1	Contrasting responses of phytoplankton productivity between coastal and offshore
2	surface waters in the Taiwan Strait and the South China Sea to future
3	CO2-inducedshort-term seawater acidification
4	
5	Guang Gao ¹ , Tifeng Wang ¹ , Jiazhen Sun ¹ , Xin Zhao ¹ , Lifang Wang ¹ , Xianghui Guo ¹ ,
6	Kunshan Gao ^{1,2} *
7	¹ State Key Laboratory of Marine Environmental Science & College of Ocean and Earth
8	Sciences, Xiamen University, Xiamen 361005, China
9	² Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean
10	University, Lianyungang 222005, China
11	
12	*Corresponding author: ksgao@xmu.edu.cn

14 Abstract

15	Future CO ₂ -induced ocean acidification (OA)Seawater acidification (SA) has been
16	documented to either inhibit or enhance or result in no effect on marine primary
17	productivity (PP). In order to examine effects of OA-SA in changing environmentsunder-
18	multiple drivers, we investigated the influences of \underline{SAOA} (a decrease of 0.4 pH _{total} units
19	with corresponding CO ₂ concentrations ranged 22.0–39.7 μ M) on PP through
20	deck-incubation experiments at 101 stations in the Taiwan Strait and the South China Sea
21	(SCS), including the coastal zone, the continental shelf and slope, as well as deep-water
22	basin. The daily net-primary productivities in surface seawater under incident solar
23	radiation ranged from 17–306 μ g C (μ g Chl a) ⁻¹ d ⁻¹ , with the responses of PP to OA-SA
24	being region-dependent and the OASA-induced changes varying from -88.03%
25	(inhibition) to 56.877% (enhancement). The OASA-treatment stimulated PP in surface
26	waters of coastal, estuarine and shelf waters, but suppressed it in the South China Sea
27	basin. Such $OASA$ -induced changes in PP were significantly related to NO_X (the sum of
28	$\frac{NO_3}{and NO_2}$ availability, in situ pH and solar radiation in surface seawater, but
29	negatively related to salinity changes. Our results indicate that phytoplankton cells are
30	more vulnerable to pH drop in oligotrophic waters. Contrasting responses of
31	phytoplankton productivity in different areas suggest that SA impacts on marine primary
32	productivity are region-dependent and regulated by local environments. Considering high-
33	nutrient and low salinity in coastal waters and reduced nutrient availability in pelagic-

34	zones with the progressive stratification associated with ocean warming, our results imply
35	that future OA will enhance PP in coastal waters but decrease it in pelagic oligotrophic-
36	zones.
37	Keywords: CO ₂ ; Taiwan Strait; ocean-seawater acidification; photosynthesis; primary
38	productivity; South China Sea
39	1 Introduction
40	The oceans have absorbed about one-third of anthropogenically released CO ₂ , which
41	increased dissolved CO ₂ and decreased pH of seawater (Gattuso et al., 2015), leading to
42	ocean acidification (OA). This process is ongoing and likely intensifying (IPCC, 2019).
43	OA has been shown to result in profound influences on marine ecosystems (see the
44	reviews and literature therein, Mostofa et al., 2016; Doney et al., 2020). Marine
45	photosynthetic organisms, which contribute about half of the global primary production,
46	are also being affected by OA (see the reviews and literatures therein, Riebesell et al.,
47	2018; Gao et al., 2019a). In addition to the slow change of ocean acidification, some
48	processes, such as freshwater inputs, upwelling, typhoon and eddies, can lead to
49	instantaneous CO ₂ rising and seawater acidification (Moreau et al., 2017; Yu et al., 2020).
50	It is of general concern that the oceans are going to take more or less CO2-with-
51	progressive OA, since the amount of CO ₂ -uptake by the oceans is essential to predict-
52	global and ocean warming trends. Therefore, Since seawater acidification occurs in many
53	locations of ocean, it is important to understand the responses of the key players of

54	marine biological CO ₂ pump, the phytoplankton, to $\frac{OAseawater acidification}{OAseawater acidification}$
55	climate change drivers.

56	Elevated CO ₂ is well recognized to lessen the dependence of algae and
57	cyanobacteria on energy-consuming CO2 concentrating mechanisms (CCMs) which
58	concentrate CO_2 around Rubisco, the key site for photosynthetic carbon fixation (Raven
59	& Beardall, 2014 and references therein; Hennon et al., 2015). The energy freed up from
60	the down-regulated CCMs under increased CO ₂ concentrations can be applied to other
61	metabolic processes, resulting in a modest increase in algal growth (Wu et al., 2010;
62	Hopkinson et al., 2011; Xu et al., 2017). Accordingly, elevated CO ₂ availability could
63	potentially enhance marine primary productivity (Schippers et al., 2004). For instance,
64	across 18 stations in the central Atlantic Ocean primary productivity was stimulated by
65	15–19% under elevated dissolved CO ₂ concentrations up to 36 μ M (Hein and
66	Sand-Jensen 1997). On the other hand, neutral effects of OA-seawater acidification (SA)
67	on growth rates of phytoplankton communities were reported in five of six CO_2
68	manipulation experiments in the coastal Pacific (Tortell et al., 2000). Furthermore,
69	simulated future OA-SA reduced surface PP in pelagic surface waters of Northern SCS
70	and East China Sea (Gao et al., 2012). It seems that the impacts of OA-SA on PP could be
71	region-dependent. The varying effects of OA-SA may be related to the regulation of other
72	factors such as light intensity (Gao et al., 2012), temperature (Holding et al., 2015),
73	nutrients (Tremblay et al., 2006) and community structure (Dutkiewicz et al., 2015).

74	Taiwan Strait of the East China Sea, located between southeast Mainland China and
75	the Taiwan Island, is an important channel in transporting water and biogenic elements
76	between the East China Sea (ECS) and the South China Sea (SCS). Among the Chinese
77	coastal areas, the Taiwan Strait is distinguished by its unique location. In addition to
78	riverine inputs, it also receives nutrients from upwelling (Hong et al., 2011). Primary
79	productivity is much higher in coastal waters than that in pelagic-basin zones due to
80	increased supply of nutrients through river runoff and upwelling (Chen, 2003; Cloern et
81	al., 2014). The South China Sea (SCS), located from the equator to 23.8 N, from 99.1 to
82	121.1 \times and encompassing an area of about 3.5 $\times 10^6$ km ² , is one of the largest marginal
83	seas in the world. As a marginal sea of the Western Pacific Ocean, it has a deep
84	semi-closed basin (with depths > 5000 m) and wide continental shelves, characterized by
85	a tropical and subtropical climate (Jin et al., 2016). Approximately 80% of ocean organic
86	carbon is buried in the Earth's continental shelves and therefore continental margins play
87	an essential role in the ocean carbon cycle (Hedges & Keil, 1995). Investigating how
88	ocean acidification affects primary productivity in the Taiwan Strait and the SCS could
89	help us to understand the contribution of marginal seas to carbon sink under the future
90	CO ₂ -increased scenarios. Although small-scale studies on OA-SA impacts have been
91	conducted in the ESC and the SCS (Gao et al., 2012, 2017), our understanding of how
92	OA-SA affects PP in marginal seas is still fragmentary and superficial. In this study, we
93	conducted three cruises in the Taiwan Strait and the SCS, covering an area of 8.3×10^5

94	km ² , and aimed to provide in-depth insight into how $OA-SA$ and/or episodic pCO ₂ rise
95	affects PP in marginal seas with comparisons to other types of waters.
96	2 Materials and Methods
97	2.1 Investigation areas
98	To study the impacts of projected OA-SA (dropping by ~0.4 pH) by the end of this
99	century (RCP8.5) on marine primary productivity in different areas (Gattuso et al., 2015),
100	we carried out deck-based experiments during the 3 cruises supported by National
101	Natural Science Foundation of China (NSFC), which took place in the Taiwan Strait (Jul
102	14 th –25 th , 2016), the South China Sea basin (Sep 6–24 th , 2016), and the West South China
103	Sea (Sep 14 th to Oct 24 th , 2017), respectively. The experiments were conducted at 101
104	stations with coverage of 12 $^{\rm o}N{-}26$ $^{\rm o}N$ and 110 $^{\rm o}E{-}120$ $^{\rm o}E$ (Fig. 1). Investigation areas
105	include the coastal zone (< 50 m), the continental shelf ($\frac{500}{-200}$ m, <u>22 stations</u>) and the
106	slope (200– <u>1000-3400 m, 44 stations</u>), and the vast deep-water basin (> <u>1000-3400 m, 35</u>)
107	stations). In the continental shelf, the areas with depth < 50 m are defined as coastal
108	zones (9 stations).
109	2.2 Measurements of temperature and carbonate chemistry parameters
110	The temperature and salinity of surface seawater at each station were monitored with
111	an onboard CTD (Seabird, USA). $\ensuremath{pH_{\text{NBS}}}$ was measured with an Orion 2-Star pH meter
112	(Thermo scientific, USA) that was calibrated with standard National Bureau of Standards

113 (NBS) buffers (pH=4.01, 7.00, and 10.01 at 25.0 °C; Thermo Fisher Scientific Inc., USA).

