

1 **Effect of plateau pikas' presence on the ecosystem services of alpine meadows**

2

3 **Yingying Chen¹, Huan Yang¹, Gensheng Bao², Xiaopan Pang¹, Zhenggang Guo¹**

4 ¹Engineering Research Center of Grassland Industry, Ministry of Education; Key Laboratory

5 of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs;

6 College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou,

7 730020, P. R. China

8 ²Academy of Animal and Veterinary Sciences, Qinghai University (Qinghai Academy of

9 Animal and Veterinary Sciences), Xining, China

10

11 **Correspondence:** Zhenggang Guo (guozhg@lzu.edu.cn)

12

13 **Abstract**

14 The activity of small mammalian herbivores influences grassland ecosystem services in arid
15 and semi-arid regions. Plateau pika (*Ochotona curzoniae*) was considered as a focal organism
16 to investigate the effect of small mammalian herbivores on meadow ecosystem services in
17 alpine regions. In this study, a home-range scale was used to measure the ecological service of
18 forage available to livestock, water conservation, carbon sequestration, and soil nutrient
19 maintenance (total nitrogen, phosphorus, and potassium) in the topsoil layer; and a quadrat
20 scale was used to assess the ecological service of biodiversity conservation of alpine
21 meadows. This study showed that the presence of plateau pikas led to lower ecological
22 services of forage available to livestock and water conservation, and led to higher ecological
23 services of biodiversity conservation, carbon sequestration, soil nitrogen, and phosphorus
24 maintenance of meadow ecosystems. In contrast, it had no impact on ecological service of
25 soil potassium maintenance of meadow ecosystems in alpine regions. With the increase of
26 disturbance intensity of plateau pikas, the forage available to livestock, biodiversity
27 conservation, and soil nutrient maintenance of meadow ecosystems in alpine regions first
28 increased and then decreased; the water conservation tended to decrease linearly with the
29 increasing disturbance intensity of plateau pikas. These results present a possible pattern of
30 plateau pikas influencing the ecosystem services of meadow ecosystems in alpine regions,
31 richening the small mammalian herbivores in relation to grassland ecosystem services.

32 **1 Introduction**

33 Grasslands provide multiple ecosystem services, mainly including provisioning services
34 of food and water, regulating services of carbon sequestration and water conservation,
35 supporting services of soil nutrient maintenance and biodiversity conservation, and cultural

36 services of landscapes and recreation tourism (Millennium Ecosystem Assessment, 2005).
37 These ecosystem services sustain animal production, flora and fauna, and other human
38 welfare (Costanza et al., 1997; Zhang et al., 2018; Dong et al., 2020); however, they are
39 affected by multiple biotic factors, such as soil microbial communities (Van Eekeren et al.,
40 2010), grazing by large herbivores (Lu et al., 2017), and the presence of small herbivores
41 (Delibes-Mateos et al., 2011; Martínez-Estévez et al., 2013).

42 Small mammalian herbivores are common biotic factors (Davidson et al., 2012). These
43 herbivores usually create extensive disturbances on grassland vegetation and soil (Pang et al.,
44 2020a, 2020b) by developing burrow systems (Delibes-Mateos et al., 2008; Sun et al., 2015),
45 excreting feces and urine (Zhang et al., 2016), consuming plants (Eldridge and Myers, 2001;
46 Liu et al., 2017), clipping tall plants (Zhang et al., 2020), and producing bare soil patches
47 (Guo et al., 2012a, 2012b; Yu et al., 2017a, 2017b) or mounds (Yang et al., 2021). Previous
48 studies have shown that the presence of prairie dogs (*Cynomys ludovicianus*) can increase the
49 ecological services of forage available to livestock, water conservation, carbon sequestration,
50 and biodiversity conservation of grassland ecosystems in arid regions (Ceballos et al., 1999,
51 Martínez-Estévez et al., 2013), whereas the presence of European rabbit (*Oryctolagus*
52 *cuniculus*) can decrease the ecological service of forage available to livestock
53 (Delibes-Mateos et al., 2008; Eldridge and Myers, 2001), and increase ecological services of
54 biodiversity conservation (Delibes-Mateos et al., 2008) and nitrogen maintenance (Willott et
55 al., 2000) of grassland ecosystems in semi-arid regions. In addition to grasslands in arid and
56 semi-arid regions, vast alpine meadows exist in high latitude and altitude regions throughout
57 the world (Zhang et al., 2018; Dong et al., 2020). However, how small mammalian herbivores

58 influence the ecosystem services in alpine meadows as much as they do in arid and semi-arid
59 regions has not been well documented.

60 The plateau pika (*Ochotona curzoniae*) is a common, small mammalian herbivore that
61 mainly lives in alpine meadows of the Qinghai-Tibetan Plateau (Smith and Foggin, 1999).
62 This small mammalian herbivore with averaging 150 g are diurnally active and
63 non-hibernating (Smith and Wang, 1991; Fan et al., 1999), and preferentially consume
64 dicotyledons (Zhao et al., 2013; Pang and Guo, 2017). Plateau pikas, a sexual monomorphism
65 (Dobson et al., 1998), often construct a family warren with numerous burrow entrances and
66 develop a complex burrow system with average 13 m length and 30 cm depth (Fan et al.,
67 1999). This mammalian herbivore is social and philopatric (Dobson et al., 1998) and its
68 young offspring stay with its family during its birth year (Wang et al., 2020). Plateau pikas are
69 generally considered a pest in China (Harris, 2010; Pang and Guo, 2017) as they often
70 exacerbate the degradation of alpine meadows (Liu et al., 2013; Zhang et al., 2016). However,
71 some studies have argued that plateau pika is a key species in alpine meadow ecosystems
72 (Smith and Foggin, 1999; Delibes-Mateos et al., 2011). This disagreement has encouraged
73 professionals to re-evaluate the role of plateau pikas in alpine meadow ecosystems. Thus, the
74 effects of plateau pikas' presence on ecosystem services of alpine meadows allow insight into
75 the role of plateau pikas in alpine meadow ecosystems. Previous studies have demonstrated
76 that the presence of plateau pikas decreases (Liu et al., 2013) or has no significant effect on
77 plant biomass (Pang and Guo, 2017), increases (Liu et al., 2017; Pang and Guo, 2017) or
78 decreases (Sun et al., 2015) plant-species richness, and increases (Yu et al., 2017a; Pang et al.,
79 2020a, 2020b) or decreases (Sun et al., 2015) soil carbon and nutrients. In addition, previous

80 studies have shown that the disturbance intensity of plateau pikas affects plant-species
81 richness, and soil nutrient stocks of alpine meadows (Yu et al., 2017a; Pang and Guo, 2018).
82 These findings imply that plateau **pikas** may have an impact on the ecosystem services of
83 alpine meadows. Thus, further studies are needed to test whether the presence of plateau **pikas**
84 and its disturbance intensity influence the ecosystem services of alpine meadows, which can
85 richen the presence of small mammalian herbivores in relation to grassland ecosystem
86 services.

87 Since soil carbon and nutrients differ between vegetated and bare soil patches in the
88 home range (Yu et al., 2017b), Pang et al. (2020a; 2020b) proposed that the home-range scale
89 is a better proxy than the quadrat scale to estimate the complete effects of the presence of
90 plateau **pikas** on soil carbon and nutrient stocks. Although the provisioning, regulation,
91 support, and cultural services of alpine meadows can be estimated by multiple indicators
92 (Egoh et al., 2012; Brown et al., 2014), one or two can be used to verify whether the presence
93 and intensity of plateau **pikas** influence each ecosystem service. In previous studies, palatable
94 plant biomass for livestock has been used to evaluate the provisioning services
95 (Martínez-Estévez et al., 2013; Wen et al., 2013); soil-water storage and soil organic carbon
96 stock have been used to evaluate the regulating services (Wen et al., 2013; Li and Xie, 2015;
97 Tang et al., 2019); and plant-species richness and soil total nutrient stocks can be used to
98 evaluate the supporting services (Wen et al., 2013). Notably, cultural services are particularly
99 related to the spatial scale, as many are perceived visually over distant views (Norton et al.,
100 2012). The plateau pika is territorial and its **habitat** use is patchy within a given area (Pang et
101 al., 2020a), which leads to mismatches between the **spatial** scale and cultural services (De

102 Groot et al., 2010). Therefore, the present study used **ecological services of forage available to**
103 **livestock**, water conservation, carbon sequestration and soil nutrient maintenance, and
104 biodiversity conservation to test how the presence of plateau **pikas** influences the ecosystem
105 services of alpine meadows across five sites. In this study, we hypothesized that (1) the
106 presence of plateau **pikas** leads to lower **ecological service of forage available to livestock**
107 because of lower palatable plant biomass in the presence of small mammalian herbivores; (2)
108 **the presence of plateau pikas** leads to higher **ecological services of** water conservation and
109 carbon sequestration because small mammalian herbivores can increase soil-water storage
110 and carbon stocks; and (3) **the presence of plateau pikas** leads to higher **ecological services of**
111 biodiversity conservation and soil nutrient maintenance because small mammalian herbivores
112 can increase plant-species richness and soil nutrient stocks.

