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Greenhouse gas fluxes in mangrove forest soil in an Amazon estuary
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Abstract: Tropical mangrove forests are important carbon sinks, the soil being the main
carbon reservoir. Understanding the variability and the key factors that control fluxes is
critical to accounting for greenhouse gas (GHG) emissions, particularly in the current
scenario of global climate change. This study is the first to quantify carbon dioxide
(CO,) and methane (CH,4) emissions using a dynamic chamber in a natural mangrove
soil of the Amazon. The plots for the trace gases study were allocated at contrasting
topographic heights. The results showed that the mangrove soil of the Amazon estuary
is a source of CO, (6.66 g CO, m? d™) and CHy4 (0.13 g CHs m™ d™) to the atmosphere.
The CO, flux was higher in the high topography (7.86 g CO, m™? d) than in the low
topography (4.73 g CO, m? d?) in the rainy season, and CH, was higher in the low
topography (0.13 g CH, m™ d™) than in the high topography (0.01 g CH, m? d*) in the
dry season. However, in the dry period, the low topography soil produced more CH,.
Soil organic matter, carbon and nitrogen ratio (C/N), and redox potential influenced the
annual and seasonal variation of CO, emissions; however, they did not affect CH,4
fluxes. The mangrove soil of the Amazon estuary produced 35.40 Mg CO2.q ha™ y™*. A
total of 2.16 kg CO, m? y™* needs to be sequestered by the mangrove ecosystem to

counterbalance CH,4 emissions.
1 Introduction

Mangrove areas are estimated to be the main contributors to greenhouse gas emissions
in marine ecosystems (Allen et al., 2011; Chen et al., 2012). However, mangrove forests
are highly productive due to a high nutrient turnover rate (Robertson et al., 1992) and
have mechanisms that maximize carbon gain and minimize water loss through plant
transpiration (Alongi and Mukhopadhyay, 2015). A study conducted in 25 mangrove

forests (between 30° latitude and 73° longitude) revealed that these forests are the
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richest in carbon (C) storage in the tropics, containing on average 1,023 Mg C ha™ of
which 49 to 98% is present in the soil (Donato et al., 2011).

The estimated soil CO, flux in tropical estuarine areas is 16.2 Tg C y™* (Alongi, 2009).
However, soil efflux measurements from tropical mangroves revealed emissions
ranging from 2.9 to 11.0 g CO, m? d™* (Castillo et al., 2017; Chen et al., 2014; Shiau
and Chiu, 2020). In situ CO, production is related to the water input of terrestrial,
riparian, and groundwater brought by rainfall (Rosentreter et al., 2018b). Due to the
periodic tidal movement, the mangrove ecosystem is daily flooded, leaving the soil
anoxic and consequently reduced, favoring methanogenesis (Dutta et al., 2013). Thus,
estuaries are considered hotspots for CH4 production and emission (Bastviken et al.,
2011; Borges et al., 2015). Organic material decomposition by methanogenic bacteria in
anoxic environments, such as sediments, inner suspended particles, zooplankton gut
(Reeburgh, 2007; Valentine, 2011), and the impact of freshwater should change the
electron flow from sulfate-reducing bacteria to methanogenesis (Purvaja et al., 2004),
which also results in CH,4 formation. On the other hand, high salinity levels, above 18
ppt, may result in an absence of CH,4 emissions (Poffenbarger et al., 2011), since CH,4
dissolved in pores is typically oxidized anaerobically by sulfate (Chuang et al., 2016).
Currently the uncertainty in emitted CH,4 values in vegetated coastal wetlands is
approximately 30% (EPA, 2017). Soil flux measurements from tropical mangroves
revealed emissions range from 0.3 to 4.4 mg CH, m™ d* (Castillo et al., 2017; Chen et
al., 2014; Kreuzwieser et al., 2003).

The production of greenhouse gases from soils is mainly driven by biogeochemical
processes. Microbial activities and gas production are related to soil properties,
including total carbon and nitrogen concentrations, moisture, porosity, salinity, and
redox potential (Bouillon et al., 2008; Chen et al., 2012). Due to the dynamics of tidal
movements, mangrove soils may become saturated and present reduced oxygen
availability, or suffer total aeration caused by the ebb tide. Studies attribute soil carbon
flux responses to moisture perturbations because of seasonality and flooding events
(Banerjee et al., 2016), with fluxes being dependent on tidal extremes (high tide and low
tide), and flood duration (Chowdhury et al., 2018). In addition, phenolic compounds
inhibit microbial activity and help keep organic carbon intact, thus leading to the

accumulation of organic matter in mangrove forest soils (Friesen et al., 2018).



67
68
69
70
71
72
73

74

75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

The Amazonian coastal areas in the State of Para (Brazil) cover 2,176.8 km? where
mangroves develop under the macro-tide regime (Souza Filho, 2005), representing
approximately 85% of the entire area of Brazilian mangroves (Herz, 1991). The
objective of this study is to investigate the monthly flux of CO, and CH,4 from the soil,
at two topographic heights, in a pristine mangrove area in the Mojuim River Estuary,
belonging to the Amazon biome. The gas fluxes were studied together with the analysis
of the vegetation structure and soil physical-chemical parameters.

