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Abstract. The impact of anthropogenic climate change on marine net primary production (NPP) is a reason for concern Supprimé: °

because changing NPP will have widespread consequences for marine ecosystems and their associated services. Projections

by the current generation of Earth System Models have suggested decreases in global NPP in response to future climate
change, albeit with very large uncertainties. Here, we make use of two versions of the Institut Pierre Simon Laplace Climate
Model (IPSL-CM) that simulate divergent NPP responses to similar high-emission scenarios in the 21st century and identify
nitrogen fixation as the main driver of these divergent NPP responses. Differences in the way N-fixation is parameterized in
the marine biogeochemical component PISCES of the IPSL-CMs lead to N-fixation rates that are either stable or double over
the course of the 21st century, resulting in decreasing or increasing global NPP, respectively. An evaluation of these 2 model
versions does not help constrain future NPP projection uncertainties. However, the use of a more comprehensive version of
PISCES, with variable nitrogen-to-phosphorus ratios as well as a revised parameterization of the temperature sensitivity of
N-fixation, suggests only moderate changes of global-averaged N-fixation in the 21st century. This leads to decreasing
global NPP, in line with the model-mean changes of a recent multi-model intercomparison. Lastly, despite contrasting trends
in NPP, all our model versions simulate similar and significant reductions in planktonic biomass. This suggests that
projected plankton biomass may be a much more robust indicator than NPP of the potential impact of anthropogenic climate

change on marine ecosystems across models.

1 Introduction

Net Primary Production (NPP) by marine phytoplankton is responsible for nearly 50% of global carbon fixation (Field et al.,
1998), and is the basis of almost all marine food chains, controlling the availability of energy and food for upper trophic

levels. As such, marine NPP sustains most oceanic fisheries (Pauly and Christensen, 1995; Stock et al., 2017) and is
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| considered to be one of the most important ecosystem services that the ocean provides (Portner et al., 2014; Bindoff et al.,
2019).

Impacts of anthropogenic climate change on marine NPP are particularly alarming as changing NPP could have widespread

| consequences for marine gcosystems and the services they provide. For instance, NPP drives the vitality of marine
ecosystems, biogeochemical cycling and the biological carbon pump. Several modelling studies have used Earth System
Models (ESMs) to project the evolution of marine NPP over the 21st century under different global warming scenarios
(Bopp et al., 2001; Steinacher et al., 2010; Bopp et al., 2013; Cabr¢ et al., 2015; Laufkétter et al., 2015; Kwiatkowski et al.
2020; Tagliabue et al., 2021). Many of these studies have suggested decreases in global NPP in response to future climate
change. For the high-emission scenario RCP8.5, estimates of changes in global NPP based on 10 ESMs used in the Coupled
Model Intercomparison Project 5 (CMIP5) range from -2 to -16% in 2090-2099 as compared to 1990-1999 (Bopp et al.
2013). In the recent Coupled Model Intercomparison Project 6 (CMIP6), ESMs also project in average a decrease in global
mean NPP under the high-emission scenario SSP5-8.5, albeit with much larger uncertainties than in CMIP5 (Kwiatkowski et
al., 2020; Tagliabue et al., 2021).
Multi model climate change projections have been widely used to assess the potential impact of future climate change on
marine biomass across trophic levels (Kwiatkowski et al., 2019; Lotze et al., 2019), fisheries catch potential (Cheung et al.,

2010) and global revenues (Lam et al. 2016), and planktonic diversity (Ibarbalz et al., 2019; Benedetti et al., 2021). Using 6

global ecosystem models and climate projections from 2 CMIPS Earth System Models, Lotze et al. (2019) have shown for
instance that the mean global animal biomass in the ocean, largely driven by the decreasing trend in marine NPP, would
decrease by 17 % under high emissions by 2100, corresponding to an average 5% decrease for every 1°C of warming.

Despite being used extensively, including in international assessment reports such as the Special Report on the Ocean and

Cryosphere in a Changing Climate (IPCC SROCC, Pértner et al., 2019) and the Global Agsessment Rgport on Bjodiversity

and Egosystem Services (IPBES, Diaz et al., 2019), these projections of future marine NPP are subject to large uncertainties,

as demonstrated by inter-model differences (Frolicher et al., 2016). This is especially the case at the regional level, as shown
in the Arctic Ocean (Vancoppenolle et al., 2015), in the Southern Ocean (Leung et al., 2015), and in the tropical oceans
(Kwiatkowski et al., 2017; Tagliabue et al., 2020; Tagliabue et al., 2021). It is also the case for the global trend, with some
| models of the CMIP6 ensemble (IPSL-CM6A-LR, CNRM-ESM2-1, CESM2 and CESM2-WACCM) and others not
included in the CMIP ensembles (UVIC model in Taucher and Oschlies, 2011; PlankTOMS.3 model in Laufkétter et al.,
| 2015), simulating increasing global NPP in response to anthropogenic climate change. Even within 2 specific model, poorly
constrained assumptions around key biological components can drive substantial uncertainty in the projected changes in NPP
across the tropical Pacific (Tagliabue et al., 2020).
The differences between models in projecting future NPP result from numerous factors and are underpinned by the delicate
balance between the processes causing NPP decreases (e.g. stratification-driven declines in nutrient supply and temperature-
driven increases in zooplankton grazing) and NPP increases (e.g. stratification-driven declines in light limitation, transport of

excess nutrients and temperature-driven increases in phytoplankton growth rates) (Doney, 2006; Laufkatter et al., 2015). The
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effects of other key processes, such as the potential contribution of pitrogen fixation (Riche and Christian, 2018; Wrightson
and Tagliabue, 2020), changing nutrient limitation regimes (Tagliabue et al., 2020) or the impact of ocean acidification on
phytoplankton growth (Dutkiewicz et al., 2015) are even more uncertain and are typically only implicitly parameterized or
ignored in current generation ESMs.

Here, we make use of the newly developed version 6 of the Institut Pierre Simon Laplace Climate Model (IPSL-CM6A-LR,
Boucher et al. 2020), used in the framework of the Coupled Model Intercomparison Project Phase 6 (CMIP6, Eyring et al.,
2016) and compare its projected NPP response to the previous version of the same climate model (IPSL-CMS5A-LR,
Dufresne et al., 2013) used in CMIPS. These two model versions differ in many ways (spatial resolution in the ocean and
atmosphere, improved versions of multiple model components), but both use the Pelagic Interaction Scheme for Carbon and
Ecosystem Studies (PISCES) model as their marine biogeochemical component. Note that whereas IPSL-CM5A-LR uses
PISCES-v1 (Aumont and Bopp, 2006), the more recent version 2 (PISCES-v2, Aumont et al., 2015) is used in IPSL-CM6A-
LR.