113 **2 Materials and methods**

114 **2.1 Study site descriptions**

115 Plateau pikas can live in various habitats with different soil types, topographies, and
116 microclimates **on the Qinghai-Tibetan Plateau**. To determine how the presence of plateau
117 **pikas generally** influences the ecosystem services of alpine meadows, five survey sites were
118 selected in Luqu (102°22'12"E, 34°15'51"N), Gangcha (100°26'26"E, 37°36'12"N), Haiyan
119 (100°54'33"E, 36°57'50"N), Qilian (100°34'48"E, 37°43'26"N), and Gonghe (99°47'11"E,
120 36°43'48"N) counties on the Qinghai-Tibetan Plateau. These five survey sites have a similar
121 typical plateau continental climate, with elevations ranging from 3194 m at the Gonghe
122 survey site to 3550 m at the Luqu survey site. Based on 5-year weather data, the mean annual
123 temperatures are 3.1, 0.9, 1.9, 2.2, 3.3°C **at Luqu, Gangcha, Haiyan, Qilian, and Gonghe**,

124 respectively, of which the average temperature in warm season are 9.3, 8.3, 9.6, 10.3, 9.9°C
125 and in cold season are -3.1, -6.5, -5.8, -5.9, -3.4°C. The mean annual precipitation is 439.5,
126 258.9, 257.4, 257.0, and 239.8 mm, of which the warm season accounts for 83.4%, 92.8%,
127 89.3%, 91.5%, 91.4% at Luqu, Gangcha, Haiyan, Qilian, and Gonghe, respectively.
128 According to the Chinese soil classification system (Gong, 2001), the soil type at each site is
129 alpine meadow soil, similar to Cambisol in the WRB soil classification system.

130 Animal husbandry is the dominant use of alpine meadows on the Qinghai-Tibetan
131 Plateau, and herders traditionally graze their livestock seasonally on cold and warm
132 grasslands. The survey sites in this study were all situated in cold grasslands, in which alpine
133 meadows were fenced from mid-April to September, and fences were opened to grazing yaks
134 from mid-October to early April (Zhang et al., 2020). All field data were collected in August
135 when the annual population of plateau pikas was the highest and reproduction had largely
136 ceased (Qu et al., 2013; Pang et al., 2020a, 2020b). In addition, the growing season for plants
137 is short on the Qinghai-Tibetan Plateau, and some plants can turn green until July. Therefore,
138 sampling in August is optimal because August is good time to identify all plants and ensure
139 an accurate survey of the plant species. Notably, the small burrowing herbivore at each survey
140 site was only plateau pikas.

141 **2.2 Field survey design**

142 The adult dispersal of plateau pikas is a gradual process (Pang et al., 2020a), it is easy to
143 identify reference sites without plateau pikas, even though these sites might be potential as
144 suitable habitats. In this study, a home-range scale was used to calculate the ecological
145 services of forage available to livestock, water conservation, carbon sequestration, and soil

146 nutrient maintenance, and a quadrat scale was used to calculate the ecological service of
147 biodiversity conservation.

148 A stratified random and paired design was used to select plots. The home range of the
149 plateau pika was approximately 1262.5 m² (Fan et al., 1999), and the plot size was 35 × 35 m,
150 which was similar to the average area of the plateau pika's home range. At each of the five
151 sites, this study first selected 10 plots where plateau pikas were present, or where active
152 burrow entrances were observed. The second plot was identified along the road when the first
153 plot with plateau pikas was selected. The distance between the two plots with plateau pikas
154 was more than 3 km, which ensured that plateau pikas of the same family would not appear in
155 two plots at the same time. Second, a paired adjacent plot without plateau pikas and active
156 burrow entrances was selected for each plot with plateau pikas. The plots without plateau
157 pikas were in any direction of plots with plateau pikas. The distance between each plot with
158 plateau pikas and its paired plot without plateau pikas ranged from 500 to 1000 m. If the
159 distance between each paired plot was too close, the plateau pikas could move between plots
160 with and without plateau pikas. To ensure that each plot with plateau pikas was paired with a
161 plot without plateau pikas, each paired plot shared the alpine meadow with same dominant
162 plant, with no obvious differences in soil type, topography, or microclimate. In total, there
163 were 10 paired plots at each site and 100 plots across five sites, including 50 with and 50
164 without plateau pikas. Each paired plot shared the same grazing intensity during the cold
165 season; however, 50 paired plots consisted of different yak grazing intensity, and this can
166 permit the general pattern relating to the effect of plateau pika disturbance on alpine meadow
167 ecosystem services.

168 **2.3 Field sampling**

169 Field surveys and sampling were conducted in early August 2020. First, the active
170 burrow entrance at each plot with plateau pikas was estimated by the “plugging tunnels
171 method,” in which the burrow entrances were plugged with hay for 3 days (Sun et al., 2015),
172 and the number of plugs cleared by the plateau pikas to allow access to the meadow surface
173 was recorded (Guo et al., 2012a). The average number of burrow entrances with cleared plugs
174 after 3 days was taken as the density of active burrow entrances. For plots with plateau pikas,
175 the density of active burrow entrances was used as a proxy for the intensity of the disturbance
176 (Guo et al., 2012a; Sun et al., 2015). Second, this study was restricted to plateau pikas in
177 relation to the ecosystem services of alpine meadows. However, bare soil patches caused by
178 other factors (no plateau pikas) simultaneously existed on the vegetated surface in the
179 presence/absence of plateau pikas. To actual quantify the effect of plateau pikas on ecosystem
180 services of alpine meadows, this study only measured the area of bare soil patches caused by
181 plateau pikas, although there exist multiple types of bare soil patches in alpine meadows. The
182 area of each bare soil patch (created by plateau pikas) in the plot with plateau pikas was
183 measured. Each bare soil patch was identified as regular shape or irregular shape. If one bare
184 soil patch was identified as regular shape, such as rectangle, circle, trapezoid, etc; a ruler was
185 used to measure its length, width, height, diameter, upper and lower bottom, and these data
186 was used to calculate the area of that bare soil patch. If one bare soil patch was identified as
187 irregular shape, this bare soil patch was divided into several regular shapes; the areas of these
188 regular shapes were calculated, respectively; the area sum of these regular shapes form
189 irregular bare soil patch was considered as the area of that irregular bare soil patch (Han et al.,

190 2011). Then, the sum of all bare soil patch areas in each plot with plateau pikas was calculated
191 and defined as the bare soil area for that plot. Third, five vegetated quadrats (1×1 m) were
192 placed on the vegetated surface approximately 8 m apart along a W pattern in all plots (with
193 or without plateau pikas). In plot with plateau pikas, if quadrat was justly covered with the
194 bare patches caused by plateau pikas, the quadrat was slightly moved to avoid it; if quadrat
195 was justly covered with the bare patches caused by other factors, the quadrat was not moved.
196 Fourth, alpine meadows in plot with plateau pikas consisted of bare and vegetated surface,
197 and a bare soil patch was selected as a paired bare soil quadrat for each vegetated quadrat in
198 the plot with plateau pikas, and the distance between each paired bare soil quadrat and
199 vegetated quadrat was as short as possible (less than 1 m). Bare soil patch quadrat and each
200 vegetated quadrat were beneficial to accurately measure the soil nutrient, carbon
201 concentrations and plant biomass, which reflected the effect of plateau pikas' presence on
202 ecosystem services in alpine meadows by comparing the parameters between plots with and
203 without plateau pikas at home range scale. Thus, there were 5 paired quadrats, consisting of 5
204 vegetated and 5 bare soil quadrats in each plot with plateau pikas. Additionally, there were 5
205 vegetated quadrats in each plot without plateau pikas, since this study focused on bare soil
206 patches induced by plateau pikas.

207 In each vegetated quadrat of the plot with or without plateau pikas, all vascular plant
208 species were identified, and the number of plant species were recorded as plant-species
209 richness. Then, all plants rooted in a quadrat were harvested into palatable and unpalatable
210 plants, in which palatable plants or unpalatable plants were for yak and Tibetan sheep (Pang
211 and Guo, 2017). Finally, all palatable plant samples were placed in envelopes and transported

212 to the laboratory.

