1	Contrasting responses of phytoplankton productivity between coastal and offshore
2	surface waters in the Taiwan Strait and the South China Sea to short-term seawater
3	acidification
4	
5	Guang Gao ¹ , Tifeng Wang ¹ , Jiazhen Sun ¹ , Xin Zhao ¹ , Lifang Wang ¹ , Xianghui Guo ¹ ,
6	Kunshan Gao ^{1,2} *
7	¹ State Key Laboratory of Marine Environmental Science & College of Ocean and Earth
8	Sciences, Xiamen University, Xiamen 361005, China
9	² Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean
10	University, Lianyungang 222005, China
11	
12	*Corresponding author: ksgao@xmu.edu.cn
13	

14 Abstract

15	Seawater acidification (SA) has been documented to either inhibit or enhance or result in
16	no effect on marine primary productivity (PP). In order to examine effects of SA in
17	changing environments, we investigated the influences of SA (a decrease of 0.4 $\ensuremath{pH_{total}}$
18	units with corresponding CO ₂ concentrations ranged 22.0–39.7 μ M) on PP through
19	deck-incubation experiments at 101 stations in the Taiwan Strait and the South China Sea-
20	(SCS), including the continental shelf and slope, as well as deep-water basin. The daily
21	primary productivities in surface seawater under incident solar radiation ranged from 17-
22	306 µg C (µg Chl a) ⁻¹ d ⁻¹ , with the responses of PP to SA being region-dependent and the
23	SA-induced changes varying from -88% (inhibition) to 57% (enhancement). The
24	SA-treatment stimulated PP in surface waters of coastal, estuarine and shelf waters, but
25	suppressed it in the South China Sea basin. Such SA-induced changes in PP were
26	significantly related to in situ pH and solar radiation in surface seawater, but negatively
27	related to salinity changes. Our results indicate that phytoplankton cells are more
28	vulnerable to <u>a pH</u> drop in oligotrophic waters. Contrasting responses of phytoplankton
29	productivity in different areas suggest that SA impacts on marine primary productivity
30	are region-dependent and regulated by local environments.
31	Keywords: CO ₂ ; Taiwan Strait; seawater acidification; photosynthesis; primary
32	productivity; South China Sea
33	1 Introduction

34	The oceans have absorbed about one-third of anthropogenically released CO ₂ , which
35	increased dissolved CO ₂ and decreased pH of seawater (Gattuso et al., 2015), leading to
36	ocean acidification (OA). This process is ongoing and likely intensifying (IPCC, 2019).
37	OA has been shown to result in profound influences on marine ecosystems (see the
38	reviews and literature therein, Mostofa et al., 2016; Doney et al., 2020). Marine
39	photosynthetic organisms, which contribute about half of the global primary production,
40	are also being affected by OA (see the reviews and literatures therein, Riebesell et al.,
41	2018; Gao et al., 2019a). In addition to the slow change of ocean acidification, some
42	processes, such as freshwater inputs, upwelling, typhoon and eddies, can lead to
43	instantaneous CO ₂ rising and short-term changes in carbonate chemistry, termed-and
44	seawater acidification (SA) (Moreau et al., 2017; Yu et al., 2020). Since seawater-
45	acidificationSA occurs in many locations of ocean, it is important to understand the
46	responses of the key players of marine biological CO ₂ pump, the phytoplankton, to
47	seawater acidification.
48	Elevated CO ₂ is well recognized to lessen the dependence of algae and
49	cyanobacteria on energy-consuming CO2 concentrating mechanisms (CCMs) which
50	concentrate CO ₂ around Rubisco, the key site for photosynthetic carbon fixation (Raven
51	& Beardall, 2014 and references therein; Hennon et al., 2015). The energy freed up from
52	the down-regulated CCMs under increased CO ₂ concentrations can be applied to other
53	metabolic processes, resulting in a modest increase in algal growth (Wu et al., 2010;

54	Hopkinson et al., 2011; Xu et al., 2017). Accordingly, elevated CO ₂ availability could
55	potentially enhance marine primary productivity (Schippers et al., 2004). For instance,
56	across 18 stations in the central Atlantic Ocean primary productivity was stimulated by
57	15–19% under elevated dissolved CO ₂ concentrations up to 36 μ M (Hein and
58	Sand-Jensen 1997). On the other hand, neutral effects of seawater acidification (SA) on
59	growth rates of phytoplankton communities were reported in five of six CO_2
60	manipulation experiments in the coastal Pacific (Tortell et al., 2000). Furthermore,
61	simulated future SA reduced surface PP in pelagic surface waters of Northern SCS-South
62	China Sea and East China Sea (Gao et al., 2012). It seems that the impacts of SA on PP
63	could be region-dependent. The varying effects of SA may be related to the regulation of
64	other factors such as light intensity (Gao et al., 2012), temperature (Holding et al., 2015),
65	nutrients (Tremblay et al., 2006) and community structure (Dutkiewicz et al., 2015).
66	Taiwan Strait of the East China Sea, located between southeast Mainland China and
67	the Taiwan Island, is an important channel in transporting water and biogenic elements
68	between the East China Sea-(ECS) and the South China Sea-(SCS). Among the Chinese
69	coastal areas, the Taiwan Strait is distinguished by its unique location. In addition to
70	riverine inputs, it also receives nutrients from upwelling (Hong et al., 2011). Primary
71	productivity is much higher in coastal waters than that in basin zones due to increased
72	supply of nutrients through river runoff and upwelling (Chen, 2003; Cloern et al., 2014).
73	The South China Sea-(SCS), located from the equator to 23.8 $\%$, from 99.1 to 121.1 $\%$

