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Abstract.

The stable carbon isotopic composition (δ13C) is an important variable to study ocean carbon cycle across different time

scales. We include a new representation of the stable carbon isotope 13C into the HAMburg Ocean Carbon Cycle model

(HAMOCC), the ocean biogeochemical component of the Max Planck Institute Earth System Model (MPI-ESM). 13C is ex-

plicitly resolved for all oceanic carbon pools considered. We account for fractionation during air-sea gas exchange and for5

biological fractionation εp associated with photosynthetic carbon fixation during phytoplankton growth. We examine two εp

parameterisations of different complexity: εPopp
p varies with surface dissolved CO2 concentration (Popp et al., 1989), while

εLaws
p additionally depends on local phytoplankton growth rates (Laws et al., 1995). When compared to observations of δ13C of

dissolved inorganic carbon (DIC), both parameterisations yield similar performance. However, with regard to δ13C in particu-

late organic carbon (POC) εPopp
p shows a considerably improved performance than εLaws

p . This is because εLaws
p produces a too10

strong preference for 12C, resulting in too low δ13CPOC in our model. The model also well reproduces the global oceanic an-

thropogenic CO2 sink and the oceanic 13C Suess effect, i.e. the intrusion and distribution of the isotopically light anthropogenic

CO2 in the ocean.

The satisfactory model performance of the present-day oceanic δ13C distribution using εPopp
p and of the anthropogenic CO2

uptake allows us to further investigate the potential sources of uncertainty of Eide et al. (2017a)’s approach for estimating the15

oceanic 13C Suess effect. Eide et al. (2017a) derived the first global oceanic 13C Suess effect estimate based on observations.

They have noted a potential underestimation but their approach does not provide any insight about the cause. By applying Eide

et al. (2017a)’s approach to the model data we are able to investigate in detail potential sources of underestimation of 13C Suess

effect. Based on our model we find underestimations of 13C Suess effect at 200 m by 0.24‰ in the Indian Ocean, 0.21‰ in the

North Pacific, 0.26‰ in the South Pacific, 0.1‰ in the North Atlantic and 0.14‰ in the South Atlantic. We attribute the major20

sources of underestimation to two assumptions in Eide et al. (2017a)’s approach: the spatially-uniform preformed component

of δ13CDIC in year 1940 and the neglect of processes that are not directly linked to the oceanic uptake and transport of CFC-12

such as the decrease of δ13CPOC over the industrial period.
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The new 13C module in the ocean biogeochemical component of MPI-ESM shows satisfying performance. It is a useful tool

to study the ocean carbon sink under the anthropogenic influences and it will be applied to investigating variations of ocean25

carbon cycle in the past.

Copyright statement. TEXT

1 Introduction

The stable carbon isotopic composition (δ13C) measured in carbonate shells of fossil foraminifera is one of the most widely

used properties in paleoceanographic research (Schmittner et al., 2017). It is defined as a normalised ratio between the stable30

carbon isotopes 13C and 12C:

δ13C(‰) =

(
13C/12C
Rstd

− 1

)
· 1000, (1)

where Rstd is an arbitrary standard ratio. In observational studies, the ratio 13C/12C in Pee Dee Belemnite (PDB; Craig, 1957)

is conventionally used for Rstd.

δ13C provides information on past changes of water mass distribution and properties (e.g. Curry and Oppo, 2005; Peterson35

et al., 2014). Direct comparison between paleo δ13C measurements and simulated δ13C facilitates evaluating the ability of

Earth System Models (ESMs) to simulate paleo ocean states. For this reason, we present a new implementation of 13C in the

HAMburg Ocean Carbon Cycle model (HAMOCC6), the ocean biogeochemical component of the Max Planck Institute Earth

System Model (MPI-ESM). A comprehensive representation of δ13C is a timely extension of MPI-ESM in support of planned

simulations of a complete last glacial cycle within the German climate modelling initiative PalMod (Latif et al., 2016). Before40

applying the new 13C module to paleo simulations, we evaluate it by comparison to observational data in the present day ocean.

Earlier versions of HAMOCC already featured a 13C module, for instance HAMOCC2s (Heinze and Maier-Reimer, 1999)

and HAMOCC3 (Maier-Reimer, 1993). HAMOCC3 included prognostic 13C variables for dissolved inorganic carbon (DIC),

particulate organic matter and calcium carbonate. HAMOCC3 also accounted for temperature-dependent isotopic fractionation

during air-sea gas exchange (higher δ13C of surface DIC in colder water) and biological fractionation during carbon fixation.45

Due to the simplified representation of marine biological production in HAMOCC3, biological fractionation was based on

fixation of inorganic carbon into non-living particulate organic matter, and was parameterised by a spatially and temporally

uniform factor. This approach for biological fractionation of 13C, however, could not reproduce the observed large meridional

gradient of δ13C in particulate organic matter (Goericke and Fry, 1994). Since then, HAMOCC3 was refined in particular with

regard to its representation of plankton dynamics. The current version HAMOCC6 resolves bulk phytoplankton, zooplankton,50

detritus, dissolved organic carbon (Six and Maier-Reimer, 1996), and nitrogen-fixing cyanobacteria (Paulsen et al., 2017).

We thus develop an updated 13C module that considers the refined ecosystem representation and test different non-uniform

parameterisations for biological fractionation during phytoplankton growth.
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To choose a suitable biological fractionation parameterisation for our model, we test the parameterisations of Popp et al.

(1989) and Laws et al. (1995). These parameterisations are selected for two reasons. First, they are of different complexities.55

The parameterisation of Popp et al. (1989) empirically relates 13C biological fractionation to the concentration of dissolved

CO2 in seawater, whereas that of Laws et al. (1995) considers dissolved CO2 concentration and phytoplankton growth rate.

Second, input variables in these two parameterisations are explicitly computed in the model. We omit more complex parame-

terisations that include effects of cell membrane permeability of molecular CO2 diffusion, cell size, and shape (e.g. Rau et al.,

1996; Keller and Morel, 1999), as HAMOCC6 does not resolve these features of plankton cells.60

Oceanic δ13C measurements were mostly carried out in late 20th century. In the upper ocean δ13C in dissolved inorganic

carbon (δ13CDIC) has been observed to noticeably decrease in response to the intrusion of anthropogenic CO2 from fossil fuel

combustion which carries a lower 13C/12C signal (Gruber et al., 1999; Quay et al., 2003). Such δ13CDIC decrease is referred

to as the oceanic 13C Suess effect (Keeling, 1979). Recently, Eide et al. (2017a) derived an observation-based estimate of the

global ocean 13C Suess effect since pre-industrial times. Such an observation-based estimate is valuable as it is the basis of an65

almost independent estimate of the global ocean anthropogenic carbon uptake. And it could be used for evaluating models at

pre-industrial states (Buchanan et al., 2019; Tjiputra et al., 2020) and for setting up paleo simulations (O’Neill et al., 2019).

Yet, Eide et al. (2017a) have noted that their approach might underestimate the oceanic 13C Suess effect. They conjectured an

underestimation of 13C Suess effect between 0.15 - 0.24‰ at 200 m depth in 1994. However, the quantitative spatial distri-

bution of this underestimation is unclear. Moreover, although Eide et al. (2017a) have related the underestimation to several70

assumptions in the approach they applied, the quantitative impact of these assumptions is still unclear as the measurements are

too limited in space and time to perform in-depth investigation.

Our model data includes all parameters needed to apply Eide et al. (2017a)’s procedure which relies on regressional re-

lationships between preformed δ13CDIC (related to the transport of surface waters with specific DIC and DI13C) and CFC-

12 (Chlorofluorocarbon-12) partial pressure. Thus, our consistent model framework, with the complete spatio-temporal in-75

formation of the hydrological and biogeochemical variables, enables us to investigate the spatial distribution of the above-

mentioned potential underestimation of the oceanic 13C Suess effect. Moreover, our model framework also allows for the

attribution of the underestimation to the assumptions of the procedure Eide et al. (2017a) applied.

In the following sections, we first provide a brief introduction to the global ocean biogeochemical model HAMOCC6, fol-

lowed by a description of the new 13C module including the experimental setup (Section 2). Section 3 presents the model80

evaluation against observations in the late 20th century and Section 4 evaluates the simulated oceanic 13C Suess effect. Sec-

tion 5 addresses our findings on testing Eide et al. (2017a)’s approach for estimating the oceanic 13C Suess effect. Summary

and conclusions are given in Section 6.
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2 Model description

2.1 The global ocean biogeochemical model (HAMOCC6)85

HAMOCC6 (Ilyina et al., 2013; Paulsen et al., 2017; Mauritsen et al., 2019) includes biogeochemical processes in the water

column and in the sediment. In the water column, the following biogeochemical tracers are simulated: dissolved inorganic

carbon (DIC), total alkalinity (TA), phosphate (PO4), nitrate (NO3), nitrous oxide (N2O), dissolved nitrogen gas (N2), sili-

cate (SiO4), dissolved bioavailable iron (Fe), dissolved oxygen (O2), bulk phytoplankton (Phy), cyanobacteria (Cya), zooplank-

ton (Zoo), dissolved organic matter (DOM), particulate organic matter (POM), opal shells, calcium carbonate shells (CaCO3),90

terrigenous material (Dust) and hydrogen sulfide (H2S). Below the model-defined export depth (100 m), the sinking speed

of POM linearly increases with depth. Theoretically, this leads to a power law-like attenuation of POM fluxes as observa-

tions (Martin et al., 1987; Kriest and Oschlies, 2008). Constant sinking speeds are set for opal, CaCO3 and Dust. Except for

CaCO3 and opal, whose sinking speeds (30 and 25 m d−1, respectively) are considerably faster than the horizontal velocities

of ocean flow, the water-column biogeochemical tracers are transported by the hydrodynamical fields in the same manner as95

salinity.

The sediment module is based on Heinze et al. (1999). It simulates remineralisation and dissolution processes as in the

water column concerning dissolved tracers (PO4, NO3, N2, O2, SiO4, Fe, H2S, DIC and TA) in the pore water and the solid

sediment constituents (POM, opal, CaCO3). The tracers in the pore water are exchanged with the overlying water column by

diffusion. Pelagic sedimentation fluxes of POM, CaCO3 and opal are added to the solid components of the sediment. Below100

the active sediment there is one layer containing only solid sediment components and representing burial. To balance the loss

of nutrients, TA, DIC and SiO4 in the water column, constant input fluxes of DOM, CO2−
3 and SiO4 are added uniformly at the

ocean surface, whose rates are derived from a linear regression of the long-term (approximately 100 years) temporal evolution

of the sediment (active and burial) inventory.

A detailed description of HAMOCC6 is provided in Mauritsen et al. (2019) and the references therein. Different to the105

HAMOCC6 version in Mauritsen et al. (2019), we allow DOM degradation in low oxygen conditions until all available O2 is

consumed.

2.2 The stable carbon isotope 13C in HAMOCC6

HAMOCC6 simulates total carbon C, which is the sum of the three natural isotopes 12C, 13C and 14C. Because in nature 12C

constitutes about 98.9% of the total carbon and 13C only constitutes about 1.1 % (Lide, 2002), in HAMOCC6 we assume110
12C = C. We include a 13C counterpart for each 12C prognostic variable, that is, we introduce seven new tracers for the water

column and three for the sediment. 13C only mimics the 12C biogeochemical fluxes, modified by the corresponding isotopic

fractionation. We assume 13C inventory to be as large as the inventory of 12C to reduce numerical errors. Consequently, the

reference standard of the stable carbon isotope ratio Rstd is set to 1 in Eq. (1). In this section, we describe the implementation

of 13C fractionation during air-sea exchange and carbon uptake by bulk phytoplankton and by cyanobacteria. Because the115

isotopic fractionation during the production of calcium carbonate is small (Turner, 1982) and uncertain (Zeebe and Wolf-
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Gladrow, 2001), it is not considered in this study, following the model studies of e.g. Lynch-Stieglitz et al. (1995); Schmittner

et al. (2013); Tjiputra et al. (2020).

