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Abstract. The eddy-covariance technique measures carbon, water, and energy fluxes between the land surface and the at-

mosphere at hundreds of sites globally. Collections of standardised and homogenised flux estimates such as the LaThuile,

Fluxnet2015, National Ecological Observatory Network (NEON), Integrated Carbon Observation System (ICOS), AsiaFlux,

AmeriFlux, and Terrestrial Ecosystem Research Network (TERN) / OzFlux data sets are invaluable to study land surface pro-

cesses and vegetation functioning at the ecosystem scale. Space-borne measurements give complementary information on the5

state of the land surface in the surroundings of the towers. They aid the interpretation of the fluxes and support the benchmark-

ing of terrestrial biosphere models. However, insufficient quality, frequent and/or long gaps are recurrent problems in applying

the remotely sensed data and may considerably affect the scientific conclusions. Here, we describe a standardised procedure to

extract, quality filter, and gap-fill Earth observation data from the MODIS instruments and the Landsat satellites. The methods

consistently process surface reflectance in individual spectral bands, derived vegetation indices, and land surface temperature.10

A geometrical correction estimates the magnitude of land surface temperature as if seen from nadir or 40◦ off-nadir. Finally,

we offer the community living data sets of pre-processed Earth observation data, where version 1.0 features the MCD43A4/A2,

MxD11A1 MODIS products, and Landsat collection 1 Tier1 and Tier2 products in a radius of 2 km around 338 flux sites. The

data sets we provide can widely facilitate the integration of activities in the eddy-covariance, remote sensing, and modelling

fields.15
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1 Introduction

The installation and maintenance of instrumental infrastructure at eddy-covariance (EC) sites worldwide require considerable

financial and logistical efforts and labour force. The precious data sets of land-atmosphere fluxes, biometeorological data,

and environmental conditions allow fundamental insights on ecosystem functioning (Baldocchi, 2008; Baldocchi et al., 2018;

Baldocchi, 2020; Besnard et al., 2018; Migliavacca et al., 2021; Nelson et al., 2020). A significant achievement is the central20

processing, quality control, and open standardised distribution of a large number of the available observational records in data

collections such as the LaThuile, Fluxnet2015, ABCflux (amongst others, Papale et al., 2006; Baldocchi, 2008; Pastorello

et al., 2020; Virkkala et al., 2021b; Papale, 2020) to which many site teams contribute.

Complementary information from satellites or digital cameras (phenocams, Wingate et al., 2015) aid and refine studies of local

land-atmosphere interactions as they relate to ecosystem structure, phenology, and functioning and the state of the land surface25

(e.g., Migliavacca et al., 2015; Bao et al., 2022). Earth observation (EO) data for varying regional sizes around the sites can

represent the actual area that contributes to the flux measurements - partly even more accurately than similar ground-based mea-

surements can (Gamon, 2015) - provided sufficiently high spatial resolution and temporal overlap with the site-level records.

Next to local studies, the combination of flux and satellite observations is also a basic ingredient for upscaling exercises of the

in-situ fluxes to larger areas or even the globe (Ueyama et al., 2013; Tramontana et al., 2016; Jung et al., 2019, 2020; Joiner30

et al., 2018; Reitz et al., 2021; Virkkala et al., 2021a; Zeng et al., 2020).

Independent of the nature of the scientific application, the quality control and gap structure of both the EC and the EO data are

the groundwork of each analysis. Different criteria help to identify problematic data points with differing levels of strictness

depending on the given application. Moffat et al. (2007) and Falge et al. (2001) describe techniques to fill gaps due to missing

data points in the EC data. The literature also offers a diverse set of methods to gap-fill EO data that include spatial, tempo-35

ral, cross-sensor and cross-variable approaches (to name a few, Wang et al., 2012; v. Buttlar et al., 2014; Weiss et al., 2014;

Verger et al., 2011, 2013; Kandasamy et al., 2013; Moreno et al., 2014; Moreno-Martínez et al., 2020; Yan and Roy, 2018;

Ghafarian Malamiri et al., 2018; Li et al., 2018; Dumitrescu et al., 2020; Bessenbacher et al., 2021). The pre-processing steps

are laborious and they are key to the results and interpretation of the analyses.

We propose a set of systematic pre-processing steps for key land surface indicators from EO data: sub-setting global EO data40

for an area around an EC site, systematic control for good quality retrievals as well as cloud, snow and water effects, and

estimating missing data points in a flexible and ecologically meaningful way. For both the quality control and the gap-filling,

the approaches aim to be generalisable across all sites without accounting for specific local conditions, yet flexible enough

to accurately reproduce phenological behaviour and characteristic features such as disturbances or fast transitions in managed

ecosystems. The procedure shall be as simple as possible, computationally efficient, and not resort to additional data sources45

to facilitate a potential application to EO data at the global scale.

We apply the proposed processing steps to official data products from the Moderate Resolution Imaging Spectroradiometer

(MODIS) instruments and the sensors onboard the Landsat satellites. Both MODIS and Landsat have extensive observational

coverage with a high temporal overlap with most freely available EC records. Landsat measurements are of particular interest
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because they resolve small spatial details in pixels of 30 m size, but at the cost of missing out on short temporal features. The50

opposite is true for MODIS data products, which partly average over heterogeneous areas in spatially comparatively coarse

pixels of several hundred meters. However, MODIS offers daily, partly even sub-daily temporal resolution. We process EO

data sets of both surface reflectance, vegetation indices, and land surface temperature (LST) for a limited area around a given

flux site.

55

As missing data points in EO data are an ubiquitous problem, a number of related initiatives also provide access to EO

data that underwent certain pre-processing. For example, Robinson et al. (2017) offer 30m Landsat NDVI for all pixels in the

CONUS every 16 days between 1984–2019. They removed cloud effects and filled gaps with climatological averages. Moreno-

Martínez et al. (2020) controlled Landsat and MODIS surface reflectance for cloud, snow and water effects and fused them to a

gap-free and smoothed product. It covers surface reflectance and its uncertainty in six Landsat spectral bands at monthly, 30m60

resolution for the CONUS and the years 2009–2020. An example product for gap-free MODIS surface reflectance (as well as

albedo and BRDF parameters) at approximately 1km resolution is the MCD43GF product (Sun et al., 2017). In this case, the

time series of the parameters of the bidirectional reflectance distribution function are temporally and spatially gap-filled for

days and pixels with bad inversion quality or cloud and snow influence, and from those gap-free model parameters a global

gap-free product of surface reflectance is provided for the MODIS land bands and three broad spectral bands. Finally, a sub-65

setting tool (ORNL DAAC, 2018) facilitates access to a range of global EO data sets at a large selection of eddy-covariance

sites.

FluxnetEO is unique in proposing the completion of all pre-processing steps necessary for scientific analysis at site-level, hence

resulting in an analysis ready dataset. The products cover the period 1984–2017 and 2000–2020 for Landsat and MODIS, re-

spectively, and are freely available by the services of the ICOS Carbon Portal (see data availability statement, Walther et al.70

(2021a, b)). Each data set has a complementary data layer with additional flags to inform the user whether data points cor-

respond to actual good quality observations according to the proposed criteria and, if not, how they have been estimated in

different gap-filling steps. FluxnetEO provides a ready-to-use dataset, which, however, means limited flexibility for the users

to make their own decisions on the pre-processing steps. For example, they depend on the site selection made by the authors

(see table E1 for the site selection in version 1.0) and their decision to cover an area within a radius of 2 km around a site.75

Conversely, the ORNL DAAC (2018) offers larger cutout radii of 4 km around a considerably larger collection of sites than

FluxnetEO and from a complementary selection of global EO products. But users will need to invest considerable work in

quality control and gap-filling. Regarding available quality controlled and gap-free large scale or even global gridded EO

data (Moreno-Martínez et al., 2020; Robinson et al., 2017; Sun et al., 2017), the user needs to find ways to access these data

sets at site level (while Moreno-Martínez et al. (2020) is available on Google Earth Engine (GEE), Sun et al. (2017) is not,80

Robinson et al. (2017) needs shape files), and needs to understand whether the applied quality filters match the needs of their

application.
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To allow potential users to make an informed decision on the product which suits their application best we describe details

about data inputs in FluxnetEO in section 2.2, explain the quality control and gap-filling approaches in section 3, illustrate85

examples and benchmark the products against a selection of independent products and approaches in section 4. Table 2 and

the data availability section provide detailed information on the resulting products, while table 1 summarises and compares the

main characteristics of the selected studies and services mentioned above (Robinson et al., 2017; Sun et al., 2017; Moreno-

Martínez et al., 2020; ORNL DAAC, 2018) and the one in this contribution. We expect FluxnetEO to be a living data set

with regular updates regarding the site selection, the temporal coverage, the release of new Landsat/ MODIS collections and90

processing improvements based on user feedback. Potential users are therefore advised to refer to the ICOS Carbon Portal for

the latest product version and site availability information (Walther et al., 2021a, b)).

2 Data

2.1 Eddy-covariance sites95

For the current version 1.0 of the product we select the 338 sites from the LaThuile, Fluxnet2015 (Pastorello et al., 2020)

and ICOS Drought 2018 Initiative (Drought 2018 Team and ICOS Ecosystem Thematic Centre, 2020) flux data releases.

Site coordinates given in different sources (Ameriflux, Asiaflux, Europe-Fluxdata, Fluxdata.org, and a previously compiled

in-house Fluxnet-site location list) may differ. In that case, the coordinates with the highest precision were selected. In case

the coordinates differed by more than 0.001◦ for a given site, a manual check in Google Earth identified the correct or most100

probable location of the site. The final set of 338 sites for which we process the MODIS and Landsat EO data in product

version 1.0 is listed in table E1. Forests and grasslands are best represented among the 338 sites. The collection includes fewer

sites from savannas and shrublands, and only one site from a deciduous needleleaf forest (table 1).