74	and encompassing an area of about 3.5 $\times 10^6 \mbox{ km}^2$, is one of the largest marginal seas in
75	the world. As a marginal sea of the Western Pacific Ocean, it has a deep semi-closed
76	basin (with depths > 5000 m) and wide continental shelves, characterized by a tropical
77	and subtropical climate (Jin et al., 2016). Approximately 80% of ocean organic carbon is
78	buried in the Earth's continental shelves and therefore continental margins play an
79	essential role in the ocean carbon cycle (Hedges & Keil, 1995). Investigating how ocean-
80	acidificationSA affects primary productivity in the Taiwan Strait and the SCS-South
81	China Sea could help us to understand the contribution of marginal seas to carbon sink
82	under the future CO2-increased scenarios. Although small-scale studies on SA impacts
83	have been conducted in the ESC-East China Sea and the South China Sea SCS (Gao et al.,
84	2012, 2017), our understanding of how SA affects PP in marginal seas is still fragmentary
85	and superficial. In this study, we conducted three cruises in the Taiwan Strait and the
86	South China SeaSec, covering an area of 8.3×10^5 km ² , and aimed to provide in-depth
87	insight into how SA and/or episodic pCO ₂ rise affects PP in marginal seas with
88	comparisons to other types of waters.
89	2 Materials and Methods
90	2.1 Investigation areas
91	To study the impacts of projected SA (dropping by \sim 0.4 pH) by the end of this
92	century (RCP8.5) on marine primary productivity in different areas (Gattuso et al., 2015),
93	we carried out deck-based experiments during the 3 cruises supported by National

94	Natural Science Foundation of China (NSFC), which took place in the Taiwan Strait (Jul
95	14 th –25 th , 2016), the South China Sea basin (Sep 6–24 th , 2016), and the West South China
96	Sea (Sep 14 th to Oct 24 th , 2017), respectively. The experiments were conducted at 101
97	stations with coverage of 12 $^{\rm o}N{-}26$ $^{\rm o}N$ and 110 $^{\rm o}E{-}120$ $^{\rm o}E$ (Fig. 1). Investigation areas
98	include the continental shelf (0–200 m, 22 stations) and the slope (200–3400 m, 44
99	stations), and the vast deep-water basin (> 3400 m, 35 stations). In the continental shelf,
100	the areas with depth < 50 m are defined as coastal zones (9 stations).
101	2.2 Measurements of temperature and carbonate chemistry parameters
102	The temperature and salinity of surface seawater at each station were monitored with
103	an onboard CTD (Seabird, USA). $\ensuremath{pH_{\text{NBS}}}$ was measured with an Orion 2-Star pH meter
104	(Thermo scientific, USA) that was calibrated with standard National Bureau of Standards
105	(NBS) buffers (pH=4.01, 7.00, and 10.01 at 25.0 °C; Thermo Fisher Scientific Inc., USA).
106	After the calibration, the electrode of pH meter was kept in surface seawater for half an
107	hour and then the formal measurements were conducted. The analytical precision was
108	±0.001. Total alkalinity (TA) was determined using Gran titration on a 25-mL sample
109	with a TA analyzer (AS-ALK1, Apollo SciTech, USA) that was regularly calibrated with
110	certified reference materials supplied by A. G. Dickson at the Scripps Institution of
111	Oceanography (Gao et al., 2018a). The analytical precision was $\pm 2 \ \mu mol \ kg^{-1}$. CO ₂
112	concentration in seawater and the $pH_{Total}(pH_T)$ values was calculated by using CO2SYS
113	(Pierrot et al., 2006) with the input of pH _{NBS} and TA data.

114 2.3 Solar radiation

115	The incident solar radiation intensity during the cruises was recorded with an
116	Eldonet broadband filter radiometer (Eldonet XP, Real Time Computer, Germany). This
117	device has three channels for PAR (400-700 nm), UV-A (315-400 nm) and UV-B (280-
118	315 nm) irradiance, respectively, which records the means of solar radiations over each
119	minute. The instrument was fixed at the top layer of the ship to avoid shading.
120	2.4 Determination of primary productivity
121	Surface seawater (0–1m) was collected a 10 L acid-cleaned (1 M HCl) plastic bucket
122	and pre-filtered (200 μm mesh size) to remove large grazers. To prepare high CO_2 (HC)
123	seawater, CO ₂ -saturated seawater was added into pre-filtered seawater until a decrease of
124	~0.4 units in pH (corresponding CO ₂ concentrations being 22.0–39.7 μ M) was
125	approached (Gattuso et al., 2010). Seawater that was collected from the same location as
126	PP and filtered by cellulose acetate membrane (0.22 μ m) was used to make the
127	CO ₂ -saturated seawater, which was made by directly flushing with pure CO ₂ until pH
128	reached <u>values</u> around 4.50. When saturated- CO_2 seawater was added to the HC
129	treatment, equivalent filtered seawater (without flushing with CO ₂) was also added to the
130	<u>ambient CO_2 (AC)</u> treatment as a control. The ratios of added saturated-CO ₂ seawater to
131	incubation seawater were about 1:1000. Seawater Samples was were incubated within
132	half an hour after they were collected. Prepared AC and HC seawater was allocated into
133	50-mL quartz tubes in triplicate, inoculated with 5 μ Ci (0.185 MBq) NaH ¹⁴ CO ₃ (ICN

134	Radiochemicals, USA), and then incubated for 24 h (over a day-night cycle) under 100 %
135	incident solar irradiances in a water bath for temperature control by running through
136	surface seawater. Due to heating by the deck, the temperatures in the water bath were $0-2$
137	°C higher than in situ surface seawater temperatures. TA and pH of seawater before and
138	after 24h incubation were measured to monitor the changes of carbonate systems. After
139	the incubation, the cells were filtered onto GF/F filters (Whatman) and immediately
140	frozen at -20 °C for later analysis. In the laboratory, the frozen filters were transferred to
141	20 mL scintillation vials, thawed and exposed to HCl fumes for 12 h, and dried (55 $$ °C, 6
142	h) to expel non-fixed 14 C, as previously reported (Gao et al., 2017). Then 3 mL
143	scintillation cocktail (Perkin Elmer®, OptiPhase HiSafe) was added to each vial. After 2
144	h of reaction, the incorporated radioactivity was counted by a liquid scintillation counting
145	(LS 6500, Beckman Coulter, USA). The carbon fixation for 24 h incubation was taken as
146	chlorophyll (Chl) <i>a</i> -normalized daily primary productivity (PP, μ g C (μ g Chl <i>a</i>) ⁻¹) (Gao et
147	al., 2017). The changes (%) of PP induced by ocean acidificationSA were expressed as
148	$(PP_{HC}-PP_{AC})/PP_{AC} \times 100$, where PP_{HC} and PP_{AC} are the daily primary productivity under
149	HC and AC, respectively.
150	2.5 Chl <i>a</i> measurement
151	Pre-filtered (200 µm mesh size) surface seawater (500-2000 mL) at each station was

- 152 filtered onto GF/F filter (25 mm, Whatman) and then stored at -80 °C. After returning to
- 153 laboratory, phytoplankton cells on the GF/F filter were extracted overnight in absolute