2.2.1 Fractionation during air-sea gas exchange

The net air-sea CO2 gas exchange flux F reads120

F =−kCO2
γCO2

(
pCO2

surf− pCO2
atm) . (2)

Here, pCO2
surf and pCO2

atm are the partial pressures of CO2 in the surface seawater and in the atmosphere, respectively. The

piston velocity kCO2
(m s−1) for CO2 and the solubility γCO2

(mol L−1atm−1) of CO2 are calculated following Wanninkhof

(2014) and Weiss (1974), respectively.

Similar to the air-sea flux of total carbon in Eq. (2), the net air-sea 13CO2 exchange flux 13F reads125

13F =−13kCO2

13γCO2

(
pCO2

surfRg − pCO2
atmRatm

)
, (3)

in which, Rg and Ratm are the ratios of 13C/12C in surface pCO2 and in atmospheric CO2, respectively. Following Zhang et al.

(1995), we can re-write Eq. (3) as

13F =−kCO2
αk γCO2

αaq←g

(
pCO2

surf RDIC

αDIC←g
− pCO2

atmRatm

)
. (4)

Here, αk = 13kCO2/kCO2 is the kinetic fractionation factor, αaq←g = 13γCO2/γCO2 is the equilibrium isotopic fractionation130

factor for gas dissolution (from gaseous to aqueous CO2), αDIC←g =RDIC/Rg is the equilibrium isotopic fractionation factor

from gaseous CO2 to DIC and RDIC =13 CDIC/
12CDIC. Parameters αk, αaq←g and αDIC←g are temperature-dependent and

they are obtained from laboratory experiments (Zhang et al., 1995), often expressed in terms of a permil fractionation factor

ε(‰) = (α− 1)× 103:

εk =−0.85, (5)135

εaq←g = 0.0049TC − 1.31, (6)

εDIC←g = 0.014TC fCO3
− 0.105TC + 10.53. (7)
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Here, TC is the seawater temperature in ◦C and fCO3
= CO2−

3 /DIC is the fraction of carbonate ions in DIC. Because in

Eq. (6) the temperature dependency is weak, we use a constant εaq←g =−1.24, obtained at TC = 15◦C in the model, following

Schmittner et al. (2013). In Eq. (7) we neglect the first term 0.014TC fCO3 , because fCO3 is generally smaller than 0.1 and140

because the constant factor is one order of magnitude smaller than that of the second term 0.105TC .

Note that Eq. (5) (εk =−0.85) and the simplified Eq. (7) (εDIC←g =−0.105TC + 10.53) in this study, adopting those of

Schmittner et al. (2013), are slightly different from the OMIP protocol (Orr et al., 2017; εk =−0.88 and εDIC←g = 0.014TC fCO3
−

0.107TC +10.53). Results of a short pre-industrial simulation with εk and εDIC←g from OMIP protocol yield negligible differ-

ence (not shown). In our future simulations εk and εDIC←g suggested by the OMIP protocol will be used.145

2.2.2 Fractionation during phytoplankton growth

The lighter stable carbon isotope 12C is preferentially utilised over 13C during photosynthesis (O’Leary, 1988). Following

Schmittner et al. (2013), we formulate this isotopic fractionation during net growth of the bulk phytoplankton and cyanobacteria

as

13G=RDICαPhy←DICG, (8)150

with

αPhy←DIC = αaq←DICαPhy←aq =
αaq←g

αDIC←g
αPhy←aq. (9)

HereG (µmol C L−1 day−1) denotes the growth of bulk phytoplankton or cyanobacteria. αPhy←DIC is the isotopic fractionation

factor for DIC fixation, which is determined by the equilibrium fractionation factor αaq←DIC from DIC to aqueous CO2(aq)

and by the biological fractionation factor εp = (αPhy←aq−1)×103 related to the fixation of CO2(aq). Here the subscript "Phy"155

denotes either the bulk phytoplankton or cyanobacteria.

We test the parameterisations for biological fractionation from Popp et al. (1989) and from Laws et al. (1995), i.e.

εPopp
p =−17log(CO2(aq)) + 3.4, (10)

εLaws
p =

(
µ

CO2(aq)/ρsea
− 0.371

)
/0.015. (11)

Here, CO2(aq) (µmol L−1) is aqueous CO2 in surface water, µ (day−1) is the specific growth rate of bulk phytoplankton or160

of cyanobacteria. Note that Laws et al. (1995) measured εaq←Phy. Because αPhy←aq is close to unity, εp ≈−εaq←Phy (Zeebe
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and Wolf-Gladrow, 2001). In Eq. (11), we set the seawater density ρsea a constant value of 1.025 kg L−1. Then Eq. (11) is

simplified to

εLaws
p = 68.3

µ

CO2(aq)
− 24.7. (12)

Both CO2(aq) and µ (depending on local conditions of light, water temperature and nutrient availability) are determined in165

HAMOCC6. Figure 1 illustrates the values of εPopp
p and εLaws

p under typical ranges of CO2(aq) and µ in the ocean. When µ≤ 1,

εLaws
p is generally more negative than εPopp

p . For high µ values, e.g. µ= 2, εLaws
p is constantly less negative than εPopp

p . Under

high µ and low CO2(aq), εLaws
p becomes positive, which is unrealistic. However, our simulated ratios of phytoplankton growth

rate to dissolved CO2 concentration do not produce unrealistic positive εLaws
p at any time step in this study.

5 10 15 20 25 30

aqueous CO
2
 ( mol L-1)

-25

-20

-15

-10

-5

0

p
 (

pe
rm

il)

Popp
Laws, =0.2
Laws, =0.6
Laws, =1.2
Laws, =2.0

Figure 1. The permil biological fractionation factor εp against aqueous CO2 concentration. The solid line illustrates εPopp
p , in which the

biological fractionation during phytoplankton growth is only a function of CO2(aq). The dash-dotted lines show εLaws
p , which depends on

µ/CO2, the ratio of phytoplankton growth rate to CO2(aq), for µ=0.2 (blue), 0.6 (red), 1.2 (yellow) and 2.0 (purple) day−1.

2.3 Model set-up and experimental design170

2.3.1 Setup

We conduct ocean-only simulations using the MPIOM-1.6.3p1 (Jungclaus et al., 2013; Notz et al., 2013; Mauritsen et al.,

2019) with HAMOCC6. MPIOM is a free-surface ocean general circulation model. It uses a curvilinear grid with the grid

poles located over Greenland and Antarctica. We use a low-resolution configuration with a nominal horizontal resolution of

1.5◦. This configuration has a minimum grid spacing of 15 km around Greenland and a maximum grid spacing of 185 km in175

the tropical Pacific. There are 40 unevenly spaced vertical levels. The layer thickness increases from 10 m in the upper ocean
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to 600 m in the deep ocean. The upper 100 m of the water column are represented by nine levels. The time step is 1 hour. In

this set-up, we additionally include the oceanic uptake and transport of CFC-12. CFC-12 is chemically inert and can therefore

be treated as a conservative and passive tracer participating in all hydro-dynamical processes within the ocean identical to e.g.

salinity. The implementation of the air-sea gas exchange of CFC-12 follows the OMIP protocol (Orr et al., 2017).180

2.3.2 Experimental design

For the pre-industrial spin-up simulations we cyclically apply the 1905-1929 sea-surface boundary conditions from ERA20C (Poli

et al., 2016, covering 1901-2010). The atmospheric CO2 mixing ratio is set to 280 ppmv. A spin-up run is first conducted with-

out 13C tracers until the long-term averaged global net air-sea CO2 flux is smaller than 0.05 Pg C yr−1 (adequate to the C4MIP

criterion for steady state conditions of <0.1 Pg C yr−1; Jones et al., 2016). This model state is the starting point for the two185

spin-up runs including 13C tracers, PI_Popp and PI_Laws, which are based on the biological fractionation parametrisation

εPopp
p (Eq. 10) and εLaws

p (Eq. 12), respectively.

The 13C tracers are initialised as follows. The mean δ13C of the marine organic matter is about−20‰ (Degens et al., 1968).

Therefore, we set the initial concentrations of 13C in the bulk phytoplankton, cyanobacteria, zooplankton, dissolved organic

carbon, particulate organic carbon in the water column and particulate organic carbon in the sediment to 0.98 (according to190

Eq. 1) of their 12C counterparts. The initial 13CDIC in the water column is calculated using the relation between δ13CDIC and

PO4 (Lynch-Stieglitz et al., 1995)

δ13CDIC = 2.7− 1.1PO4 (13)

and Eq. (1). Here PO4 and DIC are from the quasi-equilibrium state of the spin-up run without 13C tracers. The initial con-

centrations of 13CCaCO3 in the water column and in the sediment, and the initial concentration of 13CDIC in pore water are set195

identical to their 12C counterparts.

The pre-industrial stable carbon isotope ratio δ13CO2 of atmospheric CO2 is fixed at−6.5‰. The inputs of dissolved organic
13C (DO13C) and 13CO2−

3 are uniformly added at the ocean surface. The input rate of DO13C is calculated as the product of the

input rate of DOC and the sea-surface DO13C/DOC ratio; the input rate of 13CO2−
3 is the product of the input rate of CO2−

3 and

the sea-surface 13CO2−
3 /CO2−

3 ratio. This approach to determine 13C input rates results in a small drift in the water-column200
13C inventory but it only has minor impact on the simulation results (see Appendix A). PI_Popp and PI_Laws are spun up

for 2500 simulation years. Equilibrium states are reached with 98% of the ocean volume having a δ13CDIC drift of less than

0.001‰ year−1 (employing the same criteria as for 14C in OMIP protocol, Orr et al., 2017). An equilibrium of the sediment

is, however, not achieved for either 13C or other biogeochemical tracers.

In the transient simulations for the historical period 1850-2010, Hist_Popp and Hist_Laws, we prescribe increasing atmo-205

spheric CO2 mixing ratios (Meinshausen et al., 2017) due to anthropogenic activities and decreasing atmospheric δ13CO2

following OMIP and C4MIP protocols (Jones et al., 2016) (Fig. 2a). For the period 1850 - 1900, when forcing data is ab-

sent, we continue applying the 1905-1929 ERA20C cyclic forcing. From 1901 to 2010, we use the transient ERA20C forcing.

8



1850 1900 1950 2000
year

280

300

320

340

360

380

400

at
m

os
ph

er
ic

 C
O

2 (p
pm

v)

-8.5

-8

-7.5

-7

-6.5

13
C

O
2 (p

er
m

il)

1930 1950 1970 1990 2010
year

0

100

200

300

400

500

600

at
m

os
ph

er
ic

 C
FC

s 
(p

pt
v) CFC12_NH

CFC12_SH

1850 1900 1950 2000
year

280

300

320

340

360

380

400

at
m

os
ph

er
ic

 C
O

2 (p
pm

v)

-8.5

-8

-7.5

-7

-6.5

13
C

O
2 (p

er
m

il)

1930 1950 1970 1990 2010
year

0

100

200

300

400

500

600

at
m

os
ph

er
ic

 C
FC

s 
(p

pt
v) CFC12_NH

CFC12_SH

a) b)

Figure 2. (a) The evolution of atmospheric CO2 (blue, Meinshausen et al., 2017) and δ13CO2 (red, Jones et al., 2016) during 1850 - 2010.

(b) The evolution of atmospheric CFC-12 concentrations (Bullister, 2017). Solid blue line indicates the northern hemisphere, dashed red line

indicates southern hemisphere.

The evolution of the atmospheric CFC-12 concentration (Fig. 2b) follows Bullister (2017). Because the atmospheric CFC-12 is

slightly higher in the northern hemisphere, we prescribe a linear transition between 10◦S and 10◦N. Input rates rates of DO13C,210

DOC, 13CO2−
3 , CO2−

3 and SiO4 are kept constant, and are the same as those in the pre-industrial simulations.

3 Model results and observations in the late 20th century

Our model generally well simulates the physical and biogeochemical state for the present-day ocean. The detailed model-

observation comparison for the ocean physical variables (e.g. seawater temperature and salinity, Atlantic meridional overturn-

ing circulation stream function, CFC-12) and for the ocean biogeochemical tracers (e.g. primary production, nutrients, DIC)215

are summarised in Appendix B and C.

