loads and the evolution of the phytoplankton spring bloom appeared to
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have stayed - in contrast to the oxygen concentration - within typical bounds. This, in turn, highlighted the importance of the

variability of ventilation in shaping hypoxic events.350

In our model frameworks we distinguish between two types of ventilation: for one, vertical mixing driven by isotropic

turbulence and composed of a parameterization of constant background mixing complemented by a surface mixed layer model

that mimics the effect of convection, shear-instability and wind-induced turbulence (more specifically we use the KPP scheme

of Large et al., 1994). Vertical mixing is difficult to constrain in models because direct observations of turbulence are rare and

additional complexity arises from numerical subtleties in models (e.g. Burchard et al, 2008). That said, we use the fidelity of355

simulated temperatures as a proxy for the realism of mixing rates: our simulations LoMix and MedMix featuring a vertical

diffusivity of 5× 10−5 m2 s−1 and 10−4 m2 s−1 both fit the observations inside the Bight reasonably well. The respective

correlation coefficients are ≈ 0.9 at a simulated standard deviation scoring ≈ 90% of the observed (Figure 7). This is roughly

consistent with an estimate inferred from the rate of spreading of a deliberately released substance from Holtermann et al.

(2012) who report a basin-scale Baltic Sea vertical diffusivity of the order of 10−5 m2 s−1 with dramatically increasing values360

in proximity to the coast.

The other type of ventilation that is of relevance in our coupled ocean-circulation biogeochemical model is the explicitly

resolved (i.e., not parameterized) wind-driven overturning circulation in EB (Figure 19). A closer look into the seasonal cycle

of the years 2016, 2017 and 2018 (Figure 23) revealed that the minimum oxygen concentration is mainly set by the timing

of the first overturning event in late summer / beginning of autumn when winds push surface waters into the Bight where365

it is subducted, overcomes the vertical stratification and replaces dexogygenated bottom waters with recently oxygenated

surface waters. This explicitly resolved overturning cycle expands over the whole Bight and apparently exports oxygenated

bottom waters thereby ventilating KB. Given the reasonable representation of the seasonal cycles during the 2000 to 2016

period (Figure 8) we conclude that our coupled ocean-circulation biogeochemical model resolves the major processes at play

- although at a high computational cost.370

Further mechanistic insight resulted from an exploration of the relations between simulated time series at Station Buoy 2a in

the interior of EB and biweekly lagged series at station Boknis Eck at the entrance of the Bight using an ANN: Counter to our

intuition, an ANN fed with information on stratification (i.e. bottom and surface temperature whose difference is a measure

of stratification) at the entrance of the Bight and season (i.e. surface temperature which is strongly correlated to season) only,

performs surprisingly well without access to wind forecasts - even though the major mechanism behind the oxygen variability375

is wind-driven. This highlights the importance of the preconditioning that has to precede a ventilating overturning event: In

EB, deoxygenation continues almost monotonically until destabilizing buoyancy fluxes have eroded the stability of the water

column to a point where the next shift to easterly wind can replace the denser bottom waters with lighter surface waters.

Because synoptic weather systems and associated wind directions have a lifetime of the order of a week in EB, forecasts based

on state of preconditioning are, on average, accurate within a week.380

In summary, we made an effort to explore the uncertainties that are associated with poorly constrained processes such as

mixing and oxygen consumption: we tested various degrees of mixing (parameterizations) in combination with and without

local sources of oxygen consumption. But caveats remain. Among those is the influence of the waste water treating facility
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Kiel Bülk. Kiel Bülk serves 310.000 citizens and discharges 19× 106 m3 treated sewage per year to the sea close to our

model boundary. Our model calculations do not account for this because we lack respective data on sewage composition. The385

following back-of-the-envelope calculation based on published data covering an extreme event puts the potential influence of

Kiel Bülk into perspective: Haustein (2002) documents a discharge corresponding to 24.4 tons of COD (chemical oxygen

demand) for the extreme heavy rain event of July 18, 2002. This corresponds to 7.6 105 mol O2. Our model domain covers

roughly a wet area of 120km2 with an average depth of 11.7m, corresponding to a volume of 1.4 109 m3. Hence, assuming

that currents swept the entire discharge of July 18th into EB where it spread out homogeneously yields a reduction of only390

1mmol O2 m−3. This is negligible - to the extent that the assumption of instantaneous homogeneous distribution over the entire

Bight holds.