2.2 MODIS and Landsat

The MCD43A4 product combines AQUA and TERRA observations and provides estimates of surface reflectance in the105

MODIS bands 1-7 (Schaaf and Wang, 2015b). Time series represent observations modelled at nadir view at a resolution of

16 days and 500 m spatial pixels. For the quality control of MCD43A4, a complementary product, MCD43A2, contains band

specific information on the quality of the inversion of the bidirectional reflectance distribution function as well as snow cover,

platform information and land/water coverage in the scene (Schaaf and Wang, 2015a).

110

The MODIS MOD11A1 (TERRA, starting in 2000) and MYD11A1 (AQUA, starting in 2002) products (hereafter jointly

referred to as MxD11A1, Wan et al. (2015a, b)) provide daily LST and emissivity estimates aligned with quality and view

angle information at 1 km spatial pixel sizes. The LST values represent instantaneous values and are selected based on viewing

zenith angle and LST values (MOD11A1 user guide, https://lpdaac.usgs.gov/documents/118/MOD11_User_Guide_V6.pdf).
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Table 1. Representation of different plant functional types and Koeppen climate classes across the 338 sites in the FluxnetEO v1.0 collection.

plant functional type number of sites Koeppen main climate number of sites

evergreen needleleaf forest (ENF) 86 arid 26

evergreen broadleaf forest (EBF) 25 equatorial 23

deciduous needleleaf forest (DNF) 1 warm temperate 171

deciduous broadleaf forest (DBF) 40 snow 103

mixed forest (MF) 13 polar 12

woody savanna (WSA) 10 undefined 3

savanna (SAV) 11

closed shrubland (CSH) 6

open shrubland (OSH) 19

grassland (GRA) 58

crops (CRO) 36

wetlands (WET) 32

snow (SNO) 1

Four LST data streams are available: TERRAday with observations around 10.30 am local time, AQUAday with observations115

around 1.30 pm, TERRAnight around 10.30 pm and AQUAnight around 1.30 am. For each of them, observation times vary be-

tween overpasses by about ±1.5 hours.

Observation geometries need special attention as the MODIS instruments measure in a wide swath to obtain high temporal

coverage. They scan across their track from right to left with view zenith angles up to 65 degree from nadir. The wide range of120

viewing geometries leads to different fractions of surface types seen from one overpass to the next for a given site. In addition,

vegetation structure and topography, together with the position of the sun relative to the sensors, cause variable shadowing

effects. The reflectance product (MODIS MCD43A4, Schaaf and Wang (2015b)) partly accounts for these anisotropy effects

and simulates a nadir view. In order to partly account for variability in the observed LST that is related to changing observation

geometry (Rasmussen et al., 2011; Guillevic et al., 2013; Ermida et al., 2014), a correction approach developed by Ermida125

et al. (2018) estimates an LST offset as if the instrument would measure from directly above a site. For some applications,

an oblique view might be favourable over a nadir constellation, for example to enhance the contribution of vegetation canopy

to the LST estimate and minimise fractions of soil or understorey. In addition, we provide LST corrected to a viewing zenith

angle of 40 degrees.

130

Reflectance-based Landsat time series comprise the entire multi-temporal collection 1 of the Landsat 4, 5, 7 and 8 archives

(https://landsat.gsfc.nasa.gov/data) covering the period 1984-2017 at 30 m spatial pixel size. The seven spectral bands of the

Landsat product were collected: BLUE, GREEN, RED, near infrared (NIR), shortwave infrared 1 and 2 (SWIR1, SWIR2),

5
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and thermal infrared (TIR) (https://landsat.usgs.gov/what-are-band-designations-landsat-satellites). Landsat data have been

pre-processed using the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS, Schmidt et al., 2013) and135

the Landsat Surface Reflectance Code (LaSRC, https://landsat.usgs.gov/landsat-surface-reflectance-data-products) for atmo-

spheric correction. The pixelQA layer contains information related to clouds, cloud shadows, snow, and ice and is useful for

the quality control of the Landsat data (Zhu and Woodcock, 2012; Zhu et al., 2015). In contrast to MODIS, the Landsat sensors

acquire images at much smaller view angles around 7.5-degree from nadir. Ground control points and a digital elevation model

help to correct for small directional effects related to terrain structure and viewing angles (Wulder et al., 2019). Corrections140

for the small but significant differences between the spectral characteristics of Landsat ETM+ and OLI (Roy et al., 2016) are

not applied.

The services by GEE provided cutouts of the above mentioned products at the EC sites. Independently of the product and its

spatial resolution, the cutout area was limited to a maximum distance of 2 km between a given tower and the centre of a given145

satellite pixel. No single cutout size will fit the flux footprint extents of all sites (Chu et al., 2021). The decision for a radius

of 2 km in product version 1.0 compromises reasonable data set sizes and the inclusion of the high temporal resolution flux

footprints for the majority of sites. Downloading the EO data in tiff-format avoided intransparent re-projection of the data from

sinusoidal to regular grid by GEE, which would have been problematic for the quality flags in the MCD43A2 and MxD11A1

products. The Landsat data were already provided in regular grid by GEE.150

3 Methods

We describe here the overall concept and rationale of the quality filter and the gap-filling, but report all technical details in the

Appendix A.

3.1 Processing steps of reflectance-based indicators

The processing steps for reflectance-based land surface variables can be summarised by the following steps:155

1. quality control for effects of snow, water, bad inversion per spectral band and individual pixel in a cutout (henceforth

subpixel) using the MODIS/Landsat quality flags

2. optionally compute vegetation indexper subpixel, or use the raw spectral bands

3. optionally spatially aggregate over a selection of subpixels in the cutout to obtain one time series per site, or decide to

process all subpixels individually160

4. remove values of an index outside its defined ranges and apply an additional outlier filter

5. gap-filling
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3.1.1 Quality control and computation of spectral indices

Quality control of the MODIS reflectance-based vegetation indices focused on three aspects: good inversion quality of the

bidirectional reflectance distribution function as indicated by the BRDF_Albedo_Band_Quality_Bandx flags in the MCD43A2165

product, snow-free conditions according to the Snow_BRDF_Albedo flag, and the omission of reflectance values that are

affected by the presence of water in the field of view using the BRDF_Albedo_LandWaterType flag. For the selected data

samples which passed those criteria we computed a large set of spectral vegetation indices (table 2). An additional check

removed possible values of the vegetation indices outside their defined ranges. Some of the time series contained obvious out-

lier values. We employed an empirical filter which largely removed those samples which had a particularly large difference to170

the median of their surrounding values in a temporal window (Papale et al., 2006, technical details on all filters in Appendix A).

In the Landsat data, the flag pixel_qa provided quality attributes (CFMask, Foga et al., 2017) and removed pixels that

contained snow/ice, water, cloud, and/or cloud shadow using a binary flag of presence. Similar to the MODIS product, we

computed a series of spectral vegetation indices (table 2) using the good quality observations and removed possible values of175

the indices outside their defined ranges. A slightly modified filter removed possible outlier values also for the Landsat data (see

details in Appendix A.)

3.1.2 Gap-filling

In the literature several gap-filling and smoothing approaches are available which work in one or more dimensions (e.g., Wang

et al., 2012; Kandasamy et al., 2013; v. Buttlar et al., 2014; Weiss et al., 2014; Yan and Roy, 2018; Zhang et al., 2021)180

or use fusion methods between sensors (Verger et al., 2011; Moreno-Martínez et al., 2020). They differ in their levels of

sophistication and computational efforts. One of our requirements for the gap-filling approach was that it employs exclusively

temporal operations and does not use additional data sources. It is hence very generalisable and allows the gap-filling to be

generally applicable to a single time series per site, several subpixels in a cutout around a site, and global EO data. A number

of possible applications will require the analysis of actual observations, and consequently approaches that fit smooth functions185

to available good quality data (e.g., Jonsson and Eklundh, 2002; Gonsamo et al., 2013) to represent a gap-free time series are

not suitable. Therefore, the idea was to retain the good quality data and make as realistic estimates as possible for the gaps

between them. The following recipe describes the steps to estimate missing data points conceptually, all technical details we

report in Appendix A. Unless stated otherwise, for each gap-filling step, the values filled in previous steps guide the current

and subsequent gap-filling steps together with the good-quality observations.190

1. Fill short non-snow related gaps (≤ 5 days or ≤1 month for MODIS and Landsat, respectively) with a median across

valid values in moving windows of 16 days (3 months for Landsat). The moving median only fills gaps, it does not

change/ smooth valid data points.

2. Fill snow related gaps with a constant baseline value which is identified as the average of valid data points adjacent to

snow covered periods, i.e. immediately before snow fall or after snow melt (after Beck et al., 2007, but see details in195
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Appendix A). Consider all times with a snow flag larger than 0.1 or missing snow information as snow covered. The latter

periods are included as the snow flag appears to systematically miss snow periods in higher latitudes in the beginning of

the winter. Still, frequent gaps with missing snow information also occur during the growing season. In order to avoid

wrong filling with a constant value during the growing season this gap-fill step is not applied when the probability of

snow cover is low, i.e. when the average seasonal cycle indicates typically snow-free conditions at a given time of the200

year, or when typically no snow occurs at all at a given site.

3. Subsequently, another moving median in windows of 40 days (4 months for Landsat) fills gaps shorter than 65 days (2

months for Landsat).

4. Linearly regress the time series on its own median seasonal cycle (MSC). Compute a re-scaled MSC with the obtained

regression parameters and use it to fill longer gaps. Execute the regression and re-scaling in temporal moving windows as205

this guarantees more flexibility to correctly represent inter-annual variations in the time series and even partly accounts

for changes in the shape of the seasonal cycle due to disturbances. It is, however, not suited to fill regularly recurring

gaps at a certain time of the year, e.g. during rain seasons (Verger et al., 2013).

5. Fill the remaining gaps by piecewise cubic polynomial interpolation. Time series with less than 300 valid data points in

the whole record after application of all the previous gap-filling steps will not be meaningful for analysis but are still210

filled by nearest neighbour interpolation.

6. Temporal operations cannot meaningfully fill gaps at the beginning and at the end of the record. Therefore the first/last

valid data points are repeatedly appended at the beginning/end of the record.