2 Material and Methods
2.1 Study site

This study was conducted in the Amazonian coastal zone, Macaca Island (-0.746491
latitude and -47.997219 longitude), located in the Mojuim River estuary, at the
Mocapajuba Marine Extractive Reserve, municipality of Sdo Caetano de Odivelas
(Figure 1), state of Para (Brazil). The Macaca island has an area of 1,322 ha of pristine
mangroves, and belongs to a mangrove area of 2,177 km? in the state of Para (Souza
Filho, 2005). The climate is type Am (tropical monsoon) according to the Képpen
classification (Peel et al.,, 2007). The climatological data were obtained from the
Meteorological Database for Teaching and Research of the National Institute of
Meteorology (INMET). The area has a rainy season from January to June (2,296 mm of
precipitation) and a dry season from July to December (687 mm). March and April were
the rainiest months with 505 and 453 mm of precipitation, while October and November
were the driest (53 and 61 mm, respectively). The minimum temperatures occur in the
rainy period (26 °C) and the maximum in the dry period (29 °C). The Mojuim estuary
has a macrotidal regime, with an average amplitude of 4.9 m during spring tide and 3.2
m during low tide (Rollnic et al., 2018). During the wet season the Mojuim River has a
flow velocity of 1.8 m s™ at the ebb tide and 1.3 m s™ at the flood tide, whereas in the
dry season, the maximum currents reach 1.9 m s™ at the flood and 1.67 m s™ at the ebb
tide (Rocha, 2015). The annual mean salinity of the river water is 26.95 PSU (Valentim
etal., 2018).
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Figure 1. The Macaca Island located in the mangrove coast of Northern Brazil,
Municipality of Sdo Caetano de Odivelas (state of Pard), with sampling points at low
(plot B1 and plot B2) and high (plot Al and plot A2) topographies. Image Source: ©
Google Earth

The Mojuim River region is geomorphologically formed by partially submerged river
basins consequent of the increase in the relative sea level during the Holocene (Prost et
al., 2001) associated with the formation of mangroves, dunes, and beaches (EI-Robrini
et al., 2006). Before reaching the estuary, the Mojuim River crosses an area of a dryland
forest highly fragmented by family farming, forming remnants of secondary forest (<
5.0 ha) of various ages (Fernandes and Pimentel, 2019). The population economically
exploited the estuary, primarily by artisanal fishing, crab (Ucides cordatus L.)

extraction, and oyster farms.

The flora of the mangrove area of Macaca Island is little anthropized and comprises the
plant genera Rhizophora, Avicenia, Laguncularia, and Acrostichum (Ferreira, 2017;
Franca et al., 2016). The estuarine plains are influenced by macrotide dynamics and can
be physiographically divided into four sectors according to the different vegetation

covers, associated with the landforms distribution, topographic gradient, tidal
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inundation, and levels of anthropic transformation(Franca et al., 2016). The Macaca
Island is ranked as being from the fourth sector, which implies having woods of adult
trees of the genus Ryzophora with an average height of 10 to 25 m, is located at an

elevation of 0 to 5 m, and having silt-clay soil (Franca et al., 2016).

Four sampling plots were selected in the Macaca Island (Figure 1) on 19/05/2017, when
the moon was in the waning quarter phase: two plots where flooding occurs every day
(plots B1 and B2; Figure 1), called low topography (Top_Low), and two plots where
flooding occurs only at high tides during the solstice and on the high tides of the rainy
season of the new and full moons (plots Al and A2; Figure 1), called high topography
(Top_High).

2.2 Greenhouse gas flux measurements

In each plot, eight Polyvinyl Chloride rings with 0.20 m diameter and 0.12 m height
were randomly installed within a circumference with a diameter of 20 m. The rings had
an area of 0.028 m™ (volume of 3.47 L), were fixed 0.05 m into the ground, and
remained in place until the study was completed. Once a month, gas fluxes were
measured during periods of waning or crescent moon, as these are the times when the
soil in the low topography is more exposed. To avoid the influence of mangrove roots
on the gas fluxes, the rings were placed in locations without any seedlings or
aboveground mangrove roots. The CO, and CH,4 concentrations (ppm) were measured
using the dynamic chamber methodology (Norman et al., 1997; Verchot et al., 2000),
sequentially connected to a Los Gatos Research portable gas analyzer (Mahesh et al.,
2015). The device was calibrated monthly with a high quality standard gas (500 ppm
COg; 5 ppm CHy). The rings were sequentially closed for three minutes with a PVC cap,
being connected to the analyzer through two 12.0 m polyethylene hoses. The gas
concentration was measured every two seconds and automatically stored by the
analyzer. CO, and CH,; fluxes were calculated from the linear regression of
increasing/decreasing CO, and CH,4 concentrations within the chamber, usually between
one and three minutes after the ring cover was placed (Frankignoulle, 1988; McEwing
et al., 2015). The flux is considered zero when the linear regression reaches an R? <
0.30 (Sundqvist et al., 2014). However, in our analyses, most regressions reached R? >
0.70, and the regressions were weak and considered zero in only 6% of the samples. At

the end of each flux measurement, the height of the ring above ground was measured at
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four equidistant points with a ruler. The seasonal data were analyzed by comparing the

average monthly fluxes in the wet season and dry season separately.
2.3 Vegetation structure and biomass

The floristic survey was conducted in October 2017 using circular 1,256.6 m? plots
(Kauffman et al., 2013) divided into four 314.15 m? subplots, which is the equivalent to
0.38 ha, at the same topographies as the gas flux analysis (Figure 1). We recorded the
diameter above the aerial roots, the diameter of the stem, and total height of all trees
with DBH (diameter at breast height; m) greater than 0.05m. The allometric equations
(Howard et al., 2014) to calculate tree biomass (aboveground biomass; AGB) were:
AGB = 0.1282 * DBH*® (R? = 0.92) for R. mangle; AGB = 0.140 * DBH** (R? = 0.97)
for A. germinans; and Total AGB = 0.168 * p * DBH**" (R? = 0.99), where pr. mangle =
0.87; pA. germinans = 0.72 (p = wood density).