6 Conclusions

We set out to dissect the mechanisms driving hypoxic events and associated fish-kills in EB. In order to fill data gaps, both

spatially and temporally, we developed the high-resolution coupled ocean-circulation biogeochemical model MOMBE and395

integrated an ensemble of hind cast simulation covering the years 2000 to 2018. Our analysis based on simulated and observed

oxygen, temperature and salinity along with artificial model tracers quantifying residence times and local ventilation (ideal age)

revealed the two major and antagonistic processes determining oxygen variability in EB: (1) The oxygen deficit in EB which

builds up every summer is imported from KB. The prevailing westerlies push surface water out of the Bight. Its replacement

enters the Bight at depth which, in summer, taps into the oxygen depleted deep(er) KB. Local oxygen consumption in EB400

plays a minor role in shaping hypoxic events. (2) Intermittent easterly winds subduct oxygenated surface water at the end of

the Bight - once the vertical stratification has been sufficiently degraded in late summer / beginning of August. The subducted

water ventilates the entire EB and, as it is exported to KB, contributes to ventilating KB.

Further, we explored the predictability of hypoxia in the interior of EB (at Station Buoy 2a) based on data from the entrance

(at Station Boknis Eck). The rationale was to identify main controlling mechanisms and to develop a computationally cheap405

forecasting tool for stakeholder. Successful experiments with an Artificial Neuronal Network, trained with data from the cou-

pled MOMBE model revealed in a backward elimination exercise that surface and bottom temperature on their own (taken at

a monitoring station at the entrance of EB) provide enough information for a reasonable biweekly forecast of bottom oxygen

concentrations deep in EB. This finding traces the severity of hypoxia in late summer as being a consequence of a wind-induced

subduction of surface water that is delayed (or advanced) by the state of stratification.410

Code and data availability. The circulation model code MOM4p1 is distributed by NOAA’s Geophysical Fluid Dynamics Laboratory (http:

//www.gfdl.noaa.gov/fms). We use the original code without applying any changes to it. Meridional sections and bottom values of simu-

lated oxygen concentrations, temperature, salinity, residence time and age have been visualized for the hind cast period 2000-2018 for the

stakeholder. They are archived under https://doi.org/10.5281/zenodo.4271941 and accessible via https://doi.org/10.5281/zenodo.4271941.
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The Boknis Eck Time-Series Station is run by the Chemical Oceanography Research Unit of the GEOMAR Helmholtz Centre for Ocean415
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Author contributions. H. Dietze and U. Löptien have been equally involved in setting up and running the model configurations. Both authors

contributed to the interpretation of model results, to outlining and writing of the paper in equal shares.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We acknowledge support by Birgit Schneider. This work is part of an collaborative effort between the Christian-420

Albrechts-Universität zu Kiel and the Landesamt für Landwirtschaft, Umwelt und ländliche Räume titled Frühwarnsystem Upwelling

(FRAM), Vergabenummer 0608.451812. We are grateful to the MOM community for sharing code and expertise. Figure 1 is based on

symbols distributed by https://ian.umces.edu/symbols/, courtesy of the Integration and Application Network, University of Maryland Center

for Environmental Science. We are grateful to expertise conveyed to us by the RedMod (https://redmod-project.de/) project. Specifically,

we acknowledge support by, and discussions with Corinna Schrum and Udo von Toussaint. The Bachelor student Jonas Marlow supported425

initial model evaluation. Ute Hecht from the maritime meteorology department at the GEOMAR Helmholtz Centre for Ocean Research

Kiel provided the weather data from Kiel Lighthouse. LLUR provided data from monitoring Station Buoy 2a. The Chemical Oceanography

Research Unit of GEOMAR provided Boknis Eck data. We acknowledge discussions with Rolf Karez, Ivo Bobsien, Britta Munkes and all

participants of the 2018 Freundeskreis Eckernförde meeting.

14

https://doi.org/10.5194/bg-2021-31
Preprint. Discussion started: 12 February 2021
c© Author(s) 2021. CC BY 4.0 License.



References430

Ærtebjerg, N. G., Jacobsen, T. S., Gargas, E., and Buche, E: The Belt project. Evaluation of the physical, chemical and biological measure-

ments. National Agency for Environmental Protection, Denmark, 1981.

Ærtebjerg, G., Carstensen, J., Axe, P., Druon, J.-N., and Stips, A.: The 2002 Oxygen Depletion Event in the Kattegat, Belt Sea and Western

Baltic. Baltic Sea Environment Proceedings No. 90, Thematic Report, Helsinki Commission, Baltic Marine Environment Protection

Commission, 1–66, 2003.435

Arakawa, A. and Lamb, V. R.: Computational design of the basic dynamical processes of the UCLA general circulation model, Methods in

Computational Physics, J. Chang, Ed., Vol. 17, Academic Press, 173-265, 1977.

Arteaga, L. A., Boss, E., Behrenfeld, M. J., Westberry, T. K., and Sarmiento, J. L.: Seasonal modulation of phytoplankton biomass in the

Southern Ocean. Nature Communication, 22, 5364, https://doi.org/10.1038/s41467-020-19157-2, 2020.

Babenerd, B.: Increasing oxygen deficiency in Kiel Bay (Western Baltic): A paradigm of progressing coastal eutrophication. Meeres-440

forschung - Reports on Marine Research, 33, 121–140, 1991.