114	After the calibration, the electrode of pH meter was kept in surface seawater for half an
115	hour and then the formal measurements were conducted. The analytical precision was
116	±0.001. Total alkalinity (TA IK) was determined using Gran titration on a 25-mL sample
117	with a TA analyzer (AS-ALK1, Apollo SciTech, USA) that was regularly calibrated with
118	certified reference materials supplied by A. G. Dickson at the Scripps Institution of
119	Oceanography (Gao et al., 2018a). The analytical precision was $\pm 2 \ \mu mol \ kg^{-1}$. CO ₂
120	concentration in seawater and the $pH_{Total}(pH_T)$ values was calculated by using CO2SYS
121	(Pierrot et al., 2006) with the input of pH_{NBS} and TA_{IK} data.
122	2.3 Nutrient measurement
123	Surface seawater was collected from the Conductivity Temperature Depth (CTD)-
124	rosette/Niskin bottles with a clean 125 mL HDPE (High Density Polyethylene) sample-
125	container. The nitrate and nitrite concentrations in seawater were then measured with a-
126	Technicon AA3 Auto Analyzer (Bran Lube, GmbH, Germany). The quantitative limits-
127	for nitrate and nitrite were 0.1 μ mol L ⁻¹ and 0.04 μ mol L ⁻¹ , respectively. We used-
128	certified reference materials (CRMS) (https://www.jamstec.go.jp/scor/) as external-
129	quality checks, and the analytical precision was better than $\pm 1\%$ during the whole cruise.
130	Nutrient measurement was conducted in the cruise of the South China Sea basin. Due to-
131	the limit of human resources, it was not conducted in the other two cruises.
132	2.4- <u>3</u> Solar radiation
133	The incident solar radiation intensity during the cruises was recorded with an

134	Eldonet broadband filter radiometer (Eldonet XP, Real Time Computer, Germany). This
135	device has three channels for PAR (400-700 nm), UV-A (315-400 nm) and UV-B (280-
136	315 nm) irradiance, respectively, which records the means of solar radiations over each
137	minute. The instrument was fixed at the top layer of the ship to avoid shading.
138	2. <mark>5-4_</mark> Determination of primary productivity
139	Surface seawater (0-1m) was collected a 10 L acid-cleaned (1 M HCl) plastic bucket
140	and pre-filtered (200 μ m mesh size) to remove large grazers. To prepare high CO ₂ (HC)
141	seawater, CO ₂ -saturated seawater was added into pre-filtered seawater until a decrease of
142	~0.4 units in pH (corresponding CO ₂ concentrations being 22.0–39.7 μ M) was
143	approached (Gattuso et al., 2010). Seawater that was collected from the same location as
144	<u>PP and filtered by cellulose acetate membrane (0.22 μm) was used to make the</u>
145	CO ₂ -saturated seawater, which was made by directly flushing with pure CO ₂ until pH
146	reached around 4.50. When saturated-CO ₂ seawater was added to the HC treatment,
147	equivalent filtered seawater (without flushing with CO ₂) was also added to the AC
148	treatment as a control. The ratios of added saturated-CO ₂ seawater to incubation seawater
149	were about 1:1000. Seawater was incubated within half an hour after they were
150	collected The same amount of filtered seawater (0.22 µm) was added into the pre-filtered
151	seawater setting as ambient CO_2 (AC) control. Prepared AC and HC seawater was
152	allocated into 50-mL quartz tubes in triplicate, inoculated with 5 μ Ci (0.185 MBq)
153	$NaH^{14}CO_3$ (ICN Radiochemicals, USA), and then incubated for 24 h (over a day-night

154	cycle) under 100 % incident solar irradiances in a water bath for temperature control by	
155	running through surface seawater. Due to heating by the deck, the temperatures in the	
156	water bath were 0–2°C higher than in situ surface seawater temperatures. TA and pH of	/
157	seawater before and after 24h incubation were measured to monitor the changes of	
158	carbonate systems. After the incubation, the cells were filtered onto GF/F filters	
159	(Whatman) and immediately frozen at -20 °C for later analysis. In the laboratory, the	
160	frozen filters were transferred to 20 mL scintillation vials, thawed and exposed to HCl	
161	fumes for 12 h, and dried (55 $^{\circ}$ C, 6 h) to expel non-fixed 14 C, as previously reported (Gao	
162	et al., 2017). Then 3 mL scintillation cocktail (Perkin Elmer®, OptiPhase HiSafe) was	
163	added to each vial. After 2 h of reaction, the incorporated radioactivity was counted by a	
164	liquid scintillation counting (LS 6500, Beckman Coulter, USA). The carbon fixation for	
165	24 h incubation was taken as chlorophyll (Chl) <i>a</i> -normalized daily net-primary	
166	productivity (PP, μ g C (μ g Chl a) ⁻¹) (Gao et al., 2017). The changes (%) of PP induced by	
167	ocean acidification were expressed as $(PP_{HC} - PP_{AC})/PP_{AC} \times 100$, where PP_{HC} and PP_{AC} are	
168	the net-daily primary productivity under HC and AC, respectively.	
169	2. <mark>6-5_</mark> Chl <i>a</i> measurement	
170	Pre-filtered (200 µm mesh size) surface seawater (500–2000 mL) at each station was	
171	filtered onto GF/F filter (25 mm, Whatman) and then stored at -80 °C. After returning to	
172	laboratory, phytoplankton cells on the GF/F filter were extracted overnight in absolute	

1.

带格式的:上标

9

methanol at 4 $^{\circ}$ C in darkness. After centrifugation (5000 g for 10 min), the absorption

173

174	values of the supernatants were analyzed by a UV-VIS spectrophotometer (DU800,
175	Beckman, Fullerton, California, USA). The concentration of chlorophylls a (Chl a) was
176	calculated according to Porra (2002).
177	2.7- <u>6</u> Data analysis
178	The data of environmental parameters were expressed in raw and the data of PP were
179	the means of triplicate incubations. Two-way analysis of variance (ANOVA) was used to
180	analyze the effects of OA-SA and location on PP. Least significant difference (LSD) was
181	used to for post hoc analysis. Linear fitting analysis was conducted with Pearson
182	correlation analysis to assess the relationship between PP and environmental factors. A 95%
183	confidence level was used in all analyses.
184	3 Results
184 185	3 Results During the cruises, surface temperature ranged from 25.0 to 29.9 °C in the Taiwan
185	During the cruises, surface temperature ranged from 25.0 to 29.9 $^{\circ}$ C in the Taiwan
185 186	During the cruises, surface temperature ranged from 25.0 to 29.9 $^{\circ}$ C in the Taiwan Strait and from 27.1 to 30.2 $^{\circ}$ C in the South China Sea (Fig. 2a). Surface salinity ranged
185 186 187	During the cruises, surface temperature ranged from 25.0 to 29.9 °C in the Taiwan Strait and from 27.1 to 30.2 °C in the South China Sea (Fig. 2a). Surface salinity ranged from 30.0 to 34.0 in the Taiwan Strait and from 31.0 to 34.3 in the South China Sea (Fig.
185 186 187 188	During the cruises, surface temperature ranged from 25.0 to 29.9 °C in the Taiwan Strait and from 27.1 to 30.2 °C in the South China Sea (Fig. 2a). Surface salinity ranged from 30.0 to 34.0 in the Taiwan Strait and from 31.0 to 34.3 in the South China Sea (Fig. 2b). The lower salinities were found in the estuaries of Minjiang and Jiulong Rivers as
185 186 187 188 189	During the cruises, surface temperature ranged from 25.0 to 29.9 °C in the Taiwan Strait and from 27.1 to 30.2 °C in the South China Sea (Fig. 2a). Surface salinity ranged from 30.0 to 34.0 in the Taiwan Strait and from 31.0 to 34.3 in the South China Sea (Fig. 2b). The lower salinities were found in the estuaries of Minjiang and Jiulong Rivers as well as Mekong River-induced Rip current. High salinities were found in the SCS basin.
185 186 187 188 189 190	During the cruises, surface temperature ranged from 25.0 to 29.9 °C in the Taiwan Strait and from 27.1 to 30.2 °C in the South China Sea (Fig. 2a). Surface salinity ranged from 30.0 to 34.0 in the Taiwan Strait and from 31.0 to 34.3 in the South China Sea (Fig. 2b). The lower salinities were found in the estuaries of Minjiang and Jiulong Rivers as well as Mekong River-induced Rip current. High salinities were found in the SCS basin. Surface pH _T changed between 7.99–8.20 in the Taiwan Strait with the higher values in