2.4  Soil sampling and environmental characterization

Four soil samples were collected with an auger at a depth of 0.10 m in all the studied
plots for gas flux measurements (Figure 1) in July 2017 (beginning of the dry season)
and January 2018 (beginning of the rainy season). Before the soil samples were
removed, pH and redox potential (Eh; mV) were measured with a Metrohm 744
equipment by inserting the platinum probe directly into the intact soil at a depth of 0.10
m (Bauza et al., 2002). The soil samples collected in the field were transported to the
laboratory (Chemical Analysis Laboratory of the Museu Paraense Emilio Goeldi) in
thermal boxes containing ice. The soil samples were analyzed on the day after collection
at the laboratory, and the samples were kept in a freezer. Salinity (Sal; ppt) was
measured with PCE-0100, and soil moisture (Sm; %) by the residual gravimetric
method (EMBRAPA, 1997).

Organic Matter (OM; g kg™), Total Carbon (T¢; g kg™*) and Total Nitrogen (Tw; g kg™)
were calculated by volumetry (oxidoreduction) using the Walkley-Black method
(Kalembasa and Jenkinson, 1973). Microbial carbon (Cmic; mg kg™) and microbial
nitrogen (Nmic; mg kg™) were determined through the 2.0 min of Irradiation-extraction
method of soil by microwave technique (Islam and Weil, 1998). Microwave heated soil
extraction proved to be a simple, fast, accurate, reliable, and safe method to measure
soil microbial biomass (Araujo, 2010; Ferreira et al., 1999; Monz et al., 1991). The Cpic

was determined by dichromate oxidation (Kalembasa and Jenkinson, 1973; Vance et al.,



177
178
179
180
181
182
183

184
185
186
187
188
189
190

191

192
193
194
195
196
197
198
199
200
201
202
203
204
205

1987). The Npic was analyzed following the method described by Brookes et al. (1985),
changing fumigation to irradiation, which uses the difference between the amount of Ty
in irradiated and non-irradiated soil. We used the flux conversion factor of 0.33
(Sparling and West, 1988) and 0.54 (Almeida et al., 2019; Brookes et al., 1985), for
carbon and nitrogen, respectively. Particle size analysis was performed separately on
four soil samples collected at each flux plot, in the two seasons (October 2017 and
March 2018), according to EMBRAPA (1997).

At each gas flux measurement, environmental variables such as air temperature (Tr,
°C), relative humidity (RH, %), and wind speed (Ws, m s™) were quantified with a
portable thermo-hygrometer (model AK821) at the height of 2.0 m above the soil
surface. Soil temperature (T, °C) was measured with a portable digital thermometer
(model TP101) after each gas flux measurement. Daily precipitation was obtained from
an automatic precipitation station installed at a pier on the banks of the Mojuim River in
Séo Caetano das Odivelas (coordinates: -0.738333 latitude; -48.013056 longitude).

2.5 Statistical analyses

On the Macaca Island, two treatments were allocated (low and high topography), with
two plots in either treatment. In each plot, eight chambers were randomly distributed,
which were considered sample repetitions. The normality of the data of CH, and FCO,
flux, and soil physicochemical parameters was evaluated using the Shapiro-Wilks
method. The soil CO, and CH,4 flux showed a non-normal distribution. Therefore, we
used the non-parametric ANOVA (Kruskal-Wallis, p < 0.05) to test the differences
between the two treatments among months and seasons. The physicochemical
parameters were normally distributed. Therefore, a parametric ANOVA was used to test
the statistical differences (p < 0.05) between the two treatments among months and
seasons. Pearson correlation coefficients were calculated to determine the relationships
between soil properties and gas fluxes in the months (dry and wet season) when the
chemical properties of the soil were analyzed at the same time as gas fluxes were
measured. Statistical analyses were performed with the free statistical software Infostat
2015®.
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3 Results
3.1 Carbon dioxide and methane fluxes

CO, fluxes differed significantly between topographies only in January (H = 3.915; p =
0.048), July (H = 9.091; p = 0.003), and November (H = 11.294; p < 0.001) (Figure 2;
Supplementary Information, SI 1), with generally higher fluxes at the high topography
than at the low topography. At the high topography, CO, fluxes were significantly
higher (H = 24.510; p = 0.011) in July compared to August and December, March,
October, and May, not differing from the other months of the year. Similarly, at the low
topography, CO; fluxes were statistically higher (H = 19.912; p = 0.046) in September
and February than in January and November, not differing from the other months. We
found a mean monthly flux of 7.9 + 0.7 g CO, m? d™ (mean + standard error) and 5.4 +

0.5 g CO, m?d™* at the high and low topographies, respectively.
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Figure 2. CO, (a) and CH, (b) fluxes (g CO, or CHs m™ d™) monthly (July 2018 to June
2019) (n = 16). Seasonal (Dry and Rainy) and annual fluxes of CO; (c) and CH,4 (d), at



222
223

224
225
226
227
228
229
230

231
232
233
234
235
236
237
238
239

240

241
242
243
244
245
246
247
248

249

high (Top_High) and low (Top_Low) topographies (n = 96), in a mangrove forest soil
compared to tide level (Tide Level). The bars represent the standard error of the mean.

The CH, fluxes were statistically different between topographies only in November (H
= 9.276; p = 0.002) and December (H = 4.945; p = 0.005), with higher fluxes at the low
topography (Figure 2; Sl 1). At the high topography, CH, fluxes were significantly (H =
40.073; p < 0.001) higher in April and July compared to the other months studied, and
in November CH4 was consumed from the atmosphere (Figure 2; SI 1). Similarly, CH,4
fluxes at the low topography did not vary significantly among months (H = 10.114; p =
0.407).