Behrenfeld, M. J.: Abandoning Sverdrup’s Critical Depth Hypothesis on phytoplankton blooms. Ecology, 91, 4, 977-989,

https://doi.org/10.1890/09-1207.1, 2010.

Brunton, S. L., Noack, B. R., and Koumoutsakos, P.: Machine Learning for Fluid Mechanics. Annual Review of Fluid Dynamics, 52, 477–

508, https://doi.org/10.1146/annurev-fluid-010719-060214, 2020.445

Brunton, S. L., Hemati, M. S., and Kunihiko, T.: Special issue on machine learning and data-driven methods in fluid dynamics. Theoretical

Computational Fluid Dynamics, 34:333-337, https://doi.org/10.1007/s00162-020-00542-y, 2020.

Bendtsen, J., and Hansen, J. L. S.: Effects of global warming on hypoxia in the Baltic Sea-North Sea transition zone. Ecological Modelling,

264, 17–26, https://doi.org/10.1016/j.ecolmodel.2012.06.018, 2013.

Burchard, H., Craig, P. D., Gemmrich, J. R., van Haren, H., Mathieu, P. P., Meier, H. M., Nimmo Smith, W.A.M., Prandke, H., Rippeth,450

T.P., Skyllingstad, E.D., Smyth, W.D., Welsh, D.J.K. and Wijesekera, W.: Observational and numerical modeling methods for quantifying

coastal ocean turbulence and mixing. Progress in Oceanography, 76(4), 399-442, https://doi.org/j.pocean.2007.09.005, 2008.

Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.: Deoxygenation of the Baltic Sea during the last century. Proceedings of

the National Academy of Sciences of the United States of America, 111, 15, 5628-5633, https://doi.org/10.1073/pnas.1323156111, 2014.

Castruccio, S., McInerney, D. J., Stein, M. L., Crouch, F. L., Jacob, R. L., and Moyer, E. J.: Statistical Emulation of Climate Model Projections455

Based on Precomputed GCM Runs. Journal of Climate, 27, 1829–1844, https://doi.org/10.1175/JCLI-D-13-00099.1, 2014.

Dietterich, T. G.: Machine Learning for Sequential Data: A Review, in Structural, Syntactic, and Statistical Pattern Recognition, edited by

Caelli, T., Amin, A., Duin, R. P. W., de Ridder, D., and Kamel, M., Springer Berlin Heidelberg, 15–30, https://doi.org/10.1007/3-540-

70659-3_2, 2002.

Dietze, H., Matear, R., and Moore, T.: Nutrient supply to anticyclonic meso-scale eddies off western Australia estimated with ar-460

tificial tracers released in a circulation model. Deep Sea Research Part I: Oceanographic Research Papers, 56, 9, 1440-1448,

https://doi.org/10.1016/j.dsr.2009.04.012, 2009.

Dietze, H., and Kriest, I.: 137Cs off Fukushima Dai-ichi, Japan - model based estimates of dilution and fate. Ocean Science, 8, 319-332,

https://doi.org/10.5194/os-8-319-2012, 2012.

Dietze, H., Löptien, U., and Getzlaff, K.: MOMBA 1.1 - a high-resolution Baltic Sea configuration of GFDL’s Modular Ocean Model.465

Geoscientific Model Development, 7, 1713-1731, https://doi.org/10.5194/gmd-7-1713-2014, 2014.

15

https://doi.org/10.5194/bg-2021-31
Preprint. Discussion started: 12 February 2021
c© Author(s) 2021. CC BY 4.0 License.



Dietze, H., Löptien, U., and Getzlaff, J.: MOMSO 1.0 - an eddying Southern Ocean model configuration with fairly equilibrated natural

carbon. Geoscientific Model Development, 13, 71-97, https://doi.org/10.5194/gmd-13-71-2020, 2020.

Fennel, K., and Testa, J. M.: Biogeochemical Controls on Coastal Hypoxia. Annual Review of Marine Science, 11, 105–30,

https://doi.org/10.1146/annurev- marine- 010318- 095138, 2019.470

Fer, I., Moorcroft, P. R., Richardson, A. D., Cowdery, E. M., and Dietze, M. C.: Linking big models to big data: efficient ecosystem model

calibration through Bayesian model emulation. Biogeosciences, 15, 5801–5830, https://doi.org/10.5194/bg-15-5801-2018, 2018.

Gray, J. S., Shiu-sun, R., and Or, Y. Y.: Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology

Progress Series, 238, 249-279, https://doi.org/10.3354/meps238249, 2002.

Grieffies, S. M.: Elements of MOM4p1. GFDL Ocean Group Technical Report No. 6, NOAA/Geophysical Fluid Dynamics Laboratory, 444475

pp., Version prepared on 16 December 2009, 2009.

Hagan, M. T., and Menhaj, M. B.: Training Feedforward Networks with the Marquardt Algorithm. IEEE Transactions ON Neuronal Net-

works, 5, 6, 989–993, https://doi.org/10.1109/72.329697, 1994.

