Physical mechanisms for biological carbon uptake during the onset of the spring phytoplankton bloom in the northwestern Mediterranean Sea (BOUSSOLE site)

Liliane Merlivat¹, Michael Hemming ², Jacqueline Boutin¹, David Antoine³, ⁴, Vincenzo Vellucci⁵, Melek Golbol⁵, Gareth A. Lee⁶, Laurence Beaumont⁷

¹ Sorbonne Université, CNRS/IRD/MNHN, LOCEAN, IPSL, Paris, France
² Coastal and Regional Oceanography Lab, Centre for Marine Science and Innovation, UNSW Sydney, Sydney, NSW 2052 Australia
³ Remote Sensing and Satellite Research Group, School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia
⁴ Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, Villefranche sur Mer 06230, France
⁵ Sorbonne Université, CNRS, Institut de la Mer de Villefranche, Villefranche sur Mer 06230, France
⁶ Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
⁷ Division Technique INSU-CNRS, 92195 Meudon CEDEX, France

Correspondence to: liliane.merlivat@gmail.com

Keywords: Bloom onset ; Carbon uptake ; Air-sea interaction; Mediterranean sea

Abstract

Several trigger mechanisms have been proposed for the onset of the phytoplankton spring bloom. Among these, that phytoplankton cells begin to bloom when they experience higher average light levels in shallower mixed layers, a result of the surface net heat fluxes becoming positive and wind strength decreasing. We study the impact of these two forcings in the northwestern Mediterranean Sea. We take advantage of hourly measurements of oceanic and atmospheric parameters collected at two neighboring moorings during the months of March and April in the years 2016 to 2019, combined with glider data in 2016. We identify the onset
of the surface phytoplankton growth as concomitant with the start of significant biological activity detected by a sudden decrease in dissolved inorganic concentrations derived from measurements in the upper 10 m of the water column. A rapid reduction in wind stress following high-wind events is observed at the same time. A resulting shallow mixing layer favors carbon uptake by phytoplankton lasting a few days. Simultaneously, the air-sea net heat flux switches from negative to positive linked to changes of the latent air-sea heat flux, which is proportional to the wind speed. This results in an increased thermal stratification of the ocean's surface layers. In 2016, glider data show that the mixing layer is significantly shallower than the mixed layer at the onset of the surface phytoplankton bloom. We conclude that decreases in the mixing and mixed layer depths lead to the onset of the phytoplankton growth due to the relaxation of wind speed following storms. We estimate net daily community production in the mixing layer over periods of 3 days between 2016 and 2019 as between 38 mmol C m$^{-2}$ and 191 mmol C m$^{-2}$. These results have important implications as biological processes play a major role in the seasonal evolution of surface pCO$_2$ and thereby the rate of reduction of atmospheric CO$_2$ by exchange at the air-sea interface.

Introduction

Investigating the physical and biological mechanisms contributing to changes in air-sea carbon dioxide (CO$_2$) fluxes is essential. It is a critical component of the global carbon cycle and the climate system with the ocean removing about a quarter of the CO$_2$ emitted into the atmosphere by human activities over the last decade. It depends on the gradient of CO$_2$ partial pressure, pCO$_2$, between the atmosphere and the surface ocean [Takahashi et al., 2009; Rödenbeck et al., 2013; Merlivat et al., 2015]. pCO$_2$ in the ocean mixed surface layer depends on the relative contribution of dynamic transport, thermodynamics and biogeochemistry. As the biological carbon pump lowers pCO$_2$ and Dissolved Inorganic Carbon (DIC) at the sea surface, the production of plankton biomass during a bloom can be sufficient to reverse the annual cycle of surface-ocean CO$_2$ uptake. A decrease in surface DIC, after physical processes have been eliminated, indicates the beginning of phytoplankton spring growth. Conceptual frameworks have been proposed to explain when depth-integrated
Phytoplankton biomass starts accumulating during blooms [Behrenfeld, 2010; Sverdrup, 1953]. The timing of the initiation of the surface spring phytoplankton bloom depends in particular on atmospheric forcing. The physical processes of wind stress, heat flux and vertical mixing control the depth of the mixed/mixing layer and thus the availability of light [Siegel et al, 2002, Chiswell, 2011; Taylor and Ferrari, 2011; Brody and Lozier, 2015; Enriquez and Taylor, 2015, Rumyantseva et al, 2019]. Thus, to better understand which fundamental physical processes control the timing of the onset of the surface bloom, in situ measurements are needed at the appropriate hourly to daily timescale. It is important to draw attention to the atmospheric forcing timescale. In biogeochemical ocean modeling studies, typically built on atmospheric models, reanalysis or satellite data, time resolution of at best a few days are required [Mahadevan et al, 2012].