The described processing steps are generalisable across a range of spectral vegetation indices and can reliably fill missing

data points across sites globally (see examples in section 4). However, a number of sites have extremely low data availability215

after quality checks, and the gaps in their time series are challenging to temporally interpolate in a meaningful way. This

can lead to problematic gap-filled data points with questionable reliability and realism. Examples are tropical sites and/ or

sites with a pronounced wet season with permanent cloud cover. The same generally applies for MODIS in the years 2000-

2002 when observations stem mainly from the TERRA satellite and therefore data availability is comparatively low. For

Landsat, the number of available scenes is relatively heterogeneous across the globe (https://www.usgs.gov/media/images/220

cumulative-number-scenes-landsat-archive) with some regions having a very good coverage (e.g., North America) while other

regions are observed less frequently (e.g., Russia and Africa). Such differences in the availability of good quality data between

sites strongly affect the quality of the gap-filling at site level. In addition, FluxnetEO provides for each data layer a gap-fill flag,

consistsing of a range of integer values to identify original good quality data (flag=0) from gap-filled estimates (flags=1...n)

where information is provided in which gap-filling step a certain data sample has been imputed. This allows users to explore225

individual sites and use (parts of) the gap-filled data or resort to only using the high quality original data points.
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3.2 Preprocessing of MODIS land surface temperature

The processing of the LST follows this order:

– outlier filter for each LST data stream and check that any daytime LST is higher than any nighttime LST per subpixel

– optionally apply a geometrical correction per subpixel230

– optionally aggregate over a selection of subpixels in the cutout per time step and LST data stream

– gap-fill the aggregated time series or each subpixel for all four MODIS LSTs simultaneously

3.2.1 Quality checks

The quality control of the MODIS LST focused on removing outlier values. Negative outlier values in LST might represent

residual cloud contamination, whereas unusually high values might originate from undetected saturation in the level 1 data.235

We found that the flags provided in the MxD11A1 products are insufficient to achieve this. Instead, empirical quality checks

followed the procedure for the MODIS reflectances, i.e. they discarded data points that deviated strongly from the median

of their surrounding values in temporal windows of 30 days (Papale et al., 2006). An additional sanity check eliminated any

daytime LST lower than the minimum of AQUA and TERRA nighttime LST for a given day.

3.2.2 Geometrical correction240

For several applications, variable viewing geometries as inherent in the MODIS LST observations are not desirable. A geo-

metrical correction approach developed by Ermida et al. (2018) accounted for directionality in LST retrievals due to vegetation

structure and topographical effects. A parametric model estimates the magnitude of LST as if constantly observed from nadir

or an angle of 40 degrees between the sensor and the zenith above a given site. Ermida et al. (2018) derived the coefficients for

this geometrical model at a resolution of 0.05 degree. We followed the pragmatic approach of selecting the model coefficients245

for the correction from the pixel containing a given site. We acknowledge that we did not investigate to what extent the given

site conditions represent the overall characteristics of the land surface in the allocated pixel. Further input to the geometrical

model were the viewing azimuth angles, solar angles at the overpass time and estimates of daily potential radiation at the top

of the atmosphere. The geometrical correction was applied to each subpixel in a cutout separately.

3.2.3 Gap-filling250

Also for the gap-filling of LST several approaches are present in the literature (e.g., Gerber et al., 2018; Ghafarian Malamiri

et al., 2018; Li et al., 2018; Dumitrescu et al., 2020). When using exclusively operations in time and no ancillary data to

estimate invalid LST observations, one needs to consider the shorter autocorrelation of LST compared to the reflectance-based

indicators. According to Vinnikov et al. (2008), the weather-related component of clear-sky LST has an autocorrelation of about

3 days. The following sequence of steps filled the four MODIS LST data streams (for technical details refer to Appendix B):255
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1. Similar to the reflectances, a first step consisted of a temporal moving median in windows of eight days to fill gaps.

2. A second step was inspired by Li et al. (2018) and Crosson et al. (2012) and foresaw to use one of the four MODIS

LST time series as a ’reference’ to fill gaps in a second ’imputed’ one. We computed a MSC of the difference between

the ’reference’ and the ’imputed’ MODIS LST. This average shift was linearly scaled to the actual shift in temporal

windows. The scaled average shift added to the ’reference’ LST represented the values used to fill gaps in the ’imputed’260

LST time series. This procedure iteratively used three of the MODIS LST data streams to fill the fourth, i.e. each one is

imputed once by all three others (see details in Appendix B). This gap-fill step was only possible in cases where not all

four MODIS LST observations were invalid during a given day, but extremely advantageous to preserve short synoptic

variability in the gap-fill estimates.

3. In fully cloudy days without any valid LST observation, or in case a period has too few valid observations for a meaning-265

ful calibration of the linear model in the previous step. The gap-filling followed the same steps as for the reflectance-based

spectral indices:

In temporal windows, find a linear scaling between one LST time series and its own MSC. Use the slope and intercept

parameters to compute a re-scaled MSC, which fills gaps in the time series for days of the year when the MSC is valid.

4. Interpolate the remaining gaps with cubic polynomials, or nearest neighbour in case of very low data availability (less270

than 300 valid data points in the entire time series).

5. Missing values at the beginning and the end of the record cannot be meaningfully filled by temporal methods and are

therefore simply repeated.

Steps 3-5 produced very smooth and, therefore, less realistic LST estimates than steps 1-2. Also, one needs to be aware that

any LST estimate in data gaps from this procedure necessarily represents an LST estimate under clear sky conditions, which275

can be very different from the real LST under overcast skies (Ermida et al., 2019). This needs to be considered for a given

application to prevent the effects of clear-sky bias in the LST data sets on the results. Like the vegetation indices, LST data

layers have a gap-fill flag in FluxnetEO describing which data points are original and which gap-filling step filled the missing

values.

3.3 Evaluation and benchmarking280

3.3.1 FluxnetEO performance in comparison to a machine learning approach (missForest)

A common approach to benchmarking gap-filling methods is to artificially remove samples at positions where the true data

value is known, then subject the time series to the gap-filling approach and compare the gap-filled estimates with the original

values (Moreno-Martínez et al., 2020; Zhang et al., 2021; v. Buttlar et al., 2014; Wang et al., 2012; Verger et al., 2011, 2013;

Gerber et al., 2018). We apply this approach to FluxnetEO in artificial gaps for MODIS and Landsat variables, and randomly285
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remove 20% and 40% of data samples (corresponding to a low and medium gap fraction, compare Fig.1) per site at posi-

tions with originally good quality. We remove data points from a gap-free time series, i.e. the data points which had been

gap-filled before guide the gap-filling in the artificial gaps. We feed the time series of the station pixel with artificial gaps into

the gap-filling approaches described in section 3 and quantify the gap-filling performance compared to the true values with

the Nash-Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970). NSE close to one indicates good performance, while negative290

values mean worse performance than inputting the simple average into the gaps. Decidedly, the NSE refers exclusively to the

data samples from the artificial gaps and not to the complete time series.

To have an independent benchmark of FluxnetEO, we compare to the performance of a versatile imputation method, miss-

Forests (Stekhoven and Bühlmann, 2011), in the same artificial gaps. MissForest is based on random forests and can handle

variables of different types and dimensions. It is a multi-output machine learning method that iteratively fills gaps across vari-295

ables, considering their potential non-linear dependencies. We input all MODIS (Landsat) variables per site together with the

information on snow fraction and the day of year or month of year for MODIS or Landsat, respectively. Hence, per site and

mission, missForest iteratively imputes all variables collectively.

3.3.2 Comparison with other gap-filled data sets: Moreno-Martínez et al. (2020)

A complementary and mandatory approach to assessing the quality and characteristics of the proposed pre-processing steps is300

a comparison against independent data sets and approaches (e.g. Moreno-Martínez et al., 2020; Robinson et al., 2017; Sun

et al., 2017). Different spatio-temporal resolutions in the provided data sets and the fact that often mass downloads of data are

necessary to evaluate them at site-level challenge this approach. However, Moreno-Martínez et al. (2020) provide their gap-

filled Landsat surface reflectance at the same spatio-temporal resolution like FluxnetEO, and access and cutout at the site-level

via GEE is feasible. We, therefore, compare the FluxnetEO Landsat product and the Moreno-Martínez et al. (2020) surface at305

86 sites in the CONUS for the years 2009-2017, which corresponds to the spatiotemporal domain in which both are available.

In the comparison, we do not differentiate between original good quality and gap-filled estimates because quality control and,

therefore, gap-structure differ between the products. However, unphysical reflectance values lower than 0 or larger than 1 occur,

especially in winter, and were removed before the cross-consistency analysis, both from good quality and gap-filled estimates.

310
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Figure 1. Fraction of good quality data in the MODIS (left) and Landsat (right) time series. Colours represent the median data availabil-

ity in tower pixels across sites grouped by Koeppen climate classification. Data refer to the period 2003–2020 for MODIS (the time period

when both TERRA and AQUA satellites are in space) and 1990–2017 for Landsat.

4 Results and Discussion

4.1 Gap-statistics across indices

Data availability after quality screening is highly variable between sites and depends on the data stream (Fig. 1). Large differ-

ences in the amount of good quality data in groups of different climate regions, especially for the reflectances, mirror general

atmospheric conditions in different regions. Differences between spectral bands and reflectance-based indices are very minor315

in both MODIS and Landsat. MODIS LST generally has less valid data points among the data sets than the reflectance-based

indicators, and often less during daytime than nighttime. While the LST are instantaneous values, the reflectances represent

averages over 16-day periods. A lower number of good quality observations in indices that rely on band 6 relate to degraded

detectors in AQUA MODIS band 6.

4.2 Temporal patterns of the gap-filled time series320

We illustrate some characteristics of the time series in FluxnetEO using the pixel containing an EC station at example sites. The

Austrian site Neustift (AT-Neu) was situated in a valley in the Alps and surrounded by grasslands which were typically mown

three times a year (Wohlfahrt et al., 2008). According to their nature, the MODIS LST time series exhibit faster variability

than the vegetation indices (Fig. 2). Midday observations (AQUAday) partly show an LST increase after the first harvest event

in a year around the day of the year 150. The MSC of most vegetation indices clearly marks the mowing timing, although the325

relative magnitude varies between indices. Constant values in winter represent snow-covered times. For Landsat, the granularity
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Figure 2. Median seasonal cycle (red) and individual yearly trajectories (gray) for MODIS LST (top row) and MODIS vegetation indices

and surface reflectance (second to last rows) in the pixel containing the Austrian site Neustift (AT-Neu). Depending on the data set the central

pixel measures 500m or 1km.

of temporal patterns is clearly lower due to the monthly sampling, but the characteristic management effects are visible also

here (Fig. 3).