Hagan, M. T., Demuth, H. B., and Beale: Neural Network Design, Boston, MA: PWS Publishing, 1996.

Haustein, V.: Auswirkungen der hohen Niederschläge vom 17./18. Juli 2002 auf die Reinigungsleistung kommunaler Kläranlagen, in: Jahres-480

bericht 2002, Landesamt für Natur und Umwelt, 2002.

Hofmann, A. F., Peltzer, E. T., Walz, P. M., and Brewer, P. G.: Hypoxia by degrees: Establishing definitions for a changing ocean. Deep-Sea

Research I, 58, 1212-1226, https://doi.org/10.1016/j.dsr.2011.09.004, 2011.

Holtermann, P. L., Umlauf, L., Tanhua, T., Schmale, O., Rehder, G., and Waniek, J. J.: The Baltic Sea Tracer Release Experiment: 1. Mixing

rates. Journal of Geophysical Research, 117, C01021, https://doi.org/10.1029/2011JC007439, 2012.485

Hunke, E. C. and Dukowicz, J. K.: An Elastic-Viscous-Plastic Model for Sea Ice Dynamics. Journal of Physical Oceanography, 27, 1849-

1867, https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2, 1997.

Large, W. G., McWillimas, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parame-

terization. Reviews of Geophysics, 363–403, https://doi.org/10.1029/94RG01872, 1994.

Lennartz, S. T., Lehmann, A., Herrford, J., Malien, F., Hansen, H.-P., Biester, H. and Bange, H. W.: Long-term trends at the Boknis Eck490

time series station (Baltic Sea), 1957-2013; Does climate change counteract the decline in eutrophication? Biogeosciences 11, 6323-6339,

https://doi.org/10.5194/bg-11-6323-2014, 2002.

Makridakis, S., Spiliotis, E., and Assimakopoulos: Statistical and Machine Learning forecasting methods: Concerns and ways forward. PLoS

ONE, 13, 3, e0194889, https://doi.org/10.1371/journal.pone.0194889, 2018.

Marquardt, D. W.: An Algorithm for Least-Squares Estimation of nonlinear Parameters. Journal of the Society for Industrial and Applied495

Mathematics, 11(2), 431–441, https://doi.org/10.1137/0111030, 1963.

Petenati, T.: Sauerstoffmangel im bodennahen Wasser der westlichen Ostsee, Landesamt für Natur und Umwelt des Landes Schleswig-

Holstein, Germany, pp.1-8, 2017

Rahm, L.: Oxygen consumption in the Baltic proper. Limnology and Oceanography, 32, 4, 973-978, 1987.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process understanding500

for data-driven Earth system science. Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019.

Marlow, J.: Strömungsanalyse in einem ultra-hochaufgelösten Modell der Eckernförder Bucht, Bachelor Thesis CAU, pp.1-51, 2020.

Jacobsen, T. S.: The oxygen balance in the Kattegat deep water. Proceedings 13th Conference of the Baltic Oceanographers, 329-340, 1982.

16

https://doi.org/10.5194/bg-2021-31
Preprint. Discussion started: 12 February 2021
c© Author(s) 2021. CC BY 4.0 License.



Nausch, G., Bachor, A., Petenati, T., Voß, J., and von Weber, M.: Nährstoff in den deutschen Küstengewässern der Ostsee und angrenzenden

Gebieten. Meereskunde Aktuell Nord- und Ostsee, 1-16, ISSN 1867-8874, 2011.505

Noffke, A., Sommer, S., Dale, A. W., Hall, P. O. J., and Pfannkuche, O.: Benthic nutrient fluxes in the Eastern Gotland Basin (Baltic Sea)

with particular focus on microbial mat ecosystems. Journal of Marine Systems, 158, 1-12, https://doi.org/10.1016/j.jmarsys.2016.01.007,

2016.

Pers, C., and Rahm, L.: Changes in apparent oxygen removal in the Baltic proper deep water. Journal of Marine Systems, 25, 421-429,

https://doi.org/10.1016/S0924-7963(00)00031-2, 2000.510

Samuelsson P., Gollvik S., Kupiainen M., Kourzeneva E., van de Berg, W. J.: The surface processes of the Rossby Centre regional atmospheric

climate model (RCA4). SMHI-Report Meteorology 157, pp.1-58., 2015.

Samuelsson, P, Jones, C. G., Willen, U., Ullerstig, A., Gollvik, S., Hansson, U., Jansson. E., Kjellström, E., Nikulin, G. and Wyser, K.: The

Rossby Centre Regional Climate model RCA3; Model description and performance. Tellus A: Dynamic Meteorology and Oceanography

63, 4-23. https://doi.org/10.1111/j.1600-0870.2010.00478.x, 2016.515

Sbalzarini, I. F., Theriot, J., and Koumoutsakos, P.: Machine Learning for Biological Trajectory Classification Applications. In Proceedings

of the CTR summer program, Center for Turbulence Research, 2002.