Figure 1. The area of the northwestern Mediterranean Sea showing the French and Italian Rivieras, the island of Corsica, the main current branches (green arrows) in the Ligurian Sea and the location of the BOUSSOLE buoy (white square) and the AZUR meteorological buoy (yellow square). The black line indicates the glider’s path in March-April 2016.
In the northwestern Mediterranean Sea, the BOUSSOLE (Bouée pour l’acquisition de Séries Optiques à Long Terme; Antoine et al., 2006, 2008a,b) buoy is located in the central area of the Liguro-Provençal basin (Fig.1), where the dominant ocean currents are generally weak (<20 cm s^{-1}) [Millot, 1999; Antoine et al., 2008b; Niewiadomska et al., 2008]. The main processes that govern the pCO_{2} variations at the sea surface on an annual scale, after removal of the temperature effect, are vertical convective mixing and biological production [Begovic and Copin-Montégut, 2002; Copin-Montégut al., 2004; Hood and Merlivat, 2001; Merlivat et al., 2018]. Intense convection resulting from repeated high wind events in winter or early spring when atmospheric temperatures are typically low brings nutrients to the surface layer [Andersen and Prieur, 2000; Antoine et al., 2008b; Marty et al., 2002; Pasqueron de Fommervault et al., 2015].

The objective of this study is to examine the impact of atmospheric forcing on surface phytoplankton bloom initiation in the northwestern Mediterranean Sea. To this aim we use concurrent hourly data of seawater carbon chemistry measured at depths less or equal to 10 m at the BOUSSOLE mooring [Merlivat et al., 2018] and atmospheric flux measurements at the Azur meteorological buoy 3.1 nm (5.8 km) away from BOUSSOLE in March and April 2016 to 2019. Additional measurements of phytoplankton chlorophyll-a (Chla), temperature and density were provided by an underwater glider deployed in March-April 2016. The initiation of biological carbon uptake is revealed by the sudden decrease in DIC measured at the BOUSSOLE buoy.

In the Material and Methods section, we provide the description of data processing, theoretical framework, and calculations used to evaluate mixing regimes in the water column and net community production. The results section presents measured atmospheric and biogeochemical parameters observed in March-April, and NCP estimates from 2016 to 2019. The Discussion section relates our results to previous findings and presents our conclusions regarding the drivers of phytoplankton bloom initiation.

2 Material and methods

2.1- Data from the BOUSSOLE mooring

CARIOCA sensors [Merlivat and Brault, 1995] installed on the BOUSSOLE buoy (43°22’N, 7°54’E; Fig.1) monitored hourly partial pressure, pCO_{2}, at both 3 and 10 m alongside salinity
and temperature (SEABIRD Scientific SBE 37 MicroCAT CTDs). Protocols for calibration of
in situ measurements are described in [Merlivat et al, 2018]. CARIODA measurements of
pCO₂ and temperature are combined with total alkalinity (Alk) derived from salinity
[Merlivat et al., 2018] to calculate DIC. The dissociation constants of Mehrbach et al., (1973)
refitted by Dickson and Millero (1987) are used, as recommended by Alvarez et al. (2014) for
the Mediterranean Sea. For the March-April months mean salinity is 38.3, corresponding with
mean Alk equal to 2571.4 µmol kg⁻¹ [Copin et al, 2004]. The expected precision of the
CARIODA pCO₂, and DIC is 5 µatm, and 3 µmol kg⁻¹ respectively [Merlivat et al, 2018].

2.2- Glider observations

An iRobot Seaglider model 1KA (SG537) with an ogive fairing operated by the University of
East Anglia (UEA) [see Hemming et al., 2017] was deployed during the BOUSSOLE
monthly cruise (#169) [Golbol et al 2000] and recovered 1 month later with a ship of
opportunity. Diving to 1000 m, 147 dives were completed between March 7 and April 5 2016
repeatedly-sampling a square-shaped path surrounding the BOUSSOLE buoy (Fig. 1) with
corners pointing to cardinal directions. Out of 147 dives, a number of them contain data that
are within 10 km of the BOUSSOLE mooring, i.e. when it was sampling in the eastern corner
of the diamond path. The glider was equipped with a non-pumped SEABIRD Scientific SBE
9 CTD instrument package providing temperature and salinity, and a WET Labs Eco Puck
sensor providing relative phytoplankton Chla fluorescence, factory calibrated into Chla
concentration units (mg m⁻³) locally adjusted with top 10 m HPLC chlorophyll from CTD
and mooring samples.