In this section, we compare simulated 13C between the two simulations Hist_Popp and Hist_Laws and evaluate the two

experiments by comparison to observed δ13CPOC and δ13CDIC. The observations used here are the surface δ13CPOC measure-

ments assembled by Goericke and Fry (1994) and the observed δ13CDIC, for both the surface and the interior ocean, compiled

by Schmittner et al. (2013). For the model-observation comparison, we first grid the observed δ13CPOC and δ13CDIC horizon-220

tally onto a 1x1 degree grid and vertically (only for δ13CDIC) onto the 40 depth layers of the model. Multiple data points in the

same grid cell in the same month and year are averaged. Then we bilinearly interpolate the simulated monthly-mean δ13CPOC

and δ13CDIC over a 1x1 degree grid. To quantitatively compare the performance between Hist_Popp and Hist_Laws and to

other 13C models, we calculate the spatial correlation coefficient r and the normalised root mean squared error (NRMSE, nor-

malised by the standard deviation that is calculated using all the available measurements of δ13CPOC or δ13CDIC during the225

observational periods) between model results and observation.

A global ocean climatology of pre-industrial δ13CDIC has recently be derived by first estimating the oceanic 13C Suess

effect (Eide et al., 2017a) and then removing it from the observed δ13CDIC (Eide et al., 2017b). This pre-industrial δ13CDIC

estimate has been used to evaluate model performance (Tjiputra et al., 2020). We do not include a δ13CDIC evaluation for the
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pre-industrial ocean because the historical simulations in this study facilitates the direct comparison to observations in the late230

20th century, different from Tjiputra et al. (2020) which only includes pre-industrial simulations with 13C tracers. Moreover, as

is already discussed by Eide et al. (2017a) and is discussed in Section 5 of this study, 13C Suess effect is possibly underestimated

by Eide et al. (2017a)’s approach. This suggests Eide et al. (2017b) likely overestimate the pre-industrial δ13CDIC.

3.1 Isotopic signature of particular organic carbon in the surface ocean

For comparison between Hist_Popp and Hist_Laws, the climatological mean state of δ13CPOC is derived by averaging over235

1960-1991, the period when most δ13CPOC measurements were collected. In Hist_Popp, the climatological annual-mean sur-

face δ13CPOC has a global mean value of −22.5‰ and it shows a distict horizontal pattern (Fig. 3a). Less negative values up

to −19.3‰ are found in the subtropical regions, where alkalinity is typically high and CO2(aq) is consequently low. This low

CO2(aq) results in a smaller isotope fractionation during carbon fixation by phytoplankton (Eq. 10, Fig. 1) with a biologi-

cal fractionation factor εp >−13‰ (Fig. 3c). Poleward of the subtropical regions, δ13CPOC gradually decreases. The reason240

for this is twofold. First, εp decreases from −13 to about −20‰ following the increase of CO2(aq). Second, the thermal ef-

fect of equilibrium fractionation causes about 3‰ more fractionation in the polar regions than in the tropical and subtropical

regions (according to Eqs. 7 and 9). The lowest δ13CPOC of about −30‰ occurs close to Antarctica where highest surface

DIC concentrations are typically found because of the upwelling of deep waters and the reduced air-sea gas exchange by ice

cover (Takahashi et al., 2014). The annual range of δ13CPOC (Fig. 3e), i.e. the difference between the minimum and the maxi-245

mum of its climatological monthly-mean annual cycle, is low (< 0.5‰) in the subtropical regions and it increases polewards

up to ∼ 9‰ in the Southern Ocean, mirroring meridional changes in the annual range of CO2(aq).

Compared to Hist_Popp, Hist_Laws shows lower annual-mean surface δ13CPOC (Fig. 3b), with a global-mean value of

−29.9‰ due to more negative εp (Fig. 3d). This is because εLaws
p (Fig. 1) is always more negative than εPopp

p when the simulated

mean growth rates (Figs. C1a and C1b) are lower than 1 day−1. As εLaws
p increases with growth rate (Eq. 12), we find less250

negative δ13CPOC (up to−24.1‰) in the central tropical Pacific, where highest growth rates are simulated (Figs. C1a and C1b).

The lowest δ13CPOC of−33‰ occurs in the Arctic Ocean and around Antarctica due to the combination of low growth rate, high

CO2(aq) and low seawater temperature. The meridional range of the annual-mean δ13CPOC in Hist_Laws (∼ 9‰) is smaller

than that of Hist_Popp (∼ 11‰) because for low growth rates εLaws
p is generally less sensitive to CO2(aq) changes compared to

εPopp
p (Fig. 1). This also results in a smaller annual range of δ13CPOC in high latitudes (Fig. 3f) than Hist_Popp (Fig. 3e). In the255

low and mid latitudes, Hist_Laws show larger annual range of δ13CPOC because in these regions CO2(aq) concentrations are

relatively stable but growth rates shows noticeable seasonal variability.

Hist_Popp captures major features of the observed δ13CPOC (Figs. 4a, 4c and 4e). The meridional gradient, with less negative

values in the low latitudes and minimal values around 60◦S, is well reproduced. In contrast, Hist_Laws shows generally

lower δ13CPOC than the observations (a global mean bias of −8‰) and smaller δ13CPOC difference between low and high260

latitudes (Figs. 4b, 4d and 4f). This is also seen in a recent study by Dentith et al. (2020), who tested εPopp
p and εLaws

p with

the FAMOUS model of intermediate complexity. The underestimation in the global mean and in the meridional gradient of

δ13CPOC in Hist_Laws suggests that the parameters of the linear fit in Eq. (12) (slope and intercept) would need to be increased

10



Figure 3. The climatological (1960-1991) annual-mean surface values for Hist_Popp (a, c, e) and Hist_Laws (b, d, f) for δ13CPOC (a, b),

εp (c, d), and for the annual range of δ13CPOC (e, f). All values are given in permil (‰).

to gain a better performance. Around 60◦ S of the Atlantic Ocean (Fig. 4b), Hist_Laws simulates a smaller range of δ13CPOC

than the observations. This is also a result of the small δ13CPOC annual range produced by εLaws
p (Fig. 3f). Between 40◦ S and265

40◦ N in the Atlantic Ocean, Hist_Laws simulates δ13CPOC peaks in the region of high growth rates south of the Equator,

whereas the observed high δ13CPOC values locate between the Equator and 20◦ N.

In the Indian Ocean around 45◦ S, Hist_Popp does not capture the prominent δ13CPOC peak in the field data (Fig. 4e),

despite the fact that the simulated CO2(aq), the controlling factor in the parameterisation εPopp
p (Eq. 10), well reproduces the

meridional variation of the contemporaneous CO2(aq) measurements (Fig. 4g). Although the empirical correlation between εp270

and CO2(aq), such as Eq. (10), holds true to the first order over large areas of the global ocean, other factors, such as growth

rate, affect the local variability in εp (Popp et al., 1998; Hansman and Sessions, 2016; Tuerena et al., 2019). Hist_Laws captures

11
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Figure 4. Comparison of surface δ13CPOC (‰) observations (blue triangle) from Goericke and Fry (1994) to model data (red circle) in

Hist_Popp (a, c, e) and Hist_Laws (b, d, f) for the Atlantic, Pacific and Indian Ocean, respectively. Inserted maps show cruise tracks of the

measuring campaigns. (g): Comparison of simulated CO2(aq) (red star) to observations (blue diamond) in the South Indian Ocean (Francois

et al., 1993, measurement locations indicated by black triangles in the inset map for the Indian Ocean). (h): as panel g, but for particulate

organic matter, represented by total POC in Francois et al. (1993) and by phytoplankton biomass in the model. The measurement precision

is ±0.17‰ for δ13CPOC and 2% for CO2(aq) and particulate organic matter, according to Francois et al. (1993).

the δ13CPOC peak around 45◦ S in the observations (Fig. 4f), owing to the dependency of εLaws
p on phytoplankton growth rate

and to the model successfully reproducing the high productivity in this region (illustrated by phytoplankton biomass, Fig. 4h).

This is in alignment with the field study by Francois et al. (1993) and the model study by Hofmann et al. (2000), who ascribed275

this observed δ13CPOC peak to a local high phytoplankton production during the measurement period.
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Overall, Hist_Popp (r = 0.84 and NRMSE = 0.57) better reproduces the observed δ13CPOC than Hist_Laws (r = 0.71,

NRMSE = 2.5). Here a higher NRMSE indicates the model captures a smaller fraction of the variation in observations. The

performance of Hist_Popp regarding δ13CPOC compares well to that of the FAMOUS model (Dentith et al., 2020; Figure 8)

and the University of Victoria (UVic) Earth System Model of intermediate complexity (with r = 0.74 and NRMSE = 0.92;280

Schmittner et al., 2013). Note that Schmittner et al. (2013) compared climatological annual-mean model output to the δ13CPOC

measurements from Goericke and Fry (1994), whereas our study uses model results of the corresponding month and year of

the measurements. This difference leads to a better comparison of Hist_Popp to the observed δ13CPOC in high latitudes, partic-

ularly in the South Atlantic Ocean around 60◦ S, and therefore it is one reason for the slight better performance of Hist_Popp

compared to Schmittner et al. (2013), aside from the underlying differences between the two models.285

Hist_Popp also well reproduces the temporal changes of the biological fractionation factor εp when compared to the

observation-based estimates of Young et al. (2013). In Hist_Popp, the change rate of εp has a global-mean value of−0.026‰ yr−1

for the period 1960-2009 (Fig. C7a), similar to an estimate of −0.022‰ yr−1 in Young et al. (2013). Modest εp changes are

found in eastern tropical Pacific and south of 60◦S, in good agreement with Young et al. (2013). Hist_Laws, on the other hand,

shows a too small the global-mean εp change rate of −0.005‰ yr−1 (Fig. C7b) as εLaws
p is less sensitive to the increase of290

CO2(aq) than εPopp
p .

3.2 Isotopic signature of dissolved inorganic carbon δ13CDIC

3.2.1 Comparison between Hist_Popp and Hist_Laws and to observations

Figures 5a, 5b and 6a - 6f compare the climatological annual mean of δ13CDIC (averaged over 1990 - 2005, when most δ13CDIC

measurements were collected) between Hist_Popp and Hist_Laws. The two simulations exhibit very similar δ13CDIC patterns295

for both surface and interior ocean. The surface seawater DIC is enriched in 13C due to the preferential uptake of the light

isotope 12C by phytoplankton during primary production. As particulate organic matter sinks and is remineralised at depth,

the negative δ13CPOC signal is released. Consequently, in both Hist_Popp and Hist_Laws, δ13CDIC at the surface is generally

higher than in the ocean interior. At the surface of the equatorial central Pacific, the eastern boundary upwelling systems and the

Southern Ocean south of 60◦S, lower δ13CDIC (< 1.6‰) is seen due to the upward transport of the 13C depleted water (Figs. 5a300

and 5b). In the interior ocean, we find higher δ13CDIC (> 1‰) in well ventilated water masses, in particular the North Atlantic

Deep Water (NADW) (Figs. 6a and 6d). The lowest δ13CDIC values (<−0.5‰) occur at depth in tropical and subtropical

regions (Figs. 6a - 6f), where large amount of organic matter is remineralised.

The global-mean surface δ13CDIC of the two experiments only differs marginally (1.64‰ for Hist_Popp and 1.7‰ for

Hist_Laws), which is expected as they are run using the same prescribed atmospheric δ13CO2 (Schmittner et al., 2013).305

Given very similar mean surface DI13C, the larger vertical DI13C gradients in Hist_Laws, established by more negative

δ13CPOC (Figs 3a and 3b), yields lower DI13C concentration at depth. This adjustment of DI13C content in the ocean inte-

rior takes place during the pre-industrial spin-up phase of the simulations via air-sea 13CO2 exchange (Appendix A). At the

end of the 2500-year spin-up, the water-column DI13C inventory in PI_Laws is 1.1× 1012 kmol lower than PI_Popp, yielding

13



a global mean δ13CDIC difference of 0.25‰ (Figs. 6g - 6i). Such interior-ocean δ13CDIC difference caused by using different310

parameterisation for biological fractionation is also seen in Jahn et al. (2015) and Dentith et al. (2020). The seasonal upward

transport of the lower deep-ocean δ13CDIC in Hist_Laws leads to lower annual-mean surface δ13CDIC and larger δ13CDIC annual

range in regions of upwelling (Figs. 5c and 5d).