Shapiro, R.: Smoothing, filtering, and boundary effects, Reviews of Geophysics, 8, 359-387, https://doi.org/10.1029/RG008i002p00359,

1970.

Smetacek, V.: The Annual Cycle of Kiel Plankton: A Long-term Analysis. Estuaries, 8, 2A, 145-157, https://doi.org/10.2307/1351864, 1985.520

Smetacek, V.: Annual cycle of sedimentation in relation to plankton ecology in western Kiel Bight. Ophelia, 1, 65–76, 1980.

17

https://doi.org/10.5194/bg-2021-31
Preprint. Discussion started: 12 February 2021
c© Author(s) 2021. CC BY 4.0 License.



Table 1. Estimates of oxygen consumption and production converted to respective model parameters of the EckO2 module. Conversions may

include devision by the average water depth and area of Eckernförde Bight (see Section 2.1.1), a O2:C ratio of 1.1 and a C:P ratio of 106.

Reference Description opro orewa orese

[mmol O2
m2 day

] [mmol O2
m3 day

] [mmol O2
m2 day

]

Babenerd (1991) In-situ measurements during summer stratification 1985

& 1986 at the monitoring station Boknis Eck

3.75

Bendtsen and Hansen (2013) Prescribed parameters in a model of the Baltic Sea-

North Sea transition which yielded a good fit to ob-

served oxygen concentrations

2.75 0.36 3.1

Rahm (1987) Budget calculations for the Baltic Proper 0.26

Noffke et al. (2016) In-situ measurements with a lander in the Eastern Got-

land Basin

5.8 - 20.8

Pers and Rahm (2000) Budget calculations for the Baltic Proper 1.1 - 2.4

Smetacek (1980, 1985) In-situ measurements in the western Kiel Bight with de-

tritus traps in June (assuming negligible fraction of per-

manent burial)

1.6

Smetacek (1980, 1985) In-situ measurements in the western Kiel Bight with de-

tritus traps in August (assuming negligible fraction of

permanent burial)

6.3

Haustein (2002) Average (dry days) oxygen consumption equivalent of

Kiel Bülk sewage effluent, distributed evenly over Eck-

ernförde Bight

0.04

Haustein (2002) Episodic, extreme discharge event during 18th and 19th

July 2002 of the Kiel Bülk sewage plant, converted into

oxygen consumption equivalent distributed evenly over

Eckernförde Bight

0.36

Nausch et al. (2011) Average Kiel Bülk sewage phosphorous effluent, con-

verted into oxygen consumption assuming that it fuels

organic matter production that is remineralized in Eck-

ernförde Bight

0.03

Nausch et al. (2011) Phosphorous loads of rivulet Schwentine that drains

into Kiel Bight, converted into oxygen consumption as-

suming that it fuels organic matter production that is

entirely remineralized at depth in Eckernförde Bight

0.18
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Table 2. List of model parameter settings for the EckO2-module and diffusive background mixing in MOMBE. κv refers to vertical back-

ground mixing (diffusivity). opro, orewa and orese refer to monthly (one value per month starting with the January value) oxygen production,

water column oxygen respiration and oxygen consumption by the sediment, respectively (cf. Figure 6). Values for orewa and orese are derived

from the published estimates listed in Table 1. opro is calculated as residual assuming instant equilibration of sedimentary fluxes.

tag description κv opro orewa orese

m2 s−1 [mmolO2 m−2 day−1] [mmolO2 m−3 day−3] [mmol2 m−2 day−1]

LoMix Low vertical background

mixing of momentum and

tracers. Local oxygen con-

sumption/production rates

at the upper limit of pub-

lished estimates.

5× 10−5 48 47 47 46 46 45 48

50 50 49 48 48

3.8 3.8 3.8 3.8 3.8 3.8

3.8 3.8

4 3.5 3 2.5 2.1 1.6

3.95 6.3 5.8 5.4 4.9

4.4

LoMixRem Low vertical background

mixing of momentum and

tracers. No local oxygen

consumption/production.

5× 10−5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

MedMix Medium vertical back-

ground mixing of mo-

mentum and tracers.

Local oxygen consump-

tion/production rates at the

upper limit of published

estimates.

1× 10−4 48 47 47 46 46 45 48

50 50 49 48 48

3.8 3.8 3.8 3.8 3.8 3.8

3.8 3.8

4 3.5 3 2.5 2.1 1.6

3.95 6.3 5.8 5.4 4.9

4.4

MedMixRem Medium vertical back-

ground mixing of mo-

mentum and tracers. No

local oxygen consump-

tion/production.

1× 10−4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

HiMix High vertical background

mixing of momentum and

tracers. Local oxygen con-

sumption/production rates

at the upper limit of pub-

lished estimates.