104	inculation at 4 °C in darkness. After centifugation (5000 g for 10 min), the absorption
155	values of the supernatants were analyzed by a UV-VIS spectrophotometer (DU800,
156	Beckman, Fullerton, California, USA). The concentration of chlorophyll a (Chl a) was
157	calculated according to Porra (2002).
158	2.6 Data analysis
159	The data of environmental parameters were expressed in raw and the data of PP were
160	the means of triplicate incubations. Two-way analysis of variance (ANOVA) was used to
161	analyze the effects of SA and location on PP. Least significant difference (LSD) was used
162	to for post hoc analysis. Linear fitting analysis was conducted with Pearson correlation
163	analysis to assess the relationship between PP and environmental factors. A 95%
164	confidence level was used in all analyses.
165	3 Results
166	During the cruises, surface temperature ranged from 25.0 to 29.9 °C in the Taiwan
167	Strait and from 27.1 to 30.2 °C in the South China Sea (Fig. 2a). Surface salinity ranged
168	from 30.0 to 34.0 in the Taiwan Strait and from 31.0 to 34.3 in the South China Sea (Fig.
169	2b). The lower salinities were found in the estuaries of Minjiang and Jiulong Rivers as
170	well as Mekong River-induced Rip current. High salinities were found in the South China
171	SeaSCS basin. Surface pH_T changed between 7.99–8.20 in the Taiwan Strait with the
172	higher values in the estuary of Minjiang River (Fig. 2c). Compared to the Taiwan Strait,
173	the South China Sea had lower surface pH (7.91–8.08) with the lowest value near the

154 methanol at 4 °C in darkness. After centrifugation (5000 g for 10 min), the absorption

174	island in the Philippines. TA ranged from 2100 to 2359 μ mol kg ⁻¹ SW in the Taiwan
175	Strait and 2126 to 2369 μ mol kg ⁻¹ SW in the South China Sea (Fig. 2d). The lowest value
176	occurred in the estuary of Minjiang River. CO2 concentration in surface seawater changed
177	from 6.4–13.3 µ M-mol kg ⁻¹ SW in the Taiwan Strait, and 9.3–14.3 µ M-mol kg ⁻¹ SW in
178	the South China SeaSCS (Fig. 2e). It showed an opposite pattern to surface pH, with the
179	lowest value in the estuary of Minjiang River in the Taiwan Strait and highest value in
180	near the islands in the Philippines in the South China Sea. During the PP investigation
181	period, the daytime mean PAR intensity ranged from 126.6 to 145.2 W $m^{-2} s^{-1}$ in the
182	Taiwan Strait and 37.3 to 150.0 W m ⁻² s ⁻¹ in the <u>South China Sea</u> SCS (Fig. 2f).
183	The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 μ g L ⁻¹ in the Taiwan Strait (Fig.
184	3). The highest concentration occurred in the estuary of the Minjiang River. The
185	concentration of Chl <i>a</i> in the <u>South China Sea</u> SCS ranged from 0.037 to 7.43 μ g L ⁻¹ . The
186	highest concentration was found in the coastal areas of Guangdong province in China.
187	For both the Taiwan Strait and the South China SeaSCS, there were high Chl a
188	concentrations (> 1.0 μ g L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing
189	River, Jiulong River and Pearl River. On the contrary, Chl a concentrations in offshore
190	areas were lower than 0.2 μ g L ⁻¹ .
191	Surface primary productivity changed from 99 to $-302 \ \mu g \ C \ (\mu g \ Chl \ a)^{-1} \ d^{-1}$ in the
192	Taiwan Strait, and from $17-\underline{to}$ 306 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4).
193	High surface primary productivity (> 200 µg C (µg Chl a) ⁻¹ d ⁻¹) was found in the

estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of Vietnam. In basin zones, the surface primary productivity was usually lower than 100 μg 195 C (μ g Chl *a*)⁻¹ d⁻¹. 196

197	A series of onboard CO ₂ -enrich experiments in the investigated regions were
198	conducted during three cruises. In the high CO2HC treatments, pHtotal had a decreased of-
199	by 0.34–0.43 units, while pCO ₂ and CO ₂ had an increase of increased by 676–982 μ atm
200	and 17–25 µM-mol kg ⁻¹ SW, respectively (Table S1). Carbonate chemistry parameters
201	after 24 h of incubation were stable ($\bigtriangleup pH < 0.06, \ \bigtriangleup TA < 53 \ \mu mol \ kg^{-1} \ SW)$, indicating
202	the successful manipulation (Table S1). It was observed that instantaneous effects of
203	elevated pCO_2 on primary productivity of surface phytoplankton community in all
204	investigated regions ranged from -88% (inhibition) to 57% (promotion), revealing
205	significant regional differences among continental shelf, slope and deep-water basin
206	(ANOVA, $F_{(\underline{1002}, \underline{40498})} = 4\underline{3}.\underline{103747}, p \leq \underline{=}0.\underline{001027}$, Fig. 5). Among 101 stations, 70
207	stations showed insignificant SA effects. SA increased PP at 6 stations and reduced PP at
208	25 stations. Positive effects of SA on surface primary productivity were observed in the
209	Taiwan Strait and the western South China SeaSCS (Fig. 5, red-yellow shading areas),
210	with the maximal enhancement of 57% in the station approaching the Mekong River
211	plume (LSD, $p < 0.001$). Reductions in PP induced by the elevated CO ₂ were mainly
212	found in the central <u>South China Sea</u> SCS basin within the latitudes of 10 °N to 14 °N and
213	the longitudes of 114.5 $^{\circ}$ E to 118 $^{\circ}$ E (Fig. 5, blue-purple shading areas), with inhibition

214	rates ranging from 24% to 88% (Fig. 5, LSD, $p < 0.05$). These results showed a
215	region-related effect of SA on photosynthetic carbon fixation of surface phytoplankton
216	assemblages. Overall, the elevated pCO_2 had neutral or positive effects on primary
217	productivity in the continental shelf and slope regions, while having adverse effects in the
218	deep-water basin.
219	By analyzing the correlations between SA-induced PP changes and regional
220	environmental parameters (Table S2), we found that SA-induced changes in
221	phytoplankton primary productivity was significantly positively related with in situ pH (p
222	< 0.001, r = 0.379), and PAR density ($p = 0.002, r = 0.311$) (Fig. 6). On the other hand,
223	the influence induced by SA was negatively related to salinity that ranged from 30.00 to
224	34.28 ($p < 0.001$, $r = -0.418$).
225	4 Discussion
226	In the present study, we found that the elevated pCO_2 and associated pH drop
227	increased or did not affect PP in the continental shelf and slope waters but reduced it in
228	basin waters. Our results suggested that the enhanced effects of the SA treatment on
229	photosynthetic carbon fixation depend on regions of different physicochemical conditions,
230	including pH, light intensity and salinity. In addition, coastal diatoms appear to benefit
231	more from SA than pelagic ones (Li et al., 2016). Therefore, community structure
232	differences might also be responsible for the differences of the short-term high
233	CO ₂ -induced acidification between coastal and basin waters.