194	2126 to 2369 μ mol <u>kg</u> L^{-1} <u>SW</u> in the South China Sea (Fig. 2d). The lowest value occurred
195	in the estuary of Minjiang River. CO2 concentration in surface seawater changed from
196	6.4–13.3 μ M kg ⁻¹ SW in the Taiwan Strait, and 9.3–14.3 μ M kg ⁻¹ SW in the SCS (Fig. 1e).
197	It showed an opposite pattern to surface pH, with the lowest value in the estuary of
198	Minjiang River in the Taiwan Strait and highest value in near the islands in the
199	Philippines in the South China Sea. During the PP investigation period, the daytime mean
200	PAR intensity ranged from 126.6 to 145.2 W $m^{-2} s^{-1}$ in the Taiwan Strait and 37.3 to 150.0
201	W m ⁻² s ⁻¹ in the SCS (Fig. 2f).
202	The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 μ g L ⁻¹ in the Taiwan Strait (Fig.
203	3). The highest concentration occurred in the estuary of the Minjiang River. The
204	concentration of Chl <i>a</i> in the SCS ranged from 0.037 to 7.43 μ g L ⁻¹ . The highest
205	concentration was found in the coastal areas of Guangdong province in China. For both
206	the Taiwan Strait and the SCS, there were high Chl <i>a</i> concentrations (> 1.0 μ g L ⁻¹) in
207	coastal areas, particularly in the estuaries of the Minjing River, Jiulong River and Pearl
208	River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower than 0.2 μ g L ⁻¹ .
209	Surface primary productivity changed from 99–302 µg C (µg Chl a) ⁻¹ d ⁻¹ in the
210	Taiwan Strait, and from 17–306 μ g C (μ g Chl a) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4).
211	High surface primary productivity (> 200 µg C (µg Chl a) ⁻¹ d ⁻¹) was found in the
212	estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of
213	Vietnam. In pelagic basin zones, the surface primary productivity was usually lower than

214 100 μ g C (μ g Chl a)⁻¹ d⁻¹.

211			
215	Through a <u>A</u> series of onboard CO ₂ -enrich experiments in the investigated regions		
216	were conducted during three cruises. In the high CO ₂ treatments, pH _{total} had a decrease of	带格式的: 一 带格式的: 一	
217	0.34–0.43 units, while pCO ₂ and CO ₂ had an increase of 676–982 µatm and 17–25 µM	带格式的: 一 带格式的: 一	
218	kg ⁻¹ SW, respectively (Table S1). Carbonate chemistry parameters after 24 h of		
219	incubation were stable ($\triangle pH < 0.06$, $\triangle TA < 53 \mu mol kg^{-1} SW$), indicating the		
220	successful manipulation (Table S1). we It was observed that instantaneous effects of the		
221	elevated pCO ₂ on primary productivity of surface phytoplankton community in all		
222	investigated regions ranged from -88 .03 % (inhibition) to 56.877% (promotion), revealing		
223	significant regional differences (ANOVA, $F_{(100, 404)} = 4.103$, $p < 0.001$, Fig. 5). Among		
224	101 stations, 70 stations showed insignificant OA-SA effects. OA-SA increased PP at 6		
225	stations and reduced PP at 25 stations. Positive effects of OA-SA on surface primary		
226	productivity was were observed in the Taiwan Strait and the western SCS (Fig. 5,		
227	red-yellow shading areas), with the maximal enhancement of 56.97% in the station		
228	approaching <u>the</u> Mekong River plume (LSD, $p < 0.001$). Reductions in PP induced by the		
229	elevated CO_2 was were mainly found in the central SCS basin within the latitudes of 10		
230	$^{\circ}$ N to14 $^{\circ}$ N and the longitudes of 114.5 $^{\circ}$ E to 118 $^{\circ}$ E (Fig. 5, blue-purple shading areas),		
231	with inhibition rates ranging from 24.02% to 88.03% (Fig. 5, LSD, $p < 0.05$). These		
232	results showed a region-related effect of OA-SA on photosynthetic carbon fixation of		
233	surface phytoplankton assemblages. Overall, the elevated pCO_2 had neutral or positive		

234	effects on primary productivity in the continental shelf and slope regions - nearshore-
235	waters, while having adverse effects in the deep-water basinpelagic waters.
236	By analyzing the correlations between OASA-induced PP changes and regional
237	environmental parameters, we found that OASA-induced changes in phytoplankton
238	primary productivity was significantly positively related with <i>in situ</i> pH ($p < 0.001$, $r =$
239	0.379), NOx availability (the concentrations of $NO_3^- + NO_2^-$ at the bottom of upper-
240	mixing layers as they were unmeasurable in the surface water, $p = 0.002$, $r = 0.727$) and,
241	PAR density ($p = 0.002$, $r = 0.311$) and primary productivity ($p = 0.004$, $r = 0.284$) (Fig. 6
242	and Table S1). On the other hand, the influence induced by $\frac{OA-SA}{SA}$ was negatively related
243	to salinity that ranged from 30.00 to 34.28 ($p < 0.001$, $r = -0.418$).
244	4 Discussion
244 245	4 Discussion In the present study, we found that the elevated pCO_2 and associated pH drop
245	In the present study, we found that the elevated pCO_2 and associated pH drop
245 246	In the present study, we found that the elevated pCO_2 and associated pH drop increased or did not affect PP in coastal the continental shelf and slope waters but
245 246 247	In the present study, we found that the elevated pCO_2 and associated pH drop increased or did not affect PP in coastal the continental shelf and slope waters but reduced it in pelagic basin waters. Our results suggested that the enhanced effects of the
245 246 247 248	In the present study, we found that the elevated pCO ₂ and associated pH drop increased or did not affect PP in coastal the continental shelf and slope waters but reduced it in pelagic basin waters. Our results suggested that the enhanced effects of the OA- <u>SA</u> treatment on photosynthetic carbon fixation depend on regions of different
245 246 247 248 249	In the present study, we found that the elevated pCO ₂ and associated pH drop increased or did not affect PP in coastal the continental shelf and slope waters but reduced it in pelagic basin waters. Our results suggested that the enhanced effects of the OA-SA treatment on photosynthetic carbon fixation depend on regions of different physicochemical conditions -, including pH, light intensity and salinity. Higher levels of
245 246 247 248 249 250	In the present study, we found that the elevated pCO ₂ and associated pH drop increased or did not affect PP in coastal-the continental shelf and slope waters but reduced it in <u>pelagic basin</u> waters. Our results suggested that the enhanced effects of the OA-SA treatment on photosynthetic carbon fixation depend on regions of different physicochemical conditions-, including pH, light intensity and salinity. Higher levels of- nutrients due to runoffs or upwellings should be mainly responsible for the enhancement.