213 Generally, most burrows derived from the activities of plateau pikas are less than 20 cm
214 in depth (Yu et al., 2017b), although a few burrows extend to depths of 60 cm (Fan et al.,
215 1999). In addition, the majority of plant roots in alpine meadows of the Qinghai-Tibetan
216 Plateau are in the top 20 cm of the soil. The soil samples were collected at a depth of 20 cm.
217 Soil samples were collected from vegetated and bare soil quadrats for each plot with plateau
218 pikas and vegetated quadrats for each plot without plateau pikas. Before collecting the soil
219 samples, plants and litter were removed from the soil surface. First, a 5 cm diameter soil
220 auger was used to collect soil samples, which were used to measure soil organic carbon and
221 soil nutrient concentrations (total nitrogen, phosphorus, and potassium). Second, soil profiles
222 in each quadrat were obtained using a spade, and a stainless-steel cutting ring (with a volume
223 of 100 cm³) was used to collect soil cores to determine soil bulk density and soil water
224 content. Soil samples used to determine soil bulk density were packed into aluminum boxes
225 with recorded weights, and each aluminum box was numbered. The aluminum boxes
226 containing fresh soil were immediately weighed, recorded, stored at 4°C, and then transported
227 to the laboratory. Thus, in this study, 10 soil samples were collected to analyze the soil carbon,
228 nitrogen, phosphorus, and potassium concentrations, and 10 soil samples were obtained to
229 determine the soil bulk density in each plot with plateau pikas. Because this study is
230 constricted with bare soil patch caused by plateau pikas, bare soil quadrats was not considered
231 in plot without plateau pikas; therefore, 5 soil samples were used to determine the soil carbon,
232 nitrogen, phosphorus, and potassium concentrations, and 5 samples were obtained for the
233 analysis of soil bulk density in each plot without plateau pikas. 5 soil samples in each plot

234 were individually measured. The average value of five soil samples in one plot was
235 considered as the representative data of that plot.

236 **2.4 Analysis of samples**

237 In the laboratory, palatable plant samples were dried in an oven at 80°C for 48 h and
238 weighed. The soil samples used to measure soil bulk density and soil-water content were
239 dried to a constant weight at 105±2°C, and the aluminum boxes with dry soil were weighed
240 and the values were recorded. The soil samples used to measure soil organic carbon, total
241 nitrogen, phosphorus, and potassium concentrations were air-dried, gravel and roots were
242 **manually picked out**, and the proportion of gravel larger than 2.0 mm in the soil sample was
243 determined by passing through a 2.0 mm sieve. Finally, soil samples were sieved at 0.15 mm
244 to analyze soil organic carbon, nitrogen, phosphorus, and potassium concentrations in the
245 laboratory. Soil organic carbon was measured using the dichromate heating-oxidation
246 (Nelson and Sommers, 1982). Soil total nitrogen concentration was measured using the
247 Kjeldahl procedure. Soil total phosphorus concentration was measured using the
248 Molybdenum blue colorimetric method. Soil total potassium concentration was measured
249 using flame photometry.

250 Soil bulk density, soil organic carbon, and nutrient concentrations (total nitrogen,
251 phosphorus, and potassium) were used to calculate the soil organic carbon, total nitrogen,
252 phosphorus, and potassium stocks. Soil bulk density and soil-water content were used to
253 calculate the soil-water storage (Jia et al., 2020).

254 **2.5 Calculations**

255 The bare soil area consisted of all bare soil patches, and the vegetated surface area was

256 estimated from the plot areas minus the bare soil areas. This study only measured the area of
257 bare soil patches caused by plateau pikas, although there were other kinds of bare soil patches
258 in alpine meadows. Therefore, bare soil areas caused by plateau pikas were considered to be
259 zero in each plot without plateau pikas, and the vegetated surface area was considered to be
260 100%.

261 The palatable plant biomass was calculated using the following equation:

262
$$GB = B_q \times \delta_{va} \quad (1)$$

263 where GB , B_q , and δ_{va} are the palatable plant biomass of the plot, palatable plant biomass
264 on the quadrat scale (g m^{-2}), and vegetated surface area, respectively.

265 The plant-species richness in a quadrat ($1 \times 1 \text{ m}$) was measured using the species number
266 of each quadrat.

267 Soil-water storage was determined using the method recommended by Jia et al. (2020),
268 and it was calculated by the following equation:

269
$$SWS_{pika} = (SWC_{BA} \times BD_{BA} \times T \times (1 - \theta_{BA}) \times 0.01 \times BA) + (SWC_{VA} \times BD_{VA} \times T \times (1 - \theta_{VA}) \times 0.01 \times VA) \quad (2)$$

270 Where SWS_{pika} , SWC_{BA} , BD_{BA} , and θ_{BA} were soil-water storage in a plot with plateau
271 pikas, water content (g kg^{-1}), soil bulk density (g cm^{-3}) and soil fraction of gravel larger than 2
272 mm in bare soil areas of plots with plateau pikas, respectively; BA was the percentage of
273 bare soil areas in plots with plateau pikas; SWC_{VA} , BD_{VA} , and θ_{VA} were water content (g kg^{-1}),
274 soil bulk density (g cm^{-3}) and soil fraction of gravel larger than 2 mm in vegetated areas of a
275 plot with plateau pikas, respectively; and T was soil thickness (20 cm); VA was the percentage
276 of vegetated surface area in plots with plateau pikas; SWC_{BA} and SWC_{VA} was measured by
277 oven drying method.

278 $SWS_{no\ pika} = SWC_{no\ pika} \times BD_{no\ pika} \times T \times (1 - \theta_{no\ pika}) \times 0.01 \times 100\% \quad (3)$

279 Where $SWS_{no\ pika}$, $SWC_{no\ pika}$, $BD_{no\ pika}$ and $\theta_{no\ pika}$ were soil-water storage in a plot without
280 plateau pikas, soil water content (g kg^{-1}), soil bulk density (g cm^{-3}) and soil fraction of gravel
281 larger than 2 mm in plots without plateau pikas, respectively; and T is soil thickness (20 cm).

282 The soil organic carbon stock per plot was estimated using the method described by Pang
283 et al. (2020b), and it was calculated by following equation:

284 $SOC_{pika} = (SOC_{BA} \times BD_{BA} \times T \times (1 - \theta_{BA}) \times 0.01 \times BA) + (SOC_{VA} \times BD_{VA} \times T \times (1 - \theta_{VA}) \times 0.01 \times VA) \quad (4)$

285 Where SOC_{pika} was soil organic carbon stock in a plot with plateau pikas (kg m^{-2});
286 SOC_{BA} , BD_{BA} , and θ_{BA} were soil organic carbon concentration (g kg^{-1}), soil bulk density (g
287 cm^{-3}) and soil fraction of gravel larger than 2 mm in bare soil areas of plots with plateau pikas,
288 respectively; BA was the percentage of bare soil areas in plots with plateau pikas; SOC_{VA} ,
289 BD_{VA} , and θ_{VA} were organic carbon concentration (g kg^{-1}), soil bulk density (g cm^{-3}) and soil
290 fraction of gravel larger than 2 mm in vegetated areas of a plot with plateau pikas,
291 respectively; and T was soil thickness (20 cm); VA was the percentage of vegetated surface
292 area in plots with plateau pikas.

293 $SOC_{no\ pika} = SOC_{no\ pika} \times BD_{no\ pika} \times T \times (1 - \theta_{no\ pika}) \times 0.01 \times 100\% \quad (5)$

294 Where $SOC_{no\ pika}$ was soil organic carbon stock in the plot without plateau pikas (kg
295 m^{-2}); and $SOC_{no\ pika}$, $BD_{no\ pika}$ and $\theta_{no\ pika}$ were soil organic carbon concentration (g kg^{-1}), soil
296 bulk density (g cm^{-3}) and soil fraction of gravel larger than 2 mm in plots without plateau
297 pikas, respectively; and T was soil thickness (20 cm).