234	SA is deemed to have two kinds of effects at least (Xu et al., 2017; Shi et al., 2019).
235	The first one is the enrichment of CO_2 , which is usually beneficial for photosynthetic
236	carbon fixation and growth of algae because insufficient ambient CO ₂ limits algal
237	photosynthesis (Hein & Sand-Jensen, 1997; Bach & Taucher, 2019). The other effect is
238	the decreased pH which could be harmful because it disturbs the acid-base balance
239	between extracellular and intracellular environments. For instance, the decreased pH
240	projected for future SA was shown to reduce the growth of the diazotroph Trichodesmium
241	(Hong et al., 2017), decrease PSII activity by reducing the removal rate of PsbD (D2)
242	(Gao et al., 2018b) and increase mitochondrial and photo-respirations in diatoms and
243	phytoplankton assemblages (Yang and Gao 2012, Jin et al., 2015). In addition, SA could
244	reduce the Rubisco transcription of diatoms, which also contributed to the decreased
245	growth (Endo et al., 2015). Therefore, the net impact of SA depends on the balance
246	between its positive and negative effects, leading to enhanced, inhibited or neutral
247	influences, as reported in diatoms (Gao et al., 2012, Li et al., 2021) and phytoplankton
248	assemblages in the Arctic and subarctic shelf seas (Hoppe et al., 2018), the North Sea
249	(Eberlein et al., 2017) and the South China Sea (Wu and Gao 2010, Gao et al., 2012). The
250	balance of positive and negative effects of SA can be regulated by other factors, including
251	pH, light intensity, salinity, population structure, etc. (Gao et al., 2019a, b; Xie et al.,
252	2022).

253 In the present study, SA increased or did not affect PP in coastal waters but reduced it

254	in offshore waters, which is significantly related to pH, light intensity and salinity (Fig. 6).
255	The effect of SA changed from negative to positive with the increase of local pH. The
256	higher pH occurred in coastal zones which may be caused by higher biomass of
257	phytoplankton (Fig. 3). Higher pH caused by intensive photosynthesis of phytoplankton
258	is companied with decreased CO ₂ levels. In this case, CO ₂ is more limited limiting for
259	photosynthesis of phytoplankton compared to lower pH. Therefore, SA could stimulate
260	primary productivity via supplying more available CO_2 (Hurd et al., 2019). On the other
261	hand, lower pH occurred in deep-water basin. Lower pH represents higher CO_2
262	availability. CO_2 is not limited or less limited in this case. Therefore, more CO_2 brought
263	by SA may not benefit photosynthesis of phytoplankton. Instead, decreased pH
264	accompanied by SA may inhibit photosynthesis or growth of phytoplankton, which is
265	found in cyanobacteria (Hong et al., 2017). Furthermore, the negative effects of SA are
266	particularly significant when nutrient is limited (Li et al., 2018). The nutrient levels in the
267	basin are usually lower than on the shelf (Yuan et al., 2011; Lu et al., 2020; Du et al.,
268	2021), which may exacerbate the negative effects of ΘA - <u>SA</u> in the basin zone.
269	The negative effects of SA disappeared with the increase of ing light intensity in this
270	study. This results in inconsistent with Gao et al (2012)' study, in which SA increased
271	photosynthetic carbon fixation of three diatoms (Phaeodactylum tricornutum,
272	Thalassiosira pseudonana and Skeletonema costatum) under lower light intensities but
273	increased decreased it under higher light intensities. The divergent findings may be due to

274	different population structure that varies in different areas. Coastal zones where nutrients
275	are relatively sufficient usually have abundant diatoms while picophytoplanktons mainly
276	Prochlorococcus and Synechococcus, dominate oligotrophic areas (Xiao et al., 2018,
277	Zhong et al., 2020). In this study, most investigated areas are oligotrophic and thus the
278	response of local phytoplankton to the combination of light intensity and SA may be
279	different from diatoms. Meanwhile, the weak correlation ($r = 0.311$) between light
280	intensity and SA effect suggests the deviation from linear relationship in the context of
281	multiple variables needs to be further illuminated in future studies. It is worth noting that
282	the samples were not mixed down in the water bath in the present study and exposed
283	tothe 100% incident solar irradiances-may have high light stress on cells. Lower incident
284	solar irradiances or some devices can be used to simulate seawater mixing in future
285	studies. <u>A Negative negative</u> correlation between SA-induced changes of PP and salinity
286	was found in this study. The decrease of salinity (from 35 to 30) has been shown to
287	alleviate the negative effect of SA on photosynthetic carbon fixation of a
288	coccolithorphorid Emiliania huxleyi (Xu et al., 2020) although the potential mechanisms
289	remain unknown. On the other hand, the change of salinity (from 6 to 3) did not affect
290	effective quantum yield of microplanktonic community in the Baltic Sea grown under
291	different CO_2 levels (Wulff et al., 2018). In this study, we presume that the negative
292	relationship between salinity and SA effects seems to be an autocorrelation between
293	salinity and in situ pH (Fig. S1) may be mainly related to local pH because lower salinity