254	more from OA-SA than pelagic ones (Li et al., 2016). Therefore, community structure
255	differences might also be responsible for the differences of the short-term high
256	CO ₂ -induced acidification between coastal and pelagic-basin waters.
257	OA-SA is deemed to have two kinds of effects at least (Xu et al., 2017; Shi et al.,
258	2019). The first one is the enrichment of CO_2 , which is usually beneficial for
259	photosynthetic carbon fixation and growth of algae because insufficient ambient CO ₂
260	limits algal photosynthesis (Hein & Sand-Jensen, 1997; Bach & Taucher, 2019). The
261	other effect is the decreased pH which could be harmful because it disturbs the acid-base
262	balance between extracellular and intracellular environments. For instance, the decreased
263	pH projected for future OA-SA was shown to reduce the growth of the diazotroph
264	Trichodesmium (Hong et al., 2017), decrease PSII activity by reducing the removal rate
265	of PsbD (D2) (Gao et al., 2018b) and increase mitochondrial and photo-respirations in
266	diatoms and phytoplankton assemblages (Yang and Gao 2012, Jin et al., 2015). In
267	addition, OA-SA could reduce the RuBisCO-Rubisco transcription of diatoms, which also
268	contributed to the decreased growth (Endo et al., 2015). Therefore, the net impact of OA -
269	<u>SA</u> depends on the balance between its positive and negative effects, leading to enhanced,
270	inhibited or neutral influences, as reported in diatoms (Gao et al., 2012, Li et al., 2021)
271	and phytoplankton assemblages in the Arctic and subarctic shelf seas (Hoppe et al., 2018),
272	the North Sea (Eberlein et al., 2017) and the South China Sea (Wu and Gao 2010, Gao et
273	al., 2012). The balance of positive and negative effects of SA can be regulated by other

274	factors, including pH, light intensity, salinity, population structure, etc. (Gao et al., 2019a,	
275	<u>b; Xie et al., 2022).</u>	
276	In the present study, OA-SA increased or did not affect PP in coastal waters but	
277	reduced it in offshore waters, which is. This issignificantly related to nutrient	
278	availabilitypH, light intensity and salinity (Fig. 6d). The effect of SA changed from	
279	negative to positive with the increase of local pH. The higher pH occurred in coastal	
280	zones, which may be caused by higher biomass of phytoplankton (Fig. 3). Higher pH	
281	caused by intensive photosynthesis of phytoplankton is companied with decreased CO_2 .	
282	levels. In this case, CO ₂ is more limited for photosynthesis of phytoplankton compared to	带格式的: 下标
283	lower pH. Therefore, SA could stimulate primary productivity via supplying more	
284	available CO ₂ (Hurd et al., 2019). On the other hand, lower pH occurred in deep-water	
285	basin. Lower pH represents higher CO ₂ availability. CO ₂ is not limited or less limited in	
286	this case. Therefore, more CO_2 brought by SA may not benefit photosynthesis of	
287	phytoplankton. Instead, decreased pH accompanied by SA may inhibit photosynthesis or	
288	growth of phytoplankton, which is found in cyanobacteria (Hong et al., 2017).	
289	Furthermore, the negative effects of SA are particularly significant when nutrient is	
290	limited (Li et al., 2018). The nutrient levels in basin are usually lower than shelf (Yuan et	
291	al., 2011; Lu et al., 2020; Du et al., 2021), which may exacerbate the negative effects of	
292	OA in the basin zone.	
293	The negative effects of SA disappeared with the increase of light intensity in this	

294	study. This results in inconsistent with Gao et al (2012)' study, in which SA increased	
295	photosynthetic carbon fixation of three diatoms (<i>Phaeodactylum tricornutum</i> ,	带格式的:字体:倾斜
296	Thalassiosira pseudonana and Skeletonema costatum) under lower light intensities but	带格式的: 字体: 倾斜
297	increased it under higher light intensities. The divergent findings may be due to different	
298	population structure that varies in different areas. Coastal zones where nutrients are	
299	relatively sufficient usually have abundant diatoms while picophytoplanktons mainly	
300	Prochlorococcus and Synechococcus, dominate oligotrophic areas (Xiao et al., 2018,	
301	Zhong et al., 2020). In this study, most investigated areas are oligotrophic and thus the	
302	response of local phytoplankton to the combination of light intensity and SA may be	
303	different from diatoms. It is worth noting that the samples were not mixed down in the	
304	water bath in the present study and the 100% incident solar irradiances may have high	
305	light stress on cells. Lower incident solar irradiances or some devices can be used to	
306	simulate seawater mixing in future studies. Negative correlation between OSA-induced	
307	changes of PP and salinity was found in this study. While little has been documented on	
308	the relationship between salinity and OA (Wulff et al., 2018; Sugie et al., 2020; Xu et al.,	
309	2020) - Iowered The decrease of salinity (from 35 to 30) - salinity has been shown to	
310	alleviate the impactnegative effect of OSA on photosynthetic carbon fixation of a	
311	coccolithorphorid <i>Emiliania huxleyi</i> (Xu et al., 2020) although the potential mechanisms	
312	remain unknown. On the other hand, the change of salinity (from 6 to 3) did not affect	
313	effective quantum yield of microplanktonic community in the Baltic Sea grown under	

314	different CO ₂ levels (Wulff et al., 2018). In this study, <u>Nevertheless</u> , we presume that the	带格式
315	enhancednegative relationship between salinity and SA effects <u>PP could may be mainly</u>	
316	be related to nutrient availabilitylocal pH because lower salinity occurred in coastal	
317	waters usually companies with high nutrient levels where seawater pH was higher while	
318	the basin zone had higher salinities and lower pH-(Li et al., 2011).	
319	-with that the inhibitory effect was minimized when NOx availability increased.	
320	Riverine inputs, including the Minjiang River, Jiulong River, Pearl River, and Mekong-	
321	River, are the primary source of nutrients in the coastal and shelf zones, resulting in-	
322	higher concentrations of nutrients and lower salinity in these waters (Xiao et al., 2018). It	
323	was reported that elevated pCO2 decreased net organic carbon production of	
324	natural plankton community in nutrient depleted waters (Yoshimura et al., 2010).	
325	Furthermore, OA did not affect the specific growth rate of a diatom under N replete-	
326	condition but reduced it under N-limited condition (Li et al., 2018). The alleviating effect-	
327	of nutrient enrichment on OA induced stress could be multifaceted. Firstly, algae could-	
328	cope with the acid-base perturbation caused by OA through active proton pumps-	
329	(McNicholl et al., 2019). The operation of such proton pumps need some essential-	
330	proteins, such as plasma membrane H ⁺ -ATPase, whose synthesis is nutrient dependent-	
331	(Taylor et al., 2012; Xu et al., 2017). Secondly, it has been shown that nutrient-	
332	enrichment could accelerate the repair rate of PSII via synthesizing the key proteins such-	
333	as PsbA (D1), and PsbD (D2) (Geider et al., 1993; Li et al., 2015). Thirdly, nitrogen-	

带格式的: 下标

334	enrichment could significantly increase the synthesis and content of photosynthetic-
335	pigments including Chl a, phycocyanin, and phycoerythrin (Johnson & Carpenter, 2018;
336	Gao et al., 2019b), contributing to high photosynthetic activity under stressful-
337	environmental conditions. Negative correlation between OA-induced changes of PP and-
338	salinity was found in this study. While little has been documented on the relationship-
339	between salinity and OA (Wulff et al., 2018; Sugie et al., 2020; Xu et al., 2020), lowered
340	salinity has been shown to alleviate the impact of OA on a coccolithorphorid (Xu et al.,
341	2020). Nevertheless, we presume the enhanced PP could mainly be related to nutrient-
342	availability because lower salinity in coastal waters usually companies with high nutrient-
343	levels (Li et al., 2011)In addition, local pH may be another factor that affects the
344	impacts of OA. There are diurnal and seasonal fluctuations of pH in coastal waters and
345	phytoplankton that adapt well to the fluctuant pH environments would be tolerant to the
346	decreased pH caused by OA (Flynn et al., 2012, Li et al., 2016). On the other hand, the
347	surface pH in the ocean basin is relatively stable, with a varied range of only ~0.024 over-
348	a month (Hofmann et al., 2011). Therefore, the phytoplankton cells living in these-
349	environments could be more sensitive to pH drop due to elevated pCO ₂ (Li et al., 2016).
350	
351	The specific environmental conditions have profound effects on shaping diverse
352	dominant phytoplankton groups (Boyd et al., 2010). Larger eukaryotic groups (especially
353	diatoms) usually dominate the complex coastal regions, while picophytoplanktons