Focusing on the example of the EVI, other sites illustrate a few characteristics of the gap-filling procedure in more detail

(Fig. 4, 5): At the evergreen needleleaf forest site El Saler in Spain (ES-ES1) much data passes the quality control and mostly330

short gaps are reliably filled also in the absence of a very regular seasonal cycle in EVI in both MODIS and Landsat. The boreal

forest site Saskatchewan (CA-SF1) illustrates the effect of a disturbance that happened in 2015 (though the site was operated

only until 2006). The gap-filling procedure adapts to the modified conditions both abruptly when the disturbance happens

and gradually during recovery in the following years. There is a problematic group of high MODIS EVI values during winter

2006/07. The moving window outlier filter applied to the MODIS reflectances is by design unable to detect those outliers335

as they occur consecutively in a short period of time. Tharandt (DE-Tha, evergreen needleleaf forest) and Lonzee (BE-Lon,

crops), are examples of the challenges that data scarce periods bring for both Landsat and MODIS. For MODIS, estimated val-

ues in the years 2000-2002 (where only TERRA was in operation) are less reliable at both sites. Landsat is particularly scarse
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Figure 3. Median seasonal cycle (red) and individual yearly trajectories (gray) of the different data sets in the 30m pixel containing the

Austrian site Neustift (AT-Neu) Landsat.

and the gap-filling unsuccessful at Tharandt in the eighties, in 1994/95 and 2008-12, and in Lonzee a clear seasonality in EVI

establishes only after 2000. In addition, for MODIS false filling by the snow baseline value during the growing season could340

not entirely be prevented, causing an unrealistic dip in one year in each of the sites. Note that the snow flag contains partly long

data gaps in CA-SF1, DE-Tha and BE-Lon. Finally, the woody savanna site Adelaide River (AU-Ade) is a typical example of

EC sites in climates with a dry and a wet season. While in the dry season basically no data gaps occur, cloud coverage in the

rainy season is long enough such that mainly the last gap-filling steps of a linearly scaled MSC and interpolation take effect for

MODIS (Fig. 2). Although the scaling of the MSC does not fully succeed in all years to produce smooth transitions between345

the good quality data and the gap-filled ones, the interpolation is able to preserve inter-annual variations in the MODIS EVI.

Missing MODIS LST values were estimated most reliably in the gap-filling steps 1-2 (moving median and scaled average

shift to observations at other overpass times) because the typical short-term variability in the time series could be preserved.

In the Spanish site Majadas de Tietar (ES-LMa, Fig. 6 top panel), savanna-type vegetation is prevalent with a dry summer and350

wet winter. Visually the gap-filling procedure succeeds in preserving the typical higher LST variability in the dry season and
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Figure 4. Illustration of gap-filling steps in the 500m pixel containing selected eddy-covariance sites for the MODIS EVI.

seasonally changing diurnal amplitudes. Also, in Saskatchewan (CA-SF1), gap-filling step 2 successfully estimates the largest

fraction of missing values for each data stream from the complementary observation times. The EVI indicated a disturbance

event at the beginning of 2015 (Fig. 4) that continued to strongly affect the EVI also in the following year. The event also marks

the LST time series in that daytime LST, and therefore, the diurnal amplitude clearly increases in summer after 2015. The gap-355

filling procedure follows this behaviour. Relative to Majadas de Tietar or Saskatchewan, in the mixed forest in Vielsalm (BE-

Vie), data gaps are much more persistent throughout a day and the gap-filling works more often with the third gap-filling step

using an average seasonal cycle of LST to estimate missing observations. Finally, at the woody savanna site Howard Springs in

northern Australia (AU-How, Fig. 6 bottom panel) there is a strong seasonal phasing between daytime and nighttime LST. Data

availability also changes with the seasons. In the monsoon season, synoptic variability in the filled data points is unrealistically360

low because the gap-filling needs to resort to filling by a median seasonal cycle of LST (obtained from those years in which

the monsoon starts late) or by interpolation.

Geometrical corrections to the nadir viewing angle are much larger and have a stronger seasonality for daytime LST than

for nighttime observations (rightmost panel in Fig. 6, Ermida et al. (2018)). The daytime LST value from a nadir view is

consistently estimated to be several Kelvin higher than from an oblique view. The Australian Howard Springs is an exception365

in that the correction offset to nadir has no consistent sign during the wet season.
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Figure 5. Illustration of gap-filling steps in the 30m pixel containing selected eddy-covariance sites for the Landsat EVI.
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Figure 6. MODIS LST gap-filling steps in the 1km pixel containing selected eddy-covariance sites for daytime and nighttime LST. The

rightmost column shows the average annual cycle of the correction factor between LST from variable viewing angles and LST corrected to

nadir view.
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4.3 Benchmarking

In the experiments where artificial gaps are introduced at data points with known and valid values in the pixel containing the

eddy-covariance site, FluxnetEO performance for MODIS is excellent with NSE values clearly above 0.9 for all reflectance-

based indices, and even above 0.95 for artificial gap fractions of 20% (Fig. C1 top left). The NSE of the gap-fill estimates for370

LST is systematically lower, but above 0.8 and therefore still very good. Interestingly, the median NSE across sites are very

similar for the 20% and 40% gap fraction experiments for the LST, but clearly different for the reflectance. Overall, FluxnetEO

outperforms missForest in the realism of the gap-fill estimates slightly but consistently across most reflectance-based MODIS

variables, and more strongly so for the larger (and more realistic for the majority of sites) artificial gap-fraction of 40% (Fig. 7

left). The NDWI variables are a special case, where missForest does not succeed to produce reliable estimates (Fig. C1 top375

right), and interestingly more so for low fractions of missing data. For LST, the ranking between missForest and FluxnetEO

gap-filling depends on the gap-fraction, missForest consistently produces higher NSE for the lower gap-fractions, FluxnetEO

for 40% of samples removed (Fig. 7 left). For Landsat, the NSE of the gap-fill estimates is generally comparable (derived

vegetation indices) or better (spectral bands) in FluxnetEO than from missForest (Fig. 7 right). The performance of FluxnetEO

is more sensitive to the amounts of missing values than the missForest (Fig. C1 bottom panels). A few more points are of note:380

For both MODIS and Landsat, the gap-fill estimates of spectral surface reflectance in the visible range (blue, green, red) is less

reliable than the one in channels with longer wavelength or derived vegetation indices. The overall gap-fill performance is not

satisfactory for Landsat, neither from the FluxnetEO nor from missForest. We did additional tests and found that the signal to

noise ratio and the temporal resolution are decisive for the success of the gap-filling. The time series of the average across all

subpixels in the Landsat cutout exhibit less noise than the time series of the centre pixel, which also clearly increases the NSE385

of the artificial gap-fill estimates (Fig. C2, left). FluxnetEO generally performs better on daily than on monthly data (see the

lower NSE for MODIS at monthly resolution in Fig. C2, right), which calls for attempts to improve the reliability of FluxnetEO

at different temporal resolutions in future releases.

Figure 8 compares the spatial and temporal patterns of Landsat NIR reflectance from FluxnetEO and Moreno-Martínez et al.390

(2020) across sites and shows a high consistency (panels a,b,d). The largest differences and lowest consistency in both spatial

and temporal patterns happen outside the growing season (DJF in large parts of the CONUS, panels b,d,f). This can be ex-

pected as NIR reflectance is low during this time of the year, and because the treatment of snow and clouds differs between the

products (see time series of one example site in Fig. C8). The temporal correlation of the deviations from the mean seasonality

has a bimodal pattern with partly low Pearson correlations of under 0.5 (panel e). The consistency between FluxnetEO and395

Moreno-Martínez et al. (2020) surface reflectance products generally increases with wavelength, with the lowest agreement for

the blue spectral band (Fig. C3, C4, C5, C6, C7).

These benchmarking exercises illustrate important shortcomings but at the same time clearly support the quality of the gap-

filling approach proposed by FluxnetEO as being comparable to or slightly higher than independent approaches and products.400
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Figure 7. Benchmarking in artificial gaps: distribution of NSE per site of the gap-fill estimates in artificial gaps by FluxnetEO compared to

missForest within the physical ranges of the indices for 20% and 40% of good quality data removed. For MODIS (left) and Landsat (right),

random good quality samples are removed from the tower pixel.

The artificial gaps at random positions in the first experiment might be comparable to those expected from bad inversion or

clouds. Removing longer consecutive periods such as during snow periods or persistent cloud cover in rainy seasons is not

feasible due to limited consecutive good quality data, so we cannot test the performance for gaps of this type. Compared to

missForest, FluxnetEO has the great advantage of being easily scalable to large-scale gridded data products. Compared to the

product of Moreno-Martínez et al. (2020) FluxnetEO offers coverage at global sites and is not restricted to the CONUS but405

lacks the availability of gridded data.