2.3- Azur meteorological buoy

The Azur meteorological buoy has been deployed since 1999 by the French weather forecast
Agency (Meteo-France) at 43°23’N, 7°50’E (Fig. 1). It provides hourly measurements of
surface wind speed extrapolated to 10 m height, U₁₀ (m s⁻¹), net incoming and emitted long-
wave radiation, incoming short-wave radiation, and the sensible and latent heat fluxes. These
are needed to estimate the net air-sea heat budget at the sea surface (http://mistrals.sedoo.fr).
U₁₀ is used to calculate wind stress, τ, as follows: τ = ρₐ C_d U₁₀², where ρₐ is air density (1.2
kg m⁻³), and C_d is the drag coefficient (1.4 x 10⁻³). Photosynthetically Active Radiation (PAR,
mol photons m⁻² d⁻¹) is related to solar irradiance (i.e. short-wave flux), SW, following PAR =
0.473 SW [Papaioannou et al., 1993].
The mixing layer depth, Z_{mx}, is the upper part of a mixed layer of uniform density where active turbulence occurs [Brainerd and Gregg 1995]. Several recent studies have highlighted the significance of this layer to understand the phytoplankton phenology of phytoplankton blooms [Brody and Lozier, 2015; Taylor and Ferrari, 2011]. Autonomous profiling floats equipped with bio-optical sensors have also highlighted the importance of mixing rather than mixed layers to characterize the onset and the development of a phytoplankton bloom. Wind-driven and buoyancy-driven regimes control the characteristics and depth of active mixing [Brody and Lozier, 2014, 2015, Ramuyantseva et al, 2015, Lacour et al, 2019, Pellichero et al, 2020]. Wind-driven mixing dominates in the presence of weak buoyancy forcing when heat fluxes are small. In that case, the dominant mixing length scale is equal to the Ekman layer depth scale.

The daily mean mixed layer depth, Z_{ml} is derived for 2016 from glider vertical profiles of temperature and salinity using the algorithm provided by Holte and Talley, (2009) estimated using the potential density algorithm.

To estimate Z_{mx}, τ is used to calculate the Ekman layer depth, Z_{ek}, $Z_{ek}=\gamma u_*/f$, where γ is an empirical constant (0.5), f is the Coriolis parameter (10^{-4} s$^{-1}$) over the BOUSSOLE area, and u_* is the turbulent friction velocity, $u_*=\sqrt{\tau/\rho_w}$ (m s$^{-1}$), with ρ_w the density of the surface sea water [Lacour et al, 2019]. When heat fluxes are large and positive, Enrikez and Taylor (2015) proposed to express the mixing depth Z_{mx} in terms of the surface forcing, i.e. the surface stress and a stabilizing surface buoyancy flux B_0, as follows:

$$\frac{1}{Z_{mx}^2} = \frac{f^2}{(C_3 u_*)^2} + \frac{f B_0}{(C_4 u_*^2)^2} \quad (1)$$

With $C_3=1$, $C_4=0.57$, $B_0 = Q \lambda \ g \ c_p \rho_0$, where Q is the net surface heat flux, λ the thermal expansion coefficient (1.65×10^{-4} °C$^{-1}$), g the gravitational acceleration (9.81 m s$^{-2}$), c_p the specific heat of water (4×10^3 J kg$^{-1}$ °C$^{-1}$) and ρ_0 the pure water density (1000 kg m$^{-3}$).

2.5-Estimation of euphotic zone depth

The euphotic depth, Z_{eu}, is generally derived as the depth where PAR is 1% of its surface value. Z_{eu} can be estimated from Chla at the surface using the method described by Lee et al. (2007) based on the equation of Morel and Berthon (1989):
For the period between 2017 and 2019, GlobColour merged Chla products were used, which are based on satellite observations with a resolution of 25 km, and a binning period of 8 days (http://www.oceancolour.org). For 2016, glider surface Chla was used to derive Z_{eu} instead of satellite measurements. We excluded glider Chla between 05:00 and 20:00 UTC affected by sunlight–induced fluorescence quenching, and we applied a depth-constant offset to glider measurements using Chla water samples available on March 7.

2.6-Estimation of average mixing layer irradiance

We calculate the average mixing layer irradiance, I, function of the incident surface irradiance, PAR, mixing layer depth, h, and the diffuse attenuation coefficient, K_d, estimated from surface chlorophyll-a concentrations (Venables and Moore, 2010).

\[
K_d = 0.05 + 0.057 \text{Chla}^{0.58}
\]

\[
I = \frac{\text{PAR}}{K_d h} (1 - e^{-K_d h})
\]