Whereas both models produce near-identical trend in global SST for comparable high-emission scenarios (RCP8.5 and
SSP5-8.5) over the 21st century (Figure la, Table 1), a first comparison of NPP projections shows a striking difference, with
NPP decreasing by 9.1% in IPSL-CM5A-LR in 2080-2099 relative to 1986-2005, whereas it increases by 6.8% in IPSL-
CM6A-LR (Figure 1b, Table 1). The aim of this study is to explore and explain this striking global scale divergence. As
shown on Figure 1, we identify the response of biological N-fixation to anthropogenic climate change as one of the main
differences between these 2 ESMs versions, with N-fixation slightly decreasing in IPSL-CMS5A-LR and increasing
significantly in IPSL-CM6A-LR over the 21st century (-9% and +75% from 1986-2005 to 2080-2099, respectively, Figure 1,
Table 1).
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Figure 1: Simulated changes relative to 1986-2005 in (a) sea surface temperature (°C), (b) integrated net primary production (PgC
y-1) and (c) integrated N2 fixation (TgN y-1), for IPSL-CM5A-LR (black) and IPSL-CM6A-LR (blue) over historical and future
scenarios. Note that the RCP8.5 emission pathway is used for IPSL-CMS5A-LR, but SSP5-8.5 is used for IPSL-CM6A-LR. The
historical and future periods (1986-2005 and 2080-2099, respectively) are displayed as grey bars,

Biological dinitrogen (N,) fixation is a key process providing bio-available nitrogen to support marine primary production
(Gruber and Galloway, 2008, Zehr and Capone, 2020). Nitrogen fixation was long thought to be confined to the warm, low-
latitude ocean, and only performed by very specific cyanobacteria. However, our knowledge has greatly evolved in recent
years with the discovery of an ever-increasing array of microorganisms capable of fixing atmospheric nitrogen (Gradoville et

al., 2017). Nitrogen fixation has also been observed in areas where it was previously not thought possible, e.g. in nutrient-
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rich, low-temperature waters (Tang et al., 2019; Benavides et al., 2018). At present, the response of N-fixation to climate
change appears highly unconstraingd, as illustrated by the diversity of responses from ESMs that include some form of N-
fixation parameterization (Riche et al., 2018, Wrightson and Tagliabue, 2020). However, despite this variation, because N-
fixation emerges rapidly from the background of natural variability, it can be a key driver of NPP trends in N-limited waters
(Wrightson and Tagliabue, 2020).

In this study, we first identify N-fixation as the main process responsible for the sharp contrast between projected NPP in
IPSL-CMS5A-LR and IPSL-CM6A-LR. We then exploit a series of offline simulations using different versions of the
PISCES model (including PISCES-v1, PISCES-v2, and other,model versions differing in their representation of N-fixation),
consistently forced with the same climate model output. This ensures that no differences in the projections arise from
variable climate scenarios, climate models or model resolution. We then analyse the mechanisms responsible for the
different responses of N-fixation in all models used here and discuss these differences in terms of their skill against data-

based products. Lastly, we explore the implications of the divergent N-fixation and NPP responses for pcean carbon export,

ocean deoxygenation and for potential impacts on marine ecosystems in the 21st century.

2 Material and Methods
2.1 Earth System Models

In this study, we make use of two versions of the Institut Pierre Simon Laplace Climate Model (IPSL-CM). The first model,
IPSL-CMS5A-LR (Dufresne et al., 2013), has been used extensively for the Phase 5 of the Coupled Model Intercomparison
Project (CMIP5, Taylor et al., 2011) and compared to other CMIP5 models in terms of its marine biogeochemistry response
to climate change in Bopp et al. (2013). The second model is the newly developed IPSL-CM6A-LR (Boucher et al., 2020),
used in the more recent CMIP6 (Eyring et al., 2016) and compared to other CMIP6 models in Kwiatkowski et al. (2020) for
the response of marine ecosystem stressors to anthropogenic climate change.

Both IPSL models rely on the same atmospheric (LMDZ), ocean (NEMO) and land surface (ORCHIDEE) model
components. However these model components have been substantially revised and upgraded in IPSL-CM6A-LR with
respect to IPSL-CM5A-LR. The spatial resolution of the atmospheric model has also been increased from 96x95 points
(mean resolution of,236 km) in longitude and latitude with 39 vertical layers in IPSL-CM5A-LR (Dufresne et al., 2013) to
144x143 points (mean resolution of, 157 km) and 79 vertical layers in IPSL-CM6A-LR (Boucher et al., 2020). In addition,
the nominal resolution of the ocean model has increased from 2° and 31 vertical layers to 1° and 75 vertical layers.

A detailed description of the changes to LMDZ, NEMO and ORCHIDEE is provided in Boucher et al. (2020). However, we
note that the atmospheric general circulation model LMDZ6-A (Hourdin et al., 2020) differs from LMDZ5A (Hourdin et al.
2013) in its inclusion of a new package of parameterizations for turbulence, convection and clouds. The NEMO ocean model
comprises 3 components, i.e. ocean dynamics (NEMO-OPA), sea-ice dynamics and thermodynamics (NEMO-LIM) and
marine biogeochemistry (NEMO-PISCES). All of these ocean components have been updated from IPSL-CMS5A-LR to
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IPSL-CM6A-LR, from version 3.2 to version 3.6 of NEMO (Madec et al., 2017; Rousset et al., 2015; Aumont et al., 2015),
with the addition of a nonlinear free surface, a parameterization of mixing in the mixed layer due to submesoscale processes,
and an energy constrained parameterization of mixing due to internal tides for NEMO-OPA, and a new multicategory

halothermodynamic sea ice model for NEMO-LIM. The changes in the marine biogeochemistry component (NEMO-

PISCES) are described below. A detailed assessment of the key properties of the ocean and marine biogeochemical models

as used in ESMs that have contributed to CMIP5 and CMIP6 (including IPSL models) is available in Séférian et al. (2020)

These two versions from the IPSL climate model family qualify as Earth System Models as they include carbon cycle
components for the land biosphere (ORCHIDEE) and the ocean (NEMO-PISCES). In the following we describe the PISCES

model versions used in this study.

2.2 Marine biogeochemical components and N-fixation parameterizations

NEMO-PISCES is an ocean biogeochemical model that simulates marine biological productivity and describes the
biogeochemical cycles of carbon, oxygen and of the main limiting nutrients (P, N, Si, Fe). It is based on 24 prognostic
tracers in its standard configuration, with 2 phytoplankton functional types (diatoms and nanophytoplankton) and 2
zooplankton size classes (micro- and mesozooplankton). PISCES is by nature a “Redfieldian® model, i.e. it assumes constant
stoichiometric ratios for carbon, nitrogen and phosphorus in all organic compartments, but does consider flexible
stoichiometry for iron and silica.