294	occurred in coastal waters where seawater pH was higher while the basin zone usually
295	had higher salinities and lower pH.
296	The specific environmental conditions have profound effects on shaping diverse
297	dominant phytoplankton groups (Boyd et al., 2010). Larger eukaryotic groups (especially
298	diatoms) usually dominate the complex coastal regions, while picophytoplanktons
299	(Prochlorococcus and Synechococcus), characterizing with more efficient nutrients
300	uptake, dominate the relatively stable offshore waters (Dutkiewicz et al., 2015). In
301	summer and early autumn, previous investigations demonstrated that diatoms dominated
302	in the northern waters and the Taiwan Strait (coastal and shelf regions) with the high
303	abundances of phytoplankton, which are is consistent with our Chl a data;
304	Prochlorococcus and Synechococcus dominated in the South China SeaSCS basin and the
305	north of South China SeaSCS (slope and basin regions) (Xiao et al., 2018, Zhong et al.,
306	2020). In addition, it has been reported that larger cells benefit more from SA because a
307	thicker diffusion layer around the cells limits the transport of CO ₂ (Feng et al., 2010; Wu
308	et al., 2014). In contrast, a thinner diffusion layer and higher surface to volume ratio in
309	smaller phytoplankton cells can make them easier to transport CO ₂ near the cell surface
310	and within the cells, and therefore picophytoplankton species are less CO2-limited (Bao
311	and Gao, 2021). Therefore, different community structures between coastal and basin
312	areas could also be responsible for the enhanced and inhibitory effects of SA. It is worth
313	noting that seasonality may also lead to the differential effects of SA on primary

314	productivity since the Taiwan Strait cruise was conducted in July and the cruises of the	
315	South China Sea basin and the West South China Sea were conducted in September. The	
316	SST and solar PAR intensity of the Taiwan Strait in July was 2–3 ^{o}C and 22 ± 22 W m^{-2}	
317	s ⁻¹ higher than that in September (Zhang et al., 2008, 2009; Table S3). Although the	
318	effects of SA were not related to temperature as shown in this study (Table S2), the higher	
319	solar radiation in July may contribute to the positive effect of SA on primary productivity.	
320	In addition, species succession of phytoplankton with season may also affect the response	
321	to SA (Xiao et al., 2018).	
322	5 Conclusions	
323	By investigating the impacts of the elevated pCO_2 on PP in the Taiwan Strait and the	
324	South China SeaSCS, we demonstrated that such short SA-treatments induced changes in	
325	PP were mainly related to pH, light intensity and salinity based on Pearson correlation	
326	coefficients, supporting the hypothesis that negative impacts of SA on PP increase from	
327	coastal to basin waters (Gao et al., 2019a). In addition, phytoplankton community	
328	structures may also modulate SA induced changes In view of ocean climate changes,	
329	strengthened stratification due to global warming would reduce the upward transports of	
330	nutrients and thus marine primary productivity. The negative effect of SA in basin zones	
331	would may further reduce primary productivity. Meanwhile, PP in some coastal waters	
332	would-may be increased by SA	

Data availability. All data are included in the article or Supplement. 333

- Author contributions. KG and TW developed the original idea and designed research.
- 335 TW and JS carried out fieldwork. GG provided statistical analyses and prepared figures.
- 336 GG, KG, and XZ wrote the manuscript. All contributed to revising the paper.
- 337 *Competing interests.* The contact author has declared that neither they nor their
- 338 co-authors have any competing interests.
- 339 *Disclaimer*. Publisher's note: Copernicus Publications remains neutral with regard to
- 340 jurisdictional claims in published maps and institutional affiliations.
- 341 Acknowledgements. This work was supported by the National Natural Science
- 342 Foundation of China (41720104005, 41890803, 41721005, and 42076154) and the
- 343 Fundamental Research Funds for the Central Universities (20720200111). The authors
- are grateful to the students He Li, Xiaowen Jiang and Shanying Tong, and the laboratory
- technicians Xianglan Zeng and Wenyan Zhao. We appreciate the NFSC Shiptime Sharing
- 346 Project (project number: 41849901) for supporting the Taiwan Strait cruise
- 347 (NORC2016-04). We appreciate the chief scientists Yihua Cai, Huabin Mao and Chen Shi
- and the R/V Yanping II, Shiyan I and Shiyan III for leading and conducting the cruises.
- 349 **References**
- Bach, L. T., and Taucher, J.: CO₂ effects on diatoms: a synthesis of more than a decade of
- ocean acidification experiments with natural communities, Ocean Sci., 15,
 1159-1175, 2019.
- Bao, N., and Gao, K.: Interactive effects of elevated CO₂ concentration and light on the

354 picophytoplankton *Synechococcus*, Front. Mar. Sci., 8, 1-7, 2021.

355	Boyd, P. W	., Strzepek, R., I	Fu, F. X.,	and H	utchi	ns, I	D. A	.: Enviro	onmental	control of op	pen-
356	ocean	phytoplankton	groups:	Now	and	in	the	future,	Limnol.	Oceanogr,	55,
357	1353-	1376, 2010.									

- Chen, C. T. A.: Rare northward flow in the Taiwan Strait in winter: A note, Cont. Shelf
 Res., 23, 387-391, 2003.
- Cloern, J. E., Foster, S.Q. and Kleckner, A. E.: Phytoplankton primary production in the
- 361 world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477-2501, 2014.
- Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The impacts of ocean
- acidification on marine ecosystems and reliant human communities, Annu. Rev. Env.
 Resour., 45, 83-112, 2020.
- 365 Du, C., He, R., Liu, Z., Huang, T., Wang, L., Yuan, Z., Xu, Y., Wang, Z. and Dai, M.:
- 366 Climatology of nutrient distributions in the South China Sea based on a large data
- set derived from a new algorithm. Prog. Oceanogr., 195, 102586, 2021.
- 368 Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., and
- 369 Berman-Frank, I.: Impact of ocean acidification on the structure of future
- 370 phytoplankton communities, Nat. Clim. Change, 5, 1002-1006, 2015.
- 371 Eberlein, T., Wohlrab, S., Rost, B., John, U., Bach, L. T., Riebesell, U., and Van de Waal,
- 372 D. B.: Effects of ocean acidification on primary production in a coastal North Sea
- 373 phytoplankton community, Plos One, 12, 1-15, 2017.

374	Endo, H., Sugie, K., Yoshimura, T., and Suzuki, K.: Effects of CO_2 and iron availability
375	on rbcL gene expression in Bering Sea diatoms, Biogeosciences, 12, 2247-2259,
376	2015.