354	(Prochlorococcus and Synechococcus), characterizing with more efficient nutrients
355	uptake, dominate the relatively stable offshore waters (Dutkiewicz et al., 2015). In
356	summer and early autumn, previous investigations demonstrated that diatoms dominated
357	in the northern waters and the Taiwan Strait (coastal and shelf regions) with the high
358	abundance of phytoplankton, which are consistent with our Chl a data; Prochlorococcus
359	and Synechococcus dominated in the SCS basin and the north of SCS (slope and basin
360	regions) (Xiao et al., 2018, Zhong et al., 2020). In addition, it has been reported that
361	larger cells benefit more from OA-SA because a thicker diffusion layer around the cells
362	limits the transport of CO_2 (Feng et al., 2010; Wu et al., 2014). In contrast, a thinner
363	diffusion layer and higher surface to volume ratio in smaller phytoplankton cells can
364	make them easier to transport CO_2 near the cell surface and within the cells, and therefore
365	picophytoplankton species are less CO ₂ -limited (Bao and Gao, 2021). Therefore, different
366	community structures between coastal and pelagic basin areas could also be responsible
367	for the enhanced and inhibitory effects of OASA. It is worth noting that seasonality may
368	also lead to the differential effects of SA on primary productivity since the Taiwan Strait
369	cruise was conducted in July and the cruises of the South China Sea basin and the West
370	South China Sea were conducted in September. The SST and solar PAR intensity of the
371	<u>Taiwan Strait in July was 2–3 °C and 22 \pm 22 W m⁻² s⁻¹ higher than that in September</u>
372	(Zhang et al., 2008, 2009; Table S3). Although the effects of SA were not related to
373	temperature as shown in this study (Table S2), the higher solar radiation in July may

374	contribute to the positive effect of SA on primary productivity.	
375	5_Conclusions	带格式的: 字体: 非倾斜
376	By investigating the impacts of the elevated pCO_2 on PP in the Taiwan Strait and the	
377	SCS, we demonstrated that such short OASA-treatments induced changes in PP were	
378	mainly related to NOx availabilitypH, light intensity and salinity based on Pearson	
379	correlation coefficients, supporting the hypothesis that negative impacts of OA-SA on PP	
380	increase from coastal to pelagic basin waters (Gao et al., 2019a). In view of ocean climate	
381	changes, strengthened stratification due to global warming would reduce the upward	
382	transports of nutrients and further reduce nutrient availabilitythus marine primary	
383	productivity. The negative effect of SA in basin zones would further reduce primary	
384	productivity, consequently, leading to exacerbating impacts of OA on PP in pelagic zones.	
385	Meanwhile, PP in coastal and/or upwelled-waters would be increased by SA. stimulated-	
386	or non affected by OA with continuous discharges of nutrients from terrestrial-	
387	environments, which may imply higher PP and enhance frequency of harmful algal	
388	blooms in future oceans.	
389	Data availability. All data are included in the article or Supplement.	
390	Author contributions. KG and TW developed the original idea and designed research.	
391	TW and JS carried out fieldwork. GG provided statistical analyses and prepared figures.	
392	GG, KG, and XZ wrote the manuscript. All contributed to revising the paper.	
393	Competing interests. The contact author has declared that neither they nor their	

- 394 co-authors have any competing interests.
- 395 Disclaimer. Publisher's note: Copernicus Publications remains neutral with regard to
- 396 jurisdictional claims in published maps and institutional affiliations.
- 397 Acknowledgements. This work was supported by the National Natural Science Foundation
- of China (41720104005, 41890803 and 42076154), and the Fundamental Research Funds
- for the Central Universities (20720200111). The authors are grateful to the students He Li,
- 400 Xiaowen Jiang and Shanying Tong, and the laboratory technicians Xianglan Zeng and
- 401 Wenyan Zhao. We appreciate the NFSC Shiptime Sharing Project (project number:
- 402 41849901) for supporting the Taiwan Strait cruise (NORC2016-04). We appreciate the
- 403 chief scientists Yihua Cai, Huabin Mao and Chen Shi and the R/V Yanping II, Shiyan I
- 404 and Shiyan III for leading and conducting the cruises.

405 **References**

- 406 Bach, L. T., and Taucher, J.: CO₂ effects on diatoms: a synthesis of more than a decade of
- 407 ocean acidification experiments with natural communities, Ocean Sci., 15,
 408 1159-1175, 2019.
- Bao, N., and Gao, K.: Interactive effects of elevated CO₂ concentration and light on the
 picophytoplankton *Synechococcus*, Front. Mar. Sci., 8, 1-7, 2021.
- 411 Boyd, P. W., Strzepek, R., Fu, F. X., and Hutchins, D. A.: Environmental control of open-
- 412 ocean phytoplankton groups: Now and in the future, Limnol. Oceanogr, 55,
 413 1353-1376, 2010.

414	Chen, C	. T.	A.:	Rare	northward	flow	in	the	Taiwan	Strait	in	winter:	А	note,	Cont.	Shelf
-----	---------	------	-----	------	-----------	------	----	-----	--------	--------	----	---------	---	-------	-------	-------

- 415 Res., 23, 387-391, 2003.
- Cloern, J. E., Foster, S.Q. and Kleckner, A. E.: Phytoplankton primary production in the
 world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477-2501, 2014.
- 418 Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The impacts of ocean
- 419 acidification on marine ecosystems and reliant human communities, Annu. Rev. Env.
- 420 Resour., 45, 83-112, 2020.
- 421 Du, C., He, R., Liu, Z., Huang, T., Wang, L., Yuan, Z., Xu, Y., Wang, Z. and Dai, M.:
 422 Climatology of nutrient distributions in the South China Sea based on a large data
 423 set derived from a new algorithm. Prog. Oceanogr., 195, 102586, 2021.
- 424 Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., and
- Berman-Frank, I.: Impact of ocean acidification on the structure of future
 phytoplankton communities, Nat. Clim. Change, 5, 1002-1006, 2015.
- 427 Eberlein, T., Wohlrab, S., Rost, B., John, U., Bach, L. T., Riebesell, U., and Van de Waal,
- D. B.: Effects of ocean acidification on primary production in a coastal North Sea
 phytoplankton community, Plos One, 12, 1-15, 2017.
- 430 Endo, H., Sugie, K., Yoshimura, T., and Suzuki, K.: Effects of CO₂ and iron availability
- 431 on rbcL gene expression in Bering Sea diatoms, Biogeosciences, 12, 2247-2259,
 432 2015.
- 433 Feng, Y., Hare, C. E., Rose, J. M., Handy, S. M., DiTullio, G. R., Lee, P. A., Smith, W. O.,

434	Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar, R. B., Long, M. C., Sohst, B.,	
435	Lohan, M., and Hutchins, D. A.: Interactive effects of iron, irradiance and CO ₂ on	
436	Ross Sea phytoplankton, Deep-Sea Res. PT. I, 57, 368-383, 2010.	
437	Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J.,	
438	Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at the exterior surface	
439	of plankton with ocean acidification, Nat. Clim. Change, 2, 510-513, 2012.	
440	Gao, G., Xu, Z. G., Shi, Q., and Wu, H. Y.: Increased CO2 exacerbates the stress of	
441	ultraviolet radiation on photosystem II function in the diatom Thalassiosira	
442	weissflogii, Environ. Exp. Bot., 156, 96-105, 2018b.	
443	Gao, G., Gao, Q., Bao, M. L., Xu, J. T., and Li, X. S.: Nitrogen availability modulates the	
444	effects of ocean acidification on biomass yield and food quality of a marine crop	
445	Pyropia yezoensis, Food Chem, 271, 623-629, 2019b.	
446	Gao, G., Jin, P., Liu, N., Li, F. T., Tong, S. Y., Hutchins, D. A., and Gao, K. S.: The	
447	acclimation process of phytoplankton biomass, carbon fixation and respiration to the	
448	combined effects of elevated temperature and pCO_2 in the northern South China Sea,	
449	Mar. Pollut. Bull., 118, 213-220, 2017.	
450	Gao, G., Qu, L., Xu, T., Burgess, J.G., Li, X. and Xu, J.: Future CO2-induced ocean	
451	acidification enhances resilience of a green tide alga to low-salinity stress. ICES J.	
452	<u>Mar. Sci., 76, 2437-2445, 2019b.</u>	