5× 10−4 48 47 47 46 46 45 48

50 50 49 48 48

3.8 3.8 3.8 3.8 3.8 3.8

3.8 3.8

4 3.5 3 2.5 2.1 1.6

3.95 6.3 5.8 5.4 4.9

4.4

HiMixRem High vertical background

mixing of momentum and

tracers. No local oxygen

consumption/production.

5× 10−4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0
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Table 3. Capacity estimation of input features. This table relates the fidelity of biweekly walk-forward ANN forecast of bottom oxygen

concentrations at the monitoring station Buoy 2a with data from Station Boknis Eck fed to the ANN. The average of windspeed squared

refers to respective biweekly forecast of zonal winds. The error is the RMS deviation between the (computationally cheap) ANN projection

and simulated (computationally expensive; full-fledged coupled biogeochemical ocean circulation model) bottom oxygen concentrations at

Buoy 2a relative to the respective RMS of the persistence model (which naively assumes that Boknis Eck bottom oxygen concentrations will

persist for 14 days at Buoy 2a.

Input Features Error [%]

average of zonal and meridional windspeed squared, full vertical profiles (26 depth levels) of

O2, temperature and salinity

54

average of zonal windspeed squared, bottom O2 64

average of zonal windspeed squared, bottom salinity 65

average of zonal windspeed squared, bottom temperature 62

average of zonal windspeed squared, surface and bottom temperature 58

surface and bottom temperature 58
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Figure 1. Schematic of the processes in Eckernförde Bight exemplarily for many coastal regions in the anthropocene. Assets such as fisheries,

recreational use, and seagrass - which stands as a proxy for biodiversity and blue carbon - are printed in black. Potential stressors putting

these assets at risk (such as climate change) are printed in red. Processes that call for a comprehensive and quantitative understanding in

order to facilitate cost-efficient mitigation and adaptation strategies are printed in blue.
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I.	Bobsien

Figure 2. Fish kill incident in the inner Eckernförde Bight. Dead fish washed up on the southern shore in September 2017.
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Figure 3. Overview map. The colors indicate water depth in m.
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1 Zielsetzung

Abnehmende Sauerstoffkonzentrationen in den Ozeanen führen zu wachsender Besorgnis - sowohl in
der Öffentlichkeit als auch bei Wissenschaftlern (z.B. Sonderforschungsbereich - SFB 754). Dieser Sau-
erstoffrückgang ist am ausgeprägtesten in Küstenregionen: in den 1960er Jahren wurden nur 42 der so-
genannten ”Todeszonen”, die das Überleben von höhere Tieren unmöglich machen, gemeldet. 2008 war
diese Zahl bereits auf 400 gestiegen (IPCC 2013).

Die Kooperation ’Frühwarnsystem Upwelling (FRAM)’ beschäftigt sich mit der Zunahme anoxischer
Ereignisse in der Eckernförder Bucht. Hier kam es in den letzten Jahren vermehrt zu Upwelling von sau-
erstoffarmem Tiefenwasser, was u.a. ein massives Fischsterben zur Folge hatte. Das Kooperationsprojekt
FRAM hat sich deshalb zum Ziel gesetzt, Entstehung und Auswirkungen dieser Ereignisse besser zu
verstehen und, idealerweise, zu prognostizieren.

Zu diesem Zweck wurde ein hochaufgelöstest Zirkulationsmodell für die Bucht aufgesetzt. In Kombina-
tion mit den Messdaten des GEOMAR Institutes sollen geplante Hindcast-Simulationen helfen, Szenarien
zu ermitteln, unter denen ein Upwelling von sauerstoffarmem Tiefenwasser in der Eckernförder Bucht
erfolgt.

2 Stand der Modellierung
2.1 Das neue hochauflösende Modell MOMBE

Die Grundlage für das neu entwickelte Modell der Eckernförder Bucht (MOMBE), ist das Ostseemo-
dell MOMBA. Das Ozean-Zirkulationsmodell MOMBA wurde 2013/14 von H. Dietze, U. Löptien and K.
Getzlaff in Zusammenarbeit mit dem Schwedischen Meteorologischen und Hydrologischen (SMHI) ent-
wickelt (Dietze et al. (2014), Dietze und Löptien (2016)). Das Modellgebiet umfasst die gesamte Ost-
see, während die Nordsee in vereinfachter Form repräsentiert wird. Um trotzdem realistische Salzwasser-
einströme simulieren zu können, wird die Oberflächenauslenkung am Eingang zur Nordsee als Funktion
lokaler Luftdruckgradienten auf der Nordhemisphäre vorgeschrieben.

Abb.1: (a) Bathymetrie im Bereich der Eckernföder Bucht. (a) In diesem Projekt entwickelte hoch-
aufgelöste Konfiguration MOMBE. (b) Ostsee Modell MOMBA.