298 The soil total nitrogen, phosphorus, and potassium stocks per plot were quantified using
299 the method described by Pang et al. (2020a), and it was calculated by the following
300 equation:

301 $SNSi_{pika} = (SNi_{BA} \times BD_{BA} \times T \times (1 - \theta_{BA}) \times 0.01 \times BA) + (SNi_{VA} \times BD_{VA} \times T \times (1 - \theta_{VA}) \times 0.01 \times VA)$ (6)

302 Where $SNSi_{pika}$ was soil total nitrogen, phosphorus, potassium stock in plot with plateau
303 pikas (kg m^{-2}), and SNi_{BA} , BD_{BA} , and θ_{BA} were soil nutrient concentration (g kg^{-1}), soil bulk
304 density (g cm^{-3}) and soil fraction of gravel larger than 2 mm in bare soil area of plots with
305 plateau pikas, respectively; BA was the percentage of bare soil areas in plots with plateau
306 pikas; SNi_{VA} , BD_{VA} , and θ_{VA} were soil nutrient concentration (g kg^{-1}), soil bulk density (g cm^{-3})
307 and soil fraction of gravel larger than 2 mm in vegetated areas of a plot with plateau pikas,
308 respectively; and T was soil thickness (20 cm); VA was the percentage of vegetated surface
309 area in plots with plateau pikas.

310 $SNSi_{no\ pika} = SNi_{no\ pika} \times BD_{no\ pika} \times T \times (1 - \theta_{no\ pika}) \times 0.01 \times 100\%$ (7)

311 Where $SNSi_{no\ pika}$ was soil total nitrogen, phosphorus, potassium stock in the plot without
312 plateau pikas (kg m^{-2}), $SNi_{no\ pika}$, $BD_{no\ pika}$ and $\theta_{no\ pika}$ were soil nutrient concentration (g kg^{-1}),
313 soil bulk density (g cm^{-3}) and soil fraction of gravel larger than 2 mm in plots without plateau
314 pikas, respectively; and T was soil thickness (20 cm).

315 **2.6 Data analysis**

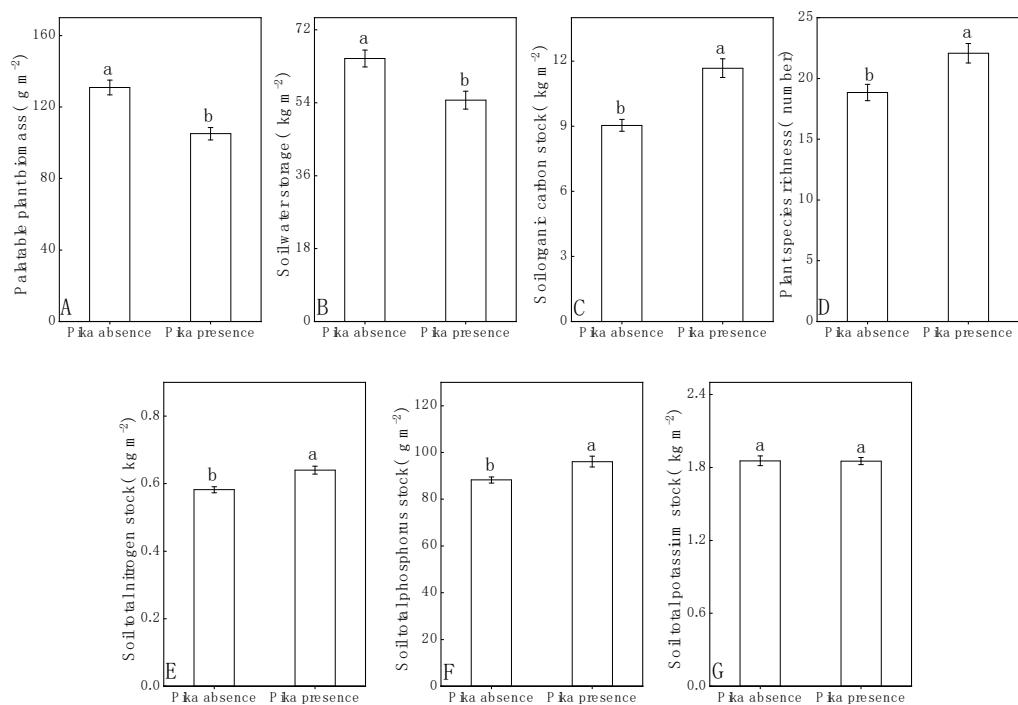
316 Data from 50 disturbed plots and 50 undisturbed plots were used to examine the
317 difference in ecosystem services of alpine meadows between the presence of plateau pikas
318 and the absence of plateau pikas; and then data from 50 disturbed plots were used to examine
319 the responses of each ecosystem service of alpine meadows to the disturbance intensity of
320 plateau pikas.

321 All data variables (palatable plant biomass, plant-species richness, soil-water storage,
322 soil organic carbon stock, soil total nitrogen stock, soil total phosphorus stock, and soil total
323 potassium stock) were assessed for the normality and homogeneity by using the Shapiro-Wilk

324 test. If necessary, the data were base-10 log-transformed to fit the assumption of normality
325 and homogeneity for further variance analysis.

326 A Linear Mixed Model (LMM) with the function “lmer” from the lme4 package was
327 used to examine differences in palatable plant biomass, plant-species richness, soil-water
328 storage, soil organic carbon stock, soil total nitrogen stock, soil total phosphorus stock, and
329 soil total potassium stock between the presence and absence of plateau **pikas** across the five
330 sites. In linear mixed models, the abovementioned parameters acted as response variables, the
331 absence/presence were introduced as **fixed factor**, and the paired plots nested within each site
332 as a random factor.

333 To clarify the responses of palatable plant biomass, plant-species richness, soil-water
334 storage, soil organic carbon stock, soil total nitrogen stock, soil total phosphorus stock, and
335 soil total potassium stock to the disturbance caused by plateau pikas, a linear model (LM) was
336 used to examine the relationships between these variables and active burrow entrance
337 densities in all plots with plateau pikas. The densities of active burrow entrances **by plateau**
338 **pikas** were considered to be the fixed factor, and were used to construct the regression
339 analysis between palatable plant biomass, plant-species richness, soil-water storage, soil
340 organic carbon stock, soil total nitrogen stock, soil total phosphorus stock, and active burrow
341 entrances densities. To select the final regression models, likelihood ratio tests were used to
342 compare simple linear regression and polynomial regression models. After likelihood ratio
343 tests, the models with $p < 0.05$ and the smaller Akaike Information Criterion (AIC) were used
344 as the final regression models.

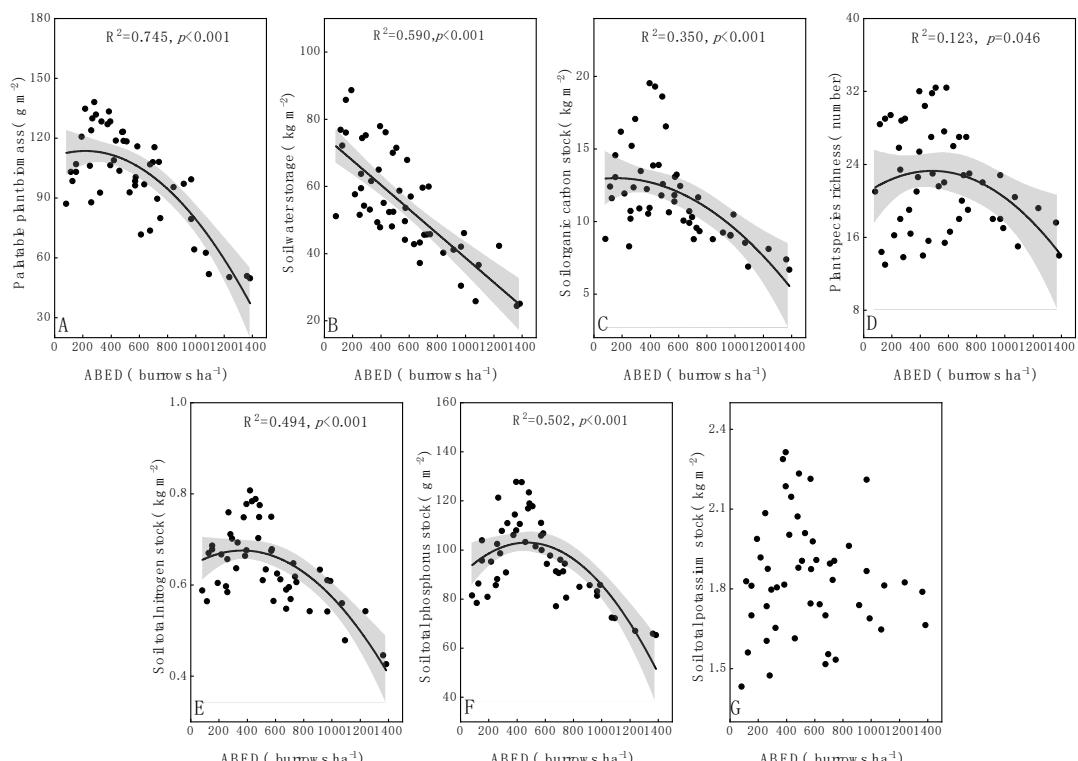

345 The Bonferroni’s test used to adjust P values and made to correct for experiment-wise

346 **error rates.** All statistical analyses were performed with R 4.0.2 (R Foundation for Statistical
347 Computing, Vienna, Austria).