Figure 5. Climatological (averaged over 1990-2005) annual-mean surface δ13CDIC for Hist_Popp (a) and Hist_Laws (b), respectively. c and

d: the difference of climatological annual-mean δ13CDIC between Hist_Laws and Hist_Popp, and the difference of climatological annual

range of δ13CDIC between the two simulations, respectively.

When compared to the observed δ13CDIC, Hist_Popp (r = 0.81, NRMSE = 0.7) has a slightly better performance than

Hist_Laws (r = 0.80, NRMSE = 1.1). Hist_Laws generally shows too strong vertical gradients of δ13CDIC and therefore too315

low δ13CDIC values in the ocean interior, as is seen in the depth profiles of horizontally-averaged δ13CDIC (Fig. 7). This points

to too strong preference for the isotopically light carbon simulated by εLaws
p as is already discussed in Section 3.1. Given the

slightly better performance of Hist_Popp than Hist_Laws regarding δ13CDIC, we focus in the following on the comparison

between Hist_Popp and observed δ13CDIC.

3.2.2 Source of surface δ13CDIC biases in Hist_Popp320

Figure 8 contains model-observation comparison for the surface δ13CDIC. Overall, the magnitude and spatial distribution of

the observed δ13CDIC is well-captured by Hist_Popp. In the surface ocean, the mean δ13CDIC is slightly overestimated by

Hist_Popp (1.7‰ compared to 1.5‰ in observation). Positive biases are widely seen in the Indian and Pacific Ocean and

the negative biases are mostly found in the Atlantic Ocean (Fig. 8c). To better understand the source of differences between
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Figure 6. Zonal-mean δ13CDIC of the Atlantic Ocean (left column), the Pacific Ocean (middle column) and the Indian Ocean (right column)

for Hist_Popp (a-c), Hist_Laws (d-f) and for the difference between Hist_Laws and Hist_Laws (g-i).
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Figure 7. Depth profiles of horizontally-averaged δ13CDIC of Hist_Popp (solid blue line), Hist_Laws (dashed red line) and the observational

data from Schmittner et al. (2013) (solid black line) for the global ocean (a), the Atlantic Ocean (b), the Pacific Ocean (c) and for the

Indian Ocean (d). The grey shading indicates observation uncertainty of ±0.15‰, which relates to the estimated accuracy due to unresolved

intercalibration issues between laboratories (0.1− 0.2‰; Schmittner et al., 2013).
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model and observations, we follow the method of Broecker and Maier-Reimer (1992) to decompose δ13CDIC into a biological325

component δ13Cbio
DIC and a residual component δ13Cresi

DIC, driven by air-sea exchange and ocean circulation:

δ13Cbio
DIC = δ13CDIC|M.O. +

∆photo

DICM.O.
RC:P (PO4−PO4|M.O.). (14)

Here the subscript M.O. refers to mean ocean values, ∆photo is the carbon isotope fractionation during marine photosynthesis,

and RC:P is the C:P ratio of marine organic matter. We use ∆photo =−19‰ (Eide et al., 2017b) and RC:P = 122 (Takahashi et al.,

1985) for both model and observational data. In reality ∆photo shows spatial variability due to the variations of CO2(aq) (Fig. 3c)330

and temperature (Eq. 7) at the sea surface. However, using a constant ∆photo only has limited quantitative impact on the

model-observation comparison of the two components. To calculate δ13Cbio
DIC from observations, we employ δ13CDIC|M.O. =

0.5‰, DICM.O. = 2255 mmol m−3 (Eide et al., 2017b), and PO4 from the World Ocean Atlas (WOA13; Garcia et al., 2013a).

Considering the strong seasonality in PO4 in the surface ocean, we select the phosphate concentration from the climatological

monthly WOA data (available only for the upper 500 m of the water column) and the climatological monthly-mean model data335

for the same month as the δ13CDIC observations. The observed mean ocean phosphate concentration PO4|M.O. = 1.7 mmol m−3

is obtained by first merging the time-mean of the PO4 monthly WOA data in the upper 500 m and the PO4 annual-mean WOA

data below 500 m, and then mapping the combined data to the vertical grid of our model. For simulated δ13Cbio
DIC, the model data

of δ13CDIC|M.O. = 0.67‰, DICM.O. = 2197 mmol m−3, PO4|M.O. = 1.5 mmol m−3 and PO4 are used. The model-observation

δ13Cresi
DIC difference is calculated by subtracting the model-observation δ13Cbio

DIC difference from the model-observation δ13CDIC340

difference.

The model captures the major features of the observed δ13Cbio
DIC at the surface, that is, higher values are seen in the sub-

tropical regions and lower values in the high latitudes (Figs C8a and C8b). Nevertheless, noticeable quantitative differences

exist (Fig. 9a), which resemble the distribution of (PO4−PO4|M.O.) bias (Fig. 9b). Between 30◦N and 30 ◦S in the surface

ocean, we find a mean negative bias of about −0.1‰. This is caused by the underestimation of primary production in the345

subtropical gyres (due to the underestimation of phytoplankton growth rates, see Appendix C1) and the consequently reduced

enrichment of 13C in surface DIC. A strong positive δ13Cbio
DIC bias of 0.6 to 1‰ is seen in the North Pacific, where in the model

iron is not a limiting nutrient (Fig. C3), in contrast to observations (Moore et al., 2013). In the equatorial central Pacific, a weak

positive δ13Cbio
DIC bias < 0.2‰ is caused by a too high primary production. Specifically, the simulated phytoplankton growth

rates in this region compare well to observations, whereas the simulated phytoplankton biomass is too high (Appendix C1).350

The latter is mainly induced by a too strong upwelling. The observed mean upward vertical velocity at 0◦, 140◦W, 60 m depth

during May 1990 - June 1991 is 2.3× 10−5m s−1 (Weisberg and Qiao, 2000), whereas the model simulates 3.2× 10−5m s−1

for the same location and period.

In the Southern Ocean, a strong positive δ13Cbio
DIC bias of 0.6 to 1‰ (Fig. 9a) results from a too high primary production under

too high surface iron concentrations (0.2− 0.4 nmol L−1 compared to generally < 0.25nmol L−1 from data of GEOTRACES355

program (www.geotraces.org), not shown). Primary production is limited by iron only south of 50◦S in the model compared to

south of 40◦S from observation (Moore et al., 2013). One cause for the high surface iron concentration is that organic matter
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b

Figure 8. Observed surface δ13CDIC (Schmittner et al., 2013) (a) and simulated δ13CDIC in Hist_Popp sampled at the location, month and

year of the observation (b). (c): The difference of δ13CDIC between Hist_Popp and observations.

a

c d

b

Figure 9. Model-observation difference of the biological component δ13Cbio
DIC (a), (PO4−PO4|M.O.) (b), the residual component δ13Cresi

DIC (c) at

the ocean surface. (d): The net air-sea 13CO2 flux (positive into the air, averaged over 1990-2005) difference between model and observation-

based data product from Landschützer et al. (2015).
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is remineralised at too shallow depths in HAMOCC6. This can been seen from the positive apparent oxygen utilisation (AOU)

biases above 500 m south of 45◦S (Figs. 10j - 10l). Another reason for the high surface iron concentration is that MPIOM

simulates a too large upward transport due to too strong upwelling. In particular, below 1000 m, the simulated upward velocity360

shows noticeably larger magnitude (> 5× 10−6 m s−1, Fig. B4) than that of a dynamically consistent and data-constrained

ocean state estimate (see Figure 1 in Liang et al., 2017). The too strong upwelling in the model is consistent with the too large

volume transport across the Drake Passage of 192 Sv compared to 134-173 Sv from observations (Nowlin Jr. and Klinck, 1986;

Cunningham et al., 2003; Meredith et al., 2011; Donohue et al., 2016). Our model also features larger downward velocities

than the estimate from Liang et al. (2017), which correspond to too deep mixed layer depths in the Southern Ocean (up to365

3000 m, Fig. B5) than observations (<700 m; de Boyer Montégut et al., 2004; Holte et al., 2017).

We find strong δ13Cresi
DIC negative biases of −0.5 to −1‰ (Fig. 9c) in the North Pacific and the Southern Ocean, which

partially compensate the positive biases of δ13Cbio
DIC (Fig. 9a) in these regions. One major cause for the negative δ13Cresi

DIC bias

in these two regions is our model overestimating the uptake of anthropogenic carbon, as is illustrated by the net air-sea CO2

difference between the model and the observation (Fig. 9d). Consequently, the decreased atmospheric 13C/12C ratio over the370

industrial period further lowers δ13CDIC in the two ocean regions in the model. In the Southern Ocean, a too large upward

transport of 13C-depleted water at depth to the surface also contributes to a negative δ13Cresi
DIC bias.

3.2.3 Source of δ13CDIC biases in the interior ocean of Hist_Popp

Figure 10 contains the model-observation comparison for zonal-mean δ13CDIC in the Atlantic, Pacific and Indian Ocean. In the

interior ocean, δ13CDIC is controlled by remineralisation of 13C-depleted organic matter and by ocean circulation (Broecker375

and Peng, 1993; Lynch-Stieglitz et al., 1995; Schmittner et al., 2013). Low δ13CDIC is often found in waters of high nutrient

concentration and vice versa. Thus, we find positive (negative) δ13CDIC biases coincide with negative (positive) phosphate

biases (Figs. 10d - 10i). In the Atlantic Ocean between 1000 and 3000m, the North Pacific above 1500 m and the Indian

Ocean below 1000 m, positive δ13CDIC biases and negative phosphate biases are mainly caused by a too low remineralisation,

as is shown by the negative AOU biases (Figs 10j - 10l). North of 30◦S in the Atlantic Ocean, the negative δ13CDIC biases380

below 3000 m, together with the positive δ13CDIC biases between 1000 and 3000 m, suggest too strong δ13CDIC vertical

gradients in the model (Fig. 10d). This results from a too shallow lower boundary of the NADW cell, constantly located above

2800 m (Fig. B3), compared to an estimated NADW lower boundary of about 4300 m deep at 26◦N (Msadek et al., 2013; Smeed

et al., 2017). A possible reason for the shallow NADW in the model is that the Lower North Atlantic Deep Water (LNADW),

forming from the Denmark Strait Overflow Water and the Iceland-Scotland Overflow Water, is not dense enough to flow further385

southward. This is can be seen from the CFC-12 distribution along the zonal Section A5 at 24◦N (Fig. B7). The observed

deeper CFC-12 maximum (3000-4500 m west of 60◦W) indicates the presence of LNADW (Dutay et al., 2002), which is not

represented in our model.

We find the strongest negative δ13CDIC bias in the deep eastern equatorial Pacific (Fig. 10e). The cause is the ‘nutrient trap-

ping’ problem in the model, characterised by too high nutrient concentrations in the deep eastern equatorial Pacific (Fig. 10h),390

which is a persistent problem in many ESMs (Aumont et al., 1999; Dietze and Loeptien, 2013). Based on sensitivity exper-
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Figure 10. Zonal-mean distribution in the Atlantic Ocean (left column), the Pacific Ocean (middle column) and the Indian Ocean (right

column) for the δ13CDIC observations from Schmittner et al. (2013)) (a-c), for the difference between Hist_Popp (sampled at the same

location, year and month of the observations) and δ13CDIC measurement (d-f), for the (PO4−PO4|M.O.) difference between model and WOA

data (WOA13; Garcia et al., 2013a) (g-i) and for the apparent oxygen utilisation (AOU) difference between model and WOA data (WOA13;

Garcia et al., 2013b) (j-l). Here the climatological annual mean values of PO4 and AOU are used for both model and WOA data because

seasonal variation is negligible in the interior ocean and WOA only provides monthly data above 500 m.

iments with the Geophysical Fluid Dynamics Laboratory model and UVic model, Dietze and Loeptien (2013) concluded the

primary cause of the ‘nutrient trapping’ problem is likely model biases in physical ocean state, in particular, the poor repre-

sentation of the Equatorial Intermediate Current System and Equatorial Deep Jets. The latter two current systems are indeed

poorly represented in our model as well. Specifically, the zonal current at 1000 m depth (typical depth for the the Equatorial395
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Intermediate Current System) shows too little spatial variability and too low speeds of∼ 0.2 cm s−1 (Fig. B6), compared to the

observed alternating jets with a meridional scale of 1.5◦ and speeds of ∼ 5 cm s−1 (see Figure 2 from Cravatte et al., 2012).