20



Figure 8. Benchmarking Landsat NIR reflectance from FluxnetEO against the product produced by Moreno-Martínez et al. (2020) at EC

sites in the CONUS. Each NIR_s,t,p value refers to one site (s), time step (t) and subpixel (p). Comparing spatial patterns: (a) scatterplot

of the temporally averaged NIR reflectance (mean_t(NIR_s,p,t), each dot reflects one subpixel and site. (b) Temporal average across years

for each month separately and the spatial Pearson correlation across all subpixels in a cutout per site and month cor_p(mean_t-month(NIR

FluxnetEO_s,p,t), mean_t-month(NIR Moreno et al_s,p,t)). (c) Temporal correlation in dependence of the amount of missing values in

the FluxnetEO product in each subpixel and site (cor_t(NIR FluxnetEO_s,t,p, NIR Moreno_s,t,p). (d-f): Compute a spatial average across

all subpixels in a cutout per time step: NIR*_s,t = mean_p(NIR_s,t,p). (d) Temporal Pearson correlation of the spatially averaged NIR

(cor_t(NIR FluxnetEO*_s,t, NIR Moreno*_s,t). (e) Pearson correlation of the deviations from the mean seasonal cycle of the spatially

averaged time series. (f) Difference between FluxnetEO and Moreno NIR reflectance and their average per month of the year mean_t-

month(NIR FluxnetEO*_s,t - NIR Moreno*_s,t). r refers to the Pearson correlation coefficient, NSE to the Nash-Sutcliffe efficiency (Nash

and Sutcliffe, 1970).
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4.4 On the importance of spatial context

In this section, we present different examples of the relevance of spatial context. The type and distribution of the vegetation

around a given EC measurement station are not necessarily homogeneous. Instead, clusters of different vegetation or land use

types might prevail in different sections of the immediate surroundings of a site. The area that a given flux measurement is410

representative of (the flux footprint, Schmid, 1997) changes rapidly with wind direction, turbulence conditions, atmospheric

stability, and surface resistance (Schmid, 1997; Vesala et al., 2008; Chu et al., 2021). An exact match between the flux foot-

print and EO data (or a model grid cell) is challenging due to the often unknown or uncertain flux footprints and coarse spatial

grid sizes. The scale mismatch is equally important for validation exercises for site-level measurements of surface reflectance

(Román et al., 2009; Cescatti et al., 2012), site-level energy-balance closure (Stoy et al., 2013) and model-data integration415

(Williams et al., 2009). The role that the scale-mismatch between site-level and EO data plays for ecosystem analyses clearly

depends on the site and the application. Some applications try to account for the mismatch (Pacheco-Labrador et al., 2017;

Wagle et al., 2020); others ignore it and use a custom area around each EC site. Approaches to quantify and account for het-

erogeneity within a satellite pixel or a certain area around a given site do exist in the literature (Román et al., 2009; Chu et al.,

2021; Duveiller et al., 2021) but seem less exploited.420

We computed the average flux footprints for every day (MODIS) and month (Landat) around three example EC stations (Ma-

jadas de Tietar, ES-LM1, Gebesee, DE-Geb, and Zotino, RU-Zo2). We illustrate how the relationship between EC-derived

gross primary productivity (GPP) and EVI as an EO-derived proxy of the same changes according to whether the footprint

area is taken into account or custom cutout sizes are chosen. In RU-Zo2, we compare surface temperature inverted from sen-

sible heat flux to LST and illustrate how the pixel sizes relate to the flux footprint area (see details on the data processing in425

Appendix D).

The site ES-LM1 (El-Madany et al., 2018) is a tree-grass ecosystem. While the trees are evergreen, the herbaceous layer

senesces in summer and re-greens in autumn (Luo et al., 2018). The EO cutout includes irrigated agricultural areas north of the

flux footprint. These fields are barren in winter and are covered with crops in summer. MODIS and Landsat EVI are strongly430

negatively correlated to GPP derived from EC in the pixels over agricultural areas, as are the anomalies of EVI and GPP

(Fig. D1 a-d). Conversely, high positive correlations prevail across the remaining larger parts of the EO cutouts. Landsat EVI

overlaid by the average flux footprint for two example months illustrates that the EC GPP is only representative of the tree-

grass ecosystem (Fig. 9e, g). Hence, the spatial representativeness of EO data for EC fluxes might differ strongly depending

on which satellite pixels are chosen for the analysis. We computed the average EVI that is representative of the flux footprint435

(henceforth fpa for footprint area). We compared it with an average EVI weighted with the probability density function of the

flux footprint in order to take into account the decreasing influence of subpixels further away from the tower (henceforth fpw

for weighted footprint area), as well as with two pragmatic approaches in case a flux footprint is unknown: an EVI average

over all subpixels in the cutout with a radius of 2 km (henceforth fex for full extent) or only the single subpixel that contains

the tower (cpx for center pixel). The most noticeable difference between the time series for the different intersection methods440
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is that the full extent (fex) in both Landsat and MODIS EVI is comparatively lower during the winter period (Fig. 9a,c). The

agricultural areas contribute to fex, while the footprint intersection methods (fpa and fpw) and the centre pixel (cpx) EVI con-

sistently indicate high greenness in the tree-grass ecosystem.

Gebesee, DE-Geb, is an agricultural site. The common approach in conducting EC measurements is to put the tower in a loca-

tion where the land use is as homogeneous as possible, to be able attribute fluxes to a targeted ecosystem, e.g. a known crop445

type. In Gebesee, this was assured for most of the years in the long site history (e.g. Fig. 9h), but not from 2011-2013. In these

years, the field was split into two different adjacent crop types that contributed to the measured fluxes (Fig. 9f), raising the risk

for pitfalls in the analyses of the fluxes. Also, in situations/ years when the flux footprint represents a single field, additional

potential difficulties originate from phenological differences between fields within the EO cutouts (Fig. 9f,h) if not properly

matched. For example, the anomalies of both GPP and EVI are only highly correlated with each other in the immediate sur-450

roundings of the tower (Fig. D1g-h). Phenological heterogeneity between fields might explain why the EVI averaged over the

full cutout (fex) is clearly different from the EVI in the footprint area (fpa, fpw) or the tower pixel (cpx) during the growing

season maxima in 2015/16 (Fig. 9b,d). Also, consistently with the GPP, the EVI in the tower pixel indicates slightly later

senescence in 2017 than averaged over the footprint area or the full cutout, highlighting considerable effects of a mismatch

between the flux footprint and the EO area.455

Irrespective of the match between flux footprint and the area that the EVI is representative of, Fig. 9 illustrates the complimen-

tarity between MODIS and Landsat in terms of resolution. Although Landsat offers high spatial detail, the temporal patterns

that can be resolved with monthly averages are much coarser than the shorter variations that daily MODIS data can describe.

Depending on the application the user of FluxnetEO might choose one or the other.

460

RU-Zo2, the Zotino tall tower observatory ZOTTO, is located in the taiga-tundra transition zone. The landscape in the prox-

imity of the EC station is a heterogeneous mix of forest, bogs and wetlands. At the tall tower, fluxes are measured at different

heights above the canopy. The size of the flux footprint strongly increases with height and the fluxes at the highest level partly

represent areas more than 2 km away from the site (Fig. 10b-d). Flux footprints of measurements closer to the canopy are

usually much smaller than the MODIS pixel size of 1 km for the LST, but the flux footprints of the higher measurement levels465

at RU-Zo2 partly integrate over multiple of such pixels. Size and direction of the footprint extents strongly vary over time

(note that Fig. 10b-d represent three consecutive days), such that the vegetation types and surface conditions sampled do not

only differ between measurement heights but also between days. We compare spaceborne LST AQUAday integrated over the

flux footprint area (LSTfpa) with surface temperature inverted from sensible heat flux measured at the tower for clear-sky days

(Fig. 10a, see details about the methods in Appendix D). We observe a tendency of LSTfpa at all three measurement heights470

to be slightly lower than inverted surface temperature under freezing conditions with a notable scatter. For temperatures above

0 ◦C, the scatter decreases and LSTfpa of all three heights is consistently higher than the inverted surface temperature. For

the peak surface temperatures during a year (above approximately 285 K), the slope between LSTfpa and surface temperature

visually decreases, which might indicate significant changes in surface emissivity during the brief peak growing season when
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Figure 9. Time series of EVI and GPP for ES-LM1 (a,c) and DE-Geb (b,d). MODIS EVI (top row) and Landsat EVI (second row) represent

areas with different extents: full extent of the cutout (EVIfex), the center pixel that contains a tower (EVIcpx), the EVI averaged over the flux

footprint area (EVIfpa), and the EVIfpa weighted with the flux probability density function (EVIfpw). Subplots e-h: Landsat EVI overlaid with

the monthly flux footprint (black line) for ES-LM1 in November 2014 (e) and April 2016 (g), and for DE-Geb in February 2012 (f) and

February 2016 (h). Non-original low quality EVI values are blacked out. Red circles indicate the location of the EC station, white circle

denotes 1 km diameter from the station.
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Figure 10. Relationship between MODIS AQUAday LSTfpa and surface temperature (Tsurf_H) calculated from the inverted sensible heat flux

(details about the methods in Appendix D). The red line represents the 1:1 line. Subplots b to d show example footprints at the three levels

(black lines) overlaid on the LST map from May 31st to June 2nd, 2017, respectively. Non-original low quality LST values are blacked out.

The white circle indicates the 1 km diameter around the tower.

vegetation extent is highest and the surface has drained from snow melt.475
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Next to matching the flux footprints with the EO data pixels, spatial context is equally important in studies of vegetation

recovery after a disturbance event. The Sky Oaks-Young Stand (US-SO3) is a closed shrubland with less than 2 m tall woody

vegetation. The US-SO3 site experienced a fire during the period 2002-2003, followed by regrowth. Landsat allows to observe

the impact structure and the spatially very heterogeneous recovery dynamics with remarkable detail (Fig. 11): The fire caused480

lower than average EVI in large parts of the cutout during the period 2002-2004 (Fig. 11d-f). From 2005 onwards, some

patches, particularly the western part of the cutout, appear to have recovered faster from the disturbance than other patches

(Fig. 11g). By 2011, EVI has reached pre-fire values in most parts of the area around the site with only small patches as ex-

ceptions indicating that regrowth was complete (Fig. 11n). This example illustrates how high spatial resolution EO combined

with EC at the site-level can provide complementary insights for better understanding disturbance regimes and the associated485

recovery dynamics.
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Figure 11. Annual EVI dynamics at the site US-SO3 as observed by Landsat. Time series of spatial average annual EVI for the full 4x4km2

cutout (a) and the long-term temporal average spatial patterns of EVI (b). Annual anomalies of EVI for the period 2003-2011 in panels c-n

(anomaly EVIyear n = EVIyear n - mean(EVI1985-2001).
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5 Conclusions

The proposed methods aim at assuring good quality and producing as reliable as possible gap-free estimates of EO-derived

surface reflectance, vegetation indices, and LST for pixels around EC sites, while remaining independent of additional data490

sources and being generalisable. Depending on the question/ application at hand, either MODIS or Landsat EO data might

be more suitable with their inherently very diverse spatial and temporal resolutions, reliability of the gap-filling approach and

temporal coverage. The requirements for the strictness of the quality checks and the sophistication of the gap-filling methods

differ by use case. No approach can fit all requirements, but we expect FluxnetEO to offer many opportunities to advance

our understanding of land-atmosphere fluxes for individual sites across regional networks and globally. It helps bridging the495

Fluxnet, remote sensing, and modelling communities, and facilitates consistent benchmarking of EO-based flux models of any

kind. We anticipate that this will accelerate our ability to monitor and understand land-atmosphere fluxes across spatial and

temporal scales. For the future, we plan to maintain, update and improve FluxnetEO. This will include extending the time

series to the most recent years, adding EC sites as measurements become available in one of the networks, improving the

processing based on newly identified drawbacks and/ or user needs (e.g., Landsat sensors harmonisation, better performance500

also at lower temporal resolutions), and updating to new EO data collections (e.g., Landsat collection 2, integration of Landsat

9). Importantly, forthcoming FluxnetEO versions shall more strongly facilitate complementary usage of multiple missions to

exploit their synergy potential, so that future additions will include further EO products, for example, the Sentinel missions.