Die hochaufgelöste, neu entwickelte regionale Modelkonfiguration MOMBE (cf. entsprechende Bathy-
metrie in Abbildung 1a) ist in die gröber aufgelöste Modelkonfiguration MOMBA genested (cf. entspre-
chende Bathymetrie in Abbildung 1b). Die Auflösung innerhalb der Eckernförder Bucht konnte mit diesem
Ansatz um etwa einen Faktor 20 erhöht werden, ohne exzessiven Rechenaufwand betreiben zu müssen.
Die horizontale und vertikale Auflösung in der Eckernförder Bucht wurde auf 100 m bzw. 0.5 m eingestellt.

1

Model	Bathymetry

Tonne 2a

Boknis Eck

Figure 4. Model bathymetry. The horizontal and vertical resolution are 100 m and 1 m, respectively. The northern and eastern boundaries

are closed (rigid walls). Sea surface height, temperatures and salinities around the closed boundaries are restored to prescribed values. Grey

circles depict the locations of the observational sites at the entrance and deep inside EB.
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Intermittent	local	environmental	
conditions	of	societal	concern	call	for	
forecasting	capabilities	in	order	to	
facilitate	cost-efficient	mitigation	and	
adaptation	strategies	of	
stakeholders.

A numerical	prognostic	model	that	
features	an	explicit	mechanistic	
representation	of	major	processes	
and	feedbacks	is	developed.	A	hind-
cast	simulation	retracing	events	of	
societal	concern	is	integrated	on	a	
supercomputer	in	order	to	fill	gaps	in	
observations.	

A	machine	learning	algorithm	is	
applied	to	the	output	of	the	
numerical	mechanistic	model.	The	
algorithm	links	environmental	
conditions	with	events	of	societal	
concern	in	an	“easy-to-use”	and	
numerically	cost	efficient	way	(i.e.	no	
supercomputer	needed).		

Figure 5. Schematic of workflow.
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sediment

sea	surface

compensation
depth	zco [m]

nominal	vertical	bounds	
of	model	grid	box

nominal	vertical	bounds	
of	model	grid	box

nominal	vertical	bounds	
of		model	grid	box

Sun
air-sea	O2 exchange	kgt [m/day]

orese sedimentary	O2	
respiration [molO2/m2/yr]

nominal	vertical	bounds	
of	model	grid	box

nominal	vertical	bounds	
of	model	grid	box

nominal	vertical	bounds	
of	model	grid	box

Figure 6. Schematic of dissolved oxygen module EckO2. EckO2 calculates sinks and sources of oxygen throughout the water column for

every grid box. These terms are then passed to the 3-dimensional general ocean circulation that handles the effect of advection and diffusion.

The velocity of the air-sea gas exchange is determined by the piston velocity kgt. Above the compensation depth zco, primary production

produces oxygen at a rate prescribed by the model parameter opro. Below the compensation depth zco, respiration of organic matter con-

sumes dissolved oxygen at a rate prescribed by orewa. At the bottom, prescribed oxygen fluxes orese mimic the oxygen consumption of

the sediment that is fuelled by the transfer across the water-sediment boundary. Table 2 summarizes respective parameter settings.
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(b)

LoMix
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HiMix Ensemble

HiMix
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MedMix

MedMix
HiMix LoMix

LoMixRem

Ensemble Ensemble

HiMixRem

MedMixRem

Observations

ObservationsObservations

Figure 7. Model assessment (Taylor Plots) at Station Buoy 2a in the interior of EB (Figure 4). Observational data and model output refer to

the 2000 to 2015 period. The simulation tags are defined in Table 2: LoMix, MedMix and HiMix denote the levels of diffusive background

mixing. Rem indicates remote effects of biogeochemical sources and sinks of oxygen only (i.e. no local oxygen consumption in EB.
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Figure 8. Simulated and observed oxygen concentrations at the bottom (20 m depth) of the monitoring station Buoy 2a. Panel a, b and c refer

to oxygen concentrations, temperature and salinity, respectively. Red crosses denote observations. The black line denotes the ensemble mean

of the simulations MedMix and LowMix. The grey line envelopes the ensembles’ extremes at any given time. The horizontal dashed cyan and

green lines in panel a show 120 and 60mmolO2 m−3 hypoxia thresholds, respectively.
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Figure 9. Fidelity of hindcasted hypoxic events (oxygen threshold of 120mmolO2 m−3) at Station Buoy 2a.
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(a)
LoMix
August

(b)
MedMix
August

(c)
LoMix
October

(d)
MedMix
October

Figure 10. Simulated climatological estimate of the residence time of water parcels in EB. The units are days elapsed since the water flushed

into the Bight. The estimate refers to the longest residence time found in local water columns. Panels (a) and (b) refer to August calculated

by the simulations LowMix and HiMix, respectively. Panels (c) and (d) refer to October calculated by the simulations LowMix and HiMix,

respectively.
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(a)
LoMix
August