PISCES-vl1 is used in IPSL-CM5A-LR and described in details in Aumont and Bopp (2006), whereas PISCES-v2 is used in
IPSL-CM6A-LR and described in Aumont et al. (2015). Despite being similar in terms of their overall architecture and
number of prognostic tracers, PISCES-v2 differs from PISCES-vl with an improved representation of iron cycling,
phytoplankton growth and nutrient limitation, zooplankton grazing, the sinking of particles, external sources of nutrients, and
the treatment of water-sediment interactions.

In both PISCES versions, the modelling of the nitrogen cycle relies on the explicit representation of nitrate and ammonium

concentrations in seawater. It includes nitrification, which corresponds to the conversion of ammonium to nitrate and is

assumed to be photo-inhibited and reduced in low-oxygen waters, as well as denitrification, when nitrate is used instead of

oxygen for remineralization in suboxic waters (Aumont et al. 2015). External sources of nitrogen in the ocean include
riverine input (using GLOBAL-NEWS2 data sets, Mayorga et al., 2010, for both PISCES versions), atmospheric deposition
(using input4MIPs data, Heglin et al. 2016 in IPSL-CM6A-LR, and output of the INCA model, Aumont et al. 2008, for

IPSL-CM5A-LR), and biological N-fixation (see below). External sinks of nitrogen include denitrification and organic

matter burial in the sediment (see Aumont et al. 2006, and Aumont et al. 2015 for detailed descriptions).

In both PISCES versions, N-fixation is represented implicitly as a source of ammonium, i.e. without an explicit diazotroph

plankton functional type (Figure 2). N-fixation is restricted to warm-waters (> 20°C) and increases exponentially with

temperature following a Q-10 value of 1.9 as for all autotrophic processes in PISCES (Aumont and Bopp, 2006, Aumont et
al., 2015). N-fixation is limited by the availability of light and iron, and favoured in low-nitrogen (NO; and NH,)
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environments. PISCES-v1 and PISCES-v2 differ in their treatment of phosphorus limitation on N-fixation, which is absent in
PISCES-v1 but combined with iron limitation in PISCES-v2. In PISCES-v1, due to the fixed stoichiometric ratios between

carbon, nitrogen and phosphorus in all organic components it is assumed that N-fixation is accompanied by a release of
inorganic phosphorus to account for the fact that diazotrophy-derived organic matter is much richer in N than the standard

Redfield assumptions in the model. This additional P-source is interpreted as deriving from the use of an unresolved

Dissolved Organic Phosphorus (DOP) pool by the implicit diazotrophs. Thus, in PISCES-v1, for every mole of N, fixed by

i laurent bopp 29/4/y 08:38
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diazotrophy and instantaneously transferred into the ammonium pool, an additional 0.04 moles of phosphorus is added in the

phosphate pool to represent the subsequent remineralization of the diazotrophy-derived organic matter with an N:P ratio of |

46:1 (Figure 23), In PISCES-v2, this parameterization has been changed, and instead includes an, unresolved source of [

inorganic phosphorus from, labile DOP, independently of N-fixation, In strongly P-limited areas, diazotrophic cyanobacteria -

use DOP as a source of P, but this is the case also for, other phytoplankton groups (Cotner et al, 1992 ; Paytan and

McLaughlin, 2007). The parameterization thus mimics this source of P, which depends, on simulated dissolved organic |
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matter concentrations and is inhibited when dissolved inorganic P is not limiting phytoplankton growth (Figure 2b). In //

PISCES-v2, this P-source is therefore not dependent on the rate of N-fixation as it js in PISCES-v1.

Note that in all versions, the overall P-inventory of the ocean is ensured by an annual restoring of the global mean PO,

concentration to its historical global value computed from the World Ocean Atlas 2001 for PISCES-v1 and World Ocean

Atlas 2013 for PISCES-v2. This restoring term is applied everywhere (at all depths) and modifies phosphate concentration

relatively, thus acting preferentially in the deep ocean where POy concentrations are higher. Overall, this term represents a

restoring timescale of about 10,000 years (Aumont et al. 2015).

In this work, we use two ynodified versions of PISCES-v2. First, PISCES-quota is a newly developed version of PISCES,

which accounts for flexible C:N:P stoichiometry. This is accompanied by the introduction of a new plankton functional type
(picophytoplankton) and leads to a subsequent increase in the number of prognostic variables to 39 (compared to 24 in all
other PISCES versions). A detailed description of PISCES-quota, is provided in Kwiatkowski et al. (2018). As in PISCES-
vl and PISCES-v2, N-fixation is parameterized implicitly, limited to waters with high light levels, low nitrogen, and
adequate iron and phosphorus. However because PISCES-quota is non-Redfieldian, two major changes have been introduced
(Figure 2.d): (1) N-fixation consumes and is limited by the availability of an explicit dissolved organic phosphorus pool as

seen in observations (Sohm and Capone, 2006; Orchard et al., 2010), and (2) the organic matter that is produced by

diazotrophy is enriched in nitrogen with respect to phosphorus (with an N:P ratio of 46:1 vs. 16:1 for the canonical Redfield
ratio). In PISCES-quota, implicit diazotrophy transfers nitrogen and phosphorus to three pools: particulate organic matter,
dissolved organic matter, and ammonium and dissolved inorganic phosphorus, with a ratio of one third each (Figure 2.d).

Importantly, the temperature sensitivity of N-fixation has been changed following Breitbarth et al. (2007), with a bell-shape

response curve and a maximum N-fixation rate set at a thermal optimum of ~ 26°C (Figure 2.¢).
Last, and specifically for this study, we modified a version of PISCES-v2 in which only the parameterization of N-fixation

was changed based on PISCES-quota (PISCES-v2fix, Figure 2.c). This newly developed parameterization is inspired by
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PISCES-quota, except it assumes that the diazotrophy-produced material follows the Redfield stoichiometric ratio of N:P

(i.e., 16:1), and uses the same release of additional inorganic phosphorus as in PISCES-v2, (Figure 2.c). PISCES-v2fix uses

the same temperature-dependency as PISCES-quota (Figure 2.¢).