453 Gao, G., Xia, J. R., Yu, J. L., Fan, J. L., and Zeng, X. P.: Regulation of inorganic carbon

带格式的:下标

454	acquisition i	in a red tide alga	a (Skeletonema	costatum):	The importance	of phosphorus
-----	---------------	--------------------	----------------	------------	----------------	---------------

455	availability.	Biogeosciences,	15.	4871-4	882.	2018a
100	a and a and a start of the star	Diogeobereneed,	-e,		··,	-0104

- 456 Gao, K. S., Beardall, J., Häder, D. P., Hall-Spencer, J. M., Gao, G., and Hutchins, D. A.:
- Effects of ocean acidification on marine photosynthetic organisms under the
 concurrent influences of warming, UV radiation, and deoxygenation, Front. Mar.
 Sci., 6, 1-18, 2019a.
- 460 Gao, K. S., Xu, J. T., Gao, G., Li, Y. H., Hutchins, D. A., Huang, B. Q., Wang, L., Zheng,
- 461 Y., Jin, P., Cai, X. N., Hader, D. P., Li, W., Xu, K., Liu, N. N., and Riebesell, U.:
- 462 Rising CO₂ and increased light exposure synergistically reduce marine primary
 463 productivity, Nat. Clim. Change, 2, 519-523, 2012.
- 464 Gattuso, J. P., Gao, K. S., Lee, K., Rost, B., and Schulz, K. G.: Approaches and tools to
- 465 manipulate the carbonate chemistry, pp 41-52. Guide to best practices for ocean
- 466 acidification research and data reporting, edited by: Riebesell, U., Fabry, V. J.,
- 467 Hansson, L., and Gattuso J.-P., Luxembourg: Publications Office of the European
 468 Union, 2010.
- 469 Gattuso, J. P., Magnan, A., Bill é, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand,
- 470 D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Portner,
- 471 H. O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette,
- 472 J., Sumaila, U. R., Treyer, S., and Turley, C.: Contrasting futures for ocean and
- 473 society from different anthropogenic CO_2 emissions scenarios, Science, 349,

474 aac4722, 2015.

- 475 Geider, R. J., La Roche, J., Greene, R. M., and Olaizola, M.: Response of the
- 476 photosynthetic apparatus of *Phaeodactylum tricornutum* (Bacillariophyceae) to
- 477 nitrate, phosphate, or iron starvation, J. Phycol., 29, 755-766, 1993.
- 478 Häder, D. P., Williamson, C. E., Wängberg, S. A., Rautio, M., Rose, K. C., Gao, K. S.,
- 479 Helbling, E. W., Sinha, R. P., and Worrest, R.: Effects of UV radiation on aquatic
- 480 ecosystems and interactions with other environmental factors, Photoch. Photobio.
- 481 Sci., 14, 108-126, 2015.
- Hedges, J. I., and Keil, R. G.: Sedimentary organic matter preservation: an assessment
 and speculative synthesis, Mar. Chem., 49, 81-115, 1995.
- Hein, M., and Sand-Jensen, K.: CO₂ increases oceanic primary production, Nature, 388,
 526-527, 1997.
- 486 Hennon, G. M. M., Ashworth, J., Groussman, R. D., Berthiaume, C., Morales, R. L.,
- 487 Baliga, N. S., Orellana, M. V., and Armbrust, E. V.: Diatom acclimation to elevated
- 488 CO₂ via cAMP signalling and coordinated gene expression, Nat. Clim. Change, 5,
 489 761-765, 2015.
- 490 Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan,
- 491 A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K.
- 492 J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R.:
- 493 High-frequency dynamics of ocean pH: A multi-ecosystem comparison, Plos One, 6,

494 1-11, 2011.

495	Holding, J. M., Duarte, C. M., Sanz-Mart n, M., Mesa, E., Arrieta, J. M., Chierici, M.,
496	Hendriks, I. E., Garcia-Corral, L. S., Regaudie-de-Gioux, A., Delgado, A., Reigstad,
497	M., Wassmann, P., and Agusti, S.: Temperature dependence of CO ₂ -enhanced

- 498 primary production in the European Arctic Ocean, Nat. Clim. Change, 5, 1079-1082,499 2015.
- Hong, H. S., Chai, F., Zhang, C. Y., Huang, B. Q., Jiang, Y. W., and Hu, J. Y.: An
 overview of physical and biogeochemical processes and ecosystem dynamics in the
 Taiwan Strait, Cont. Shelf Res., 31, S3-S12, 2011.
- 503 Hong, H. Z., Shen, R., Zhang, F. T., Wen, Z. Z., Chang, S. W., Lin, W. F., Kranz, S. A.,
- 504 Luo, Y. W., Kao, S. J., Morel, F. M. M. and Shi, D. L.: The complex effects of ocean
- acidification on the prominent N₂-fixing cyanobacterium *Trichodesmium*. Science,
 356, 527-530, 2017.
- Hopkinson, B. M., Dupont, C. L., Allen, A. E., and Morel, F. M.: Efficiency of the
 CO₂-concentrating mechanism of diatoms, P. Natl. Acad. Sci. USA., 108, 3830-3837,
- 509 2011.
- Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D., and Rost, B.: Compensation
 of ocean acidification effects in Arctic phytoplankton assemblages. Nat. Clim.
 Change, 8, 529-533, 2018.
- 513 Hurd, C.L., Beardall, J., Comeau, S., Cornwall, C.E., Havenhand, J.N., Munday, P.L.,

514	Parker, L.M., Raven, J.A. and McGraw, C.M.: Ocean acidification as a multiple
515	driver: how interactions between changing seawater carbonate parameters affect
516	marine life. Mari. Freshwater Res., 71, 263-274, 2019.
517	IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate
518	[HO. Pärtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E.
519	Poloczanska, K. Mintenbeck, A. Alegr á, M. Nicolai, A. Okem, J. Petzold, B. Rama,
520	N.M. Weyer (eds.)]. In press.
521	Jin, P., Gao, G., Liu, X., Li, F. T., Tong, S. Y., Ding, J. C., Zhong, Z. H., Liu, N. N., and
522	Gao, K. S.: Contrasting photophysiological characteristics of phytoplankton
523	assemblages in the Northern South China Sea, Plos One, 11, 1-16, 2016.
524	Jin, P., Wang, T. F., Liu, N. N., Dupont, S., Beardall, J., Boyd, P. W., Riebesell, U., and
525	Gao, K. S.: Ocean acidification increases the accumulation of toxic phenolic
526	compounds across trophic levels, Nat. Commun., 6, 1-6, 2015.
527	Johnson, M. D., and Carpenter, R. C.: Nitrogen enrichment offsets direct negative effects
528	of ocean acidification on a reef-building crustose coralline alga, Biol. Letters, 14,
529	1-5, 2018.
530	Lan, J., Hong, J. and Li, P.: Seasonal variability of cool core eddy in the Western South
531	China Sea, Adv. Earth Sci., 21, 1145-1152, 2006.
532	Li, F. T., Wu, Y. P., Hutchins, D. A., Fu, F. X., and Gao, K. S.: Physiological responses of
533	coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry

27

534	under two CO ₂ concer	trations, Bioge	osciences, 13.	6247-6259.	2016
00-		manono, Diogo	00010110000, 10,	0117 0107,	2010

535	Li, F. T., Beardall, J., and Gao, K. S.: Diatom performance in a future ocean: interactions
536	between nitrogen limitation, temperature, and CO ₂ -induced seawater acidification,
537	ICES J. Mar. Sci., 75, 1451-1464, 2018.
538	Li, G., Gao, K. S., Yuan, D. X., Zheng, Y., and Yang, G. Y.: Relationship of
539	photosynthetic carbon fixation with environmental changes in the Jiulong River
540	estuary of the South China Sea, with special reference to the effects of solar UV
541	radiation, Mar. Pollut. Bull., 62, 1852-1858, 2011.
542	Li, H. X., Xu, T. P., Ma, J., Li, F. T., and Xu, J. T.: Physiological responses of
543	Skeletonema costatum to the interactions of seawater acidification and the
544	combination of photoperiod and temperature, Biogeosciences, 18, 1439-1449, 2021.
545	Li, W., Gao, K., and Beardall, J.: Nitrate limitation and ocean acidification interact with

- 546 UV-B to reduce photosynthetic performance in the diatom *Phaeodactylum* 547 *tricornutum*, Biogeosciences, 12, 2383-2393, 2015.
- Lu, Z., Gan, J., Dai, M., Zhao, X. and Hui, C. R.: Nutrient transport and dynamics in the
 South China Sea: A modeling study. Prog. Oceanogr., 183, 102308, 2020.
- McNicholl, C., Koch, M. S., and Hofmann, L. C.: Photosynthesis and light-dependent
 proton pumps increase boundary layer pH in tropical macroalgae: A proposed
 mechanism to sustain calcification under ocean acidification, J. Exp. Mar. Biol.
 Ecol., 521, 1-12, 2019.