348 **3 Results**

349 **3.1 Effects of plateau pikas' presence on the ecosystem services of alpine meadows**

350 The palatable plant biomass (Fig. 1A) and soil-water storage (Fig. 1B) were lower in the
351 plots with plateau pikas than in the plots without plateau pikas, whereas soil organic carbon
352 stock (Fig. 1C), plant-species richness (Fig. 1D), soil total nitrogen (Fig. 1E) and total
353 phosphorus stocks (Fig. 1F) in the plots with plateau pikas was higher than those in the plots
354 without plateau pikas. In addition, there was no difference in the soil total potassium stock
355 between the plots with and without plateau pikas (Fig. 1G).



356
357 **Figure 1.** Palatable plant biomass (A, $F = 46.254, p < 0.001$), soil-water storage (B, $F =$
358 $35.189, p < 0.001$), soil organic carbon stock (C, $F = 87.628, p < 0.001$), plant-species
359 richness (D, $F = 63.569, p = 0.003$), soil total nitrogen stock (E, $F = 22.477, p < 0.001$), soil

360 total phosphorus stock (F, $F = 11.724$, $p = 0.004$), and soil total potassium stock (G, $F = 0.026$,
 361 $p = 0.88$) of plots with and without plateau **pikas** (mean \pm standard error). Lower case
 362 represents a significant difference between the absence and presence of pika based on an
 363 LMM.

364 **3.2 Effects of plateau **pikas'** disturbance intensity on the ecosystem services of alpine
 365 meadows**

366 The palatable plant biomass (Fig. 2A), soil organic carbon stock (Fig. 2C), plant-species
 367 richness (Fig. 2D), soil total nitrogen (Fig. 2E), and phosphorus (Fig. 2F) stocks significantly
 368 increased at first and then decreased gradually as the disturbance intensity of plateau pikas
 369 increased. While the soil-water storage of the topsoil layer (Fig. 2B) decreased linearly with
 370 increasing disturbance intensity of plateau pikas. In addition, the disturbance intensity of
 371 plateau pikas had no obvious relationship with soil total potassium (Fig. 2G).

372
 373 **Figure 2.** The palatable plant biomass (A, $F = 68.534$), soil-water storage (B, $F = 69.102$),

374 soil organic carbon stock (C, $F = 12.642$), plant-species richness (D, $F = 3.292$), soil total
375 nitrogen stock (E, $F = 22.901$), soil total phosphorus stock (F, $F = 23.652$), soil total
376 potassium stock (G) for different disturbance intensity of plateau **pikas** based on linear models
377 (LMs). An adjusted local smoothed regression line (**black**) with its **95%** confident interval
378 (**gray**) was used to determine the relationship between the disturbance intensity **of plateau**
379 **pikas** and the above indicators. ABED: active burrow entrance densities

380 **4 Discussion**

381 Prairie dogs and European rabbits have been shown to affect grassland ecosystem
382 services in arid and semi-arid regions (Delibes-Mateos et al., 2011; Martínez-Estévez et al.,
383 2013). This study combined the home-range scale and a quadrat scales to test how **the**
384 **presence of plateau pikas** and its disturbance intensity influence the ecosystem services of
385 alpine meadows, and found that the presence of plateau **pikas** and its disturbance intensity
386 indeed impacts the ecosystem services of alpine meadows, similar to prairie dogs and
387 European rabbits in grassland ecosystem services in arid and semi-arid regions.

388 Lower palatable plant biomass in the presence of plateau pikas indicates that the
389 **presence of plateau pikas** reduces the ecological service of forage available to livestock,
390 which is consistent with the results of European rabbits in semi-arid regions (Eldridge and
391 Myers, 2001; Delibes-Mateos et al., 2008), and is not consistent with results from prairie dogs
392 in arid regions (Martínez-Estévez et al., 2013). Prairie dogs benefit perennial plants in arid
393 grasslands, in which blue gramma (*Bouteloua gracilis*) and vine mesquite (*Panicum obtusum*)
394 are palatable perennials for livestock (Sierra-Corona et al., 2015), whereas European rabbits
395 increase unpalatable plants (*Marrubium vulgare* and *Colchicum melitensis*) because they

396 prefer grasses (Leigh et al., 1989; Eldridge and Myers, 2001). Plateau pikas enable more
397 unpalatable broad-leaved plants to grow in alpine meadows (Pang and Guo, 2018) and can
398 bury many plants (Pang and Guo, 2017). However, their consumption patterns can benefit the
399 growth of palatable plants (Pang and Guo, 2017), because plateau pikas preferentially
400 consume unpalatable dicotyledons (Zhao et al., 2013; Pang and Guo, 2017). The tradeoff
401 between the decrease and increase in palatable plant biomass contributes to a negative effect
402 on palatable plant biomass on a home-range scale, resulting in a decrease in **forage available**
403 **to livestock**. These results demonstrate that the presence of small mammalian herbivores
404 **affects the ecological service of forage available to livestock** of grassland ecosystems may be
405 related to environmental conditions. **Specific performance** is that the presence of small
406 mammalian herbivores is disadvantageous to the **ecological service of forage available to**
407 **livestock** in semi-arid and alpine regions, but it is beneficial to the **ecological service of**
408 **forage available to livestock** in arid regions.

409 The presence of plateau pikas has different impacts on regulating services of alpine
410 meadows, when assessed by different indicators. The presence of plateau pikas leads to lower
411 soil-water storage, resulting in a decrease in the ecological services of water conservation,
412 whereas the presence of plateau pikas can lead to higher soil organic carbon stock, implying
413 that the presence of plateau pikas can increase the ecological services of carbon sequestration.
414 Lower **ecological services of** water conservation of alpine meadows in relation to **the presence**
415 **of plateau pikas** is consistent with the effect of European rabbits' presence on **ecological**
416 **services of** water conservation of grasslands in semi-arid regions (Eldridge et al., 2010),
417 whereas it is inconsistent with the presence of prairie dogs in relation to **ecological services of**

418 water conservation in arid regions (Martínez-Estévez et al., 2013). This difference is ascribed
419 to evaluation indicators for ecological services of water conservation. The water infiltration
420 rate is considered as an index to evaluate the effect of prairie dogs on ecological services of
421 water conservation of grasslands in arid regions (Martínez-Estévez et al., 2013). In contrast,
422 the water storage of topsoil is used to evaluate the effects of European rabbits and plateau
423 pikas on ecological services of water conservation of grasslands in semi-arid grassland and
424 alpine meadow (Eldridge et al., 2010). The activities of European rabbits and plateau pikas
425 can reduce the crust cover of grasslands and increase water infiltration from top soil to deep
426 soil in semi-arid regions (Eldridge et al., 2010; Li et al., 2015), contributing to a negative
427 effect on ecological services of water conservation in the topsoil layer. This study shows that
428 the presence of plateau pikas leads to higher ecological services of carbon sequestration in
429 alpine meadows, similar to the effect of the presence of prairie dogs in arid regions
430 (Martínez-Estévez et al., 2013) and European rabbits in semi-arid regions (Delibes-Mateos et
431 al., 2011). Plateau pikas can input extra organic matter through the deposition of uneaten food
432 (Liu et al., 2009; Zhang et al., 2016; Yu et al., 2017a) and the excretion of urine and feces
433 (James et al., 2009; Yu et al., 2017b), which increases the soil organic carbon stock and
434 contributes to an increase in ecological services of carbon sequestration of alpine meadows.
435 These results indicate that the presence of small mammalian herbivores can increase the
436 ecological services of carbon sequestration of grasslands.