(a) PISCES-vl (b) PISCES-v2
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Figure 2: Schematic diagram describing the parameterization of N-fixation for each of the PISCES versions used in this study.
Equations (1) to (4) give N-fixation rates as a function of p the N-fixation rate at temperature T, Lpos, Lr. and Ly limitation terms
(varying between 0 and 1) for phosphorus, iron and nitrogen, respectively, and Ly, a light limitation term (also between 0 and 1).
The values in parenthesis denote the number of moles (of nitrogen or phosphorus) that are consumed and produced by the implicit
N-fixation parameterization. (e) N-fixation rate (in pmolN L! d") as a function of water temperature and in the case of no other
limitation, for PISCES-v1 and PISCES-v2 (black curve) and PISCES-v2fix and PISCES-quota (red curve, from Breitbarth et al.

2007). See text for details on the rationale for the different parameterizations.

2.3 Simulations

IPSL-CMS5A-LR and IPSL-CM6A-LR have been integrated following the CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring
et al., 2016) protocols, respectively. After long spin-up integrations in pre-industrial conditions, both Earth System Models
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are run under historical forcing (from 1850 to 2005 or 2014), and then under high-emission scenarios (from 2006 or 2015 to
2100, following RCP8.5 for IPSL-CM5A-LR and SSP5-8.5 for IPSL-CM6A-LR). Details on historical and projection
simulations with IPSL-CM5A-LR and IPSL-CM6A-LR are given in Dufresne et al. (2013) and Boucher et al. (2020),
respectively.

In addition to these coupled Earth System simulations and to facilitate the assessment of the role of biogeochemical
parameterizations, we performed a series of “offline” ocean biogeochemistry simulations under the same physical forcing.
The four PISCES versions that were run offline are PISCES-v1, PISCES-v2, PISCES-v2fix and PISCES-quota. To do so, we
used the physical output of IPSL-CMSA-LR under historical and RCP8.5 conditions (monthly means of ocean temperature,
salinity, currents, and mixed layer-depth) and forced these different PISCES versions over 1850-2100, so that the only
differences between the offline simulations originate from the biogeochemical parameterizations.

Hereafter, the coupled simulations are referred to as IPSL-CMS5A and IPSL-CM6A, whereas the offline simulations are
referred as PISCES-v1, PISCES-v2, PISCES-v2fix and PISCES-quota. To facilitate the comparison of simulations run under
different protocols, the same 20-yr periods have been retained for historical (1986-2005) and future (2080-2099) baseline

periods.

3 Results & Discussions
3.1 Climate change driven responses of NPP and N-fixation in IPSL Earth System Models

We compare here two successive generations of the IPSL Climate Model, IPSL-CM5A (Dufresne et al., 2013) and IPSL-
CM6A (Boucher et al., 2020), forced over the 21st century by two similar high-emission scenarios (RCP8.5 and SSP5-8.5).
The Equilibrium Climate Sensitivity (ECS) has increased slightly, from 4.1 K in IPSL-CM5A to 4.8 K in IPSL-CM6A
(Boucher et al., 2020), both values being in the upper range of ECS from climate models developed in the framework of

CMIP5 and CMIP6 (Forster et al., 2019). As a consequence, the warming level for the global mean sea surface temperature

under the high-emission scenarios is slightly higher in IPSL-CM6A (+3.57 °C) than in IPSL-CM5A (+3.27 °C) at the end of
the 21st century.
Model Version SST Nfix NPP (glob) NPP  (90°S- | NPP NPP  (30°N-
°C TgNy! PeCy! 30°S) (30°S-30°N) | 90°N)
PgC y! PgC y! PgC y!
IPSL-CMS5A +3.27 <13 -3.1 -0.1 -2.6 -0.5,
(-9.0%) (-9.1%)
IPSL-CM6A +3.57 +77.9 +2.9 +0.6 +1.9 +0.4
(+75%) (+6.8%)
PISCES-vl +3.27 -11.2 -4.6 -0.2 -3.7 -0.7
(-14.9%) (-13.2%)
PISCES-v2 +3.27 +76.1 +6.6 +1.0 +5.1 +0.5
(+68.1%) (+13.8%)
PISCES-v2fix +3.27 +15.6 -0.7 +0.9 -1.9 +0.3
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(+20.1%) (-1.6%)

PISCES-quota 327 +6.0 22 403 26 +0.1
(+6.5%) (-5.7%)

Table 1: Climate change impact on global mean Sea Surface Temperature (SST, °C), depth integrated N-fixation (Nfix, TgN y'l) s

and depth integrated Net Primary Production (NPP, PgC y"). All are absolute differences between 2080-2099 and 1986-2005, with

relative changes in parenthesis.

As stated in the introduction, the two climate models that we compare here simulate opposing projections of global oceanic
NPP over the 21% century. In IPSL-CM5A, NPP decreases by 3.1 PgC y”' from 1986-2005 to 2080-2099 (under RCP8.5),
whereas IPSL-CM6A simulates an increase of NPP by 2.9 PgC y™' over the same period (but under SSP5-8.5) (Table 1,
Figure 1). These NPP global changes represent a 9.1% decrease and a 6.8% increase for IPSL-CM5A and IPSL-CM6A,
respectively.

The difference between the two model versions mostly arises from the tropical oceans (30°S-30°N), with a decrease of 2.6
Pg y"' (-14.3%) and an increase of 1.9 Pg y"' (+7.3%) in IPSL-CM5A and IPSL-CM6A, respectively (Table 1). The extra-
tropical oceans also show notable differences between the two model versions, but these differences contribute much less to
the global NPP changes (Table 1). At the regional scale, the largest differences between the two model versions are located
in the oligotrophic gyres of all ocean basins, which show significant increases in NPP for IPSL-CM6A (up to +45 gC m™ y™")
but slight decreases or increases in IPSL-CM5A (Figure 3). Elsewhere, the general patterns are similar across the model
versions with NPP increasing at high latitudes and decreasing in the equatorial band and at the poleward borders of

subtropical gyres (Figure 3).
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regions in which the increases in N-fixation are strongest coincide with the regions in which NPP also increases strongly in
IPSL-CM6A (Figure 3).,

3.2 Climate ch s of NPP and N-fixation in PISCES offline simulations

To further understand the role of N-fixation in explaining the differences between IPSL-CMS5A and IPSL-CM6A, we use

ge driven resp
additional offline simulations where the same ocean physical forcing is applied to different versions of the PISCES
biogeochemical model. This enables a direct comparison of specific biogeochemical parameterizations within the same
physical framework (see Methods 2.3).