554	Moreau, S., Penna, A. D., Llort, J., Patel, R., Langlais, C., Boyd, P. W., Matear, R. J.,
555	Phillips, H. E., Trull, T. W., Tilbrook, B. and Lenton, A.: Eddy-induced carbon
556	transport across the Antarctic Circumpolar Current. Global Biogeochem. Cy., 31,
557	<u>1368-1386, 2017</u>
558	Mostofa, K.M., Liu, C.Q., Zhai, W., Minella, M., Vione, D., Gao, K., Minakata, D.,
559	Arakaki, T., Yoshioka, T., Hayakawa, K. and Konohira, E.: Reviews and Syntheses:
560	Ocean acidification and its potential impacts on marine ecosystems, Biogeosciences,
561	13, 1767-1786, 2016.
562	Pierrot, D., Wallace, D.W. R., and Lewis, E.: MS Excel program developed for CO ₂
563	system calculations. ORNL/CDIAC-105a, Carbon Dioxide Information Analysis
564	Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,
565	Tennessee, USA., 2006.
566	Porra, R. J.: The chequered history of the development and use of simultaneous equations
567	for the accurate determination of chlorophylls a and b, Photosynth. Res., 73,
568	149-156, 2002.
569	Raven, J. A., and Beardall, J.: CO ₂ concentrating mechanisms and environmental change,
570	Aquat. Bot., 118, 24-37, 2014.
571	Schippers, P., Lürling, M., and Scheffer, M.: Increase of atmospheric CO2 promotes
572	phytoplankton productivity, Ecol. Lett., 7, 446-451, 2004.
573	Shi, D. L., Hong, H. Z., Su, X., Liao, L. R., Chang, S. W., and Lin, W. F.: The

574	physiological	response of	marine	diatoms to	ocean	acidification:	Differential	roles of
-----	---------------	-------------	--------	------------	-------	----------------	--------------	----------

575 seawater *p*CO₂ and pH, J. Phycol., 55, 521-533, 2019.

576 Sugie, K., Fujiwara, A., Nishino, S., Kameyama, S. and Harada, N.: Impacts of
 577 temperature, CO₂, and salinity on phytoplankton community composition in the

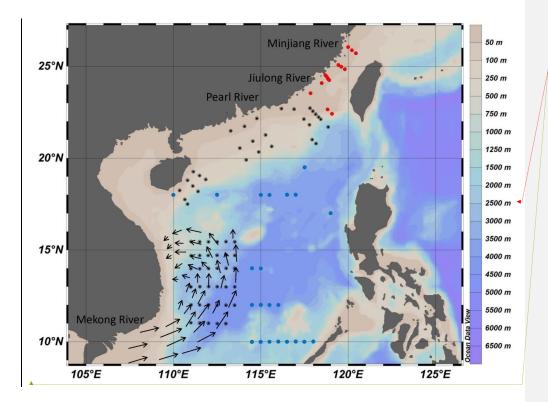
578 Western Arctic Ocean, Front. Mar. Sci., 6, 1 17, 2020.

- Taylor, A. R., Brownlee, C., and Wheeler, G. L.: Proton channels in algae: Reasons to be
- 580 excited, Trends Plant Sci., 17, 675-684, 2012.
- Tortell, P. D., Rau, G. H., and Morel, F. M. M.: Inorganic carbon acquisition in coastal
 Pacific phytoplankton communities, Limnol. Oceanogr., 45, 1485-1500, 2000.
- Tremblay, J. E., Michel, C., Hobson, K. A., Gosselin, M., and Price, N. M.: Bloom
 dynamics in early opening waters of the Arctic Ocean. Limnol. Oceanogr., 51,
 900-912, 2006.
- 586 Riebesell, U., Aberle-Malzahn, N., Achterberg, E. P., Alguer ó-Muñiz, M.,
- 587 Alvarez-Fernandez, S., Ar ístegui, J., Bach, L. T., Boersma, M., Boxhammer, T.,
- 588 Guan, W. C., Haunost, M., Horn, H. G., Loscher, C. R., Ludwig, A., Spisla, C.,
- 589 Sswat, M., Stange, P., and Taucher, J.: Toxic algal bloom induced by ocean
- acidification disrupts the pelagic food web, Nat. Clim. Change, 8, 1082-1086, 2018.
- 591 Wu, Y., Gao, K., and Riebesell, U.: CO2-induced seawater acidification affects
- 592 physiological performance of the marine diatom *Phaeodactylum tricornutum*,
- 593 Biogeosciences, 7, 2915-2923, 2010.

594	Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., and Finkel, Z. V.: Ocean	
595	acidification enhances the growth rate of larger diatoms. Limnol. Oceanogr., 59,	
596	1027-1034, 2014.	
597	Wu, Y. P., and Gao, K. S.: Combined effects of solar UV radiation and CO2-induced	
598	seawater acidification on photosynthetic carbon fixation of phytoplankton	
599	assemblages in the South China Sea. Chinese Sci. Bull., 55, 3680-3686, 2010.	
600	Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S.,	
601	Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination:	
602	Climate-driven change in a Baltic Sea summer microplanktonic community, Mar.	
603	Biol., 165, 1-15, 2018.	
604	Xiao, W. P., Wang, L., Laws, E., Xie, Y. Y., Chen, J. X., Liu, X., Chen, B. Z., and Huang,	
605	B. Q.: Realized niches explain spatial gradients in seasonal abundance of	
606	phytoplankton groups in the South China Sea, Prog. Oceanogr., 162, 223-239, 2018.	
607	Xie, S., Lin, F., Zhao, X. and Gao, G.: Enhanced lipid productivity coupled with carbon	
608	and nitrogen removal of the diatom <i>Skeletonema costatum</i> cultured in the high CO ₂	带格式的: 字体:倾斜 带格式的:下标
609	level. Algal Res. 61, 102589, 2022.	
610	Xu, J. K., Sun, J. Z., Beardall, J., and Gao, K. S.: Lower salinity leads to improved	
611	physiological performance in the coccolithophorid Emiliania huxleyi, which partly	
612	ameliorates the effects of ocean acidification, Front. Mar. Sci., 7, 1-18, 2020.	
613	Xu, Z. G., Gao, G., Xu, J. T., and Wu, H. Y.: Physiological response of a golden tide alga	

614	(Sargassum muticum) to the interaction of ocean acidification and phosphorus	
615	enrichment, Biogeosciences, 14, 671-681, 2017.	
616	Yang, G. Y., and Gao, K. S.: Physiological responses of the marine diatom Thalassiosira	
617	pseudonana to increased pCO_2 and seawater acidity, Mar. Environ. Res., 79,	
618	142-151, 2012.	
619	Yoshimura, T., Nishioka, J., Suzuki, K., Hattori, H., Kiyosawa, H. and Watanabe, Y. W.:	
620	Impacts of elevated CO ₂ on organic carbon dynamics in nutrient depleted Okhotsk	
621	Sea surface waters. J. Exp. Mar. Biol. Ecol., 395, 191-198, 2010.	
622	Yu, P., Wang, Z. A., Churchill, J., Zheng, M., Pan, J., Bai, Y. and Liang, C.: Effects of	
623	typhoons on surface seawater pCO ₂ and air-sea CO ₂ fluxes in the northern South	带格式的: 下标 带格式的: 下标
624	China Sea. J. Geophys. Res-Oceans, 125, p.e2020JC016258, 2020.	
625	Yuan, X., He, L., Yin, K., Pan, G. and Harrison, P. J.: Bacterial distribution and nutrient	
626	limitation in relation to different water masses in the coastal and northwestern South	
627	China Sea in late summer. Cont. Shelf Res., 31, 1214-1223, 2011.	
628	Zhong, Y. P., Liu, X., Xiao, W. P., Laws, E. A., Chen, J. X., Wang, L., Liu, S. G., Zhang,	
629	F., and Huang, B. Q.: Phytoplankton community patterns in the Taiwan Strait match	
630	the characteristics of their realized niches, Prog. Oceanogr., 186, 1-15, 2020.	

