1	Contrasting responses of phytoplankton productivity between coastal and offshore
2	surface waters in the Taiwan Strait and the South China Sea to short-term seawater
3	acidification
4	
5	Guang Gao ¹ , Tifeng Wang ¹ , Jiazhen Sun ¹ , Xin Zhao ¹ , Lifang Wang ¹ , Xianghui Guo ¹ ,
6	Kunshan Gao ^{1,2} *
7	¹ State Key Laboratory of Marine Environmental Science & College of Ocean and Earth
8	Sciences, Xiamen University, Xiamen 361005, China
9	² Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean
10	University, Lianyungang 222005, China
11	
12	*Corresponding author: ksgao@xmu.edu.cn

14 Abstract

Seawater acidification (SA) has been documented to either inhibit or enhance or result in 15 no effect on marine primary productivity (PP). In order to examine effects of SA in 16 changing environments, we investigated the influences of SA (a decrease of 0.4 pH_{total} 17 units with corresponding CO_2 concentrations ranged 22.0–39.7 μ M) on PP through 18 19 deck-incubation experiments at 101 stations in the Taiwan Strait and the South China Sea 20 (SCS), including the continental shelf and slope, as well as deep-water basin. The daily primary productivities in surface seawater under incident solar radiation ranged from 17– 21 306 µg C (µg Chl a)⁻¹ d⁻¹, with the responses of PP to SA being region-dependent and the 22 SA-induced changes varying from -88% (inhibition) to 57% (enhancement). The 23 SA-treatment stimulated PP in surface waters of coastal, estuarine and shelf waters, but 24 25 suppressed it in the South China Sea basin. Such SA-induced changes in PP were significantly related to in situ pH and solar radiation in surface seawater, but negatively 26 27 related to salinity changes. Our results indicate that phytoplankton cells are more 28 vulnerable to pH drop in oligotrophic waters. Contrasting responses of phytoplankton productivity in different areas suggest that SA impacts on marine primary productivity 29 are region-dependent and regulated by local environments. 30 31 **Keywords:** CO₂; Taiwan Strait; seawater acidification; photosynthesis; primary productivity; South China Sea 32

33 **1 Introduction**

34	The oceans have absorbed about one-third of anthropogenically released CO ₂ , which
35	increased dissolved CO ₂ and decreased pH of seawater (Gattuso et al., 2015), leading to
36	ocean acidification (OA). This process is ongoing and likely intensifying (IPCC, 2019).
37	OA has been shown to result in profound influences on marine ecosystems (see the
38	reviews and literature therein, Mostofa et al., 2016; Doney et al., 2020). Marine
39	photosynthetic organisms, which contribute about half of the global primary production,
40	are also being affected by OA (see the reviews and literatures therein, Riebesell et al.,
41	2018; Gao et al., 2019a). In addition to the slow change of ocean acidification, some
42	processes, such as freshwater inputs, upwelling, typhoon and eddies, can lead to
43	instantaneous CO ₂ rising and seawater acidification (Moreau et al., 2017; Yu et al., 2020).
44	Since seawater acidification occurs in many locations of ocean, it is important to
45	understand the responses of the key players of marine biological CO ₂ pump, the
46	phytoplankton, to seawater acidification.
47	Elevated CO_2 is well recognized to lessen the dependence of algae and
48	cyanobacteria on energy-consuming CO_2 concentrating mechanisms (CCMs) which
49	concentrate CO_2 around Rubisco, the key site for photosynthetic carbon fixation (Raven
50	& Beardall, 2014 and references therein; Hennon et al., 2015). The energy freed up from
51	the down-regulated CCMs under increased CO ₂ concentrations can be applied to other
52	metabolic processes, resulting in a modest increase in algal growth (Wu et al., 2010;
53	Hopkinson et al., 2011; Xu et al., 2017). Accordingly, elevated CO ₂ availability could

54	potentially enhance marine primary productivity (Schippers et al., 2004). For instance,
55	across 18 stations in the central Atlantic Ocean primary productivity was stimulated by
56	15–19% under elevated dissolved CO_2 concentrations up to 36 μ M (Hein and
57	Sand-Jensen 1997). On the other hand, neutral effects of seawater acidification (SA) on
58	growth rates of phytoplankton communities were reported in five of six CO_2
59	manipulation experiments in the coastal Pacific (Tortell et al., 2000). Furthermore,
60	simulated future SA reduced surface PP in pelagic surface waters of Northern SCS and
61	East China Sea (Gao et al., 2012). It seems that the impacts of SA on PP could be
62	region-dependent. The varying effects of SA may be related to the regulation of other
63	factors such as light intensity (Gao et al., 2012), temperature (Holding et al., 2015),
64	nutrients (Tremblay et al., 2006) and community structure (Dutkiewicz et al., 2015).
65	Taiwan Strait of the East China Sea, located between southeast Mainland China and
66	the Taiwan Island, is an important channel in transporting water and biogenic elements
67	between the East China Sea (ECS) and the South China Sea (SCS). Among the Chinese
68	coastal areas, the Taiwan Strait is distinguished by its unique location. In addition to
69	riverine inputs, it also receives nutrients from upwelling (Hong et al., 2011). Primary
70	productivity is much higher in coastal waters than that in basin zones due to increased
71	supply of nutrients through river runoff and upwelling (Chen, 2003; Cloern et al., 2014).
72	The South China Sea (SCS), located from the equator to 23.8 \mathbb{N} , from 99.1 to 121.1 \mathbb{E}
73	and encompassing an area of about 3.5×10^6 km ² , is one of the largest marginal seas in