The performances of both Hist_Popp and Hist_Laws regarding δ13CDIC are comparable with the Norwegian Earth Sys-

tem Model version 2 (NorESM2, Tjiputra et al., 2020; comparing their Fig. 21), the Commonwealth Scientific and Indus-

trial Research Organisation Mark 3L climate system model with the Carbon of the Ocean, Atmosphere and Land (CSIRO400

Mk3L-COAL), Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCES) and LOch-Vecode-Ecbilt-CLio-

agIsm Model (LOVECLIM) (see Table 2 and Figure 3, S2, S3 of Buchanan et al., 2019 and references therein), the Community

Earth System Model (CESM, Jahn et al., 2015; comparing their Figs. 5 and 6 to our Figs. 7 and 6, respectively) and the UVic

Earth System Model (Schmittner et al., 2013). The latter two studies used the same δ13CDIC dataset for model evaluation.

Schmittner et al. (2013) reported a better performance (r = 0.88 and NRMSE = 0.5) than ours (r = 0.81 and NRMSE = 0.7405

in Hist_Popp). One main reason is that the ‘nutrient trapping’ problem in HAMOCC6 does not occur in the simulations of

Schmittner et al. (2013).

4 Evaluation of the simulated oceanic 13C Suess effect

The oceanic δ13C measurements taken during the late 20th century already include a signal that originates from burning of

isotopically light fossil fuel over the industrial period. The associated decrease in atmospheric δ13C (Fig. 2) affects oceanic410

δ13C via air-sea gas exchange, leading to a general decrease of δ13CDIC. The distribution of this δ13CDIC change, i.e. the oceanic
13C Suess effect, could serve as benchmark for ocean models to evaluate the uptake and re-distribution of the anthropogenic

CO2 emissions in the ocean.

The model is able to reproduce the size of the global oceanic anthropogenic CO2 sink, though some local biases in the net

air-sea CO2 flux exist (Fig. 9d). The simulated sink by year 1994 is 99 Pg C, which compares well to the observation-based415

estimate of 118± 19 Pg C from Sabine et al. (2004) and to other model estimates (e.g. 94 Pg C in Tagliabue and Bopp, 2008).

For a direct comparison to published studies, we calculate the oceanic δ13C Suess effect, δ13CSE, as the difference between

the 1990s-averaged δ13CDIC from Hist_Popp and the pre-industrial climatological (50-year mean) δ13CDIC from PI_Popp.

δ13CSE calculated using the results of Hist_Laws and PI_Laws only shows marginal difference (global-mean < 0.04‰), and

is therefore not presented.420

The surface mean δ13CSE in this study is −0.66‰, similar to the model study of Schmittner et al. (2013) (−0.67‰) and to

the estimate by Sonnerup et al. (2007) (−0.76± 0.12‰) who used an observation-based approach. The strongest oceanic 13C

Suess effect is found in the subtropical gyres in the model (Fig. 11a), where water masses have long residence times at the

ocean surface and therefore receive a strong anthropogenic imprint (Quay et al., 2003). In the subtropical gyres, the simulated

surface δ13CSE generally varies between −0.8 and −1.1‰, which compares well to the the surface ocean δ13C decrease of425

−0.9±0.1‰ recorded by coral and sclerosponges (Wörheide, 1998; Böhm et al., 1996, 2000; Swart et al., 2002, 2010) and to

the estimates of −1.0± 0.09‰ extracted from GLODAPv2 (Olsen et al., 2016; Eide et al., 2017a).
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Figure 11. The simulated oceanic Suess effect δ13CSE from pre-industrial to 1990s at sea surface (a) and at 200 m (b).

Along the vertical sections A16, P19 and I8S9N, δ13CSE is mainly confined to upper 1000 m depth in the subtropical gyres

of the South Atlantic, the Pacific Ocean and the Indian Ocean (Figs. 12a - 12c). In the North Atlantic, δ13CSE penetrates

deeper than the other ocean regions, due to the intensive ventilation related to the formation of NADW. The simulated δ13CSE430

distributions show similar features to those of CFC-12 (Fig. B8). This is because both the decrease of δ13CDIC and increase of

CFC-12 in the ocean is predominantly caused by the uptake of atmospheric anthropogenic signals and the subsequent transport

by ocean circulation. Since changes of δ13CDIC are also induced by changes in marine biological activity, we separate δ13CDIC

into a component depicting changes due to the transport of the surface 13C signal, i.e., the ‘preformed’ δ13CDIC, and to a

regenerated component δ13Creg , following Sonnerup et al. (1999):435

δ13Cpref =
δ13CDIC ·DIC−AOU ·

(
C

-O2

)
org
· δ13Corg

DIC−AOU ·
(

C
-O2

)
org

. (15)
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C
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)
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ratio is 122:172 in HAMOCC6, and we use the simulated δ13CPOC for δ13Corg. Clearly, the change of the

preformed component δ13Cpref
SE = δ13Cpref

1990s− δ13Cpref
PI dominates δ13CSE (comparing Figs. 12a - 12c to Figs. 12d - 12f). A

major difference between δ13Cpref
SE and δ13CSE is positive δ13Cpref

SE is widely seen below 1000 m, particularly in the Pacific

Ocean (Fig. 12e). These positive δ13Cpref
SE values relate to changes of the regenerated component δ13Creg (see Appendix D).440

5 Potential sources of uncertainties in an observation-based global oceanic 13C Suess effect estimate

Eide et al. (2017a) (hereafter E17) derived the first observation-based estimate of the global ocean 13C Suess effect since

pre-industrial times. E17’s approach uses the concept of the similarity between the oceanic uptake of the anthropogenically

produced CFC-12 and isotopically light CO2 (see details in Appendix E1). Due to method and data specific limitations E17

stated that they potentially underestimate the oceanic 13C Suess effect. However, based on observations alone it’s not possible445

to gain insight into the spatial distribution of this uncertainty or into its origin.
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Figure 12. The simulated oceanic Suess effect δ13CSE since pre-industrial times for vertical sections A16 in the Atlantic Ocean (a), P16 in

the Pacific Ocean (b) and I8S9N in the Indian Ocean (c). (d-f), (g-i): as (a-c), but for the change of the preformed component δ13Cpref
SE =

δ13Cpref
1990s−δ

13Cpref
PI and for the observation-based estimate of oceanic Suess effect from Eide et al. (2017a), respectively. Inserted maps show

the location of the vertical sections. The horizontal dashed black lines in panels a-c indicate 200 m depth, below which Eide et al. (2017a)’s

estimate is available. Note the bathymetry is different between the model and Eide et al. (2017a).

Our model simulations, particularly PI_Popp and Hist_Popp, provide an opportunity to learn more about the source of this

uncertainty because the oceanic δ13C in the late 20th century (Section 3), the oceanic anthropogenic CO2 sink (Section 4) and

the invasion of CFC-12 into the ocean (Fig. B8) are well represented. Moreover, our simulated δ13CSE qualitatively resembles

the oceanic 13C Suess effect estimate of E17 (see comparison between Fig. 11b and E17’s Fig. 7, and comparison between450

Figs. 12a - 12c and 12g - 12i).
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Based on the similarity between the oceanic uptake of the atmospheric CFC-12 and δ13CO2 signal, E17 link the 13C Suess

effect since 1940 (when CFC-12 becomes detectable in the ocean) to CFC-12 partial pressure (pCFC-12) with a proportionality

factor. Under the assumption of a temporally constant regenerated fraction δ13Creg, this proportionality factor is considered

equivalent to the slope of a linear regression relationship between the preformed component δ13Cpref and pCFC-12 at any time455

after 1940. Thus, this slope a can be obtained by performing linear regression for field measurements of δ13Cpref and pCFC-12.

Multiplying a and pCFC-12 data yields 13C Suess effect since 1940, which is then scaled to the full industrial period by a

constant factor fatm (Eq. E7) related to changes of the atmospheric δ13C signature:

δ13CSE(t−PI) = fatm · a · pCFC-12t. (16)

Here a is the regression slope for the linear relationship between δ13Cpref
t and pCFC-12t (Eq. E5). The value of a is determined460

for each ventilation region define in E17 (i.e. the Indian Ocean, North Pacific, South Pacific, North Atlantic and South Atlantic).

Details of the E17 approach are given in Appendix E1.

By applying E17’s approach to our model data that is sampled at the same geographical locations as observations used in

E17, we obtain the regression slopes, hereafter referred to as apref, for each ventilation region. Taking year t= 1994 we obtain

the estimated oceanic 13C Suess effect, SEpref, for the period from the pre-industrial to 1994 following Eq (16). The detailed465

calculation of SEpref is given in Appendix E2.

To quantify if SEpref under- or overestimate the oceanic 13C Suess effect, we compare SEpref to the simulated oceanic 13C

Suess effect SEMod = δ13CDIC, 1994− δ13CDIC, PI. Figure 13a presents (SEpref−SEMod) for 200 m depth. Positive values of

(SEpref−SEMod) indicate underestimation of the oceanic 13C Suess effect.

At 200 m SEpref mostly underestimates SEMod (Fig. 13a). The region-mean underestimation is 0.24‰ for the Indian Ocean,470

0.21‰ for the North Pacific, 0.26‰ for the South Pacific, 0.1‰ for the North Atlantic and 0.14‰ for the South Atlantic (Ta-

ble 1). Our model findings are very similar to the underestimation range discussed by E17. They determined an uncertainty

range of 0.15 to 0.24‰ by comparing their global-mean estimate (−0.4‰ at 200 m depth) to an estimate (−0.55 to −0.64‰

at 200 m) which they deduced from previous model studies. Specifically, based on Broecker and Peng (1993) and Bacastow

et al. (1996) E17 assumed an ocean-to-atmosphere ratio of the 13C Suess effect of 0.65 and the 200 m-to-surface ratio of475

the 13C Suess effect of 0.6-0.7. Multiplying the above two ratios with the atmospheric δ13CO2 decrease of −1.4‰ by year

1994 yields the global-mean 13C Suess effect estimate of -0.55 to -0.64‰ at 200 m. In our model, the global-mean surface

ocean-atmosphere ratio of the 13C Suess effect is only 0.46, significantly lower than the five-box model of Broecker and Peng

(1993). The 200 m-to-surface ratio of the 13C Suess effect is 0.75 in our model and it is slightly higher than Bacastow et al.

(1996) who employed an ocean general circulation model with coarse vertical resolution (4 layers for the upper 200 m).480

5.1 Source of underestimation attributed to data coverage

E17 have speculated that the major cause of the underestimation of oceanic 13C Suess effect is that the available observations

are mostly from the intermediate and deep waters. The ocean-atmosphere equilibration timescale for δ13C (10 years, Broecker
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Figure 13. Distribution at 200 m depth for SEpref− SEMod (a), SEtotal− SEMod (b) and SEpref− SEtotal (c). The isoline increment is 0.2‰. In

panels b and c, the South Pacific Ocean is not presented because the relationship between the total oceanic 13C Suess effect δ13CSE(1994−1940)

and pCFC-121994 is too weak (r2 = 0.07) and therefore SEtotal can not be estimated (see Appendix E4).

Table 1. Region-mean (SEpref− SEMod), (SEpref− SEtotal) and (SEtotal− SEMod) for five ventilation regions defined by E17, i.e., the Indian

Ocean, North Pacific, South Pacific, North Atlantic and South Atlantic. The unit is permil. (SEpref− SEtotal) is further decomposed into the

two contributions fatm · (apref− atotal) · pCFC-12 and −fatm · btotal according to Eq. (20).