Greenhouse gas fluxes (Figure 2) were only significantly different between
topographies in the dry season (Figure 3), period when CO; fluxes were higher (H =
7.378; p = 0.006) at the high topography and CH, fluxes at the low topography (H =
8.229; p < 0.001). In the Macaca Island, the mean annual fluxes of CO, and CH,4 were
6.659 + 0.419 g CO, m?d™* and 0.132 + 0.053 g CHs m™ d™, respectively. During the
study year, the CO, flux from the mangrove soil ranged from -5.06 to 68.96 g CO, m™
d? (mean 6.66 g CO, m™? d™), while the CH, flux ranged from -5.07 to 11.08 g CH, m™
d™ (mean 0.13 g CHs m? d™), resulting in a total carbon rate of 1.92 g C m? d™* or 7.00
Mg C ha y* (Figure 2).

3.2 Weather data

There was a marked seasonality during the study period (Figure 2), with 2,155.0 mm of
precipitation during the rainy period and 1,016.5 mm during the dry period. The highest
tides occurred in the period of greater precipitation (Figure 3) due to the rains. However,
the rainfall distribution was different from the climatological normal (Figure 3). The
precipitation in the rainy season was 553.2 mm below and in the dry season was 589.1
mm above the climatological normal. Thus, in the period studied, the dry season was
rainier and the rainy season drier than the climatological normal, which may be a

consequence of the La Nifia event (Wang et al., 2019).
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254 Ty was significantly higher (LSD = 0.72, p = 0.01) at the high (31.24 + 0.26 °C) than at
255  the low topography (30.30 £ 0.25 °C) only in the rainy season (Figure 4a). No
256  significant variation in T was found between topographies in either season (Figure 4b).
257  RH was significantly higher (LSD = 2.55, p = 0.01) at the high topography (70.54 +
258  0.97%) than at the low topography (66.85 + 0.87%) only in the rainy season (Figure 4c).
259 W (Figure 4d) was significantly higher (LSD = 0.15, p < 0.00) at the low (0.54 + 0.06
260 ms™) than at the high topography (0.24 + 0.04 m s*) also in the rainy season.
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Figure 4. a) Air temperature (°C), b) soil temperature (°C), c¢) relative humidity (%), and
d) wind speed (m s™) at high and low topographies, from July 2017 to June 2018 in a
mangrove area in the Mojuim River estuary. Bars highlighted in grey correspond to the

rainy season (n = 16). The bars represent the standard error.
3.3 Soil characteristics

Silt concentration was higher at the low topography (LSD: 14.763; p= 0.007) and clay
concentration was higher at the high topography plots (LSD: 12.463; p= 0.005), in both
seasons studied (Table 1). Soil particle size analysis did not differ statistically (p > 0.05)
between the two seasons (Table 1). Soil moisture did not vary significantly (p > 0.05)
between topographies at each season, or between seasonal periods at the same
topography (Table 1). The pH varied statistically (LSD: 5.950; p= 0.006) only at the
low topography when the two seasons were compared, being more acidic in the dry
period (Table 1). The pH values were significantly (LSD: 0.559; p= 0.008) higher in the
dry season (Table 1). No variation in Eh was identified between topographies and
seasons (Table 1), although it was higher in the dry season than in the rainy season.
However, Sal values were higher (LSD: 3.444; p = 0.010) at the high topography than at
the low topography in the dry season (Table 1). In addition, Sal was significantly higher

11



279  in the dry season than in the rainy season, in both high (LSD: 2.916; p < 0.001) and low
280  (LSD: 3.003; p <0.001) topographies (Table 1).
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281  Table 1. Analysis of Sand (%), Silt (%), Clay (%), Moisture (%), pH, Redox Potential (Eh, mV) and salinity (Sal; ppt) in the mangrove soil of
282  high and low topographies, and in the rainy and dry seasons (Macaca island, Sdo Caetano das Odivelas). Numbers represent the mean + standard
283  error of the mean. Lower case letters compare topographies in each seasonal period and upper-case letters compare the same topography between

284  seasonal periods. Different letters indicate statistical difference (LSD, p < 0.05).

Sand Silt Clay Moisture Eh Sal
Season Topography pH
(%) (%) (%) (%) (mV) (ppt)
High 121414 418433  46.1+2.6* 73.1+6.6* 5.5+0.2**  190.25+45.53**  35.25+1.11*
Dry Low 9.742.5*  63.6£6.1**  26.6+5.2°" 86.9+3.4** 5.3+0.3*  106.38+53.76** 30.13+1.16™"
Mean 10.9+1.4" 52.7+4.4" 36.4+3.8" 80.0+4.0" 5.4+0.2"%  148.31+3571" 32.69+1.02"
High 12.13+1.40 41.839.3+32. 4648.14+21. R A A 5
A A 88.9+3.5 4.9+0.4 92.50+56.20 7.50+0.78
l% 6aA
_ Low 9.7.8+215"" 63.64+65.1*" 2628.68+54. R 5 A 5
Rainy A 88.6+3.7° 4.4+0.1°®  36.25+49.97 8.13+0.79
4 2 22"