631 Figure captions


632	Fig. 1 Sampling stations for the incubation experiments in the Taiwan Strait and the
633	South China Sea during three cruises. Taiwan Strait cruise was conducted in July 2016
634	(red dots), South China Sea Basin cruise were conducted in September 2016 (blue dots)
635	and Western South China Sea cruise was conducted in September 2017 (black dots). The
636	arrows represent surface circulation fields in summer in the vicinity of Vietnam coast
637	based on Lan et al. (2006).

- 638 **Fig. 2** Temperature (°C, panel a), salinity (panel b), pH (panel c), total alkalinity (μmol
- 639 L^{-1} , panel d), and CO₂ (µmol kg⁻¹ SW, panel e) in surface seawater and mean PAR

640 intensity (W m⁻² s⁻¹, panel f) during the PP incubation experiments.

- Fig. 3 Chl *a* concentration (μ g L⁻¹) in the Taiwan Strait and the South China Sea during research cruises.
- **Fig. 4** Surface primary productivity (μ g C (μ g Chl *a*)⁻¹ d⁻¹) in the Taiwan Strait and the South China Sea during research cruises.
- **Fig. 5** Ocean acidification (pH decreases of 0.4 units) induced changes (%) of surface
- 646 primary productivity in the Taiwan Strait and the South China Sea. Red-yellow shading
- represents a positive effect on PP and blue-purple shading represents a negative effect.
- 648 Positive effect was found in coastal waters and estuary affected waters, such as the
- 649 Taiwan Strait, the Pearl River plume, Mekong River induced Rip current in West China-
- 650 Sea. Negative effect was found in surface of oligotrophic waters like SCS Basin.

Fig. 6 Ocean acidification (pH decreases of 0.4 units) induced changes (%) on surface primary productivity in the South China Sea as a function of salinity (a), PAR (b), ambient pH (ea), PAR (b), and salinity (c)nitrate plus nitrite concentration (d). The dotted lines represent 95% confidence intervals.

带格式的: New Roman			
带格式的: 悬挂缩进:	缩进: 2 字符	左侧:	0 厘米,

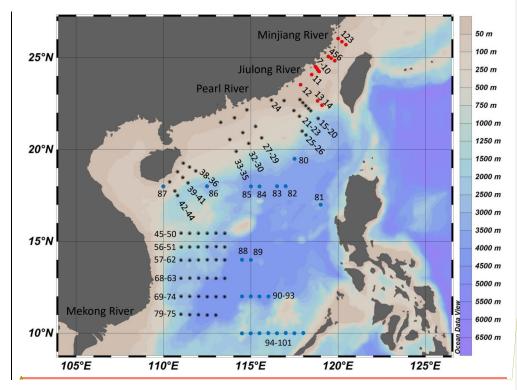


Fig. 1

带格式的: 字体:(默认)Times New Roman,小四

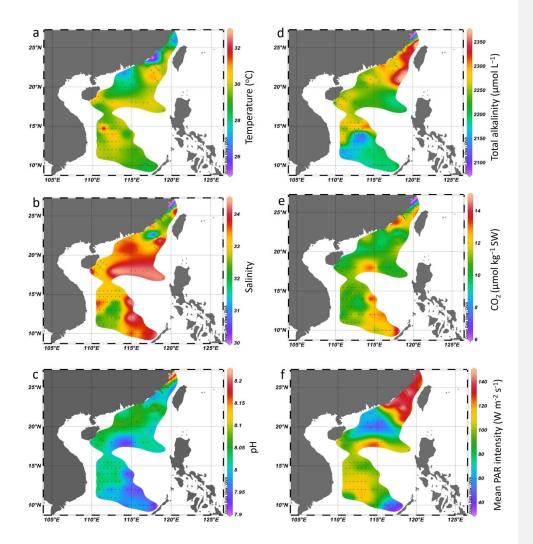


Fig. 2

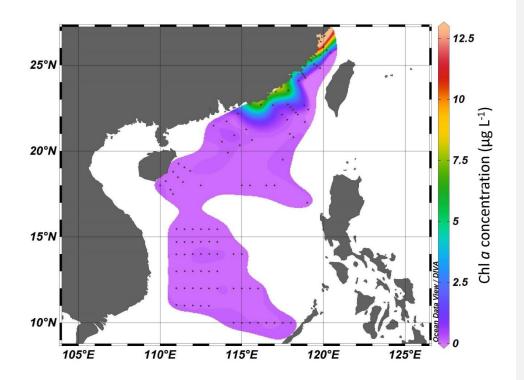


Fig. 3

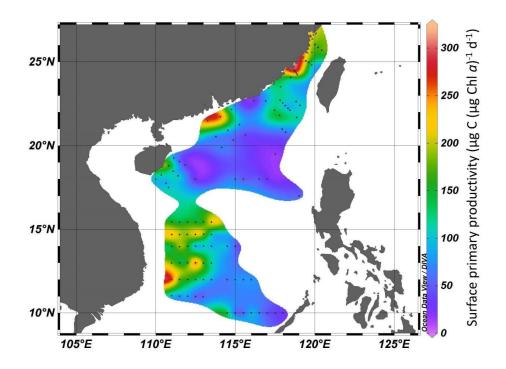


Fig. 4

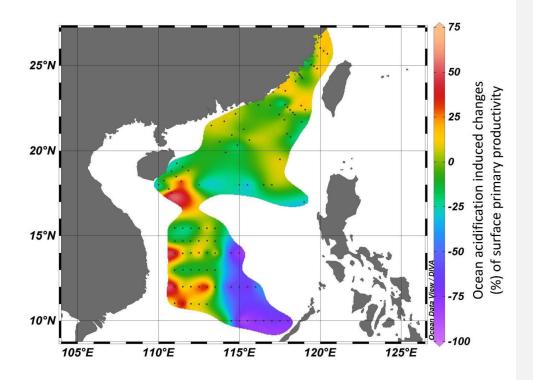
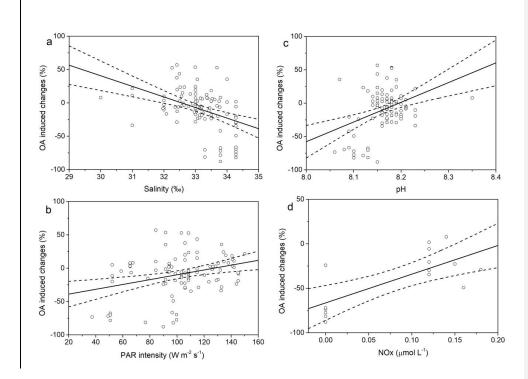
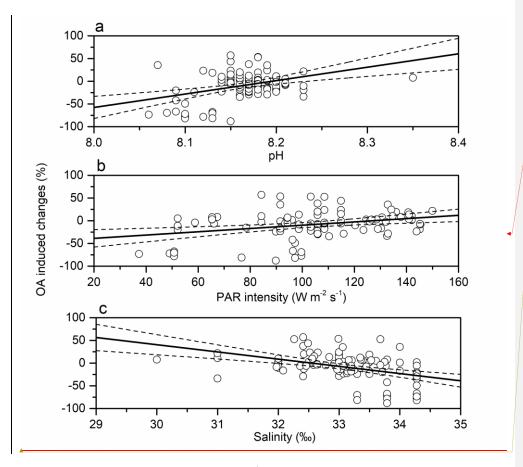




Fig. 5

带格式的: 字体:(默认)Times New Roman, 小四

带格式的:缩进:左侧: 0 厘米, 悬挂缩进: 2 字符