Although temporal overlap with most of the EC records is low, it will grow with the lifetime of the different Sentinels because

strong efforts in the EC community target the timely, free, and open distribution of site-level measurements.505

Data availability. Data sets are available for open and free usage under ICOS Carbon Portal in separate collections for Landsat (Walther

et al., 2021a, https://doi.org/10.18160/0Z7J-J3TR) and for MODIS (Walther et al., 2021b, https://doi.org/10.18160/XTV7-WXVZ). Zipped

folders package the data by continents and groups of countries. In the zip-directories, the files are organised by site and in two processing

versions: One version contains spatially explicit data fields for each subpixel in the cutout of 4x4km2 and is denoted by ’subpixel’ in the

file name. A second version is an average time series per site that represents the area within 1km radius of the site (’average_cutout’). The510

inverse distance to the tower serves as weight in the average to account for the fact that areas farther away from the stations contribute less

to the measured fluxes than the immediate surroundings of a site also in the average of land surface characteristics. In this version, at every

time step all valid subpixels closer than 1km to the site are averaged after the quality checks, and the gap-filling procedure applies to this

average time series. The data fields contained in both processing versions are listed in table 2. Each data field has a complementary data

layer (’gapfilltype’) with an integer flagging which data point is of original good quality (=0) or in which gap-filling step a given point515

has been imputed in the gap-filling procedure (flags >=1). The key to this integer flag is given in the file attributes. The processing version

’average_cutout’ has additional fields that indicate how many valid pixels within 1km of the tower contributed to the spatial average per time

step (’N’) and the spatial standard deviation of the vegetation index or LST for the given time step (’NSTD’).
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Appendix A: Technical details about the processing of surface reflectance

In this section we provide all specific technical details necessary to reproduce our processing steps for the surface reflectance520

of MODIS and Landsat.

The quality control of the MODIS reflectance-based land surface indicators included the following steps:

– Omission of the MCD43A2 BRDF_Albedo_Band_Quality_BandX flags ≥ 3 for each band to remove bad inversion

quality from the surface reflectances.525

– The flag Snow_BRDF_Albedo eliminated pixels that contain snow. As the gap-filling procedure used the snow informa-

tion, a spatially aggregated snow flag was needed for the processing version that averages valid data within 1 km of the

tower. For this, we defined the aggregated snow flag as the fraction of subpixels in the cutout that are snow covered. If

more than 50% of subpixels have missing snow information for a certain day, the aggregated snow flag is set to missing

as well.530

– The presence of water in a scene seen by an optical sensor can strongly affect the observation. The BRDF_Albedo_LandWaterType

flag allowed to filter for pixels exclusively on land (flag=1). This eliminated all data for many Swiss, Dutch, Italian and

Finnish sites which are situated close to water bodies. Inclusion of ocean coastlines and lake shorelines (flag=2) and

shallow inland water (flag=3) resulted in reasonable time series at most sites. This came at the cost of having few other

sites that were affected by the presence of water. As a trade-off between data availability and quality, we decided to535

include land-water flags 1-3.

– After the computation of the vegetation indices from the individual spectral bands, an additional check removed possible

values of the spectral vegetation indices outside their defined ranges. An outlier filter compared each value to the median

of all valid values in temporal windows of 30 days (Papale et al., 2006). A large difference of a given value to the median

of its surrounding values indicates a potential outlier. The threshold z as in Papale et al. (2006) was set to 2, and only a540

less conservative threshold of z=3 acted when more than 20 valid values were available in a given window.

The empirical outlier filter for Landsat slightly differed from the one for MODIS and removed observations in the five high-

est and lowest percentiles of the median seasonal cycle of an index if they differed more than 75% from their surrounding

3-months moving window median. The second criterion was critical in order to preserve observations of disturbance events or

recovery dynamics.545

Technical details for the gap-filling:

1. The first step is a moving window median to fill short non-snow related gaps. If the entire time series has less than 40%

valid data, a given moving window contains both the actual values and the median seasonal cycle for the given time of

the year. The median for the moving window refers then to the distribution of both.550
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2. The second step fills reflectance values with a constant value in the presence of snow (snow flag≥0.1). Partly long

periods with missing snow information in the Snow_BRDF_Albedo flag needed special treatment. Some of these gaps

appeared systematically in early winter in higher latitudes, so also times of missing snow information are considered as

snow covered. However, also during the growing season long periods of missing snow information occur in several sites

globally. The following criteria check whether a period that is considered snow covered by high values or missing snow555

flags is filled with a constant baseline value or not:

– If a given site has less than 60 days with valid snow coverage (i.e. Snow_BRDF_Albedo=1) in the total record,

snow typically does not occur at the site. In this case the gap-filling procedure does not apply this gap-filling step

at all for this site.

– The gap-filling with a constant value only addresses gaps with a minimum length of 20 consecutive days with snow560

flag missing or 1. This avoids filling very short intermittent snow periods or short gaps in snow information during

the growing season.

– This gap-filling step does not consider gaps due to missing snow information if the median seasonal cycle of snow

coverage indicates ≤ 5% of snow cover at the given time of the year and the difference between the fill value

and the median seasonal cycle is large (i.e. exceeds the 85th percentile of the differences in times of missing snow565

information).

The constant baseline value that is used to fill snow periods in the time series for a site represents the 3rd percentile of the

median seasonal cycle of the spectral vegetation indices. If a given index typically has high values outside the growing

season, the baseline value represents the 97th percentile instead. However, if for a given winter the average over the last

5 valid data points at the end of the growing season or over the first 5 valid data points at the beginning of the next570

growing season is lower than the baseline value (higher than the baseline for indices which are typically high outside the

growing season), the baseline takes the value of this average for the given winter (similar to Beck et al., 2007).

3. Linearly scale the median seasonal cycle (MSC) to the time series to fill longer gaps (Verger et al., 2013). Calibration

happens in moving temporal windows of 80 days, and application of the scaling in steps of 20 days. In the following x

represents a time series of reflectance-based indices, and x* the time series with some of its gaps filled by a scaled MSC.575

xt=k:k+80 = f ( MSC( x )t=k:k+80 )

x*t=k:k+20 = m · MSC( x )t=k:k+20 + n

Appendix B: Technical details about the processing of MODIS LST

In this section we provide all specific technical details necessary to reproduce the processing steps for the MODIS LST.

The empirical filter to remove potential outlier values (Papale et al., 2006) followed the same procedure like for the vegetation580

indices, but used a constant z-value of 1.5 as it provided the best trade-off between filter success, false positives and false
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negatives.

Estimates of LST in data gaps originate from the following steps:

– In contrast to the procedure for the reflectance-based vegetation indices, the distribution of values in the temporal win-

dows of 8 days is not supplied by the median seasonal cycle in case of low data availability. The moving window median585

was not applied for windows with less than three valid values.

– Filling by linearly scaling the median seasonal shift between any two of the four MODIS LST time series to each other

(Crosson et al., 2012; Li et al., 2018). The following explains this gap-filling step for TERRAday as the ’imputed’ time

series:

1. Compute the shift between TERRAday and AQUAday (∆(TERRAday, AQUAday)) and obtain the MSC of the shift :590

MSC( ∆(TERRAday, AQUAday) ).

2. Linearly scale the MSC of the shift to the shift itself in temporal windows of 80 days (provided a minimum of

10 valid values in a given window). Apply the scaling in windows and steps of 20 days to obtain estimates of the

shift (∆(TERRAday, AQUAday))*) from its MSC where it is missing.

∆(TERRAday, AQUAday)t=k:k+80 = f ( MSC( ∆(TERRAday, AQUAday) )t=k:k+80 )595

∆(TERRAday, AQUAday))*t=k:k+20 = m · MSC( ∆(TERRAday, AQUAday) )t=k:k+20 + n.

3. Add the scaled average shift to the AQUAday to obtain an estimate of TERRAday*[AQUAday] that can fill gaps in

TERRAday.

TERRAday*t=k:k+20[AQUAday] = AQUAdayt=k:k+20 + ∆(TERRAday, AQUAday))*t=k:k+20

Analogously to TERRAday*[AQUAday], also the night-time LST observations contributed to estimate TERRAday*[TERRAnight]600

and TERRAday*[AQUAnight]. All three estimates TERRAday*[AQUAday], TERRAday*[TERRAnight] and TERRAday*[AQUAnight],

served to fill gaps in TERRAday, namely in the order of increasing standard deviation of the differences between valid

TERRAday and each of the three estimated TERRAday*.