The PISCES-v1 version (used in IPSL-CMS5A) forced in offline mode with the IPSL-CMS5A output over 1850-2100 gives
broadly similar results to those obtained with IPSL-CMS5A, i.e a decrease in NPP and in N-fixation of -13.2% and -14.9%, in

2080-2099, respectively (Table 1, Figure 4.a and 4.b). Spatially, the NPP and N-fixation changes obtained with PISCES-v1
in offline mode strongly resemble those from IPSL-CMS5A, as can be seen when comparing Figure 3 (c,e) to Figure 4 (c,d).
Interestingly, these similarities between the online and offline versions are also maintained for PISCES-v2. By using the
same PISCES version (PISCES-v2; Aumont et al., 2015) as that in IPSL-CM6A, but forced with the physical output of
IPSL-CMS5A under RCP8.5 (simulation PISCES-v2, see Section 2.3), we obtain a very similar response to that in IPSL-
CMB6A in terms of N-fixation, with an increase of 76.1 TgN y™ (+68.1%) from 1986-2005 to 2080-2099, as compared to
| 77.9 TgN y"' (+75%) over the same period in IPSL-CM6A (Table 1, Figure 4). This shows that the differences between
IPSL-CM6A and IPSL-CMS5A are robust in a common physical framework. Consequently, NPP also increases in PISCES-
| v2 (by +13.8%) (Table 1, Figure 4). As in IPSL-CM6A, the increase in NPP in this offline simulation is largely concentrated

in the tropical oceans, where it reaches + 17% (Table 2), and is typically coincident with regions of increasing N-fixation
| (Figure 4).
In the PISCES-v2fix simulation, the temperature dependency of N-fixation and the assumed N:P ratio of the implicit

diazotrophs is modified from that in PISCES-v2 (Section 2.1), while the same forcing, that derived from IPSL-CMS5A, is
applied (Section 2.3). In this offline simulation, N-fixation also increases over the 21st century (by 15.6 TgN y-1 or 20.1% at

the end of the 21st century), but much less than in PISCES-v2. The increase in N-fixation is small everywhere compared to

PISCES-v2; there are even regions where N-fixation decreases in PISCES-v2fix (west tropical Pacific, tropical Atlantic)

(Figure 5). Consequently, NPP changes are markedly different than those from PISCES-v2, with a global decrease of 1.6%
in 2080-2099 (Table 1), mostly located in the tropics (Figure 4).

Lastly, we also compare these offline simulations with an offline simulation of the yecently developed PISCES-quota model

(Kwiatkowski et al., 2018), an advanced version of PISCES-v2 in which the assumption of fixed phytoplankton C:N:P

| stoichiometry has been relaxed. In this simulation, N-fixation increases only slightly (by 6 TgN y-1 or 6.5% over the 21st
century) whereas NPP decreases (by 2.2 PgC y-1 or 5.7%) over the 21st century. At regional scales, the patterns of N-
fixation display contrasting tendencies with decreases in the western Pacific, equatorial Atlantic and Indian Ocean and

| increases poleward of these regions. The regional changes of NPP resemble those simulated in IPSL-CMS5A (Figure 4). The

12
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differences between PISCES-quota and the two other offline simulations (PISCES-v2 and PISCES-v2fix) originate from the

major developments in PISCES-quota such as variable C:N:P stoichiometry and the inclusion of a third phytoplankton

functional type (picophytoplankton) as demonstrated in Kwiatkowski et al. (2018).
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Figure 4; Changes in NPP and N-fixation across all model versions. Time series of (a) global NPP anomalies (PgC v"). and (b)
global N-fixation anomalies (TgN y'l),,relative to 1986-2005 and under historical, RCP8.5 (all model versions except IPSL-CM6A-
LR) and SSP5-8.5 (only IPSL-CM6A-LR). Changes in (c,e,g.,i) vertically-integrated NPP (gC m” y") and in (d,f,h.j) vertically-
integrated N-fixation (gN m™ v"') for all offline model versions in 2080-2099 relative to 1986-2005, under RCPS.5.

The comparison of our 4, offline simulations demonstrates the role of the response of N-fixation in the evolution of NPP over

the 21st century. Under the same physical forcing, N-fixation changes by -14.9%. +68.1%, +20.1% and +6.5% over the 21st
century, in PISCES-v1, PISCES-v2, PISCES-v2fix, and PISCES-quota, respectively. The resulting changes in global NPP

over the same period are -13.1%. +13.8%, -1.6% and -5.7%, in the same 4, versions, respectively. The comparison of these

oftline simulations clearly links the response of global NPP to the parameterization of N-fixation, and hence reinforces the
assumption that differences in N-fixation are the primary driver of the divergent IPSL-CM5A and IPSL-CM6A NPP

projections.

3.3 Mechanisms determining the N-fixation response

The contrasting responses of N-fixation in the IPSL-CM5A and IPSL-CM6A models (and thus between PISCES-v1 and
PISCES-v2) is not entirely intuitive, as the 2 models share very similar parameterizations of N-fixation (e.g. the same N-
fixation temperature sensitivity) (Figure 2). To explain these contrasting trends, we focus on an area located in the
northwestern tropical Pacific (130°E-160°E, 10°N-20°N), where the response of nitrogen fixation diverges strongly between
IPSL-CMS5A and IPSL-CM6A (Figure 5a) and exploit the comparison between the different offline versions of PISCES

(PISCES-v1, PISCES-v2, PISCES-v2fix and PISCES-quota) that use an identical climate forcing. In this region, N-fixation
increases by 32% in PISCES-v2 between 1986-2005 and 2080-2099, (of the same order of magnitude as in IPSL-CM6A,

+45%, not shown), decreases by 46% in PISCES-v1, and decreases by 2% and 10% in PISCES-v2fix and PISCES-quota, /

respectively (Figure 5p). Concurrently, sea surface temperature in this region increases by nearly 4°C (between 1986-2005

and 2081-2100) to reach 31.5°C at the end of the 21st century. In PISCES-v1 and PISCES-v2, this increase leads to a boost

in N-fixation by a factor of 2.1 (Figure 5d). In PISCES-v2fix and PISCES-quota, on the contrary, the increase in temperature

reduces N-fixation by more than 30% (Figure 5d) due to the the bell-shaped temperature sensitivity function of, the /

Breitbarth et al. (2007) parameterization.
In PISCES-v2, the limitation terms due to light, phosphate, iron and excess nitrate remain inoperative and N-fixation

responds almost exclusively to temperature (Figure 5p). Indeed, NOs concentrations remain close to zero (with N* values,

defined as NOgz — 16*POy, remaining slightly negative), and the Ly term has no influence, allowing N-fixation to increase in

response to temperature. In PISCES-v1, on the other hand, the higher and increasing pitrate concentrations (Figure 5g),

Jesulting in positive N* values (Figure 5h). lead, to a limitation and even jo a decrease in N-fixation due to the Ly term