2.7 – Estimation of net community production

Biological Net Community Production rates, NCP (mmol m^{-2} day^{-1}), are calculated for separate 3-day periods in March-April, 2016 to 2019 from DIC concentrations derived from CARIOCA measurements, assuming that measurements in the top 10 m of the water column are representative of an homogeneous mixing layer [Boutin and Merlivat, 2009; Merlivat et al, 2015; Pelicherro et al, 2020]. In the study area, current velocities are expected to be small [Millot, 1999; Antoine et al., 2008; Niewiadomska et al., 2008], hence to estimate NCP, we assume that the contribution of horizontal advection was negligible. Vertical mixing events are identified by an increase in DIC resulting from upward movement of high DIC Levantine Intermediate Water (LIW) at approximately 200 m depth [Copin-Montégut and Bégovic, 2002]. We isolated time periods when local physical processes were largely one-dimensional in order to study changes in biological and chemical parameters that occurred during rapid transitions from deep mixing to intermittent stratification. In 2016, over a four-day period, March 18-21, the diurnal cycle of DIC values characterized by a maximum in the morning followed by a minimum at the end of the day indicates the onset of organic matter formation. The eddy diffusivity term is negligible as the DIC gradient at the base of the mixing layer is
very weak, entrainment is not expected as changes in DIC are observed during periods of
stratification. For the identified periods, biological production and air-sea exchange are the
dominant processes responsible for daily changes in DIC.

NCP is thus estimated from temporal variation of the DIC integrated over Z_{mx} (DIC$_{int}$), and
corrected for the air-sea CO$_2$ flux contribution [Pelicherro et al, 2020]:

$$NCP = \left(\frac{\Delta \text{DIC}_{int}}{\Delta t} \right)_{\text{bio}} - \left(\frac{\Delta \text{DIC}_{int}}{\Delta t} \right)_{\text{meas}} - k \times s \times (p\text{CO}_2\text{atm} - p\text{CO}_2\text{sw})$$ (4)

The first term in equation 4, $\left(\frac{\Delta \text{DIC}_{int}}{\Delta t} \right)_{\text{bio}}$, is the daily variation of DIC$_{int}$ calculated over 3
days from the date identified as the start of phytoplankton growth (t_0), whilst the remaining
part corresponds to DIC variability due to air-sea CO$_2$ exchange, where k is the gas transfer
velocity [Wanninkhof, 2014], s is the solubility of CO$_2$ in seawater [Weiss, 1974], and
$p\text{CO}_2\text{sw}$ and $p\text{CO}_2\text{atm}$ are respectively the partial pressures of CO$_2$, in µatm, in sea water and in
air [Merlivat et al, 2018].

3 Results

3.1- Description of the 2016 time-series
Figure 2. 2016 (a) Hourly DIC (green) and SST(purple) at the BOUSSOLE site, (b) hourly wind stress (blue) and net heat flux (pink) at the Azur buoy site. The pink dotted line indicates the change of sign of the net heat flux from negative to positive values, (c) daily depths of the mixed layer (black), mixing layer (dotted black), Ekman layer (cyan) and euphotic layer (orange) at the BOUSSOLE site. The black dotted line on panels (a), (b), (c) (d) and (e) indicates the beginning of DIC decrease on March 18. (d) PAR (orange) and I, average mixing layer irradiance (blue), (e) Glider-derived depths of the mixed layer (black curve, same as in (c)), euphotic layer (orange), and nighttime 2-day binned chlorophyll concentration (green coloring) retrieved between March 7 and April 5.
Physical and biogeochemical parameters have been measured between March 7 and April 5 2016 (Fig. 2). We observe an initial increase in DIC until March 18 (Fig. 2a), resulting from the vertical mixing of surface waters with the DIC-enriched underlying LIW [Copin-Montégut and Bégovic, 2002], followed by a decrease in DIC that corresponds to an increase of surface Chla (Fig 2c). Temperature increases intermittently over the same time period (Fig. 2a), with a sharp increase on March 18 and 25. Before March 18 frequent atmospheric fronts associated with wind forcing between 0.2 and 0.5 N m$^{-2}$ were observed (Fig. 2b). $Q_{0,\text{net}}$ was negative most of the time leading up to March 18, but mostly positive afterwards (Fig. 2b). A clear anticorrelation was observed between τ and $Q_{0,\text{net}}$ (Fig. 2b). The mixed-layer depth derived from the glider measurements (< 20 km away from the Boussole site) deepened to > 70 m at times between March 8 and March 18, consistent with the passage of frequent atmospheric fronts. From March 18 to April 5, Z_{ml} shoaled from ~ 45 m to ~10 m, excluding two short periods around March 24 and April 2 when atmospheric fronts were passing (Fig. 2c). From March 18 to 31, Z_{mx} was for a considerable time either shallower than, or at similar depth to Z_{ml} and Z_{eu} (Fig. 2c). The start of the increase in PAR from March 15 precedes the increase in irradiance by 3 days as a result of the decrease of the mixing layer depth observed only after March 18 (Fig. 2d).