10.91+1.4"1 5251.74+4.4 3638.46+3.8

A B A B
Mean N A agn 887225 4.6:02°  64.38£37.04"  7.81:0.54

285
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The Cnic did not differ between topographies in the two seasons (Table 2). However, Tc
was significantly higher in the low topography in the dry season (LSD: 5.589; p <
0.000) and in the rainy season (LSD: 5.777; p = 0.024). In addition, Cy;c was higher in
the dry season in both the high (LSD: 11.325; p < 0.010) and low (LSD: 9.345; p <
0.000) topographies (Table 2). Npyic did not vary between topographies seasonally.
However, Npic in the high (LSD: 9.059; p = 0.013) and low topographies (LSD: 4.447;
p = 0.001) was higher during the dry season (Table 2). The C/N ratio (Table 2) was
higher in the low than in the high topography in both the dry (LSD: 3.142; p < 0.000)
and rainy seasons (LSD: 3.675; p = 0.033). However, only in the low topography was
the C/N ratio higher (LSD: 1.863; p < 0.000) in the dry season than in the rainy season
(Table 2). Soil OM was higher at the low topography in the rainy (LSD: 9.950; p =
0.024) and in the dry seasons (LSD: 9.630; p < 0.000). Only in the lowland topography

was the OM concentration higher in the dry season than in the rainy season (Table 2).

14
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Table 2. Seasonal and topographic variation in microbial Carbon (Cpic; mg kg™), microbial Nitrogen (Nmic, mg kg™*), Total Carbon (Tc; g kg™),

Total Nitrogen (Nt; g kg™), Carbon/Nitrogen ratio (C/N) and Soil Organic Matter (OM; g kg™). Numbers represent the mean (+standard error).

Lower case letters compare topographies at each season, and upper-case letters compare the topography between seasons.

Chic Nmic Tc TN oM
Season  Topography C/N

mg kg™ mg kg™ gkg™ gkg™ gkg™
High 22.12+45.22*"  12.76+4.20""  14.12+2.23°%  1.43+0.06**  9.60+1.20°"  24.35+3.84""
Dry Low 26.34+4.23*  10.34+2.05%*  26.44+1.35""  156+0.04**  16.98+0.84*"  4559+2.32**
Mean 24.23+329" 11.55+2.28" 20.28 +2.03”  1.49+0.04"  13.29+1.19" 34.97+3.50"
High 7.40+0.79°°  0.75+0.41*°  11.46+2.48™  1.32+0.04*"  8.42+1.70™  19.75+4.27°%
Rainy Low 5.95+1.06*®  1.23+0.28%®  18.27+1.06®  1.46+0.06®* 12.47+0.22°°  31.51+1.83%
Mean 6.68+0.67°  0.99+0.25° 14.86+1.57° 1.39+0.04"  10.44+0.98" 2563+2.71°
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3.4 Vegetation structure and biomass

Only the species R. mangle and A. germinans were found in the floristic survey carried
out. The DBH did not vary significantly between the topographies for either species
(Table 3). However, R. mangle had a higher DBH than A. germinaris at both high
(LSD: 139.304; p = 0.037) and low topographies (LSD: 131.307; p = 0.001). The basal
area (BA) and AGB did not show significant variation (Table 3). A total aboveground
biomass of 322.1 + 49.6 Mg ha™* was estimated.

16



311
312
313

314
315

Table 3: Summed Diameter at Breast Height (DBH; cm), Basal Area (BA; m? ha™) and Aboveground Biomass (AGB; Mg ha™) at high and low
topographies in the mangrove forest of the Mojuim River estuary. Numbers represent the mean + standard error of the mean. Lower case letters

compare topographic height for each species, and upper-case letters compare species at each topographic height, using Tukey’s test (p < 0.05).

N ha™ DBH BA AGB
Specie Topography
(cm) (m?hat) (Mg ha")

Rhizophora High 302.4£20.5  238.8+24.9%"  17.3+2.0" 219.3+25.7°4
mangle Low 310.4#37.6  283.5#45.0°" = 24.2+4.3" 338.7£62.9%
Avicennia High 47.7+20.5 86.8+51.2°"  13.8+9.0*" 135.3+94.74
germinans Low 15.949.2 46.1429.3®® 118488  136.0+108.3*

High 350.2+18.4 325.6+33.6 31.1+7.5% 304.5+99.8°
To Low 346.2+41.0 296.0+23.7° 30.0+4.1% 330.8+60.4%

The equations for biomass estimates (AGB) were: R. mangle = 0.1282*DBH?®; A. germinans = 0.14*DBH*% and Total = 0.168*p*DBH>*', where pg_ mangie = 0.87; pa. germinans

=0.72 (Howard et al., 2014).
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3.5 Drivers of greenhouse gas fluxes

In the rainy season, CO, efflux was correlated with T, (Pearson = 0.23, p = 0.03), RH
(Pearson = -0.32, p < 0.00) and Ts (Pearson = 0.21, p = 0.04) only at the low
topography. In the dry season CO; flux was correlated with Ts (Pearson = 0.39, p <
0.00) at the low topography. The dry season was the period in which we found the
greatest amount of significant correlations between CO, efflux and soil chemical
parameters, while the C:N ratio, OM, and Eh were correlated with CO; efflux in both
seasons (Table 4). The negative correlation between T¢, N1, C/N, and OM, along with
the positive correlation of Ny with soil CO, flux, in the dry period, indicates that
microbial activity is a decisive factor for CO, efflux (Table 4). Soil moisture in the
Mojuim River mangrove forest negatively influenced CO; flux in both seasons (Table
4). However, soil moisture was not correlated with CH, flux. No significant correlations
were found between CH, efflux and the chemical properties of the soil in the mangrove
of the Mojuim River estuary (Table 4).
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Table 4. Correlation coefficient (Pearson) of CO;, and CH,4 fluxes with chemical parameters of the soil in a mangrove area in the Mojuim River

estuary.
Gas Flux  Season Tc Tn Chic Nmic oM Sal Eh Moisture
C/N pH

@m*d?) kg™  (@kg?) (mgkg?) (mgkg™) @kg?)  (ppt)  (MV) (%)
Dry -0.68" -0.59 0.18™ 061" -0.66 -0.67 -007" 051" 021" -0.49