(limitation by excess inorganic nitrogen, Figure 5f) (sce Figure 2b, equation (2)).
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The differential response of N-fixation in PISCES-vl and PISCES-v2 is thus related to how the parameterization of N-

fixation simulates inorganic N and P inputs to surface waters (See Methods 2.2). In PISCES-vl, surface waters in the
oligotrophic subtropical gyres are P-limited for phytoplankton (N* being positive). Warming first increases N fixation,

resulting in a continuous addition of N (through N-fixation) at the expense of P. Nitrogen fixation is hence progressively

limited by the accumulation of inorganic nitrogen and thus decreases. In PISCES-v2, warming also increases N-fixation due

to the same parameterization of the thermal sensitivity of N-fixation. But in this version, the sustained low addition of

phosphate (which accounts for the implicit remineralization of DOP and is independent of N-fixation rates) prevents any
shift to P limitation. N* remains negative, inorganic N does not accumulate, and N-fixation continues to increase.

Jn PISCES-v2fix and PISCES-quota, NO;5 concentrations yemain close to zero as in PISCES-v1 (Figure 5¢) and, the excess

nitrogen limitation term has no influence, remaining close to 1 (Figure 5f). But contrary to PISCES-v1, N-fixation decreases A

slightly (Figure 5b) due to warming and the use of the bell-shape temperature sensitivity function (Figure 5d).

Although the analysis presented here is limited to a small region of the western tropical Pacific (130E-160°E, 10°N-20°N), ‘:

we show the same contrasting behavior between the different PISCES versions in other sub-tropical oligotrophic gyres (see

Figure S1 showing the same analysis in a region centred around the HOT station, 175°E-205°E, 15°N-25°N),

In summary, fhe simulated N-fixation response is highly sensitive to (1) the parameterization used for the temperature

sensitivity (PISCES-v1 and PISCES-v2 as compared to PISCES-v2fix and PISCES-quota), and (2) the respective evolution
of NO; and PO, concentrations (PISCES-v1 as compared to PISCES-v2). To reiterate, it is the divergent responses of N-

fixation in oligotrophic gyres (Figure 5a), where temperatures can exceed the optimal values in the Breitbarth et al. (2007)’s

parameterization (Figure 2), and where NO; accumulation can induce a decrease in the rate of N-fixation, that explain the

differences between the different versions of PISCES.
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As the responses of the different versions of PISCES to anthropogenic climate change were so variable (see Section 3.1 and
3.2), we conducted a brief evaluation of these simulations over the historical period for NPP, nutrients (nitrate, phosphate),
and N-fixation to determine if any of the PISCES versions have significantly better performance scores (based on Root-
Mean-Square Errors, see methods). We note that the outputs of IPSL-CM5A and IPSL-CM6A are evaluated in Séférian et al.
(2020) alongside the other Earth System Models of the CMIP5 and CMIP6 exercises.,

A visual inspection of the bias maps for NPP, NO; and POy concentrations, and N-fixation fails to highlight a single model

version that outperforms the others, with similar regional biases for all PISCES variants (Figure ). All versions tend to

underestimate NPP in the mid-latitudes of the Northern Hemisphere, and overestimate NPP in the equatorial band and the

Southern Ocean. For macro-nutrient concentrations, the regional biases are also similar, with a marked underestimation in

the North and Equatorial pacific and an pverestimation in the sub-Antarctic, Finally, comparison of simulated N-fixation

rates to the measured estimates of Landolfi et al. (2018) show a fairly widespread underestimation, for all versions of
PISCES, in the northern subtropical gyre of the Pacific and in the equatorial Atlantic.

A more quantitative analysis using RMSE for each of the above fields confirms this visual impression with very similar
RMSEs across all versions of PISCES. It can be noted, however, that the spatial distribution of NPP seems to be better
reproduced in PISCES-quota, while the comparison of N-fixation rates gives the worst scores for PISCES-quota.

In conclusion this brief comparison with observations fails to distinguish between the different versions of the PISCES
model used here. To go further, it would be necessary to compare the simulated trends over the historical period with time
series obtained at marine stations (e.g. Hawaii Ocean Time-series programme, Karl et al., 2014; Bermuda Atlantic Time-
Series, Lomas et al.,, 2013), or with reconstructions of the evolution of N-fixation over the last century from

paleoceanographic proxies such as 8'°N (Sherwood et al., 2014).
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Figure 6; Model-data intercomparison of NPP (mgC m d™), N-fixation (mmoIN m" y"), surface NOg concentrations (mmol m™)

and surface PO, concentrations (mmol m™). The upper panels show NPP based on remot ing observations with the VGPM
algorithm (Behrenfeld et al., 2005), N-fixation from Luo et al. (2014) updated by Landolfi et al. (2018), NO; and PO, as provided in
the World Ocean Atlas Database (Garcia et al. 2014). The other panels show model-data anomalies averaged over the period 1986-
2005.

Model Version NPP (mgC m2d" N Fix (mmoIN m2y™h NO,,(mmol m™) PO, (mmol m™) <

IPSL-CMS5 1.936 24.103 D.526, 0.651
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IPSL-CM6 1.730 26.004 0.467, 0.620
PISCES-v1 1.855 26.929 0.561 0.734
PISCES-v2 1.519 22,671 0.491, 0.585
PISCES-v2fix 1.621 41.824 0.490, 0.587
PISCES-quota 1.478 48.120 0.506, 0.646

Table 2: Root-mean square errors (RMSE) for NPP (mgC m? d'), N-fixation (mmoIN m? y?), NO; and PO, surface

concentrations (mmol m'3) for all PISCES versions used here t observations (NPP based on remot

¢4

ing (Behrenfeld et

al., 2005), N-fixation from Luo et al. (2014) updated by Landolfi et al. (2018), and NO; and POy as provided in the World Ocean |

Atlas Database (Garcia et al., 2014), All model-estimates are for 1986-2005.