During periods of a few days, from March 7 to April 5, increases in glider Chla were observed as the result of a series of net accumulation/mixing events. Following the initial growth of surface phytoplankton identified by the DIC decrease on March 18, biomass accumulation was observed a few days later (Fig. 2e). The same was observed in the Southern Ocean [Pelicherro et al, 2019].

3.2- Description of the 2017-2018-2019 time-series

Only measurements at the BOUSSOLE and Azur buoys were available between 2017 and 2019. Here we focus on the periods between March 1 and April 25. In 2017, from March 9, after the passage of a very active atmospheric front (τ up to 2.7 N m$^{-2}$), a decrease in DIC accompanied by an increase in temperature was observed for a period of 14 days despite a few short bursts of vertical mixing, typically lasting less than 1 day (Fig. 3a, d, g). At the same time, the net surface heat flux switched from negative to positive most of the time. Over this 14-day period, Z_{mx} was predominantly shallower than the Z_{eu} at times when DIC was decreasing.
In 2018 (Fig. 3b, e, h) and 2019 (Fig. 3c, f, i), the weather records throughout the month of March are very similar, showing a succession of very strong wind events at the start of the investigated time periods, with τ values of up to 3.7 N m$^{-2}$ and Z_{ek} values as deep as 300 m. On April 5, 2018, following a period of high wind stress resulting in the formation of a deep mixing layer (~250 m), a decrease in DIC and an increase in SST were observed over 3 days. At the same time, the net heat flux oscillated around zero. In 2019, CARIOCA data were only available after March 24. On March 30, 3 days after high winds, a decrease in DIC and an increase in temperature lasted 3 days, while simultaneously the net heat flux reversed from negative to positive.

Figure 3. (a, b, c) 2017, 2018 and 2019 DIC (green) and SST (purple) at the BOUSSOLE site, (d, e, f) wind stress (blue) and net heat flux (red) at the Azur buoy site. (d, e, f) The red dotted line indicates the change of sign of the net heat flux from negative to positive values, (g, h, i) depths of the mixing layer (dotted black), Ekman layer (cyan) and euphotic layer (orange) at the BOUSSOLE site. The vertical dotted green line indicates the onset of the decrease of DIC.
For the period between 2017 and 2019, only satellite chlorophyll-a concentrations with a binning period of 8 days were available, which is too large to calculate the average mixing irradiance as it is highly variable on a daily scale (Fig 2.d).

3.3- NCP

NCP was estimated (Eq. 3) for 3-day periods over the four time-series between 2016 and 2019 (Table 1). Because we compute NCP only during periods when Z_{ml} and Z_{mx} shoal and the air-sea CO$_2$ flux is very small, the measured total daily changes of DIC, dDIC/dt (correlation coefficient, $r^2 > 0.70$), is expected to represent the biological consumption of DIC. In 2016, 2017, and 2019, daily biological carbon uptake fluxes are between 38 and 191 mmol m$^{-2}$ d$^{-1}$. PAR and I vary respectively from 30 to 53 and 13 to 25 mol photons m$^{-2}$ d$^{-1}$ for the four considered periods (Table 2).

<table>
<thead>
<tr>
<th>Year</th>
<th>Depth</th>
<th>Date</th>
<th>dDIC/dt α</th>
<th>r^{2b}</th>
<th>ΔDIC/Δt ϵ</th>
<th>r^{2d}</th>
<th>air-sea flux CO$_2$ \mathcal{E}</th>
<th>NCP γ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>µmol kg$^{-1}$d$^{-1}$</td>
<td>mmol m$^{-2}$d$^{-1}$</td>
<td>mmol m$^{-2}$d$^{-1}$</td>
<td>mmol m$^{-2}$d$^{-1}$</td>
<td>mmol m$^{-2}$d$^{-1}$</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>10m</td>
<td>March 18</td>
<td>-3.0</td>
<td>0.80</td>
<td>-37</td>
<td>0.68</td>
<td>1</td>
<td>38</td>
</tr>
<tr>
<td>2017</td>
<td>3m</td>
<td>March 9</td>
<td>-4.5</td>
<td>0.84</td>
<td>-188</td>
<td>0.86</td>
<td>3</td>
<td>191</td>
</tr>
<tr>
<td>2018</td>
<td>3m</td>
<td>April 5</td>
<td>-6.5</td>
<td>0.70</td>
<td></td>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>10m</td>
<td>March 30</td>
<td>-8.3</td>
<td>0.93</td>
<td>-163</td>
<td>0.63</td>
<td>4</td>
<td>167</td>
</tr>
</tbody>
</table>

Table 1. Net community production computed in the mixing layer over 3 days (NCP) after the bloom onset (T_0). (a, b) variation of DIC at the measurement depth and linked correlation coefficient; (c, d) change of integrated DIC over Z_{mx} and linked correlation coefficient ;(e) CO$_2$ flux from the atmosphere to the ocean; (f), absolute value of calculated NCP is considered in order to provide positive values throughout the presentation and discussion in the manuscript.