(SEpref− SEMod) (SEpref− SEtotal)
fatm · (apref− atotal) · pCFC-12

(SEtotal− SEMod)
−fatm · btotal

Indian Ocean 0.24 0.23
0.12

0.01
0.11

North Pacific 0.21 0.09
0.06

0.13
0.03

South Pacific 0.26 \
\

\
\

North Atlantic 0.1 0.02
-0.1

0.09
0.12

South Atlantic 0.14 0.15
0.04

-0.01
0.11
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and Peng, 1974) is significantly longer than that of pCFC-12 (1 month, Gammon et al., 1982). Thus, waters that have a shorter

surface residence time, such as the deep waters ventilated in the South Hemisphere, would show less negative regression slope485

apref (for the linear relationship between δ13Cpref and pCFC-12, Eq. E5) than waters that have a longer surface residence time,

e.g. subtropical gyres. In other words, apref for the subtropical gyre water should be more negative than apref for the entire

corresponding ventilation region (the North Pacific, South Pacific, North Atlantic, South Atlantic or the Indian Ocean).

We test this potential explanation for the Indian Ocean and North Pacific. We are able to span regressional relationships for

the subtropical gyres only because we have a larger data base. Specifically, we consider only model data at the geographical490

location of observations, but we use all model levels between 200 m and the pCFC-12 penentration depth (see Appendix E3).

For the Indian Ocean, we combine model data from Subtropical Gyre Water and Sub-Antarctic Mode Water as both water

masses have a strong 13C Suess effect (Eide et al., 2017a). We find for this combined water mass (STGW) apref (−0.65×10−3,

r2 = 0.49) is more negative than that for the whole ventilation region (−0.47× 10−3, Fig. E3a). So indeed, with additional

observations in the subtropical gyre we would receive a stronger 13C Suess effect estimate for the Indian Ocean. However,495

this difference in apref only corresponds to an underestimation of about 0.12‰ at 200 m for the Indian subtropical region (see

calculation in Appendix E3), which does not explain the total underestimation of 0.24‰ in the Indian Ocean (Table 1). In

the North Pacific apref for the Subtropical Gyre Water (−0.44× 10−3, r2 = 0.26) is even less negative than that for the whole

ventilation region (−0.71× 10−3) in the model, which is in contrast to the conjecture of E17.

5.2 Source of underestimation attributed to assumptions of E17’s approach500

A potential under-representation of data from subtropical gyres does not fully explain the underestimation of 13C Suess effect

found in our model. Instead, we argue that the source of uncertainty mainly relates to different assumptions that have been

made in the E17 approach. Specifically, in the expression of the preformed component δ13Cpref
1994 (following Eq. E3)

δ13Cpref
1994 = δ13CSE(1994-1940) + δ13Cpref

1940− (δ13Creg
1994− δ

13Creg
1940), (17)

E17 assume that the regenerated component is constant in time, i.e. −(δ13Creg
1994− δ13Creg

1940) = 0. Consequently, Eq. (17) is505

reduced to

δ13Cpref
1994 = δ13CSE(1994-1940) + δ13Cpref

1940. (18)

Furthermore, they assume that the regression slope apref for δ13Cpref
1994 and pCFC-121994 is equivalent to the regression slope

for the total 13C Suess effect δ13CSE(1994-1940) and pCFC-121994 (see Eqs. E1, E4 and E5). This implies that the preformed

component δ13Cpref
1940 of 1940 has to be spatially uniform.510

However, we find a specific vertical structure in the simulated δ13Cpref
1940 (Figs. 14a - 14c). Over large regions of the ocean,

δ13Cpref
1940 generally decreases with increasing depth. This vertical distribution of δ13Cpref is already present in pre-industrial

times. High surface δ13CDIC caused by biological fractionation is transported into the ocean interior. Therefore, the preformed
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component generally decreases with increasing water depth. From pre-industrial to 1940, the decrease of the atmospheric
13C/12C ratio is relatively small (0.4‰, Fig. 2a), and therefore also the impact on the oceanic δ13CDIC is small. Thus, δ13Cpref

1940515

has the similar vertical structure as that of the pre-industrial ocean.

Both the total δ13CSE(1994-1940) (mostly negative, similar to the distribution of δ13CSE(1990s-PI) in Fig. 12a - 12c) and pCFC-

12 (Figs. B8a - B8c) show larger absolute values at the surface than in the interior ocean. As δ13Cpref
1940 is more positive in the

upper ocean than the deep ocean, δ13Cpref
1994 has a smaller vertical gradient than δ13CSE(1994-1940) (see Eq. 18) . Thus, a linear

regression for δ13Cpref
1994 and pCFC-12 results in a less negative slope than a slope obtained with a spatially-uniform δ13Cpref

1940,520

which implicates a contribution to an underestimation of oceanic 13C Suess effect.

We also find that −(δ13Creg
1994− δ13Creg

1940) is non-zero and it shows considerable spatial variability (Figs. 14g - 14i). Most

prominently, in the North Atlantic −(δ13Creg
1994− δ13Creg

1940) is mostly negative above 500 m and it is mostly positive below

500 m. This vertical structure of −(δ13Creg
1994− δ13Creg

1940) in the North Atlantic leads to stronger vertical gradient in δ13Cpref
1994,

and therefore a more negative regression slope than that obtained with −(δ13Creg
1994− δ13Creg

1940) = 0. This implies the overes-525

timation of 13C Suess effect in the North Atlantic.

To evaluate the impact of assuming a spatially-uniform δ13Cpref
1940 and−(δ13Creg

1994−δ13Creg
1940) = 0, we calculate an estimated

13C Suess effect from pre-industrial to 1994, SEtotal, based on a linear regression for the simulated total oceanic 13C Suess effect

δ13CSE(1994-1940) and pCFC-12:

SEtotal = fatm · (atotal · pCFC-121994 + btotal). (19)530

Here atotal and btotal are regression coefficients for δ13CSE(1994-1940) and pCFC-12 (more details in Appendix E4). With Eqs. (16)

and (19) we get

SEpref−SEtotal = fatm · (apref− atotal) · pCFC-121994− fatm · btotal. (20)

Comparison between the regressional slope apref (obtained for δ13Cpref
1994 and pCFC-12) and atotal facilitates the quantifiation of

the under- or overestimation of 13C Suess effect linked to the above two assumptions.535

In the Indian Ocean apref =−0.47× 10−3 (Fig. E2a) is less negative than atotal =−0.74× 10−3 (Fig. E3a). This results in

an underestimation of 0.12‰ according to Eq. (20). Similarly, for the North Pacific apref =−0.71× 10−3 (Fig. E2b) is less

negative than atotal =−0.83× 10−3 (Fig. E3b), which leads to an underestimation of 0.06‰. For the South Atlantic apref =

−0.6×10−3 (Fig. E2e) and atotal =−0.7×10−3 (Fig. E3e), which yields an underestimation of 0.04‰. Such underestimation

is mainly due to the decreasing δ13Cpref
1940 with increasing depth in these regions. Different from these three ventilation regions,540

in the North Atlantic apref =−0.81× 10−3 (Fig. E2d) is more negative than atotal =−0.62× 10−3 (Fig. E3d). This is due to

the specific vertical structure of −(δ13Creg
1994− δ13Creg

1940) as previously discussed.

Another major difference between SEpref and SEtotal is the non-negligible negative intercept btotal (Eq. 20). This reveals

the underestimation of SEpref related to E17’s assumption that 13C Suess effect is directly proportional to pCFC-12. The
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Figure 14. (a - c): The zonal mean of the simulated δ13Cpref
1940 for the locations where both observed CFC-12 and δ13CDIC are available.

The thick grey line is pCFC-121994 = 20 patm isoline, above which model data is used to perform linear regression. The thick black lines

outline the Subtropical Gyre Water in the Atlantic and North Pacific Ocean, the Subtropical Gyre Water and Sub-Antarctic Mode Water in

the Indian Ocean and South Pacific ocean (definition of water masses in Table E1). (d - f), (g - i) and (j - l): as (a - c), but for pCFC-121994,

for −(δ13Creg
1994− δ13Creg

1940) and for AOU changes between year 1940 and 1994, respectively. Note that for the Atlantic Ocean the upper

3 km is shown, whereas for the Pacific and Indian Ocean the upper 1.5 km is presented.

intercept btotal emerges possibly due to the different atmospheric time history of 13C Suess effect compared to CFC-12, as545

is discussed by E17 for the deep ocean with very low or zero CFC-12. The decreasing of δ13CPOC under increasing surface

CO2(aq) (Appendix D) also contributes to an non-negligible btotal as lower δ13CPOC leads to lower δ13CDIC in the ocean interior.

In the South Atlantic and Indian Ocean, btotal =−0.07‰ corresponds to an underestimation of 0.12 and 0.11‰ (Table 1),

respectively.
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Table 1 summaries of the contributions from (SEpref−SEtotal) for different ventilation regions. The comparison to the total550

underestimation given by (SEpref−SEMod) shows that this underestimation, which is attributed to the assumption of E17’s

approach, is the largest contributor for the Indian Ocean and the South Atlantic.

The residual under-/over-estimation of SEpref given by (SEtotal−SEMod) = (SEpref−SEMod)−(SEpref−SEtotal) shows how well

a method based on linear regression relationships between δ13CSE and pCFC-121994 can estimate the global ocean Suess effect.

(SEtotal−SEMod) at 200 m generally show positive values, i.e. underestimation, in low latitudes (between 40◦ S and 40◦ N) and555

it is rather negative poleward of 40◦ (Fig. 13c). This pattern results from pooling data from different water masses to generate

one regression relationship for a large ventilation region. The waters ventilated in lower latitudes typically have stronger 13C

Suess effect than those ventilated in high latitudes. This is clearly reflected in the linear regression relationships between

δ13CSE(1994−1940) and pCFC-121994 for the North Atlantic (Fig. E3d), which shows that the regression slope atotal for the

Subtropical Gyre Water is noticeably steeper than that of the deep waters. Accordingly in the interior ocean, the water masses560

ventilated in the low latitudes generally show an underestimation of the 13C Suess effect (positive values of SEtotal−SEMod)

and the water masses ventilated in the high latitudes show an overestimation (Figs. E1g - E1i). In the North Atlantic Ocean,

the region-mean underestimation (SEpref−SEMod) = 0.1‰ is predominantly contributed by (SEtotal−SEMod) = 0.09‰. In the

North Pacific Ocean (SEtotal−SEMod) = 0.13‰ accounts for more than half of the total underestimation 0.21‰. In the Indian

and South Atlantic Ocean, however, (SEtotal−SEMod) has hardly any influence to the region-mean underestimation.565

In summary, our analysis points out two major causes for the underestimation of 13C in E17’s approach. The first is the

assumption of an spatially-uniform preformed δ13C component in 1940. The second cause is the neglect of processes not

directly linked to the oceanic uptake and transport of CFC-12, e.g. the uptake of anthropogenically light CO2 in the times prior

to the emission of CFC-12 and the decrease of δ13CDIC due to the decrease of δ13CPOC over the industrial period.

6 Summary and conclusions570

We present results of the new 13C module in the ocean biogeochemical model HAMOCC6 for the historical period forced by

reanalyses data (ERA20C). We test two parameterisations of different complexity for the biological fractionation factor: εPopp
p

depends on dissolved CO2 (Popp et al., 1989); εLaws
p is a function of dissolved CO2 and phytoplankton growth rate (Laws et al.,

1995). Furthermore, we use our consistent model framework to assess the approach by Eide et al. (2017a), which yields the

first global oceanic 13C Suess effect estimate based on a correlation between preformed δ13CDIC and CFC-12 partial pressure.575

The comparison between simulated and observed isotopic ratio of organic matter δ13CPOC reveals that εPopp
p (r = 0.84 and

NRMSE = 0.57) has a better performance than εLaws
p (r = 0.71 and NRMSE = 2.5). Using εLaws

p results in noticeably lower

δ13CPOC values and smaller δ13CPOC gradients between low and high latitudes compared to observations. The parameterisa-

tion of Laws et al. (1995), obtained based on cultures of marine diatom Phaeodactylum tricornutum, results in a too strong

preference of isotopically light carbon in our global ocean biogeochemical model.580

Regarding δ13CDIC, εPopp
p also yields slightly better agreement with observations than εlaws

p (r = 0.81 and NRMSE = 0.7

versus r = 0.80 and NRMSE = 1.1), because εLaws
p produces lower δ13CPOC and therefore lower δ13CDIC than those found in

28



observations. εPopp
p performs well considering the uncertainties in observed δ13CDIC (0.1−0.2‰; Schmittner et al., 2013). Our

model slightly overestimates surface δ13CDIC. By decomposing δ13CDIC into a biological component and a residual component,

we find the overestimation in the high latitude ocean is dominated by biases in the biological component caused by e.g. too585

high surface iron concentration. In the interior ocean δ13CDIC biases are mainly due to biases in the physical state (for instance,

a too shallow boundary between NADW cell and the Antarctic Bottom Water cell in MPIOM).