377	Feng, Y., Hare, C. E., Rose, J. M., Handy, S. M., DiTullio, G. R., Lee, P. A., Smith, W. O.,
378	Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar, R. B., Long, M. C., Sohst, B.,
379	Lohan, M., and Hutchins, D. A.: Interactive effects of iron, irradiance and CO ₂ on
380	Ross Sea phytoplankton, Deep-Sea Res. PT. I, 57, 368-383, 2010.
381	Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J.,
382	Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at the exterior surface
383	of plankton with ocean acidification, Nat. Clim. Change, 2, 510-513, 2012.
384	Gao, G., Xu, Z. G., Shi, Q., and Wu, H. Y.: Increased CO ₂ exacerbates the stress of
385	ultraviolet radiation on photosystem II function in the diatom Thalassiosira

- 386 *weissflogii*, Environ. Exp. Bot., 156, 96-105, 2018b.
- Gao, G., Jin, P., Liu, N., Li, F. T., Tong, S. Y., Hutchins, D. A., and Gao, K. S.: The
 acclimation process of phytoplankton biomass, carbon fixation and respiration to the
- combined effects of elevated temperature and pCO_2 in the northern South China Sea,
- 390 Mar. Pollut. Bull., 118, 213-220, 2017.
- 391 Gao, G., Qu, L., Xu, T., Burgess, J.G., Li, X. and Xu, J.: Future CO₂-induced ocean
- acidification enhances resilience of a green tide alga to low-salinity stress. ICES J.
- 393 Mar. Sci., 76, 2437-2445, 2019b.

394	Gao,	G.,	Xia,	J. I	₹., `	Yu, J	. I	L., Fan,	J.	L.	, and Ze	eng,	X.	P.:	Regulatio	n of	inorg	ganic	carbon
		,						.,,			,	(7)						2	

- 395 acquisition in a red tide alga (*Skeletonema costatum*): The importance of phosphorus
- 396 availability, Biogeosciences, 15, 4871-4882, 2018a.
- Gao, K. S., Beardall, J., Häder, D. P., Hall-Spencer, J. M., Gao, G., and Hutchins, D. A.:
 Effects of ocean acidification on marine photosynthetic organisms under the
 concurrent influences of warming, UV radiation, and deoxygenation, Front. Mar.

400 Sci., 6, 1-18, 2019a.

- 401 Gao, K. S., Xu, J. T., Gao, G., Li, Y. H., Hutchins, D. A., Huang, B. Q., Wang, L., Zheng,
- 402 Y., Jin, P., Cai, X. N., Hader, D. P., Li, W., Xu, K., Liu, N. N., and Riebesell, U.:
- Rising CO₂ and increased light exposure synergistically reduce marine primary
 productivity, Nat. Clim. Change, 2, 519-523, 2012.
- 405 Gattuso, J. P., Gao, K. S., Lee, K., Rost, B., and Schulz, K. G.: Approaches and tools to
- 406 manipulate the carbonate chemistry, pp 41-52. Guide to best practices for ocean
- 407 acidification research and data reporting, edited by: Riebesell, U., Fabry, V. J.,
- 408 Hansson, L., and Gattuso J.-P., Luxembourg: Publications Office of the European
 409 Union, 2010.
- 410 Gattuso, J. P., Magnan, A., Bill é, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand,
- 411 D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Portner,
- 412 H. O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette,
- 413 J., Sumaila, U. R., Treyer, S., and Turley, C.: Contrasting futures for ocean and

414	society from different anthropogenic CO_2 emissions scenarios, Science, 349,
415	aac4722, 2015.
416	Geider, R. J., La Roche, J., Greene, R. M., and Olaizola, M.: Response of the
417	photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to
418	nitrate, phosphate, or iron starvation, J. Phycol., 29, 755-766, 1993.
419	Häler, D. P., Williamson, C. E., Wängberg, S. A., Rautio, M., Rose, K. C., Gao, K. S.,
420	Helbling, E. W., Sinha, R. P., and Worrest, R.: Effects of UV radiation on aquatic
421	ecosystems and interactions with other environmental factors, Photoch. Photobio.
422	Sci., 14, 108-126, 2015.
423	Hedges, J. I., and Keil, R. G.: Sedimentary organic matter preservation: an assessment
424	and speculative synthesis, Mar. Chem., 49, 81-115, 1995.
425	Hein, M., and Sand-Jensen, K.: CO ₂ increases oceanic primary production, Nature, 388,
426	526-527, 1997.
427	Hennon, G. M. M., Ashworth, J., Groussman, R. D., Berthiaume, C., Morales, R. L.,
428	Baliga, N. S., Orellana, M. V., and Armbrust, E. V.: Diatom acclimation to elevated
429	CO ₂ via cAMP signalling and coordinated gene expression, Nat. Clim. Change, 5,
430	761-765, 2015.
431	Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan,
432	A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K.
433	J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R.:

434	High frequency dynamics of ocean pH: A multi ecosystem comparison, Plos One, 6,
435	1-11, 2011.

436	Holding, J. M., Duarte, C. M., Sanz-Mart n, M., Mesa, E., Arrieta, J. M., Chierici, M.,
437	Hendriks, I. E., Garcia-Corral, L. S., Regaudie-de-Gioux, A., Delgado, A., Reigstad,
438	M., Wassmann, P., and Agusti, S.: Temperature dependence of CO2-enhanced
439	primary production in the European Arctic Ocean, Nat. Clim. Change, 5, 1079-1082,
440	2015.
441	Hong, H. S., Chai, F., Zhang, C. Y., Huang, B. Q., Jiang, Y. W., and Hu, J. Y.: An
442	overview of physical and biogeochemical processes and ecosystem dynamics in the
443	Taiwan Strait, Cont. Shelf Res., 31, S3-S12, 2011.
444	Hong, H. Z., Shen, R., Zhang, F. T., Wen, Z. Z., Chang, S. W., Lin, W. F., Kranz, S. A.,
445	Luo, Y. W., Kao, S. J., Morel, F. M. M. and Shi, D. L.: The complex effects of ocean
446	acidification on the prominent N2-fixing cyanobacterium Trichodesmium. Science,
447	356, 527-530, 2017.
448	Hopkinson, B. M., Dupont, C. L., Allen, A. E., and Morel, F. M.: Efficiency of the
449	CO ₂ -concentrating mechanism of diatoms, P. Natl. Acad. Sci. USA., 108, 3830-3837,

450 2011.

- 451 Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D., and Rost, B.: Compensation
- of ocean acidification effects in Arctic phytoplankton assemblages. Nat. Clim.
 Change, 8, 529-533, 2018.