4 Discussion
4.1 Analysis of the physical drivers of the bloom initiation over the 4 years, 2016-2019

4.1.1 In 2016, the consumption of carbon indicated by the decrease in DIC from March 18 attests the initiation of the formation of phytoplankton biomass (Fig. 2.). Between 2 successive days, March 17 and 18, a rapid decrease in daily wind stress from 0.24 to 0.04 N m\(^{-2}\) results in a change of sign of the net heat flux from -68 to +56 W m\(^{-2}\) (Fig.4a) and a shoaling \(Z_{mx}\), which is for the most part shallower than \(Z_{eu}\) (Fig.4b) after March 18.

![Diagram](image)

Figure 4. Changes of physical parameters (hourly values) at the onset of the 2016 bloom during 2 consecutive periods of 4 days, March 14-17 (blue) and March 18-21 (red) as a function of wind stress (a) net surface heat flux (b) depths of the Ekman, mixing and euphotic layer. Grey circles and grey squares indicate mean values respectively on March 17 and March 18. For comparison, the orange line shows the euphotic layer depth (March 14-21).

This illustrates the very fast change in heat flux and mixing layer thickness resulting from the decrease in wind stress. The main drivers to explain the initiation of near surface spring phytoplankton blooms proposed by [Taylor and Ferrari, 2011, Brody-Lozier, 2014, 2015] are a decrease in wind strength, a positive surface heat flux, and a decrease in the dominant
mixing length scale. Our results indicate that a decrease in τ is a common component for these last two mechanisms (Fig.4). The variability of $Q_{0,\text{net}}$ is strongly controlled by the variability of the latent heat flux proportional to the wind speed. From March 17 to 18, the latent heat flux changed by 84 W m$^{-2}$ representing nearly 2 thirds of the total change of Q_0, with the remainder originating from an increased short-wave flux. Hence, $Q_{0,\text{net}}$ increased as τ decreased. In the same way Z_{mx}, which is related to τ and $Q_{0,\text{net}}$, decreased. This highlights the major contribution of wind stress relaxation in controlling the net surface heat flux, and subsequent stratification leading to sallower Z_{mx}.

4.1.2 Over the 4 years, 2016-2019, during the months of March and April, at the very beginning of spring, the conditions required for initiating the spring bloom are very similar although the range of wind stress values is smaller in 2016 (Fig. 2, Fig. 3). The wind stress values are low following storm events. For all years except 2018, Z_{mx} is smaller than Z_{eu}. The average atmospheric and oceanographic conditions during the onset of the bloom are shown in Table 2. The decrease of wind-driven mixing is then a dominant physical mechanism, namely mixed layer shoaling which best predicts the timing of the spring bloom [Brody Lozier, 2014, 2015]. Likewise, in the Southern Ocean, Pelicherro et al (2020) showed that a bloom is initiated only when the wind-driven mixed layer decreases, even if the net heat flux has been positive for some months.

4.2 DIC, Chla, Irradiance at the ocean surface in 2016

Between March 18 and 21, a diurnal cycle in DIC is observed (Figure 5a) characterized by a maximum in the morning followed by a minimum at the end of the day, indicating the onset of organic matter formation. The decrease in DIC is accompanied by an increase of glider surface Chla on March 18 and a simultaneous increase in the average mixing layer irradiance (Fig. 5 b). It is worth noting that the Chla maximum does not occur until 31 March, 13 days after the first decrease in DIC. This maximum is the one identified in most cases by the Chla satellite measurements with a binning period of 8 days. It follows that satellite data cannot accurately characterize the conditions that prevail for the onset of the phytoplankton growth, as these are dictated by a great temporal variability of atmospheric forcings. Due to the seasonal increase of surface irradiance, as well as the availability of nutrients following vertical mixing with intermediate nutrient-enriched waters [Begovic and Copin-Montégut, 2002], the conditions for the onset of a bloom are met.
Figure 5. From March 7 to April 5, (a) DIC and Chla. The purple line and the squares (blue, morning; grey, evening) indicate the 3 days biological diurnal DIC changes during the period considered to compute NCP. The blue and orange lines indicate the surface Chla when the glider was at a distance of less than 5 km (blue) and less than 20 km (orange) respectively from the Boussole buoy. (b) PAR and I average mixing layer irradiance. The vertical dotted black line indicates the onset of the bloom on March 18.