Our model represents well the temporal evolution of the oceanic δ13CDIC since pre-industrial times, i.e. the oceanic 13C

Suess effect due to the intrusion of isotopically light carbon into the ocean. With the complete information on the spatial and

temporal 13C evolution in the ocean, together with the simulated evolution of CFC-12, we identify the sources for the potential590

uncertainties in the framework of Eide et al. (2017a) for deriving an observation-based oceanic 13C Suess effect. Based on

our model, we find underestimations of 13C Suess effect at 200 m by 0.24‰ in the Indian Ocean, 0.21‰ in the North Pacific

Ocean, 0.26‰ in the South Pacific Ocean, 0.1‰ in the North Atlantic Ocean, and 0.14‰ in the South Atlantic Ocean. These

numbers are in line with the underestimation range 0.15 to 0.24‰ conjectured by Eide et al. (2017a). They speculated this

underestimation is due to the under-representation of the water masses with stronger 13C Suess effect, such as the Subtropical595

Gyre Water and Sub-Antarctic Mode Water, in the observational data. Our analysis shows that their hypothesis only explain

half of the underestimation in the Indian Ocean. For the North Atlantic Ocean this hypothesis is not supported by the model

data . We identify two major causes for the underestimation of 13C Suess effect by the applied method. The first relates to the

assumption of a spatially-uniform preformed component of δ13CDIC in year 1940. In our model this preformed component is

generally more positive in the upper ocean than in the interior ocean, which contributes to the underestimation of δ13C Suess600

effect. The second cause relates to the neglect of processes that are not directly linked to the oceanic uptake and transport of

CFC-12, for instance, 13C Suess effect prior to the emission of CFC-12 and the decrease of δ13CPOC over the industrial period.

We conclude that the new 13C module with biological fractionation factor εPopp
p from Popp et al. (1989) has a satisfactory

performance. We are aware that the parametrisation εPopp
p omits any potential changes, e.g. in ecosystem structure, which might

have occurred in the paleo ocean. Our new 13C module will serve as a useful tool to evaluate the performance of MPI-ESM in605

paleo-climate and to investigate the past changes in the ocean, for instance within the ongoing research project PalMod (Latif

et al., 2016).

Appendix A: Governing factors for the water-column DI13C inventory changes

The water-column DI13C inventory difference is primarily a result of the difference of the net air-sea 13CO2 flux between

PI_Popp and PI_Laws. This is demonstrated by the comparison of the contributions of the governing factors for the water-610

column DI13C inventory changes (Table A1), including air-sea gas exchange, loss of POC and CaCO3 to marine sediment,

diffusion of the remineralised DIC from sediment into the water column, input of DOC and CO2−
3 , and the exchange with

other marine carbon pools (phytoplankton, CaCO3, etc.). Table A1 also reveals that the current method to determine the 13C

input (see Section 2.3.2) only has a small contribution to the change of the water-column DI13C inventory.
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Table A1. Contributions to the rate of the water-column DI13C inventory change (in Gmol yr−1), averaged in the last 50 years in the

corresponding pre-industrial spin-up simulations. Positive values denote contributions to the increase of the water-column DI13C inventory.

Last column gives relative contribution to the total rate difference with relative contribution = (PI_Laws-PI_Popp) / total rate difference.

13C fluxes into

the water column (Gmol yr −1)
PI_Popp PI_Laws PI_Laws - PI_Popp

relative

contribution

air-sea gas exchange 1824.4 1552.3 -272.1 1.1

POC loss to sediment -34902.9

sum:

596.1

-34626.4

sum:

626.6

276.5

sum:

30.5
-0.1

CaCO3 loss to sediment -16672.1 -16674.3 -2.2

DOC input 13612.7 13506.8 -105.9

CO2−
3 input 16505.2 16506.9 1.7

sediment DIC reflux 22053.2 21913.6 -139.6

from other water-column carbon pools 63.8 64.2 -0.4 0.001

total rate 2484.7 2242.7 -242.0 1
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Appendix B: Model-observation comparison of ocean physics615

Sea surface temperature (SST) and salinity (SSS) generally show good performance (Fig. B1 and Table B1). The most striking

bias is seen for SSS (2-3 psu) in the Arctic Ocean. In the ocean interior, the performance of temperature and salinity is similar

to other ocean general circulation model, e.g. Tjiputra et al. (2020) (comparing our Table B1 to their Figure 2). The pattern of

the model biases, i.e. the upper layers are too cold whereas between 500 m and 2500 m the water is too warm and salty. Such

errors are typically seen in MPIOM, see Jungclaus et al. (2013) for detailed discussion.620

a b

Figure B1. Biases in sea surface temperature (SST, panel a) and salinity (SSS, pane b). Both model and observational data (EN4 version

4.2.0; Good et al., 2013) are averaged for 1960-1999.

Figure B2. Zonal-mean biases of seawater temperature (a-c) and salinity (d-f) with respect to observations (EN4 version 4.2.0; Good et al.,

2013) for the Atlantic (left column), Pacific (middle column) and Indian Ocean (right column).
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Table B1. Summary of the spatial correlations coefficient r and normalised root mean square error (NRMSE) between model data and

observations from EN4 (version 4.2.0; Good et al., 2013).

depth

(km)

temperature salinity

r NRMSE r NRMSE

0 0.997 0.099 0.95 0.41

0.5 0.90 0.58 0.88 0.43

1 0.87 0.89 0.83 0.70

3 0.91 1.09 0.92 1.62

Figure B3. Atlantic meridional overturning circulation (AMOC) stream function (Sv).

Figure B4. 1990-2009 mean vertical velocity (m s−1) in the model at 1020 m (a) and 2920 m depth (b).
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Figure B5. The mean of the annual maximum of the monthly mixed layer depth (m) for the period 1970-1999 in the model. The mixed layer

depth is defined as the depth at which a 0.03 kg m−3 change of potential density with respect to the surface has occurred. Contour intervals

are 50 for 0-500, 500 for 500-3000.

Figure B6. The simulated zonal current (cm s−1) at 960 m depth in the equatorial Pacific (averaged over January 2003 - August 2009).

Positive values indicate eastward flow.

Figure B7. CFC-12 concentration (pmol kg −1) in Feburary 1998 along the A5 section in the Atlantic Ocean (see right panel) of the model (a)

and of observations from GLODAPv1 database (panel b; Key et al., 2004). Contour intervals are 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8,

1.2 and 2 pmol kg −1.
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Figure B8. (a-c): CFC-12 concentration (pmol kg −1) for the section A16 (a), P16(b) and I8S9N (c). (d-f), (g-i): as (a-c), but for the observed

CFC-12 (GLODAPv1; Key et al., 2004) and for the difference between model and observation, respectively. The isolines in panels (a - f) are

0.01, 0.1, 0.4, 0.7, 1.0, 1.3, 1.6, 1.9, 2.2 pmol kg −1. The isoline increment in panels (g - i) is 0.2 pmol kg −1
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Appendix C: Model-observation comparison of ocean biogeochemistry

C1 Net primary production, growth rate, biomass and limiting nutrients

The simulated net primary production, 48.7 Gt yr−1 for bulk phytoplankton and 3 Gt yr−1 for cyanobacteria, compares well

with the satellite-based estimate of ∼ 52 Gt yr−1 (Westberry et al., 2008; Silsbe et al., 2016). The simulated growth rate

µ (Figs. C1a and C1b, only shown for bulk phytoplankton because cyanobacteria has a much lower primary production) is625

broadly consistent with the large-scale patterns of the satellite-based µ estimates from Westberry et al. (2008) (Figs. C1c and

C1d) and with field observations. In the central equatorial Pacific the simulated µ well reproduces the observed range (0.55-

0.7 day−1, Chavez et al., 1996; note the satellite-based estimates overestimate µ due to excluding iron limitation). In the

subtropical gyres, the simulated µ (annual-mean 0.1-0.25 day−1) is at the lower side of both the observations (annual mean

0.3-0.53 day−1 in the North Pacific subtropical gyre, Letelier et al., 1996; annual mean 0.13-0.62 day−1 in the North Atlantic630

subtropical gyre, Marañón, 2005) and the satellite-based µ estimates. In the Pacific sector of the Southern Ocean, the simulated

µ (0.3-0.4 day−1) in the austral summer is higher than the observations (about 0.1-0.2 day−1; Boyd et al., 2000) and the

satellite-based estimates. The simulated phytoplankton biomass is too high in the equatorial Pacific (> 100 mg C m−3) and

the Southern Ocean (> 50 mg C m−3); Fig. C2) compared to the satellite-based estimates (< 30 mg C m−3 for both regions;

Westberry et al., 2008).635

Figure C1. The 1999-2004 climatological-mean surface phytoplankton growth rates (day−1) of the model (a, b, for bulk phytoplankton) and

of the satellite-based estimates from Westberry et al. (2008) (c, d) for the boreal summer (left column) and winter (right column). The growth

rate is identical between Hist_Popp and Hist_Laws.
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Figure C2. The 1999-2004 averaged annual-mean surface phytoplankton biomass (mg C m−3) of the model.

Figure C3. Limiting nutrients for primary production in the model.

C2 Additional model-observation comparison for oceanic biogeochemical variables

The model captures the major features of the observed phosphate, DIC, oxygen and nitrate distribution. The biases of the

above four variables are shown in Figs. 9b, 10g - 10i, C4, C5 and C6. We slight underestimate the global mean phosphate by

0.2 mmol m−3, DIC by 41.3 mmol m−3, oxygen by 15 mmol m−3 and nitrate by 4.7 mmol m−3.
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Figure C4. (a): DIC biases with respect to observation (GLODAPv1; Key et al., 2004) at the sea surface. (b-d): zonal-mean DIC biases for

the Atlantic, Pacific and Indian Ocean, respectively. Model data is averaged for 1990-1999.

Figure C5. As Fig. C4, but for simulated oxygen and observation from WOA13 (Garcia et al., 2013b).
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Figure C6. As Fig. C4, but for simulated nitrate and observation from WOA13 (Garcia et al., 2013a).

Figure C7. The change rate of biological fractionation εp from pre-industrial to 1990s.

38



𝛅13CDICbio

Model Obs

𝛅13CDICresi

0.4 

0 

-0.4 

-0.8 

-1.2

a

c d

b

Figure C8. The biological component δ13Cbio
DIC at ocean surface for the model Hist_Popp (a) and observation (b). (c-d): as (a-b), but for the

residual component δ13Cresi
DIC.
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Appendix D: The regenerated component of δ13CDIC640

The regenerated component of δ13CDIC, δ13Creg, relates to organic matter remineralisation and calcium carbonate dissolution.

We neglect the dissolution of CaCO3 following Sonnerup et al. (1999), who argued that this simplification only results in a

small offset (< 2%). δ13Creg is calculated as

δ13Creg = δ13CDIC− δ13Cpref, (D1)

with δ13Cpref given in Eq. (15). Note that the calculation of δ13Cpref in Eq. (15) only applies below the 200 m, which is roughly645

the euphotic zone depth (Eide et al., 2017a).

The temporal change of the regenerated component δ13Creg
SE = δ13Creg

1990s−δ13Creg
PI (Figs. D1a - D1c) generally shows a much

smaller magnitude than δ13Cpref
SE (Fig. 12d - 12f). Above 1500 m, the δ13Creg

SE is mainly caused by the change of remineralisation,

as is illustrated by the change of AOU (Figs. D1d - D1f). Below 1500 m, the δ13Creg
SE is generally negative because δ13CPOC

decreases by 2.2‰ from the pre-industrial period to 1990s, mainly due to the decline of the biological fractionation factor εp650

under increasing surface CO2(aq) (Fig. C7a).