(b)
MedMix
August

(c)
LoMix
October

(d)
MedMix
October

Figure 11. Simulated climatological estimate of the residence times of water parcels in EB. The units are days elapsed since the water

flushed into the Bight. Shown are sections along EB. Panels (a) and (b) refer to August calculated by the simulations LowMix and HiMix,

respectively. Panels (c) and (d) refer to October calculated by the simulations LowMix and HiMix, respectively.
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(a)
LoMix
August

(b)
MedMix
August

(c)
LoMix
October

(d)
MedMix
October

Figure 12. Simulated climatological estimate of local ventilation. The color shading denotes the time elapsed (age) since bottom water has

been in contact with the atmosphere in units days. Panels (a) and (b) refer to August calculated by the simulations LowMix and HiMix,

respectively. Panels (c) and (d) refer to October calculated by the simulations LowMix and HiMix, respectively.
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(d)
MedMix
October

Figure 13. Simulated climatological estimate of local ventilation. The color shading denotes the time elapsed (age) since water parcels

have been in contact with the atmosphere in units days. Shown are sections along EB. Panels (a) and (b) refer to August calculated by

the simulations LowMix and HiMix, respectively. Panels (c) and (d) refer to October calculated by the simulations LowMix and HiMix,

respectively.
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Figure 14. Simulated climatological (2000 - 2015) occurrence of hypoxia at the monitoring station Buoy 2a. Occurrence refers to the sum

of suboxic (i.e., <120mmolO2 m−3) model grid boxes, identified in climatological daily model output. From November to June no suboxic

conditions were absent.
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Figure 15. Histogram of observed climatological bottom oxygen concentrations at Boknis Eck (capped at 100mmolO2 m−3).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 16. Simulation (LoMix) of the 2017 hypoxic event. The colors refer to oxygen concentrations in mmolO2 m−3. The contours in

cyan and magenta show the 60 and 120mmolO2 m−3 isolines. The left column (Figures a to d) show oxygen concentrations on the sea

floor. The right column (Figure e to h) shows a section through the Bight with the city of Eckernförde to the left and the entrance to the Bight

to the right. (Corresponding animations featuring daily resolution named LowMix_O2_Bottom_2015.m4v and LowMix_O2_zonal_2017.m4v

are archived at https://doi.org/10.5281/zenodo.4271940.) 35
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Figure 17. Hovmoeller Diagrams of simulated water age and residence time at the monitoring station Buoy 2a (panel a and b, respectively).

The oval marking in August - September highlights the 2017 hypoxic event. The vertical gray line marks the start of the relaxation phase,

ending the hypoxic event.
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Figure 18. Simulated temporal evolution of wind direction, wind speed and bottom oxygen concentrations during the buildup of the 2017

hypoxic event. Panel a, b and c show wind direction, wind speed and bottom oxygen concentrations at the entrance (Station Boknis Eck) and

deep inside EB (Station Buoy 2a).
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[km/day]into the bay to sea

Figure 19. Simulated, daily mean zonal currents during the buildup of the 2017 hypoxic event shown in Figures 16, 17, and 18. Green to

blue colors characterize flows to the east (towards the KB). Yellow to red colors indicate flows to the west (into EB). The unit is km per day.

The depicted section has an extension of ≈ 13km.
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Figure 20. Simulated temporal evolution of wind direction, wind speed and bottom oxygen concentrations during the relaxation phase that

terminates the 2017 hypoxic event. Panel a, b and c show wind direction, wind speed and bottom oxygen concentrations at the entrance

(Station Boknis Eck) and deep inside EB (Station Buoy 2a).
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Figure 21. ANN error relative to naive persistency forecast versus the number of neurons in the hidden layer. The black line features the best

ANN parameter setting found within an ensemble of 30 optimizations for each of the number of neurons tested. The grey bars denote the

ensemble’s standard deviations.
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(a)

(b)

Figure 22. Walk-forward performance of ANN based on training and testing data (corresponding to 80% and 20% of the data shown here).

The black line shows bottom oxygen concentrations at Station Buoy 2a as simulated with the full-fledged and computationally expensive 3-D

coupled ocean-circulation biogeochemical model. Each of the red dots denotes a respective biweekly walk-forward (computationally cheap)

ANN forecast utilizing surface and bottom temperatures at Station Boknis Eck only. For comparison, the green line features a naive biweekly

persistency forecast based on bottom oxygen concentrations at Station Boknis Eck.
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Figure 23. Walk-forward validation (generalization) of ANN. The panels a, b, and c refer to year 2016, 2017, 2018. The black line shows

bottom oxygen concentrations at the monitoring station Buoy 2a as simulated with the full-fledged and computationally expensive 3-D

coupled ocean-circulation biogeochemical model. Each of the red dots denotes a respective biweekly walk-forward (computationally cheap)

ANN forecast utilizing surface and bottom temperatures at Station Boknis Eck only. The green line features a naive biweekly persistency

forecast based on bottom oxygen concentrations Station Boknis Eck for comparison.
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