Another method using observations to constrain projection uncertainties, known as the emergent constraint approach, relies

on relating pbservable trends or sensitivities across a model ensemble to future differences in model simulations (Allen and

Ingram, 2002; Hall and Qu, 2006; Hall et al., 2019). This approach has been used extensively within the earth sciences to

constrain projections as diverse as climate sensitivity (Caldwell et al., 2018), snow albedo feedbacks (Hall and Qu, 2006), |

precipitation extremes (O’Gorman, 2012; DeAngelis et al., 2016) and carbon cycle feedbacks (Cox et al., 2013; Wenzel et
al., 2014; Goris et al., 2018; Terhaar et al., 2020). Interestingly, Kwiatkowski et al., (2017) applied an emergent constraint

approach to CMIP5 NPP projections, finding an emergent relationship between the tropical (30°N-30°S) sensitivity of

integrated NPP to El Nifio Southern Oscillation (ENSO) variability (Nifio 3.4 SST anomalies) in pre-industrial control

simulations and the tropical NPP response to 21* century warming under a high-emissions scenario (RCP8.5). That is

models that exhibited heightened tropical NPP sensitivity to ENSO-driven SST fluctuations, typically exhibited greater

future NPP declines in response to climate change. The authors then used observational estimates of the NPP-ENSO

sensitivity to constrain the future NPP response.
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Figure 7; The relationship between over a, 1852-

1902 of historical simulations and b, 2006-2100 of RCP8.5 for PISCES-v1 (¢yan), PISCES-v2 (green), PISCES-v2fix (red) and |

PISCES-quota (yellow).

The present study highlights that N-fixation may represent a slow or threshold process that has the potential to limit the

applicability of emergent constraint approaches to projections of NPP. Indeed, the NPP-ENSO sensitivities of PISCES-v1, -

PISCES-v2 and PISCES-v2fix are shown to be highly similar in the first 50 years of historical simulations (-2.6 % °C”', -2.8

% °C" and -3.3 % °C"") and yet the twenty-first century sensitivity o -v2 changes sign (+3.2 % °C), due to ~
% °C" and -3.3 % °C™) and yet th fi NPP sensitivity of PISCES-v2 ¢l i 3.2 % °C™), d

the enhanced role of N-fixation, while the sensitivities, of PISCES-v] and PISCES-v2fix remain yiegative (-3.4 % °C'and-

2.2 % °C™") (Figure 7). The extent to which the differing PISCES-v2 model behaviour across time scales challenges the

previously identified emergent constraint is unknown. but jt is possible that future changes move beyond what is

constrainable with historical variability (e.g. Tagliabue et al., 2020). Interestingly, the tropical NPP sensitivity of PISCES- ‘

quota in the early historical (-2.9 % °C™") and under RCP8.5 (-2.8 % °C"") is highly similar and in line with PISCES-v1 and

PISCES-v2fix (Figure 7). As such, there is strong reason to doubt whether the sensitivity of N-fixation to climate change, :

and hence the response of NPP, in PISCES-v2, are realistic. However, given all of the above, verifying the validity of the
Kwiatkowski et al. (2017) NPP emergent constraint with multiple quota models is identified as a priority. It is urgent as well
to verify the sensitivity of nitrogen fixation with more mechanistic models of N fixation (such as that of Pahlow et al. (2013)

or Inomura et al. (2018)).

3.5 Implications for carbon gxport, ocean deoxygenation and impact on plankton bi

20

Mis en forme: Police :9 pt, Gras

laurent bopp 26/4/y 10:48
Supprimé: 8

laurent bopp 26/4/y 14:24
Supprimé: IPSL-CM5A
laurent bopp 26/4/y 14:24
Supprimé: black

laurent bopp 27/4ly 13:47

Déplacé vers le haut [2]: Kwiatkowski et al.,
(2017) applied an emergent constraint approach to
CMIPS NPP projections, finding an emergent
relationship between the tropical (30°N-30°S)
sensitivity of integrated NPP to El Nifio Southern
Oscillation (ENSO) variability (Nifio 3.4 SST
anomalies) in pre-industrial control simulations and
the tropical NPP response to 21* century warming
under a high-emissions scenario (RCP8.5). That is,
models that exhibited heightened tropical NPP
sensitivity to ENSO-driven SST fluctuations,
typically exhibited greater future NPP declines in
response to climate change. The authors then used
observational estimates of the NPP-ENSO
sensitivity to constrain the future NPP response. -

¥ laurent bopp 25/4/y 11:57
Supprimé: IPSL-CM5A

II{

' | laurent bopp 29/4/y 13:56

Supprimé: is dramatically changed
¥ laurent bopp 29/4/y 13:56
| Supprimé: y
laurent bopp 25/4/y 11:57
Supprimé: [PSL-CM5A
laurent bopp 29/4/y 13:56
Supprimé: consistent
laurent bopp 26/4/y 10:50
Supprimé: 8§
) laurent bopp 29/4/y 13:56
Supprimé: and
laurent bopp 29/4/y 13:57
Supprimé: also
laurent bopp 25/4/y 11:58
Supprimé: [PSL-CM5A
laurent bopp 25/4/y 11:58
Supprimé: 8
laurent bopp 29/4/y 13:57
Supprimé: N-fixation
laurent bopp 21/4/y 12:18
Supprimé: uptake

||




670

675 |

680

685

The last question we explore is the potential implications of this large difference in NPP projections between IPSL-CMSA
and IPSL-CM6A on (1) carbon export, (2) ocean deoxygenation and (3) impacts on plankton biomass.

and anthropogenic carbon uptake
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Model Version Export Corg Subsurface O, | Phyto biomass | Zoo biomass <
at 100m (mmol m™) (TgC) (TgC)
(PgC)
IPSL-CM5A 7.07 199.4 1014 1039
-1.21 -8.19 -67.6 -155.1
(-17.1%) (4.1%) (-6.7%) (-14.9%)
IPSL-CM6A 731 190.8 816.1 645.9
0.17, -17.96 352, -69.1,
(-2.370) (-:9:4%) (-4.31%) (-10.770)
PISCES-vl 6.42 205.9 1031.0 1160
-1.26 7.55 -70.2 -203.6
(-19.6%) (-3.7%) (-6.8%) (-17.5%)
PISCES-v2 8.25 193.6 893.0 765.9
0.19 -15.79 -40.0, -49.2,
(2.3%) (-8.22%0) (-4.5,%) (-6.4%)
PISCES-v2fix 7.70 195.3 886.3 741.4
-0.84 -12.67 -42.4, -86.7,
(-10.9%) (-6.5%) (-4.8,%) (-11.7%)
PISCES-quota 7.05 195.3 826.9 822.0
-0.94 -10.71 -45.5, -94.5,
(-13.4%) (-5.52%0) (-5.50%) (-11.5%)
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Table 3: Impact of climate change on organic matter export at 100m, sub-surface (100-600m) oxygen concentrations,
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phytoplankton and zooplankton biomasses in the different model versions. All columns indicate absolute values for 1986-2005 and