CO, Rainy -0.44N3 -0.20"° -0.15N° -0.32%  -0.50 0637  -054° 053 047"° -0.54"
Annual -0.50" -0.35°  -0.18"° 0.00™  -0.53" 0487 -030% 039" 0.23% -0.56"
Dry 0.30™ 007 014" 024" 034" 0.02" -0.04™ -038" 026" 0.26"°

CH,4 Rainy 0.05"° -0.09"° 0.44N° 027" 0.09"° -0.11%  -0.04™ 013" -0.07™° 0.04N°
Annual 0.04™  -010%  -001™ 018" 008"  -001" 017" -0.21% -0.08"° 0.02M

Total Carbon (T¢; g kg™); Total Nitrogen (Tx; g kg™*); Microbial Carbon (Cmic, g kg™); Microbial Nitrogen (Nmic, g kg™*); Carbon and Nitrogen
ratio (C/N); Organic Matter (OM:; g kg™); Salinity (Sal; ppt); Redox Potential (Eh; mV); Soil Moisture (Moisture, %).

NS= not significant; * significant effects at p < 0.05; ** significant effects at p < 0.01
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4  Discussion
4.1 Carbon dioxide and methane flux

It is important to consider that the year under study was rainier in the dry season (2017)
and less rainy in the wet season (2018) when the climatological average is concerned
(1981-2010) (Figure 3). Perhaps this variation is related to the La Nifia effects, and the

intensification of extreme events is considered as global-climate changes (Gash et al.,

2004)—. Under these conditions, negative and positive fluxes of the two greenhouse
gases were found (negative values represent gas consumption). The negative CO, flux is
apparently a consequence of the increased CO, solubility in tidal waters or of the
increased sulfate reduction, as described in the literature (Borges et al., 2018;
Chowdhury et al., 2018; Ndbrega et al., 2016). Fluctuations in redox potential altered
the availability of the terminal electron acceptor and donor, and the forces of recovery
of their concentrations in the soil, such that a disproportionate release of CO, can result
from the alternative anaerobic degradation processes such as sulfate and iron reduction
(Chowdhury et al., 2018). The soil carbon flux in the mangrove area in the Amazon
region was within the range of findings for other tropical mangrove areas (2.6 to 11.0 g
CO, m? d; Shiau and Chiu, 2020). However, the mean flux of 6.2 mmol CO, m? h*
recorded in this Amazonian mangrove was much higher than the mean efflux of 2.9
mmol CO, m™? h™! recorded in 75 mangroves during low tide periods (Alongi, 2009).

An emission of 0.01 Tg CH, y*, 0.6 g CHs m™ d™ (Rosentreter et al., 2018a), or 26.7
mg CHs m™ h has been reported for tropical latitudes (0 and 5°). In our study, the
monthly average of CH, flux was higher at the low (7.3 + 8.0 mg CH, m? h™) than at
the high topography (0.9 + 0.6 mg C m? h™), resulting in 0.1 g CHs m? d* or 0.5 Mg
CH, ha y* (Figure 2). Therefore, the CH,-C fluxes from the mangrove soil in the
Mojuim River estuary were much lower than expected. It is known that there is a
microbial functional module for CH4 production and consumption (Xu et al., 2015) and
diffusibility of CH,4 (Sihi et al., 2018), and this module considers three key mechanisms:
aceticlastic methanogenesis (acetate production), hydrogenotrophic methanogenesis (H;
and CO; production), and aerobic methanotrophy (CH,4 oxidation and O, reduction).
The average emission from the soil of 8.4 mmol CH, m™ d™* was well below the fluxes
recorded in the Bay of Bengal, with 18.4 mmol CH, m? d™* (Biswas et al., 2007). In the
Amazonian mangrove studied the mean annual carbon equivalent efflux was 429.6 mg

COz.q m™ h™h. This value is insignificant compared to the projected erosion losses of
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103.5 Tg COy.q ha y* for the next century in tropical mangrove forests (Adame et al.,
2021). These higher CO, flux concomitantly with lower CH, flux in this Amazonian
estuary are probably a consequence of changes in the rainfall pattern already underway,
where the dry season was wetter and the rainy season drier when compared to the
climatological normal. The most recent estimate between latitude 0° to 23.5° S shows
an emission of 2.3 g CO, m? d* (Rosentreter et al., 2018b). However, the efflux in the
mangrove of the Mojuim River estuary was 6.7 g CO, m™ d™*. For the same latitudinal
range, Rosentreter et al. (2018c) estimated an emission of 0.6 g CH, m™? d?, and we
found an efflux of 0.1 g CH, m? d™.

4.2 Drivers of greenhouse gas fluxes

Mangrove areas are periodically flooded, with a larger flood volume during the syzygy
tides, especially in the rainy season. The hydrological condition of the soil is determined
by the microtopography and can regulate the respiration of microorganisms (aerobic or
anaerobic), being a decisive factor in controlling the CO, efflux (Dai et al., 2012;
Davidson et al., 2000; Ehrenfeld, 1995). No significant influence on CO, flux was
observed due to the low variation in high tide level throughout the year (0.19 m) (Figure
2), although it was numerically higher at the high topography. However, tidal height
and the rainy season resulted in a higher CO, flux (rate high/low =1.7) at the high
topography (7.86 + 0.04 g CO, m? d™) than at the low topography (4.73 + 0.34 g CO,
m? d?) (Figure 2; SI 1). This result may be due to the root systems of most flood-
tolerant plants remaining active when flooded (Angelov et al., 1996). Still, the high
topography has longer flood-free periods, which only happens when the tides are

syzygy or when the rains are torrential.