454	Hurd, C.	.L., B	eardall, J	., '	Comeau,	S.,	Cornwall,	C.E.,	Havenhand,	J.N.,	Munday,	P.L.,
-----	----------	--------	------------	------	---------	-----	-----------	-------	------------	-------	---------	-------

- 455 Parker, L.M., Raven, J.A. and McGraw, C.M.: Ocean acidification as a multiple
- driver: how interactions between changing seawater carbonate parameters affect marine life. Mari. Freshwater Res., 71, 263-274, 2019.
- 458 IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate
- 459 [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E.
- 460 Poloczanska, K. Mintenbeck, A. Alegr á, M. Nicolai, A. Okem, J. Petzold, B. Rama,
 461 N.M. Weyer (eds.)]. In press.
- 462 Jin, P., Gao, G., Liu, X., Li, F. T., Tong, S. Y., Ding, J. C., Zhong, Z. H., Liu, N. N., and
- Gao, K. S.: Contrasting photophysiological characteristics of phytoplankton
 assemblages in the Northern South China Sea, Plos One, 11, 1-16, 2016.
- Jin, P., Wang, T. F., Liu, N. N., Dupont, S., Beardall, J., Boyd, P. W., Riebesell, U., and
 Gao, K. S.: Ocean acidification increases the accumulation of toxic phenolic
- 467 compounds across trophic levels, Nat. Commun., 6, 1-6, 2015.

Johnson, M. D., and Carpenter, R. C.: Nitrogen enrichment offsets direct negative effects
 of ocean acidification on a reef-building crustose coralline alga, Biol. Letters, 14,
 1 5, 2018.

- 471 Li, F. T., Wu, Y. P., Hutchins, D. A., Fu, F. X., and Gao, K. S.: Physiological responses of
- 472 coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry
- 473 under two CO_2 concentrations, Biogeosciences, 13, 6247-6259, 2016.

474	Li, F. T., Beardall, J., and Gao, K. S.: Diatom performance in a future ocean: interactions
475	between nitrogen limitation, temperature, and CO2-induced seawater acidification,
476	ICES J. Mar. Sci., 75, 1451-1464, 2018.
477	Li, G., Gao, K. S., Yuan, D. X., Zheng, Y., and Yang, G. Y.: Relationship of
478	photosynthetic carbon fixation with environmental changes in the Jiulong River
479	estuary of the South China Sea, with special reference to the effects of solar UV
480	radiation, Mar. Pollut. Bull., 62, 1852–1858, 2011.
481	Li, H. X., Xu, T. P., Ma, J., Li, F. T., and Xu, J. T.: Physiological responses of
482	Skeletonema costatum to the interactions of seawater acidification and the
483	combination of photoperiod and temperature, Biogeosciences, 18, 1439-1449, 2021.
484	Li, W., Gao, K., and Beardall, J.: Nitrate limitation and ocean acidification interact with
485	UV B to reduce photosynthetic performance in the diatom Phaeodactylum
486	tricornutum, Biogeosciences, 12, 2383-2393, 2015.
487	Lu, Z., Gan, J., Dai, M., Zhao, X. and Hui, C. R.: Nutrient transport and dynamics in the
488	South China Sea: A modeling study. Prog. Oceanogr., 183, 102308, 2020.
489	McNicholl, C., Koch, M. S., and Hofmann, L. C.: Photosynthesis and light-dependent
490	proton pumps increase boundary layer pH in tropical macroalgae: A proposed
491	mechanism to sustain calcification under ocean acidification, J. Exp. Mar. Biol.
492	Ecol., 521, 1–12, 2019.
493	Moreau, S., Penna, A. D., Llort, J., Patel, R., Langlais, C., Boyd, P. W., Matear, R. J.,

494	Phillips, H. E., Trull, T. W., Tilbrook, B. and Lenton, A.: Eddy-induced carbon
495	transport across the Antarctic Circumpolar Current. Global Biogeochem. Cy., 31,
496	1368-1386, 2017

- Mostofa, K.M., Liu, C.Q., Zhai, W., Minella, M., Vione, D., Gao, K., Minakata, D.,
 Arakaki, T., Yoshioka, T., Hayakawa, K. and Konohira, E.: Reviews and Syntheses:
- 499 Ocean acidification and its potential impacts on marine ecosystems, Biogeosciences,

500 13, 1767-1786, 2016.

- Pierrot, D., Wallace, D.W. R., and Lewis, E.: MS Excel program developed for CO₂
 system calculations. ORNL/CDIAC-105a, Carbon Dioxide Information Analysis
 Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,
- 504 Tennessee, USA., 2006.
- Porra, R. J.: The chequered history of the development and use of simultaneous equations
 for the accurate determination of chlorophylls a and b, Photosynth. Res., 73,
 149-156, 2002.
- Raven, J. A., and Beardall, J.: CO₂ concentrating mechanisms and environmental change,
 Aquat. Bot., 118, 24-37, 2014.
- Schippers, P., Lürling, M., and Scheffer, M.: Increase of atmospheric CO₂ promotes
 phytoplankton productivity, Ecol. Lett., 7, 446-451, 2004.
- 512 Shi, D. L., Hong, H. Z., Su, X., Liao, L. R., Chang, S. W., and Lin, W. F.: The
- 513 physiological response of marine diatoms to ocean acidification: Differential roles of

514	seawater pCO_2 and pH, J. Phycol., 55, 521-533, 2019.
515	Taylor, A. R., Brownlee, C., and Wheeler, G. L.: Proton channels in algae: Reasons to be
516	excited, Trends Plant Sci., 17, 675-684, 2012.
517	Tortell, P. D., Rau, G. H., and Morel, F. M. M.: Inorganic carbon acquisition in coastal

- 518 Pacific phytoplankton communities, Limnol. Oceanogr., 45, 1485-1500, 2000.
- 519 Tremblay, J. E., Michel, C., Hobson, K. A., Gosselin, M., and Price, N. M.: Bloom
- dynamics in early opening waters of the Arctic Ocean. Limnol. Oceanogr., 51,
 900-912, 2006.
- Riebesell, U., Aberle-Malzahn, N., Achterberg, E. P., Algueró-Muñiz, M.,
 Alvarez-Fernandez, S., Ar śtegui, J., Bach, L. T., Boersma, M., Boxhammer, T.,
 Guan, W. C., Haunost, M., Horn, H. G., Loscher, C. R., Ludwig, A., Spisla, C.,
 Sswat, M., Stange, P., and Taucher, J.: Toxic algal bloom induced by ocean
 acidification disrupts the pelagic food web, Nat. Clim. Change, 8, 1082-1086, 2018.
 Wu, Y., Gao, K., and Riebesell, U.: CO₂-induced seawater acidification affects
 physiological performance of the marine diatom *Phaeodactylum tricornutum*,
- 529 Biogeosciences, 7, 2915-2923, 2010.
- Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., and Finkel, Z. V.: Ocean
 acidification enhances the growth rate of larger diatoms. Limnol. Oceanogr., 59,
 1027-1034, 2014.
- 533 Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S.,