4.3- Biological carbon uptake

In 2016, 2017, and 2019, at the onset of the bloom Z_{mx} is shallower than Z_{eu} (Table 2). Two factors account for the observed large range of NCP variability at the time of triggering the bloom: dDIC$/dt$ and Z_{ml}. In 2016 and 2017, DIC decreased over a period of 14 days, whereas it lasted for 3 days in 2018 and 2019, as a result of short-lived high wind events ($\tau > 1$ N m$^{-2}$). On April 2, 2018, a high surface phytoplankton Chla, 1.9 mg m$^{-3}$, was measured by satellite (Globcolour data) suggesting a strong biological signal. However, as Z_{eu} is significantly shallower than Z_{mx} (26 m vs. 65 m; Fig. 3h), it would be incorrect to estimate NCP integrated
over Z_{mx} using the DIC gradient measured at 3 m depth and likewise to compute the average mixing layer irradiance.

At the nearby DyFAMed site (Dynamique des Flux Atmospheriques en Mediterranee), using a 20-year O_2 time series, Coppola et al. (2018) estimated an annual net community carbon production equal to 7.1 mol m$^{-2}$ yr$^{-1}$, or 19.4 mmol m$^{-2}$ d$^{-1}$. Additionally, using determinations of primary production from 14C in-situ incubations and of carbon export fluxes from sediment traps at DyFAMed, Marty and Chiaverini (2002) calculated average daily primary productions between 19.6 and 53 mmol m$^{-2}$ d$^{-1}$. These estimates may have underestimated the annual NCP values as they were calculated from monthly observations while phytoplankton production varies on a daily timescale. Our DIC measurements highlight the large short-term variability of carbon consumption over a few days in March-April when bloom-triggering atmospheric conditions are met, such as a seasonal light increase and the availability of nutrients.

<table>
<thead>
<tr>
<th>Year</th>
<th>Month</th>
<th>Wind stress</th>
<th>Net heat flux</th>
<th>PAR</th>
<th>Z_{mixing}</th>
<th>$Z_{euphotic}$</th>
<th>Irradiance</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>March</td>
<td>0.04 +/-0.02</td>
<td>56+/-36</td>
<td>37+/-3</td>
<td>20+/-9</td>
<td>47</td>
<td>18</td>
</tr>
<tr>
<td>2017</td>
<td>March</td>
<td>0.12+/-0.02</td>
<td>45+/-21</td>
<td>30+/-3</td>
<td>28+/-12</td>
<td>71</td>
<td>13</td>
</tr>
<tr>
<td>2018</td>
<td>April</td>
<td>0.30+/-0.24</td>
<td>127+/-12</td>
<td>42+/-6</td>
<td>62+/-9</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>March 30</td>
<td>0.10+/-0.02</td>
<td>183+/-9</td>
<td>53+/-2</td>
<td>20+/-5</td>
<td>43</td>
<td>25</td>
</tr>
</tbody>
</table>

Table 2. 2016-2019. Atmospheric drivers of the onset of the bloom: average values and standard deviation on the day of the start of the bloom, T_0.

5- Concluding remarks

Around March and April in the northwestern Mediterranean Sea, the seasonal change in lighting conditions and atmospheric forcing are the essential parameters that control the triggering of near-surface phytoplankton blooms. These mechanisms have been highlighted through the coupling of high-frequency physical and biogeochemical in situ observations. For years 2016 to 2019, a bloom started in March or early April identified by a decrease in surface
DIC, following a period of intense mixing. The rapid decrease in surface wind speed entailed a switch from negative to positive air-sea net heat fluxes, essentially due to changes in the latent air-sea heat flux proportional to wind speed. These analysis support the hypothesis that decreases in the depth of active mixing, a result of the transition from buoyancy-driven to wind-driven mixing, control the timing of the surface spring bloom.

We have shown that the onset of surface phytoplankton growth, identified in 2016 by a simultaneous initial decrease in DIC and an increase in surface Chla, precedes by a few days the surface chlorophyll maximum when detected by satellite measurements with a binning period of 8 days. This time span does not allow to identify precisely the contribution of atmospheric drivers to trigger the onset of the growth of phytoplankton as it occurs on a daily basis.

Data availability

BOUSSOLE data (2016-2019) are available in the SEANOE data base (Merlivat Liliane, Boutin Jacqueline (2020). Mediterranean Sea surface CO$_2$ partial pressure and temperature data. SEANOE. https://doi.org/10.17882/56709

Azur Meteorological buoy: http://mistrals.sedoo.fr

SChl, 8-day, 4 km x 4 km resolution, level 3 mapped ocean color product distributed by the European Space Agency, available at http://www.ocean colour/org

All glider data is archived at the British Oceanographic Data Centre (BODC, https://www.bodc.ac.uk/data/bodc_database/gliders/).