CO; efflux was higher in the high topography than in the low topography in the rainy
season (when soils are more subject to inundation), i.e., 39.8% lower in the forest soil
exposed to the atmosphere for less time. Measurements performed on 62 mangrove
forest soils showed an average flux of 2.87 mmol CO, m™ h™ when the soil was
exposed to the atmosphere, while 75 results on flooded mangrove forest soils showed an
average emission of 2.06 mmol CO, m™ h™ (Alongi, 2007, 2009), i.e., 28.2% less than
for the dry soil. This reflects the increased facility gases have for molecular diffusion
than fluids, and the increased surface area available for aerobic respiration and chemical
oxidation during air exposure (Chen et al., 2010). Some studies attribute this variation

to the temperature of the soil when it is exposed to tropical air (Alongi, 2009), which
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increases the export of dissolved inorganic carbon (Maher et al., 2018). However,
although despite the lack of significant variation in soil temperature between
topographies at each time of year (Figure 4b), there was a positive correlation (Pearson
= 0.15, p = 0.05) between CO, efflux and soil temperature at the low topography.

Some studies show that CH,4 efflux is a consequence of the seasonal temperature
variation in mangrove forest under temperate/monsoon climates (Chauhan et al., 2015;
Purvaja and Ramesh, 2001; Whalen, 2005). However, in your study CH, efflux was
correlated with Ta (Pearson = -0.33, p < 0.00) and RH (Pearson = 0.28, p = 0.01) only
in the dry season and at the low topography. The results show that the physical
parameters do not affect the fluxes in a standardized way, and their greater or lesser
influence depends on the topography and seasonality.

A compilation of several studies showed that the total CH4 emissions from the soil in a
mangrove ecosystem range from 0 to 23.68 mg C m™ h™ (Shiau and Chiu, 2020), and
our study showed a range of -0.01 to 31.88 mg C m? h™ (mean of 4.70 + 5.00 mg C m™
h™). The monthly CH, fluxes were generally higher at the low (0.232 + 0.256 g CH, m™
d™) than at the high (0.026 + 0.018 g CHs m? d™) topography, especially during the
rainy season when the tides were higher (Figure 2). Only in the dry season was there a
significantly higher production at the low than at the high topography (Figure 2; SI 1).
The low topography produced 0.0249 g C m™ h™ more to the atmosphere in the rainy
season than in the dry season (Figure 2), and a similar seasonal pattern was recorded in

other studies (Cameron et al., 2021).

The mangrove soil in the Mojuim River estuary is rich in silt and clay (Table 1), which
reduces sediment porosity and fosters the formation and maintenance of anoxic
conditions (Dutta et al., 2013). In addition, the lack of oxygen in the flooded mangrove
soil favors microbial processes such as denitrification, sulfate reduction,
methanogenesis, and redox reactions (Alongi and Christoffersen, 1992). A significant
amount of CH,4 produced in wetlands is dissolved in the pore water due to high pressure,
causing supersaturation, which allows CH4; to be released by diffusion from the

sediment to the atmosphere and by boiling through the formation of bubbles.

Studies show that the CO, flux tends to be lower with high soil saturation (Chanda et
al., 2014; Kristensen et al., 2008). A total of 395 Mg C ha™* was found at the soil surface
(0.15 m) in the mangrove of the Mojuim River estuary, which was slightly higher than
the 340 Mg C ha™ found in other mangroves in the Amazon (Kauffman et al., 2018),
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however being significantly 1.8 times greater at the low topography (Table 2). The finer
soil texture at the low topography (Table 1) reduces groundwater drainage which
facilitates the accumulation of C in the soil (Schmidt et al., 2011).

4.3 Mangrove biomass

Only the species R. mangle and A. germinans were found in the floristic survey carried
out, which is aligned with the results of other studies in the same region (Menezes et al.,
2008). Thus, the variations found in the flux between the topographies in the Mojuim
River estuary are not related to the mangrove forest structure, because there was no
difference in the aboveground biomass. Since there was no difference in the species

composition, the belowground biomass is not expected to differ either (Table 3).

Assuming that the amount of carbon stored is 42.0% of the total biomass (Sahu and
Kathiresan, 2019), the mangrove forest biomass of the Mojuim River estuary stores
127.9 and 138.9 Mg C ha™ at the high and low topographies, respectively. This result is
lower than the 507.8 Mg C ha™ estimated for Brazilian mangroves (Hamilton and
Friess, 2018), but are near the 103.7 Mg C ha™ estimated for a mangrove at Guaré’s
island (Salum et al., 2020), 108.4 Mg C ha™ for the Bragantina region (Gardunho,
2017), and 132.3 Mg C ha™ in French Guiana (Fromard et al., 1998). Thus, the biomass
found in the Mojuim estuary does not differ from the biomass found in other
Amazonian mangroves. The estimated primary production for tropical mangrove forests
is 218 + 72 Tg C y™* (Bouillon et al., 2008).

4.4 Biogeochemical parameters

During the seasonal and annual periods, CH, efflux was not significantly correlated
with chemical parameters (Table 5), which-is-similar to-theas observed in another study
(Chen et al., 2010). Flooded soils present reduced gas diffusion rates, which directly
affects the physiological state and activity of microbes, by limiting the supply of the
dominant electron acceptors (e.g., oxygen), and gases (e.g., CH4) (Blagodatsky and
Smith, 2012). The importance of soil can be reflected in bacterial richness and diversity
compared to pore spaces filled with water (Banerjee et al., 2016). On the other hand,
increasing soil moisture provides the microorganisms with essential substrates such as
ammonium, nitrate, and soluble organic carbon, and increases gas diffusion rates in the
water (Blagodatsky and Smith, 2012). Biologically available nitrogen often limit marine

productivity (Bertics et al., 2010), and thus can affect CO, fluxes to the atmosphere.