437 Higher plant-species richness in the presence of plateau pikas shows that the presence of
438 plateau pikas can lead to higher biodiversity conservation, similar to the effect of European
439 rabbits in semi-arid regions (Delibes-Mateos et al., 2008) and prairie dogs in arid regions

440 (Davidson et al., 2012). The mechanisms by which small mammalian herbivores lead to
441 higher plant-species richness have been discussed in many previous studies (Zhang et al.,
442 2020; Pang et al., 2021). **The presence of plateau pikas can lead to higher soil total nitrogen**
443 **and total phosphorus stocks**, demonstrating that plateau pikas can increase the ecological
444 **services of** soil nitrogen and phosphorus maintenance. **In addition, there was no difference in**
445 **the soil total potassium stock between the areas with and without plateau pikas**, indicating that
446 **the presence of plateau pikas had no effect on ecological services of** soil potassium
447 **maintenance.** This effect was also observed with prairie dogs and European rabbits in arid
448 (Delibes-Mateos et al., 2011) and semi-arid regions (Delibes-Mateos et al., 2008; Willott,
449 2001). Some of the following factors explain the higher soil nitrogen and phosphorus stocks
450 caused by plateau pikas. The presence of plateau pikas can increase the input of soil organic
451 material (Liu et al., 2013; Zhang et al., 2016; Pang et al., 2020a). Secondly, **the presence of**
452 **plateau pikas** can result in higher organic nitrogen and phosphorus stocks (Yu et al., 2017b),
453 which contributes to higher **ecological services of** soil nitrogen and phosphorus maintenance.
454 These results suggest that a general pattern can be identified regarding the effect of the
455 presence of small mammalian herbivores on the supporting services of biodiversity
456 conservation, soil nitrogen, and phosphorus maintenance.

457 In addition to the presence of plateau pikas, this study found that the disturbance
458 intensity of plateau pikas also affects **the palatable plant biomass, plant-species richness,**
459 **soil-water storage, soil organic carbon stock, and soil total nitrogen and phosphorus stocks.**
460 These imply that **the disturbance intensity of plateau pikas** also affects the meadow ecosystem
461 in alpine regions. With the increasing disturbance intensity of plateau pikas, **the palatable**

462 plant biomass, plant-species richness, soil organic carbon stock, soil total nitrogen and
463 phosphorus stocks first increase and then decrease, demonstrating that the intermediate
464 disturbance intensity of plateau pikas to maximize ecological services of forage available to
465 livestock, biodiversity conservation, carbon sequestration, and soil nitrogen and phosphorus
466 maintenance. At intermediate disturbance intensity, the presence of plateau pikas can enhance
467 soil total nitrogen (Li et al., 2014), organic carbon accumulation (Yu et al., 2017b), palatable
468 plant biomass (Pang and Guo, 2018) by improving the growth potential of grass plants (Wang
469 et al., 2012), and encourage more hygrophytes and mesophytes, annual and perennial,
470 common and rare plants to coexist (Guo et al., 2012b), contributing to higher ecological
471 services of forage available to livestock, biodiversity conservation, carbon sequestration, soil
472 total nitrogen and phosphorus maintenance services. When the disturbance intensity of
473 plateau pikas is below the intermediate disturbance intensity, stronger competition of
474 dominant sedges often restrains the grass to grow well (Pang and Guo, 2018) and the rare
475 plants to coexist (Wang et al., 2012), which leads the ecological services of forage available to
476 livestock and biodiversity conservation of alpine meadows to be maintained at a low level.
477 The increase in soil organic matter input caused by plateau pikas at low disturbance intensity
478 is less than the intermediate disturbance intensity (Pang and Guo, 2017; Pang et al., 2020b),
479 which enables ecological services of soil organic carbon sequestration and soil nitrogen and
480 phosphorus maintenance of alpine meadows at low disturbance intensity of plateau pikas to
481 maintain a relatively low level. Once the disturbance intensity of plateau pikas surpasses its
482 intermediate disturbance intensity, low soil water content in alpine meadows (Liu et al., 2013)
483 only sustains the xerophytes and mesophytes, most of which are unpalatable (Pang and Guo,

484 2018). This contributes to relatively low **ecological services of forage available to livestock**
485 and biodiversity conservation. Low vegetation biomass at high disturbance intensity **of**
486 **plateau pikas** decreases the input resources of soil organic matter (Sun et al., 2015; Pang and
487 Guo, 2017), contributing to a decrease in **ecological services of** soil organic carbon
488 sequestration and soil nitrogen and phosphorus maintenance of alpine meadows. Additionally,
489 the linearly negative relationship between **ecological services of** water conservation of alpine
490 meadow and disturbance intensity **of plateau pikas** is ascribed to evaporation and more water
491 infiltration on bare soil patches, as the amount of water evaporation and infiltration tends to
492 increase as the area of bare soil increases (Liu et al., 2013).

493 Together with previous studies (Delibes-Mateos et al., 2011; Martínez-Estevez et al.,
494 2013), this study demonstrates that the presence of small mammalian herbivores has similar
495 impacts on **ecological services of** biodiversity conservation, soil nutrient maintenance, and
496 carbon sequestration of grasslands throughout the arid, semi-arid, and alpine regions, whereas
497 the effects of the presence of small mammalian herbivores on **ecological services of forage**
498 **available to livestock** and water conservation are dependent on environmental conditions.
499 This study further verifies that the disturbance intensity of plateau pikas also has a significant
500 impact on the ecosystem services of alpine ecosystems. These results concur with the findings
501 in research fields of small mammalian herbivores in relation to grassland ecosystem services.

502 **5 Conclusions**

503 This study focused on plateau pikas to investigate the responses of **ecological services of**
504 **forage available to livestock**, water conservation, carbon sequestration, soil nutrient
505 maintenance, and biodiversity conservation of meadow ecosystems to the presence of a small

506 mammalian herbivore and its disturbance intensity across five sites. This will provide insight
507 into the relationship between small mammalian herbivores and ecosystem services of
508 grasslands. The results of this study showed that the presence of plateau **pikas** led to higher
509 **ecological services of** biodiversity conservation, soil nitrogen and phosphorus maintenance,
510 and carbon sequestration of alpine meadows, whereas it led to lower **ecological services of**
511 **forage available to livestock** and water conservation of alpine meadows. Furthermore, this
512 study found that the effect of plateau pikas disturbance intensity on **ecological services of**
513 **forage available to livestock**, biodiversity conservation, soil maintenance of nitrogen and
514 phosphorus, and carbon sequestration **also conformed to the moderate disturbance hypothesis.**
515 These results verified that plateau pikas could affect the ecosystem services of meadow
516 ecosystems in alpine regions and present a relatively complete pattern of small mammalian
517 herbivores influencing grassland ecosystem services.
518

519 *Author contributions.* YC and ZG conceived the ideas and designed the methodology; YC, XP,
520 GB and HY collected the data; YC analysed the data; YC and ZG wrote the manuscript. All of
521 the authors contributed critically to the drafts and gave their final approval for publication.

522

523 *Competing interests.* The authors declare that they have no known competing financial
524 interests or personal relationships that could have influenced to influence the work reported in
525 this paper.

526

527 *Acknowledgments.* The authors would like to thank Jing Zhang, Qian Wang, Haipeng Xu,
528 Wanna Zhang, Juan Wang, Ding Yang, Jie Li, Fuyun Qiao, Digang Zhi, Haohao Qi, Ganlin
529 Feng and Yuanyuan Duan from Lanzhou University for the contributions made to this study
530 through their field assistance and laboratory analysis.

531

532 *Financial support.* This study was funded by the National Natural Science Foundation of
533 China (32171675), the Key Laboratory of Superior Forage Germplasm in the Qinghai-Tibetan
534 Plateau (2020-ZJ-Y03) and the Open Project of State Key Laboratory of Plateau Ecology and
535 Agriculture, Qinghai University.

536

537

538

539

540

541 **References**

542 Brown, C., Reyers, B., Ingwall-King, L., Mapendembe, A., Nel, J., O'Farrell, P., Dixon, M.,
543 and Bowles-Newark, N.J.: Measuring Ecosystem Services: Guidance on developing
544 ecosystem service indicators, UneP-WcmC, 72, <https://doi.org/10.13140/RG.2.2.11321.83043>, 2014.

545 Ceballos, G., Pacheco, J., and List, R.: Influence of prairie dogs (*Cynomys ludovicianus*) on
546 habitat heterogeneity and mammalian diversity in Mexico, *J. Arid. Environ.*, 41, 161–172,
547 <https://doi.org/10.1006/jare.1998.0479>, 1999.

549 Costanza, R., D'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K.,
550 Naeem, S., O'Neill, R., Paruelo, J., Raskin, R.G., Sutton, P., and Van Den Belt, M.: The
551 value of the world's ecosystem services and natural capital, *Nature*, 387, 253–260,
552 <https://doi.org/10.1038/387253a0>, 1997.

553 Davidson, A. D., Detling, J. K., and Brown, J. H.: Ecological roles and conservation
554 challenges of social, burrowing, herbivorous mammals in the world's grasslands. *Front. Ecol. Environ.*, 10, 477–486. <https://doi.org/10.1890/110054>, 2012.