Figure D1. The simulated change of the regenerated component δ13Creg
SE = δ13Creg

1990s− δ
13Creg

PI for vertical sections A16 in the Atlantic

Ocean (a), P16 in the Pacific Ocean (b) and I8S9N in the Indian Ocean (c). The location of the vertical sections are shown in Fig. 12. (d-f):

As (a-c), but for the change of AOU from pre-industrial to 1990s.
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Appendix E: Applying Eide et al. (2017a)’s approach to the model data

E1 Description of Eide et al. (2017a)’s approach

To derive the global oceanic 13C Suess effect, Eide et al. (2017a) (hereafter E17) first applied the two-stage back-calculation

method developed by Olsen and Ninnemann (2010) to calculate the 13C Suess effect using data from the World Ocean Circu-655

lation Experiment sections. The steps and assumptions of this stage are explained below. Next E17 mapped these 13C Suess

effect estimates onto a 1x1 degree grid with 24 vertical layers and obtained the three-dimension distribution of 13C Suess effect

in the global ocean. For simplicity, hereafter the above procedure is collectively referred to as E17’s approach.

E17 first assume that any oceanic CFC-12 signal before 1940 is negligible and the oceanic 13C Suess effect at any time t

after 1940, δ13CSE(t-1940), is proportional to CFC-12 partial pressure at time t:660

δ13CSE(t-1940) ∼ a · pCFC-12t. (E1)

Here the proportionality factor a is time-invariant. δ13CDIC at any time t after year 1940 is decomposed as:

δ13Ct = δ13CSE(t-1940) + δ13Cpref
1940 + δ13Creg

1940. (E2)

The calculation of δ13Cpref is given in Eq. (15) and δ13Creg in Eq. (D1). E17 include two additional terms on the right-hand

side of the above equation ∆δ13Creg and ∆δ13Cpref (see their Eq. 4), which represent any changes not related to the 13C Suess665

effect, e.g. changes in ocean carbon cycle. We don’t explicitly write these two terms as they are set to zero by E17.

Decomposing the left-hand side of Eq. (E2) into a preformed component and a regenerated component gives

δ13Cpref
t = δ13CSE(t-1940) + δ13Cpref

1940− (δ13Creg
t − δ13Creg

1940). (E3)

Following Gruber et al. (1996), E17 assume a steady state ocean over the period of interest and set (δ13Creg
t − δ13Creg

1940) to

zero, and this gives670

δ13Cpref
t = δ13CSE(t-1940) + δ13Cpref

1940. (E4)

Combining Eq. (E1) and Eq. (E4) yields linear relationship between δ13Cpref
t and pCFC-12t:

δ13Cpref
t ∼ a · pCFC-12t + b, (E5)

where b contains term δ13Cpref
1940. Thus, the proportionality factor a can be determined with δ13Cpref

t and pCFC-12t at time t,

and δ13CSE(t-1940) can be obtained with Eq. (E1).675
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To scale δ13CSE(t−1940) to δ13CSE(t−PI) for the full industrial period, the assumption is used that the oceanic δ13CDIC change

scales with the atmospheric δ13CO2 change, i.e.:

δ13CSE(t−PI) = fatm · δ13CSE(t−1940) = fatm · a · pCFC-12t, (E6)

with

fatm =
δ13CO2,t− δ13CO2,PI

δ13CO2,t− δ13CO2,1940
. (E7)680

E2 Calculation of SEpref, the oceanic 13C Suess effect estimate using E17’s approach and model data

To achieve a result comparable to E17, we select the model data at the geographic locations for which both CFC-12 and

δ13CDIC measurements are available. The observational data set of E17 has data from one cruise in the South Atlantic (A13.5)

in 2010. We don’t include this cruise data because the applied ERA20C forcing and, thus, our simulations ends in 2009. Here

we use the observations compiled by Schmittner et al. (2013) because δ13CDIC in this data set has been quality controlled and685

is publicly available. Following E17, we use data at the model layers between 200 m and the simulated CFC-12 penetration

depth (defined as pCFC-12=20 patm, see the thick grey lines in Fig. 14). We take model data of year t= 1994. By performing

a linear regression (Eq. E5) for five ventilation regions (the North Atlantic, South Atlantic, North Pacific, South Pacific and

Indian Ocean) we obtain the regression parameters, hereafter referred to as apref and bpref. Applying Eq. (E6) to the three-

dimension model data of pCFC-12 for t= 1994, regression slope apref and fatm = 1.5 (determined with Eq. E7 for year 1994),690

we obtain the estimate of the global oceanic 13C Suess effect, SEpref, in year 1994 (Eq. 16).

The regressional relationships between δ13Cpref
1994 and pCFC-121994, and the regression coefficients apref and bpref are shown

in Fig. E2 (the water masses in this figure are defined in Table E1). The coefficient of determination r2, the percentage of

the variance in the data explained by the regressional relationship, ranges between 0.33 and 0.66. The strength of these linear

relationships is acceptable considering the lowest r2 = 0.22 in E17.695

The regression relationships between δ13Cpref and pCFC-12 in our model (Fig. E2) show some quantitative differences

to those of E17 (see their Fig. 3). These differences originate from model biases in the distribution and properties of water

masses. These mismatches do not affect the analysis and conclusions in Section 5. Nevertheless, we briefly discuss their causes

for better understanding of the model behaviour.

First, the definitions of several water masses in the model are slightly different from those of E17 (comparing our Table E1700

with their Table 2).

Second, our simulated δ13Cpref
t in the deep and bottom waters (Antarctic Bottom Water, Circumpolar Deep Water, Pacific

Deep Water and Indian Deep Water) in the Southern Hemisphere (Figs. E2c, E2e and E3c) is higher than that in E17 (see their

Figs. 3a. 3c and 3e). The possible reasons for this difference are related to mixing and primary production in the Southern

Ocean. Here, the simulated deep convection, which primarily occurs in the open ocean rather than the along continental705
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shelf, is too strong in the model. This can be seen by the large mixed layer depth (Fig. B5), and by the CFC-12 bias along

selected vertical sections (Fig. B8), which feature persistent positive biases off the Antarctic continental shelf in the Atlantic,

Pacific and Indian sectors of the Southern Ocean. Furthermore, the Southern Ocean has a too high primary production in

the model (about a factor of 1.5 of the satellite-based net primary production estimates from Westberry et al., 2008). The high

primary production causes higher surface δ13CDIC than observations (see the South Pacific Ocean in Fig. 8c). Consequently, the710

simulated preformed component δ13Cpref
t in the bottom and deep water masses of the Southern Ocean is higher than observed

values in E17.

Third, the lowest values of δ13Cpref
t (< 1.4‰) are often found in the upwelling regions in the model. This is due to the

upward transport of water from the ocean interior that has lower δ13CDIC than observations (Figs. 10e and 10f).

Figure E1. The difference (SEpref− SEMod) for the vertical sections A16 in the Atlantic Ocean (a), P16 in the Pacific Ocean (b) and I8S9N

in the Indian Ocean (c). (d - f) and (g - i): as (a - c), but for (SEtotal− SEMod) and (SEpref− SEtotal), respectively. The isoline increment is

0.05‰. The thick grey line is pCFC-121994 = 20 patm isoline, below which SEpref is generally very small (< 0.05‰).

E3 Linear regression for subregions in the Indian Ocean715

We can span regressional relationships for the subtropical gyres of the Indian Ocean and North Pacific Ocean because we

use all model levels between 200 m and pCFC-12 = 20 patm isoline at a given geographical location, and therefore we have
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more data points than field measurements. In the Indian Ocean, performing linear regression for δ13Cpref
1994 and pCFC-121994

in the Subtropical Gyre Water and Sub-Antarctic Mode Water yields regression parameters aSTGW
pref =−0.65× 10−3, bSTGW

pref =

1.98 and r2 = 0.49. The more negative aSTGW
pref compared to regression slope apref =−0.47× 10−3 obtained for the whole720

Indian Ocean suggests an underestimation of 13C Suess effect. The mean pCFC-12 in the Indian subtropical region at 200 m

pCFC-12STGW
1994 = 440 patm. Following Eq. (E6), we can calculate the mean underestimation for the subtropical Indian Ocean

as fatm · (apref− aSTGW
pref ) · pCFC-12STGW

1994 = 0.12‰.

E4 Calculation of SEtotal

To calculate SEtotal we perform a linear regression for the total oceanic 13C Suess effect δ13CSE(1994−1940) and pCFC-121994:725

δ13CSE(1994−1940) ∼ atotal · pCFC-121994 + btotal. (E8)

Here the model data is subsampled in the same manner as in Section E2. Next, applying a correction for the period prior to

1940 (in analogy to Eq. E6) we obtain the expression of SEtotal in Eq. (19).

The regression relationships in Eq. (E8) and regression coefficients are given in Fig. E3. For the Indian, North Pacific, North

Atlantic and South Atlantic Ocean, r2 lies between 0.34 and 0.67, which suggests acceptable strength of the relationships. In730

the South Pacific Ocean we find low r2 = 0.07. This low r2 is a result of the high variability in the change of the regenerated

component (Fig. 14h) which corrupts the regression. Therefore we omit the South Pacific in the calculation of SEtotal.
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Table E1. Water masses and their definitions in the model

water mass definition in the model

Indian Ocean ventilated waters

upwelling regions north of 10◦N in the Arabian Sea; north of 8◦N in the Bay of Bengal

STGW (Subtropical Gyre Water),

SAMW (Sub-Antarctic Mode Water) ∗
σθ ≤ 27.0

AAIW (Antarctic Intermediate Water) 27.0< σθ ≤ 27.45∗∗

IDW (Indian Deep Water),

CDW (Circumpolar Deep Water)
σθ > 27.45∗∗

North Pacific ventilated waters

upwelling regions east of 160◦W, south of 25◦N, σθ > 26.4

STGW σθ ≤ 26.7

NPIW (North Pacific Intermediate Water) σθ > 26.7

South Pacific ventilated waters

upwelling regions
east of 160◦W, north of 15◦S, σθ > 26.5;

east of 90◦W, north of 40◦N, σθ > 26.5

STGW, SAMW ∗ σθ ≤ 27.15

AAIW 26.7< σθ ≤ 27.7, salnity< 35.0 psu

PDW (Pacific Deep Water), CDW σθ > 27.7

North Atlantic ventilated waters

STGW σθ ≤ 27.2, south of 45◦N

SPMW (Subpolar Mode Water) 26.95< σθ ≤ 27.5∗∗

NSOW (Nordic Seas Overflow Water),

NADW (North Atlantic Deep Water),

LSW (Labrador Sea Water)

σθ > 27.5∗∗

South Atlantic ventilated waters

STGW σθ ≤ 26.9

SAMW, AAIW ∗ 26.9< σθ < 27.4

AABW (Antarctic Bottom Water), CDW σθ > 27.4

* Water masses are combined together rather than separately defined as in Eide et al. (2017a).

** A different σθ threshold is used here compared to Eide et al. (2017a).
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Figure E2. Regressional relationships δ13Cpref
1994 ∼ apref · pCFC-121994 + bpref for the Indian Ocean (a), the North Pacific (b), the South Pa-

cific (c), the North Atlantic (d) and the South Atlantic (e). Different colours and symbols indicates different water masses. The full names, as

well as the definitions, of the water masses are listed in Table E1. The regression slopes apref are used to calculated SEpref in Eq. (16). In the

Indian Ocean the regression relationship for the Subtropical Gyre Water and Sub-Antarctic Mode Water (red upward triangle in panel a) is

y =−0.65× 10−3x+ 1.98, r2 = 0.49. In the North Pacific the regression relationship for the Subtropical Gyre Water (red upward triangle

in panel b) is y =−0.44× 10−3x+ 1.66, r2 = 0.26.
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Figure E3. As Fig. E2, but for the regression relationships δ13CSE(1994-1940) ∼ atotal ·pCFC-121994 +btotal. The regression coefficients atotal and

btotal are used to calculate SEtotal following Eq. (19)
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