23



469
470
471
472
473
474
475
476
477

478
479
480
481
482
483
484
485
486

487
488
489
490
491
492
493
494
495
496
497
498

499
500
501

However, a mangrove fertilization experiment showed that CH,4 emission rates were not
affected by N addition (Kreuzwieser et al., 2003). A higher concentration of Cp,. and
Nmic in the dry period (Table 2), both in the high and low topographies, indicated that
microorganisms are more active when the soil spends more time aerated in the dry
period (Table 2), time when only the high tides produce anoxia in the mangrove soil
mainly in the low topography. Under reduced oxygen conditions, in a laboratory
incubated mangrove soil, the addition of nitrogen resulted in a significant increase in the
microbial metabolic quotient, showing no concomitant change in microbial respiration,

which was explained by a decrease in microbial biomass (Craig et al., 2021).

The high OM concentration at the two topographic locations (Table 2), at the two
seasons studied, and the respective negative correlation with CO, flux (Table 5) confirm
the importance of microbial activity in mangrove soils (Gao et al., 2020). Also, CH4
produced in flooded soils can be converted mainly to CO, by the anaerobic oxidation of
CH, (Boetius et al., 2000; Milucka et al., 2015; Xu et al., 2015) which may contribute to
the higher CO, efflux in the Mojuim River estuary compared to other tropical
mangroves (Rosentreter et al., 2018b). The belowground C stock is considered the
largest C reservoir in a mangrove ecosystem, and it results from the low OM

decomposition rate due to flooding (Marchand, 2017).

The higher water salinity influenced by the tidal movement in the dry season (Table 1)
seems to result in a lower CH4 flux at the low topography (Dutta et al., 2013; Lekphet et
al., 2005; Shiau and Chiu, 2020). High SO,* concentration in the marine sediments
inhibits methane formation due to competition between SO,* reduction and
methanogenic fermentation, as sulfate-reducing bacteria are more efficient at using
hydrogen than methanotrophic bacteria (Abram and Nedwell, 1978; Kristjansson et al.,
1982), a key factor fostering reduced CH4 emissions. At high SO,* concentrations
methanotrophic bacteria use CH,4 as an energy source and oxidize it to CO, (Coyne,
1999; Segarra et al., 2015), increasing the efflux of CO, and reduced CH, (Megonigal
and Schlesinger, 2002; Roslev and King, 1996). This may explain the high CO, and low
CH,4 efflux found throughout the year at the high and, especially, at the low
topographies (Figure 3).

Studies in coastal ecosystems in Taiwan have reported that methanotrophic bacteria can
be sensitive to soil pH, and reported an optimal growth at pH ranging from 6.5 to 7.5

(Shiau et al., 2018). The higher soil acidity in the Mojuim River wetland (Table 1) may
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be inhibiting the activity of methanogenic bacteria by increasing the population of
methanotrophic bacteria, which are efficient in CH4 consumption (Chen et al., 2010;
Hegde et al., 2003; Shiau and Chiu, 2020). In addition, the pneumatophores present in
R. mangle increase soil aeration and reduce CH,4 emissions (Allen et al., 2011; He et al.,
2019). Spatial differences (topography) in CH,4 emissions in the soil can be attributed to
substrate heterogeneity, salinity, and the abundance of methanogenic and
methanotrophic bacteria (Gao et al., 2020). Increases in CH, efflux with reduced
salinity were found as a consequence of intense oxidation or reduced competition from
the more energetically efficient SO,%” and NO* reducing bacteria when compared to the
methanogenic bacteria (Biswas et al., 2007). This fact can be observed in the CH, efflux
in the mangrove of the Mojuim River, because there was an increased CH, production
especially in the low topography in the rainy season (Figure 3), when water salinity is
reduced (Table 1) due to the increased precipitation. However, we did not find a

correlation between CH, efflux and salinity, as previously reported (Purvaja and

Ramesh, 2001). Mere—detaled—studies—on—CH —efflux—and—on—its—relationship—with

5 Conclusions

Seasonality was important for CH, efflux but did not influence CO, efflux. The
differences in fluxes may be an effect of global climate changes on the terrestrial
biogeochemistry at the plant-soil-atmosphere interface, as indicated by the deviation in
precipitation values from the climatology normal, making it necessary to extend this
study for more years. Using the factor of 23 to convert the global warming potential of
CH, to CO, (IPCC, 2001), the CO, equivalent emission was 35.4 Mg COy.¢, ha™ yr.
Over a 100-year time period, a radiative forcing due to the continuous emission of 0.05
kg CH, m? y*found in this study, would be offset if CO, sequestration rates were 2.16
kg CO, m?y™* (Neubauer and Megonigal, 2015).

Microtopography should be considered when determining the efflux of CO, and CHy in
mangrove forests in an Amazon estuary. The low topography in the mangrove forest of
Mojuim River had a higher concentration of organic carbon in the soil. However, it did
not produce a higher CO, efflux because it was negatively influenced by soil moisture,

which was indifferent to CH, efflux. MO, C/N ratio, and Eh were critical in soil
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microbial activity, which resulted in a variation in CO, flux during the year and
seasonal periods. Thus, the physicochemical properties of the soil are important for CO,
flux, especially in the rainy season. Still, they did not influence CH, fluxes.
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