556 Delibes-Mateos, M., Delibes, M., Ferreras, P., and Villafuerte, R.: Key role of European
557 rabbits in the conservation of the western Mediterranean Basin hotspot. *Conserv. Biol.*, 22,
558 1106–1117, <https://doi.org/10.1111/j.1523-1739.2008.00993.x>, 2008.

559 Delibes-Mateos, M., Smith, A. T., Slobodchikoff, C. N., and Swenson, J. E.: The paradox of
560 keystone species persecuted as pests: A call for the conservation of abundant small
561 mammals in their native range, *Biol. Conserv.*, 144, 1335–1346, <https://doi.org/10.1016/j.biocon.2011.02.012>, 2011.

563 De Groot, R. S., Alkemade, R., Braat, L., Hein, L., and Willemen, L.: Challenges in
564 integrating the concept of ecosystem services and values in landscape planning,
565 management and decision making, *Ecol. Complex.*, 7, 260–272, <https://doi.org/10.1016/j.ecocom.2009.10.006>, 2010.

566

567 Dobson, F. S., Smith, A. T., and Gao, W. X.: Social and ecological influences on dispersal and
568 philopatry in the plateau pika (*Ochotona curzoniae*), *Behav. Ecol.*, 9, 622–635, <https://doi.org/10.1093/beheco/9.6.622>, 1998.

569

570 Dong, S. K., Shang, Z. H., Gao, J. X., and Boone, R. B.: Enhancing sustainability of grassland
571 ecosystems through ecological restoration and grazing management in an era of climate
572 change on Qinghai-Tibetan Plateau, *Agr. Ecosyst. Environ.*, 287, <https://doi.org/10.1016/j.agee.2019.106684>, 2020.

573

574 Egoh, B., Drakou, E. G., Dunbar, M. B., Maes, J., and Willemen, L.: Indicators for mapping
575 ecosystem services: a review, European Commission, Joint Research Centre (JRC) (p. 111).
576 <https://doi.org/10.2788/41823>, 2012.

577

578 Eldridge, D. J., and Myers, C. A.: The impact of warrens of the European rabbit (*Oryctolagus*
cuniculus L.) on soil and ecological processes in a semi-arid Australian woodland, *J. Arid.*
579 *Environ.*, 47, 325–337. <https://doi.org/10.1006/jare.2000.0685>, 2001.

580

581 Eldridge, D. J., Bowker, M. A., Maestre, F. T., Alonso, P., Mau, R. L., Papadopoulos, J., and
582 Escudero, A.: Interactive effects of three ecosystem engineers on infiltration in a semi-arid
583 Mediterranean grassland. *Ecosystems*, 13, 499–510, DOI: 10.1007/s10021-010-9335-4,
584 2010.

585

586 Fan, N., Zhou, W., Wei, W., Wang, Q., and Jiang, Y.: Rodent pest management in the

585 Qinghai-Tibet alpine meadow ecosystem, in EcologicallyBased Rodent Management, eds
586 G. R. Singleton, L. A. Hinds, H. Leirs, and Z. Zhang Canberra, ACT: Australian Centre
587 International Agricultural Research, 285-304, 1999.

588 Gong, Z.: Chinese soil taxonomy. Science Press, China (in Chinese), 2001.

589 Guo, Z. G., Zhou, X. R., and Hou, Y.: Effect of available burrow densities of plateau pika
590 (*Ochotona curzoniae*) on soil physicochemical property of the bare land and vegetation
591 land in the Qinghai-Tibetan Plateau, *Acta Ecologica Sinica*, 32, 104-110, <https://doi.org/10.1016/j.chnaes.2012.02.002>, 2012a.

593 Guo, Z. G., Li, X. F., Liu, X. Y., and Zhou, X. R.: Response of alpine meadow communities to
594 burrow density changes of plateau pika (*Ochotona curzoniae*) in the Qinghai-Tibet
595 Plateau. *Acta Ecologica Sinica*, 32, 44-49, <https://doi.org/10.1016/j.chnaes.2011.12.002>,
596 2012b.

597 Han, L. H., Shang, Z. H., Ren, G. H., Wang, Y. L., Ma, Y. S., Li, X. L., and Long, R. J.: The
598 response of plants and soil on black soil patch of the Qinghai-Tibetan Plateau to variation
599 of bare-patch areas, *Acta Prataculturae Sinica*, 20, 1-6, DOI:1004-5759(2011)01-001-06,
600 2011.

601 Harris, R. B.: Rangeland degradation on the Qinghai-Tibetan plateau: A review of the
602 evidence of its magnitude and causes. *J. Arid. Environ.*, 74, 1-12. <https://doi.org/10.1016/j.jaridenv.2009.06.014>, 2010.

604 James, A. I., Eldridge, D. J., and Hill, B. M.: Foraging animals create fertile patches in an
605 Australian desert shrubland, *Ecography*, 32, 723-732, <https://doi.org/10.1111/j.1600-0587.2009.05450.x>, 2009.

607 Jia, Q. M., Xu, R. R., Chang, S. H., Zhang, C., Liu, Y. J., Shi, W., Peng, Z. C., and Hou, F. J.:
608 Planting practices with nutrient strategies to improves productivity of rain-fed corn and
609 resource use efficiency in semi-arid regions, *Agr. Water Manage.*, 228, 105879, <https://doi.org/10.1016/j.agwat.2019.105879>, 2020.

610

611 Leigh, J. H., Wood, D. H., Slee, A. V, and Stanger, M. G.: Effects of rabbit and kangaroogra
612 zing on two semi-arid grassland communities in central-western new south wales, *Aust. J.*
613 *Bot.*, 37, 375-396, <https://doi.org/10.1071/BT9890375>, 1989.

614 Li, J., Zhang, F. W., Lin, L., Li, H. Q., Du, Y. G., Li, Y. K., and Cao, G. M.: Response of the
615 plant community and soil water status to alpine Kobresia meadow degradation gradients on
616 the Qinghai-Tibetan Plateau, China, *Ecol. Res.*, 30, 589-596, <https://doi.org/10.1007/s1284-015-1258-2>, 2015.

617

618 Li, S. M., and Xie, G. D.: Spatial and temporal heterogeneity of water conservation service
619 for meadow ecosystem, *Chinese Journal of Grassland*, 37, 88-93, DOI: CNKI: SUN:ZG
620 CD.0.2015-02-015, 2015.

621 Liu, W., Zhang, Y., Wang, X., Zhao, J. Z., Xu, Q. M., and Zhou, L.: The relationship of the
622 harvesting behavior of plateau pikas with the plant community, *Acta Theriologica Sinica*,
623 29, 40-49, <http://doi.org/10.16829/j.slxb.2009.01.007>, 2009.

624 Liu, Y. S., Fan, J. W., Harris, W., Shao, Q. Q., Zhou, Y. C., Wang, N., and Li, Y. Z.: Effects of
625 plateau pika (*Ochotona curzoniae*) on net ecosystem carbon exchange of grassland in the
626 Three Rivers Headwaters region, Qinghai-Tibet, China, *Plant. Soil.*, 366, 491-504, <https://doi.org/10.1007/s11104-012-1442-x>, 2013.

627

628 Liu, Y. S., Fan, J. W., Shi, Z. J., Yang, X. H., and Harris, W.: Relationships between plateau

629 pika (*Ochotona curzoniae*) densities and biomass and biodiversity indices of alpine
630 meadow steppe on the Qinghai-Tibet Plateau China, *Ecol. Eng.*, 102, 509-518, [https://doi.o
631 rg/10.1016/j.ecoleng.2017.02.026](https://doi.org/10.1016/j.ecoleng.2017.02.026), 2017.

632 Lu, X. Y., Kelsey, K. C., Yan, Y., Sun, J., Wang, X. D., Cheng, G. W., and Neff, J. C.: Effects
633 of grazing on ecosystem structure and function of alpine grasslands in Qinghai-Tibetan
634 Plateau: A synthesis, *Ecosphere*, 8, e01656, <https://doi.org/10.1002/ecs2.1656>, 2017.

635 Martínez-Estévez, L., Balvanera, P., Pacheco, J., and Ceballos, G.: Prairie dog decline reduces
636 the supply of ecosystem services and leads to desertification of semiarid grasslands, *PLoS
637 One*, 8, e75229, <https://doi.org/10.1371/journal.pone.0075229>, 2013.

638 Millennium Ecosystem Assessment.: *Ecosystems and human well-being: Synthesis*, Island
639 Press, Washington, DC, 2005.