differences between 2080-2099 and 1986-2005 (relative values in parentheses),
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As expected from NPP differences, the export of particulate organic matter at 100m is strongly reduced in IPSL-CMS5A (-
17.1%) at the end of the 21st century, whereas it is only slightly affected in IPSL-CM6A (-2.3% in 2080-2099 as compared
to 1986-2005) (Table 3). The same conclusions apply for the analysis of the offline simulations, with export changes
reaching -19.6%, +2.3%, -10.9% and -13.4% in 2080-2099 (relative to 1986-2005) for PISCES-v1, PISCES-v2, PISCES-

v2fix, and PISCES-quota, respectively, in line with the already mentioned NPP changes (-13.2%, +13.8%., -1.6% and -5.7%

for the same 4 offline versions).,
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For ocean deoxygenation as well, the intensity of the subsurface signal we obtain with IPSL-CM5A and IPSL-CM6A may

indeed be driven by the opposing NPP and export changes, even if the main drivers of ocean deoxygenation remain ocean

warming and circulation / stratification changes. Whereas subsurface O, concentrations only decrease by 8.2 mmol m™ (-
4.1%) on average in IPSL-CMS5A, they decrease by 17.96 mmol m™ (-9.4%) in IPSL-CM6A (Table 3). Spatially, the general
patterns of subsurface ocean deoxygenation are similar across the two models, with the largest decreases, up to -60 mmol m™
in 2080-2099, occurring in the North Atlantic, North Pacific and in the Southern Ocean (not shown). In the tropical oceans,
the changes are weaker, from -20 to +20 mmol m” in IPSL-CM5A and from -20 to +10 mmol m™ in IPSL-CM6A. Note that
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the regions where subsurface O, concentrations increase in IPSL-CMS5A, such as in the tropical Indian and Atlantic oceans,
as discussed in Bopp et al. (2017), display on the contrary decreasing trends in IPSL-CM6A. We interpret this difference as
due to the response to increasing NPP, increasing export of organic matter and the subsequent remineralization-driven

consumption of O, at depth in IPSL-CM6A. An analysis of the offline simulations, all forced with the same physical fields,

confirms the above hypothesis, i.e. a strong relationship between different export / NPP changes and the intensity of ocean

deoxygenation in the subsurface ocean (Table 3).

Finally, the reduction in simulated plankton biomass in IPSL-CMS5A (-6.7% for phytoplankton and -14.9% for zooplankton)
is less extensive in IPSL-CM6A (-4.3% and -10.7% for phytoplankton and zooplankton, respectively; Table 3). It is
interesting to note that despite opposite trends in projected NPP, both models simulate significant reductions in planktonic
biomass, and an associated trophic amplification, i.e. a larger decrease in zooplankton than phytoplankton (Lotze et al.,
2019; Kwiatkowski et al., 2019). This suggests that the potential impact on projections of upper trophic levels (e.g. Tittensor
et al., 2018) should not differ as much as the differences in NPP projections between IPSL-CMS5A and IPSL-CM6A indicate
for ecosystem models forced by biomass changes. It also implies that changes in NPP may not be a robust proxy for

diagnosing the potential impact of anthropogenic climate change on marine ecosystems.

4 Conclusions and Recommendations

Two versions of the IPSL ESM (IPSL-CM5A and IPSL-CMG6A) are shown to project diverging global NPP trends in the 21
century under similar high-emission scenarios, because of the specificities of the diazotrophy parameterization employed in
the different versions of the marine biogeochemical component PISCES. The use of additional PISCES versions confirms
the role of diazotrophy parameterizations in driving divergent NPP responses in all subtropical gyres, with increased
(decreased) diazotrophy leading to increased (decreased) NPP. We identify both the thermal response and the treatment of
stoichiometric N:P ratios to be of importance for the future evolution of N-fixation in the future ocean. None of the PISCES
versions used here perform significantly better when compared to observations or data-based reconstructions of surface
nutrients, NPP and N-fixation rates. Under the same physical forcing, the divergent responses of N-fixation lead to
significantly different deoxygenation and changes in organic matter export at the end of the 21st century, with larger
deoxygenation and weaker reduction in organic carbon export in the model version simulating a large warming-driven
increase in N-fixation. Despite these divergent NPP responses, all PISCES versions simulate decreasing trends of
phytoplankton and zooplankton biomasses in the coming decades.

Although this study focuses on simulations performed with several versions of the same climate and marine biogeochemical
models, similar conclusions have been drawn from using a series of ESMs that participated jn CMIPS. Using an approach
combining 6 CMIP5 models and proxies for historical trends of N-fixation from the subtropical Pacific, Riche and Christian
(2018) conclude that the environmental controls on ocean N-fixation remain elusive and that future trends are therefore

highly uncertain. In addition, and using 9 CMIP5 ESMs, Wrightson and Tagliabue (2020) demonstrate that the future
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evolution of nitrogen fixation is a key determinant of the future trends in NPP in the tropics. Similar analysis using the new
set of CMIP6 ESMs remains to be carried out.

Ultimately, the results of this study argue for a more robust treatment of marine nitrogen fixation in ESMs used for climate
projections of ecosystem services. This would suggest the need to include explicit diazotroph planktonic function groups in
ESMs and to understand how differences between different nitrogen fixing groups affect projections. For instance, the main
open-ocean autotrophic diazotrophs Trichodesmium and Croccosphaera that contribute around half of total nitrogen fixation
(Zehr and Capone, 2020) show variability in their thermal performance curves (Fu et al., 2014), nutrient requirements (Saito

et al.. 2011) and even in their response to changing ocean pCO, levels (Hutchins et al., 2013). Intriguingly, it also appears

that temperature may play a fundamental role, with the resource costs of nitrogen fixation strongly dependant on temperature
for both groups, which implies potential increases in future N-fixation rates may arise (Yang et al., 2021). More mechanistic
models of diazotrophy do include some of the above-mentioned processes (such as that of Pahlow et al. (2013) or Inomura et
al. (2018)), but their application has been mostly restricted to idealized settings. We still currently lack an integrated
assessment of how important these factors are in the context of a changing climate and the potential feedbacks on, NPP,

Given the significant differences in the projections of N-fixation over the 21st century that are reported here or arise from
model intercomparison studies (Riche and Christian, 2018; Wrightson and Tagliabue, 2021), it is a priority to derive methods
to better constrain these projections. The paucity of direct N-fixation rate measurement in the present ocean (Landolfi et al.,
2018), is limiting the development of such constraints and it is a priority to continue collecting such high-quality data to be
able to extract significant temporal trends of N-fixation to be compared to model output. Other approaches, such as the use
of water column nitrogen isotopes (Buchanan et al., 2021) or marine sediment cores to reconstruct past trends in N-fixation
in contrasted regions of the world ocean (eg. Sherwood et al., 2014) will offer new opportunities to constraint the modelled

projections.
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