The procedure analogously filled AQUAday, TERRAnight and AQUAnight accordingly using valid observations of the

remaining three, respectively.605

– Linearly scale the valid LST observations of each of the four data streams to their own median annual cycle in temporal

windows. As in step 2, the calibration happened in temporal windows of 80 days, while the scaling was applied in

windows of 20 days. Exemplarily for TERRAday:

TERRAdayt=k:k+80 = f ( MSC( TERRAday )t=k:k+80 )

TERRAday*t=k:k+20 = m · MSC( TERRAday )t=k:k+20 + n610
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Appendix C: Details about the benchmarking exercises

Figure C1. Benchmarking in artificial gaps: distribution of NSE per site of the gap-fill estimates in artificial gaps by FluxnetEO (left) and

missForest (right) within the physical ranges of the indices for 20% and 40% of good quality data removed. For MODIS (top) and Landsat

(bottom), random good quality samples are removed from the tower pixel. Note the different x-axis limits.
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Figure C2. Benchmarking in artificial gaps: distribution of NSE per site of the gap-fill estimates in artificial gaps by FluxnetEO. 20% and

40% of data were removed and gapfilled. Left: Landsat time series of the average reflectance/ vegetation index across the whole cutout.

Right: the centre pixel of MODIS data aggregated to monthly temporal resolution.
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Figure C3. Benchmarking Landsat reflectance in the blue spectral band from FluxnetEO against the product produced by Moreno-Martínez

et al. (2020) at EC sites in the CONUS. Each reflectance_s,t,p value refers to one site (s), time step (t) and subpixel (p). Comparing spatial

patterns: (a) scatterplot of the temporally averaged reflectance (mean(reflectance_s,p)_t, each dot reflects one subpixel and site. (b) Spatial

Pearson correlation across all subpixels in a cutout per site of the average grouped by month. (c) Temporal correlation in dependence of

the amount of missing values in each subpixel and site. (d-f): Compute a spatial average across all subpixels in a cutout per time step. (d)

Temporal Pearson correlation of the spatial average. (e) Pearson correlation of the deviations from the mean seasonal cycle of the spatially

averaged time series. (f) Difference between FluxnetEO and Moreno reflectance and their average per month of the year. r refers to the

Pearson correlation coefficient, mef to the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970).

Figure C4. Same like Fig. C3 for the green spectral band.
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Figure C5. Same like Fig. C3 for the red spectral band.

Figure C6. Same like Fig. C3 for the first shortwave infrared spectral band.
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Figure C7. Same like Fig. C3 for the second shortwave infrared spectral band.

Figure C8. Example site US-Fmf: Comparing the gapfilled surface reflectance products in spectral channels.
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Appendix D: Details about the analysis of spatial context

For the analysis at DE-Geb and ES-LM1 we used night-time partitioned GPP (Reichstein et al., 2005) with the mean of the

variable u?-threshold (GPP_NT_VUT_MEAN) from the Drought 2018 Team and ICOS Ecosystem Thematic Centre (2020)

data release (Migliavacca et al., 2020; ICOS Ecosystem Thematic Centre and Gebesee, 2019). We computed the actual flux615

footprints after Kljun et al. (2015) from ICOS drought 2018 data (Drought 2018 Team and ICOS Ecosystem Thematic Centre,

2020) using the R-code version (V1.41) of the FFP-tool. As a flux footprint for the intersection with EVI we define the area that

contributes 80% to the flux footprint probability density function (80% isoline of the monthly/daily cumulative flux footprint

for Landsat and MODIS, respectively).

Flux footprint calculation followed the same procedure for the three measurement heights at RU-Zo2. Surface temperature was620

inverted from sensible heat flux and meteorological variables (Knauer et al., 2018) following equation:

Tsurf = Tair + H / (ρ * cp * Gah)

with Tair the air temperature at measurement height (K), H the sensible heat flux (W m-2), ρ the density of air (kg m-3), cp the

specific heat capacity of the air (J kg-1 K-1), and Gah the aerodynamic conductance to heat (m s-1). Gah is defined as Gah = 1 /

(Ram + Rbh), with the aerodynamic resistance to momentum Ram= u/ustar2 and the canopy boundary layer resistance for heat625

Rbh= 6.2*ustar-2/3. As the inverted surface temperature was compared to LST AQUAday, the average of half-hourly sensible

heat flux of the nominal overpass time at 1.30pm ± 1.5 hours was taken. Only days with good quality in both the LST and and

sensible heat flux are used according to the following criteria: i) more than 90% of the EO cutout have valid (i.e. non-gapfilled)

values which restricts the comparison to clear-sky conditions, and ii) at least 50% of the half-hourly long-wave fluxes and all

meteorological data in a given day are of good quality. A larger cutout of 5x5 km2 was extracted for MODIS LST to fully cover630

also the extent of the flux footprint of the highest measurement level, but is used only for illustrative purposes and not in the

data provided in the FluxnetEO collections.
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Figure D1. Spearman correlation between EVI and GPP using monthly Landsat (a, c, e, g) and daily MODIS (b, d, f, h) data for ES-LM1

(a-d) and DE-Geb (e-h) Fluxnet sites. The correlation estimates were computed on the raw time series (a, b, e, f) and on the anomalies (c, d,

g, h).
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Appendix E: Site selection
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Table E1. Sites in FluxnetEO product version 1.0: site codes and coordinates (latitude in degree N, longitude in degree E, rounded to 4

decimals). Site codes including a * indicate sites for which currently only MODIS data are provided.

site code latitude, longitude site code latitude, longitude

AR-SLu -33.4648, -66.4598 AR-Vir -28.2395, -56.1886

AT-Neu 47.1167, 11.3175 AU-ASM -22.283, 133.249

AU-Ade -13.0769, 131.1178 AU-Cpr -34.0021, 140.5891

AU-Cum -33.6152, 150.7236 AU-DaP -14.0633, 131.3181

AU-DaS -14.1593, 131.3881 AU-Dry -15.2588, 132.3706

AU-Emr -23.8587, 148.4746 AU-Fog -12.5452, 131.3072

AU-Gin -31.3764, 115.7138 AU-How -12.4943, 131.1523

AU-RDF -14.5636, 132.4776 AU-Rob -17.1175, 145.6301

AU-TTE -22.287, 133.64 AU-Tum -35.6566, 148.1517

AU-Wac -37.4259, 145.1878 AU-Whr -36.6732, 145.0294

AU-Wom -37.4222, 144.0944 AU-Ync -34.9883, 146.2916

BE-Bra 51.3076, 4.5198 BE-Lon 50.5516, 4.7462

BE-Vie 50.3049, 5.9981 BR-Ban -9.8244, -50.1591

BR-Cax -1.7197, -51.459 BR-Ji2 -10.0832, -61.9309

BR-Sa1 -2.8567, -54.9589 BR-Sa2 -3.0119, -54.5365

BR-Sa3 -3.018, -54.9714 BR-Sp1 -21.6195, -47.6499

BW-Ma1 -19.9165, 23.5603 CA-Ca1 49.8673, -125.3336

CA-Ca2 49.8705, -125.2909 CA-Ca3 49.5346, -124.9004

CA-Gro 48.2167, -82.1556 CA-Let 49.7093, -112.9402

CA-Man 55.8796, -98.4808 CA-Mer 45.4094, -75.5186

CA-NS1 55.8792, -98.4839 CA-NS2 55.9058, -98.5247

CA-NS3 55.9117, -98.3822 CA-NS4 55.9144, -98.3806

CA-NS5 55.8631, -98.485 CA-NS6 55.9167, -98.9644

CA-NS7 56.6358, -99.9483 CA-Oas 53.6289, -106.1978

CA-Obs 53.9872, -105.1178 CA-Ojp 53.9163, -104.692

CA-Qcu 49.2671, -74.0365 CA-Qfo 49.6925, -74.3421

CA-SF1 54.485, -105.8176 CA-SF2 54.2539, -105.8775

CA-SF3 54.0916, -106.0053 CA-SJ1 53.908, -104.656

CA-SJ2 53.945, -104.649 CA-SJ3 53.8758, -104.6453

CA-TP1 42.6609, -80.5595 CA-TP2 42.7744, -80.4588

CA-TP3 42.7068, -80.3483 CA-TP4 42.7102, -80.3574

CA-TPD 42.6353, -80.5577 CA-WP1 54.9538, -112.467

CA-WP3 54.47, -113.32 CG-Tch -4.2892, 11.6564

CH-Aws 46.5832, 9.7904 CH-Cha 47.2102, 8.4104

CH-Dav 46.8153, 9.8559 CH-Fru 47.1158, 8.5378
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site code latitude, longitude site code latitude, longitude

CH-Lae 47.4781, 8.365 CH-Oe1 47.2858, 7.7319

CH-Oe2 47.2863, 7.7343 CN-Anh 33.0, 117.0

CN-Bed 39.5306, 116.252 CN-Cha 42.4025, 128.0958

CN-Cng 44.5934, 123.5092 CN-Dan 30.4978, 91.0664

CN-Din 23.1733, 112.5361 CN-Do1 31.5167, 121.961

CN-Do2 31.5847, 121.903 CN-Do3 31.5169, 121.972

CN-Du1 42.0456, 116.671 CN-Du2 42.0467, 116.2836

CN-Du3 42.0551, 116.2809 CN-HaM 37.37, 101.18

CN-Hny 29.31, 112.51 CN-Ku1 40.5383, 108.694

CN-Ku2 40.3808, 108.549 CN-Qia 26.734, 115.0663

CN-Sw2 41.7902, 111.8971 CN-Xi1 43.5458, 116.6778

CZ-BK1 49.5021, 18.5369 CZ-BK2* 49.4944, 18.5428

CZ-Lnz 48.6816, 16.9464 CZ-RAJ 49.4437, 16.6965

CZ-Stn 49.036, 17.9699 CZ-wet 49.0246, 14.7704

DE-Akm 53.8662, 13.6834 DE-Bay 50.1419, 11.8669

DE-Geb 51.0997, 10.9146 DE-Gri 50.95, 13.5126

DE-Hai 51.0792, 10.453 DE-Har 47.9344, 7.601

DE-HoH 52.0853, 11.2192 DE-Hte 54.2103, 12.1761

DE-Hzd 50.9638, 13.4898 DE-Kli 50.8931, 13.5224

DE-Lkb 49.0996, 13.3047 DE-Lnf 51.3282, 10.3678

DE-Meh 51.2753, 10.6555 DE-Obe 50.7867, 13.7213

DE-RuR 50.6219, 6.3041 DE-RuS 50.8659, 6.4471

DE-RuW 50.5049, 6.331 DE-Seh 50.8706, 6.4497

DE-SfN 47.8064, 11.3275 DE-Spw 51.8922, 14.0337

DE-Tha 50.9626, 13.5652 DE-Wet 50.4535, 11.4575

DE-Zrk 53.8759, 12.889 DK-Eng 55.6905, 12.1918

DK-Fou 56.4842, 9.5872 DK-Lva 55.6833, 12.0833

DK-Ris 55.5303, 12.0972 DK-Sor 55.4859, 11.6446

ES-Abr 38.7018, -6.7859 ES-Amo 36.8336, -2.2523

ES-ES1 39.346, -0.3188 ES-ES2 39.2756, -0.3153

ES-LJu 36.9266, -2.7521 ES-LM1 39.9427, -5.7787

ES-LM2 39.9346, -5.7759 ES-LMa 39.9415, -5.7734

ES-LgS 37.0979, -2.9658 ES-Ln2 36.9695, -3.4758

ES-VDA 42.1522, 1.4485 FI-Hyy 61.8474, 24.2948

FI-Jok 60.8986, 23.5134 FI-Kaa 69.1406, 27.2698

FI-Let 60.6418, 23.9595 FI-Lom 67.9972, 24.2092
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site code latitude, longitude site code latitude, longitude