Author contributions: VV and MG were respectively in charge of the BOUSSOLE mooring buoy maintenance and monthly water sampling. LB was responsible for the laboratory preparation and calibration of the CARIOCA sensors. GAL led the UEA glider mission in March-April 2016. DA and VV provided data and funding through the BOUSSOLE project and contributed to writing and editing of the manuscript.

The authors declare that they have no conflict of interest.
Acknowledgments: Michael Hemming was a PhD student at the University of East Anglia and Sorbonne University under the supervision of Prof. Jan Kaiser, Prof. Karen J. Heywood, Dr Dorothee Bakker and Dr Jacqueline Boutin, funded by the Defence, Science and Technology Laboratory (Contract no. DSTLX1000092277) with cooperation with Direction Générale de l'Armement (DGA)-. The assistance of the UEA Glider Group in keeping the glider flying is also gratefully acknowledged. The BOUSSOLE time series project is funded by the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA/ESRIN contract 4000119096/17/I-BG). The authors acknowledge Météo-France for supplying the data from the Azur buoy and the HyMeX database teams (ESPRI/IPSL and SEDOO/Observatoire Midi-Pyrénées) for their help in accessing their data. Crew and Captains of R/V Tethys II are warmly thanked for assistance with operations at sea.

We thank two reviewers for their careful and conscientious reviews.

References

Marty, J.-C., Chiavérini, J.: Seasonal and interannual variations in phytoplankton
production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep

Figures and tables

Figure 1. The area of the northwestern Mediterranean Sea showing the French and Italian Rivieras, the island of Corsica, the main current branches (green arrows) in the Ligurian Sea and the location of the BOUSSOLE buoy (white square) and the AZUR meteorological buoy (yellow square). The black line indicates the glider’s path in March-April 2016.

Figure 2. 2016 (a) Hourly DIC (green) and SST (purple) at the BOUSSOLE site, (b) hourly wind stress (blue) and net heat flux (pink) at the Azur buoy site. The pink dotted line indicates the change of sign of the net heat flux from negative to positive values, (c) daily depths of the mixed layer (black), mixing layer (dotted black), Ekman layer (cyan) and euphotic layer (orange) at the BOUSSOLE site. The black dotted line on panels (a), (b), (c) (d) and (e) indicates the onset time of the bloom (18 March). (d) PAR (orange) and average mixing layer irradiance (blue), (e) Glider-derived depths of the mixed layer (black curve, same as in (c)), euphotic layer (orange), and nighttime 2-day binned chlorophyll concentration (green coloring) retrieved between March 7 and April 5.

Figure 3. (a, b, c) 2017, 2018 and 2019 DIC (green) and SST (purple) at the BOUSSOLE site, (d, e, f) wind stress (blue) and net heat flux (red) at the Azur buoy site. The red dotted line indicates the change of sign of the net heat flux from negative to positive values, (g, h, i) depths of the mixing layer (dotted black), Ekman layer (cyan) and euphotic layer (orange) at the BOUSSOLE site. The vertical dotted green line indicates the onset of the bloom.

Figure 4. Changes of physical parameters (hourly values) at the onset of the 2016 bloom during 2 consecutive periods of 4 days, March 14-17 (blue) and March 18-21 (red) as a function of wind stress (a) net surface heat flux (b) depths of the Ekman, mixing and euphotic layer. Grey circles and grey squares indicate mean values respectively on March 17 and March 18. For comparison, the orange line shows the euphotic layer depth (March 14-21).

Figure 5. From March 7 to April 5, (a) DIC and Chla. The purple line and the squares (blue, morning; grey, evening) indicate the 3 days biological diurnal DIC changes during the
period considered to compute NCP. The blue and orange lines indicate the surface Chla when the glider was at a distance of less than 5 km (blue) and less than 20 km (orange) respectively from the BOUSSOLE buoy. (b) PAR and I average mixing layer irradiance. The vertical dotted black line indicates the onset of the bloom on March 18.

Table 1. Net community production computed in the mixing layer over 3 days (NCP) after the bloom onset (T_0). (a, b) variation of DIC at the measurement depth and linked correlation coefficient; (c, d) change of integrated DIC over Z_{mx} and linked correlation coefficient; (e) CO$_2$ flux from the atmosphere to the ocean; (f), absolute value of calculated NCP is considered in order to provide positive values throughout the presentation and discussion in the manuscript.

Table 2. 2016-2019. Atmospheric drivers of the onset of the bloom: average values and standard deviation on the day of the start of the bloom, T_0.

24