534	Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination:
535	Climate-driven change in a Baltic Sea summer microplanktonic community, Mar.
536	Biol., 165, 1-15, 2018.
537	Wu, Y. P., and Gao, K. S.: Combined effects of solar UV radiation and CO2-induced
538	seawater acidification on photosynthetic carbon fixation of phytoplankton
539	assemblages in the South China Sea. Chinese Sci. Bull., 55, 3680-3686, 2010.
540	Xiao, W. P., Wang, L., Laws, E., Xie, Y. Y., Chen, J. X., Liu, X., Chen, B. Z., and Huang,
541	B. Q.: Realized niches explain spatial gradients in seasonal abundance of
542	phytoplankton groups in the South China Sea, Prog. Oceanogr., 162, 223-239, 2018.
543	Xie, S., Lin, F., Zhao, X. and Gao, G.: Enhanced lipid productivity coupled with carbon
544	and nitrogen removal of the diatom Skeletonema costatum cultured in the high CO ₂
545	level. Algal Res. 61, 102589, 2022.
546	Xu, J. K., Sun, J. Z., Beardall, J., and Gao, K. S.: Lower salinity leads to improved
547	physiological performance in the coccolithophorid Emiliania huxleyi, which partly
548	ameliorates the effects of ocean acidification, Front. Mar. Sci., 7, 1-18, 2020.
549	Xu, Z. G., Gao, G., Xu, J. T., and Wu, H. Y.: Physiological response of a golden tide alga
550	(Sargassum muticum) to the interaction of ocean acidification and phosphorus
551	enrichment, Biogeosciences, 14, 671-681, 2017.
552	Yang, G. Y., and Gao, K. S.: Physiological responses of the marine diatom Thalassiosira
553	pseudonana to increased pCO_2 and seawater acidity, Mar. Environ. Res., 79,

554 142-151, 2012.

555	Yoshimura, T., Nishioka, J., Suzuki, K., Hattori, H., Kiyosawa, H. and Watanabe, Y. W.:
556	Impacts of elevated CO2-on organic carbon dynamics in nutrient depleted Okhotsk
557	Sea surface waters. J. Exp. Mar. Biol. Ecol., 395, 191-198, 2010.
558	Yu, P., Wang, Z. A., Churchill, J., Zheng, M., Pan, J., Bai, Y., and Liang, C.: Effects of
559	typhoons on surface seawater pCO_2 and air-sea CO_2 fluxes in the northern South
560	China Sea. J. Geophys. Res-Oceans, 125, p.e2020JC016258, 2020.
561	Yuan, X., He, L., Yin, K., Pan, G., and Harrison, P. J.: Bacterial distribution and nutrient
562	limitation in relation to different water masses in the coastal and northwestern South
563	China Sea in late summer. Cont. Shelf Res., 31, 1214-1223, 2011.
564	Zhang, C., Zhang, X., Zeng, Y., Pan, W., Lin J.: Retrieval and validation of sea surface
565	temperature in the Taiwan Strait using MODIS data. Acta Oceanol. Sin., 30, 153-160,
566	<u>2008.</u>
567	Zhang, C., Ren, Y., Cai, Y., Zeng, Y., and Zhang, X.: Study on local monitoring model for
568	SST in Taiwan strait based on MODIS data. J. Trop. Meteorol., 25, 73-81, 2009.
569	Zhong, Y. P., Liu, X., Xiao, W. P., Laws, E. A., Chen, J. X., Wang, L., Liu, S. G., Zhang,
570	F., and Huang, B. Q.: Phytoplankton community patterns in the Taiwan Strait match
571	the characteristics of their realized niches, Prog. Oceanogr., 186, 1-15, 2020.

572	Figure	captions
-----	--------	----------

573	Fig. 1 Sampling stations for the incubation experiments in the Taiwan Strait and the	
574	South China Sea during three cruises. Taiwan Strait cruise was conducted in July 2016	
575	(red dots), South China Sea Basin cruise were conducted in September 2016 (blue dots)	
576	and Western South China Sea cruise was conducted in September 2017 (black dots).	
577	Fig. 2 Temperature (°C, panel a), salinity (panel b), pH _{total} (panel c), total alkalinity (µmol	/
578	$\underline{\text{Lkg}}^{-1}$ <u>SW</u> , panel d), and CO ₂ (µmol kg ⁻¹ SW, panel e) in surface seawater and mean PAR	
579	intensity (W m ⁻² s ⁻¹ , panel f) during the PP incubation experiments.	
580	Fig. 3 Chl <i>a</i> concentration (μ g L ⁻¹) in the Taiwan Strait and the South China Sea during	
581	research cruises.	
582	Fig. 4 Surface primary productivity ($\mu g C (\mu g Chl a)^{-1} d^{-1}$) in the Taiwan Strait and the	
583	South China Sea during research cruises.	
584	Fig. 5 Ocean-Seawater acidification (pH decreases of 0.4 units) induced changes (%) of	
585	surface primary productivity in the Taiwan Strait and the South China Sea. Red-yellow	
586	shading represents a positive effect on PP and blue-purple shading represents a negative	

带格式的: 下标

587 effect.

Fig. 6 Ocean-Seawater acidification (pH decreases of 0.4 units) induced changes (%) on surface primary productivity (%) in the South China Sea as a function of ambient pH_{total} (a), PAR (b), and salinity (c). The dotted lines represent 95% confidence intervals.

带格式的:下标

Fig. 1

 带格式的:字体:(默认) Times New Roman,小四,字体颜色:文字 1
 带格式的:缩进:左侧:0 厘米, 悬挂缩进:2 字符

带格式的:字体:(默认) Times New Roman,小四,字体颜色:文字 1

Fig. 2

Fig. 3

Fig. 4

带格式的:字体:(默认) Times New Roman,小四,字体颜色:文字 1

Fig. 5

Fig. 6