FI-Sii 61.8326, 24.1928 FI-Sod 67.3624, 26.6386

FI-Var 67.7549, 29.61 FR-Aur 43.5497, 1.1061

FR-Bil 44.4937, -0.9561 FR-EM2 49.8721, 3.0206

FR-Fon 48.4764, 2.7801 FR-Gri 48.8442, 1.9519

FR-Hes 48.6741, 7.0646 FR-LBr 44.7171, -0.7693

FR-Lam 43.4965, 1.2378 FR-Lq1 45.6431, 2.7358

FR-Lq2 45.6392, 2.737 FR-Pue 43.7413, 3.5957

GF-Guy 5.2788, -52.9249 GH-Ank 5.2685, -2.6942

GL-NuF* 64.1308, -51.3861 GL-ZaF 74.4814, -20.5545

GL-ZaH 74.4733, -20.5503 HU-Bug 46.6911, 19.6013

HU-Mat 47.8469, 19.726 ID-Pag 2.345, 114.036

IE-Ca1 52.8588, -6.9181 IE-Dri 51.9867, -8.7518

IL-Yat* 31.345, 35.052 IS-Gun 63.8333, -20.2167

IT-Amp 41.9041, 13.6052 IT-BCi 40.5238, 14.9574

IT-Bon 39.4778, 16.5347 IT-CA1 42.3804, 12.0266

IT-CA2 42.3772, 12.026 IT-CA3 42.38, 12.0222

IT-Col 41.8494, 13.5881 IT-Cp2 41.7043, 12.3573

IT-Cpz 41.7052, 12.3761 IT-Isp 45.8126, 8.6336

IT-LMa 45.1526, 7.5826 IT-La2 45.9542, 11.2853

IT-Lav 45.9562, 11.2813 IT-Lec 43.3036, 11.2698

IT-Lsn 45.7405, 12.7503 IT-MBo 46.0147, 11.0458

IT-Mal 46.114, 11.7033 IT-Noe 40.6062, 8.1512

IT-Non 44.6902, 11.0911 IT-PT1 45.2009, 9.061

IT-Pia 42.5839, 10.0784 IT-Ren 46.5869, 11.4337

IT-Ro1 42.4081, 11.93 IT-Ro2 42.3903, 11.9209

IT-SR2 43.732, 10.291 IT-SRo 43.7279, 10.2844

IT-Tor 45.8444, 7.5781 JP-MBF 44.3842, 142.3186

JP-Mas 36.054, 140.0269 JP-SMF 35.2617, 137.0786

JP-Tak 36.1462, 137.423 JP-Tom 42.7395, 141.5149

MY-PSO 2.973, 102.3062 NL-Ca1 51.971, 4.927

NL-Haa 52.0036, 4.8056 NL-Hor 52.2404, 5.0713

NL-Lan 51.9536, 4.9029 NL-Loo 52.1666, 5.7436

NL-Lut 53.3989, 6.356 PA-SPn 9.3181, -79.6346

PA-SPs 9.3138, -79.6314 PL-Wet 52.7622, 16.3094

PT-Esp 38.6394, -8.6018 PT-Mi1 38.5406, -8.0001

PT-Mi2 38.4765, -8.0246 RU-Che 68.613, 161.3414

RU-Cok 70.8291, 147.4943 RU-Fy2 56.4476, 32.9019
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site code latitude, longitude site code latitude, longitude

RU-Fyo 56.4615, 32.9221 RU-Ha1 54.7252, 90.0022

RU-Ha3 54.7046, 89.0778 RU-Sam 72.3738, 126.4958

RU-SkP 62.255, 129.168 RU-Tks 71.5943, 128.8878

RU-Vrk 67.0547, 62.9405 RU-Zot 60.8008, 89.3508

SD-Dem 13.2829, 30.4783 SE-Abi 68.3624, 18.7948

SE-Deg 64.182, 19.5565 SE-Htm 56.0976, 13.419

SE-Lnn* 58.3406, 13.1018 SE-Nor 60.0865, 17.4795

SE-Ros* 64.1725, 19.738 SE-Sk2 60.1297, 17.8401

SE-St1 68.3541, 19.0503 SE-Svb* 64.2561, 19.7745

SJ-Adv 78.186, 15.923 SJ-Blv 78.9216, 11.8311

SK-Tat 49.1208, 20.1635 SN-Dhr 15.4028, -15.4322

UK-ESa 55.9069, -2.8586 UK-Gri 56.6072, -3.7981

UK-Ham 51.1535, -0.8583 UK-PL3 51.45, -1.2667

UK-Tad 51.2071, -2.8286 US-AR1 36.4267, -99.42

US-AR2 36.6358, -99.5975 US-ARM 36.6058, -97.4888

US-ARb 35.5497, -98.0402 US-ARc 35.5465, -98.04

US-Atq 70.4696, -157.4089 US-Aud 31.5907, -110.5104

US-Bar 44.0646, -71.2881 US-Bkg 44.3453, -96.8362

US-Blo 38.8953, -120.6328 US-Bn2 63.9198, -145.3782

US-Bn3 63.9227, -145.7442 US-Bo1 40.0062, -88.2904

US-Bo2 40.009, -88.29 US-Brw 71.3225, -156.6092

US-CRT 41.6285, -83.3471 US-CaV 39.0633, -79.4208

US-Cop 38.09, -109.39 US-Dk3 35.9782, -79.0942

US-FPe 48.3077, -105.1019 US-FR2 29.9495, -97.9962

US-Fmf 35.1426, -111.7273 US-Fuf 35.089, -111.762

US-Fwf 35.4454, -111.7718 US-GBT 41.3658, -106.2397

US-GLE 41.3665, -106.2399 US-Goo 34.2547, -89.8735

US-Ha1 42.5378, -72.1715 US-Ho1 45.2041, -68.7402

US-Ho2 45.2091, -68.747 US-IB1 41.8593, -88.2227

US-IB2 41.8406, -88.241 US-Ivo 68.4865, -155.7503

US-KS1 28.4583, -80.6709 US-KS2 28.6086, -80.6715

US-LWW 34.9604, -97.9789 US-Lin 36.3566, -119.8423

US-Los 46.0827, -89.9792 US-MMS 39.3232, -86.4131

US-MOz 38.7441, -92.2 US-Me1 44.5794, -121.5

US-Me2 44.4523, -121.5574 US-Me3 44.3154, -121.6078

US-Me4 44.4992, -121.6224 US-Me5 44.4372, -121.5668
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site code latitude, longitude site code latitude, longitude

US-Me6 44.3233, -121.6078 US-Myb 38.0498, -121.7651

US-NC1 35.8118, -76.7119 US-NR1 40.0329, -105.5464

US-Ne1 41.1651, -96.4766 US-Ne2 41.1649, -96.4701

US-Ne3 41.1797, -96.4397 US-ORv 40.0201, -83.0183

US-Oho 41.5545, -83.8438 US-PFa 45.9459, -90.2723

US-Prr 65.1237, -147.4876 US-SO2 33.3738, -116.6228

US-SO3 33.3771, -116.6226 US-SO4 33.3845, -116.6406

US-SP1 29.7381, -82.2188 US-SP2 29.7648, -82.2448

US-SP3 29.7548, -82.1633 US-SRC 31.9083, -110.8395

US-SRG 31.7894, -110.8277 US-SRM 31.8214, -110.8661

US-Sta 41.3966, -106.8024 US-Syv 46.242, -89.3477

US-Ton 38.4316, -120.966 US-Tw1 38.1074, -121.6469

US-Tw2 38.1047, -121.6433 US-Tw3 38.1159, -121.6467

US-Tw4 38.103, -121.6414 US-Twt 38.1087, -121.653

US-UMB 45.5598, -84.7138 US-UMd 45.5625, -84.6975

US-Var 38.4133, -120.9507 US-WBW 35.9588, -84.2874

US-WCr 45.8059, -90.0799 US-WPT 41.4646, -82.9962

US-Whs 31.7438, -110.0522 US-Wi0 46.6188, -91.0814

US-Wi1 46.7305, -91.2329 US-Wi2 46.6869, -91.1528

US-Wi3 46.6347, -91.0987 US-Wi4 46.7393, -91.1663

US-Wi5 46.6531, -91.0858 US-Wi6 46.6249, -91.2982

US-Wi7 46.6491, -91.0693 US-Wi8 46.7223, -91.2524

US-Wi9 46.6188, -91.0814 US-Wkg 31.7365, -109.9419

US-Wrc 45.8205, -121.9519 VU-Coc -15.4427, 167.192

ZA-Kru -25.0197, 31.4969 ZM-Mon -15.4378, 23.2528
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