640 Nelson, D. W., and Sommers, L. E.: Total carbon, organic carbon, and organic matter.
641 Methods of soil analysis. In: Part 3-Chemical and Microbiological Properties, pp. 539-579,
642 1982.

643 Norton, L. R., Inwood, H., Crowe, A., and Baker, A.: Trialling a method to quantify the
644 “cultural services” of the English landscape using Countryside Survey data, *Land Use
645 Policy*, 29, 449–455, <https://doi.org/10.1016/j.landusepol.2011.09.002>, 2012.

646 Pang, X. P., and Guo, Z. G.: Plateau pika disturbances alter plant productivity and soil
647 nutrients in alpine meadows of the Qinghai-Tibetan Plateau, China, *Rangeland J.*, 39,
648 133-144, <https://doi.org/10.1071/RJ16093>, 2017.

649 Pang, X. P., and Guo, Z. G.: Effects of plateau pika disturbance levels on the plant diversity
650 and biomass of an alpine meadow. *Grassland Science*, 64, 159-166, <https://doi.org/10.11>

651 11/grs.12199, 2018.

652 Pang, X. P., Yu, C. Q., Zhang, J., Wang, Q., Guo, Z. G., and Tian, Y.: Effect of disturbance by
653 plateau pika on soil nitrogen stocks in alpine meadows, *Geoderma*, 372, 114392, <https://doi.org/10.1016/j.geoderma.2020.114392>, 2020a.

654 Pang, X. P., Wang, Q., Zhang, J., Xu, H. P., Zhang, W. N., Wang, J., and Guo, Z. G.:
655 Responses of soil inorganic and organic carbon stocks of alpine meadows to the
656 disturbance by plateau pikas, *Eur. J. of Soil Sci.*, 71, 706-715, <https://doi.org/10.1111/ejss.12895>, 2020b.

657 Pang, X. P., Wang, Q., Guo, Z. G.: The impact of the plateau pika on the relationship between
658 plant aboveground biomass and plant species richness, *Land. Degrad. Dev.*, 32, 1205-1212,
659 <https://doi.org/10.1002/ldr.3790>, 2021.

660 Qu, J. P., Li, W. J., Yang, M., Ji, W. H., and Zhang, Y. M.: Life history of the plateau pika
661 (*Ochotona curzoniae*) in alpine meadows of the Tibetan Plateau, *Mamm. Biol.*, 78, 68-72,
662 <https://doi.org/10.1016/j.mambio.2012.09.005>, 2013.

663 Sierra-Corona, R., Davidson, A., Fredrickson, E. L., Luna-Soria, H., Suzan-Azpiri, H.,
664 Ponce-Guevara, E., and Ceballos, G.: Black-tailed prairie dogs, cattle, and the conservation
665 of North America's Arid Grasslands, *PLoS One*, 10, e0118602, <https://doi.org/10.1371/journal.pone.0118602>, 2015.

666 Smith, A. T., and Wang, X. G.: Social relationships of adult black-lipped pikas (*Ochotona*
667 *curzoniae*), *J. Mammal.*, 72, 231–247, <https://doi.org/10.2307/1382094>, 1991.

668 Smith, A. T., and Foggin, J. M.: The plateau pika (*Ochotona curzoniae*) is a keystone species
669 for biodiversity on the Tibetan plateau. *Anim. Conserv.*, 2, 235–240, <https://doi.org/10.1017>

673 /S1367943099000566, 1999.

674 Sun, F. D., Chen, W. Y., Liu, L., Liu, W., Cai, Y. M., and Smith, P.: Effects of plateau pika
675 activities on seasonal plant biomass and soil properties in the alpine meadow ecosystems of
676 the Tibetan Plateau. *Grassland Science*, 61, 195-203, <https://doi.org/10.1111/grs.12101>,
677 2015.

678 Tang, Y. K., Wu, Y. T., Wu, K., Guo, Z. W., Liang, C. Z., Wang, M. J., and Chang, P. J.:
679 Changes in trade-offs of grassland ecosystem services and functions under different grazing
680 intensities, *Chinese Journal of Plant Ecology*, 43, 408-417, DOI: 10.17521/cjpe.2018.0289,
681 2019.

682 Van Eekeren, N., de Boer, H., Hanegraaf, M., Bokhorst, J., Nierop, D., Bloem, J., Schouten,
683 T., de Goede, R., and Brussaard, L.: Ecosystem services in grassland associated with biotic
684 and abiotic soil parameters, *Soil. Biol. Biochem.*, 42, 1491-1504, <https://doi.org/10.1016/j.soilbio.2010.05.016>, 2010.

685 Wang, C. T., Wang, G. X., Liu, W., Wang, Q. L., and Xiang, Z. Y.: Vegetation roots and soil
686 physical and chemical characteristics in degeneration succession of the *Kobresia pygmaea*
687 meadow, *Ecology and Environmental Sciences*, 21, 409-416, DOI: 10.16258/j.cnki.
688 1674-5906.2012.03.002, 2012.

689 Wang, Q., Guo, Z. G., Pang, X. P., Zhang, J., and Yang, H.: Effects of small-herbivore
690 disturbance on the clonal growth of two perennial graminoids in alpine meadows, *Alpine.*
691 *Bot.*, 130, 115-127, <https://doi.org/10.1007/s00035-020-00240-9>, 2020.

692 Wen, L., Dong, S. K., Li, Y. Y., Li, X. Y., Shi, J. J., Wang, Y. L., Liu, D. M., and Ma, Y. S.:
693 Effect of degradation intensity on grassland ecosystem services in the alpine region of

695 Qinghai-Tibetan Plateau, China, PLoS One, 8, e58432, <https://doi.org/10.1371/journal.pone.0058432>, 2013.

696

697 Willott, S. J., Miller, A. J., Incoll, L. D., and Compton, S. G.: The contribution of rabbits

698 (*Oryctolagus cuniculus*) to soil fertility semi-arid. Biol. Fert. Soils., 31, 379–384, <https://doi.org/10.1007/s003749900183>, 2000.

699

700 Yang, D., Pang, X. P., Jia, Z. F., and Guo, Z. G.: Effect of plateau zokor on soil carbon and

701 nitrogen concentrations of alpine meadows. CATENA, 207: 105625. <https://doi.org/10.1016/j.catena.2021.105625>, 2021.

702

703 Yu, C., Pang, X. P., Wang, Q., Jin, S. H., Shu, C. C., and Guo, Z. G.: Soil nutrient changes

704 induced by the presence and intensity of plateau pika (*Ochotona curzoniae*) disturbances in

705 the Qinghai-Tibet Plateau, China, Ecol. Eng., 106, 1-9, <https://doi.org/10.1016/j.ecoleng.2017.05.029>, 2017a.

706

707 Yu, C., Zhang, J., Pang, X. P., Wang, Q., Zhou, Y. P., and Guo, Z. G.: Soil disturbance and

708 disturbance intensity: Response of soil nutrient concentrations of alpine meadow to plateau

709 pika bioturbation in the Qinghai-Tibetan Plateau, China, Geoderma, 307, 98-106,

710 <https://doi.org/10.1016/j.geoderma.2017.07.041>, 2017b.

711

712 Zhang, Y., Dong, S. K., Gao, Q. Z., Liu, S. L., Liang, Y., and Cao, X. J.: Responses of alpine

713 vegetation and soils to the disturbance of plateau pika (*Ochotona curzoniae*) at burrow

714 level on the Qinghai-Tibetan Plateau of China, Ecol. Eng., 88, 232-236, <https://doi.org/10.1016/j.ecoleng.2015.12.034>, 2016.

715

716 Zhang, H. Y., Fan, J. W., Cao, W., Zhong, H. P., Harris, W., Gong, G. L., and Zhang, Y. X.: Changes in multiple ecosystem services between 2000 and 2013 and their driving factors in

717 the Grazing Withdrawal Program, China, Ecol. Eng., 116, 67-79, <https://doi.org/10.1016/j.ecoleng.2018.02.028>, 2018.

718
719 Zhang, W. N., Wang, Q., Zhang, J., Pang, X. P., Xu, H. P., Wang, J., and Guo, Z. G.: Clipping
720 by plateau pikas and impacts to plant community. Rangeland. Ecol. Manag., 73(3), 368-374.
721 <https://doi.org/10.1016/j.rama.2020.01.010>, 2020.

722 Zhao, G. Q., Li, G. Y., Ma, W. H., Zhao, D. Z., and Li, X. Y.: Impacts of *Ochotona pallasi*
723 disturbance on alpine grassland community characteristics, Chinese Journal of Applied
724 Ecology, 24, 2122-2128, <http://doi.org/10.13287/j.1001-9332.2013.0398>, 2013.