74	the world. As a marginal sea of the Western Pacific Ocean, it has a deep semi-closed
75	basin (with depths $>$ 5000 m) and wide continental shelves, characterized by a tropical
76	and subtropical climate (Jin et al., 2016). Approximately 80% of ocean organic carbon is
77	buried in the Earth's continental shelves and therefore continental margins play an
78	essential role in the ocean carbon cycle (Hedges & Keil, 1995). Investigating how ocean
79	acidification affects primary productivity in the Taiwan Strait and the SCS could help us
80	to understand the contribution of marginal seas to carbon sink under the future
81	CO ₂ -increased scenarios. Although small-scale studies on SA impacts have been
82	conducted in the ESC and the SCS (Gao et al., 2012, 2017), our understanding of how SA
83	affects PP in marginal seas is still fragmentary and superficial. In this study, we
84	conducted three cruises in the Taiwan Strait and the SCS, covering an area of 8.3×10^5
85	km ² , and aimed to provide in-depth insight into how SA and/or episodic pCO ₂ rise affects
86	PP in marginal seas with comparisons to other types of waters.
87	2 Materials and Methods
88	2.1 Investigation areas
89	To study the impacts of projected SA (dropping by ~ 0.4 pH) by the end of this
90	century (RCP8.5) on marine primary productivity in different areas (Gattuso et al., 2015),
91	we carried out deck-based experiments during the 3 cruises supported by National
92	Natural Science Foundation of China (NSFC), which took place in the Taiwan Strait (Jul
93	14 th –25 th , 2016), the South China Sea basin (Sep 6–24 th , 2016), and the West South China

94	Sea (Sep 14 th to Oct 24 th , 2017), respectively. The experiments were conducted at 101
95	stations with coverage of 12 $^{\circ}N$ –26 $^{\circ}N$ and 110 $^{\circ}E$ –120 $^{\circ}E$ (Fig. 1). Investigation areas
96	include the continental shelf (0–200 m, 22 stations) and the slope (200–3400 m, 44
97	stations), and the vast deep-water basin (> 3400 m, 35 stations). In the continental shelf,
98	the areas with depth < 50 m are defined as coastal zones (9 stations).
99	2.2 Measurements of temperature and carbonate chemistry parameters
100	The temperature and salinity of surface seawater at each station were monitored with
101	an onboard CTD (Seabird, USA). pH_{NBS} was measured with an Orion 2-Star pH meter
102	(Thermo scientific, USA) that was calibrated with standard National Bureau of Standards
103	(NBS) buffers (pH=4.01, 7.00, and 10.01 at 25.0 °C; Thermo Fisher Scientific Inc., USA).
104	After the calibration, the electrode of pH meter was kept in surface seawater for half an
105	hour and then the formal measurements were conducted. The analytical precision was
106	±0.001. Total alkalinity (TA) was determined using Gran titration on a 25-mL sample
107	with a TA analyzer (AS-ALK1, Apollo SciTech, USA) that was regularly calibrated with
108	certified reference materials supplied by A. G. Dickson at the Scripps Institution of
109	Oceanography (Gao et al., 2018a). The analytical precision was $\pm 2 \ \mu mol \ kg^{-1}$. CO ₂
110	concentration in seawater and the $pH_{Total}(pH_T)$ values was calculated by using CO2SYS
111	(Pierrot et al., 2006) with the input of pH_{NBS} and TA data.

112 2.3 Solar radiation

3 The incident solar radiation intensity during the cruises was recorded with an

Eldonet broadband filter radiometer (Eldonet XP, Real Time Computer, Germany). This device has three channels for PAR (400–700 nm), UV-A (315–400 nm) and UV-B (280– 315 nm) irradiance, respectively, which records the means of solar radiations over each minute. The instrument was fixed at the top layer of the ship to avoid shading.

118

2.4 Determination of primary productivity

119 Surface seawater (0–1m) was collected a 10 L acid-cleaned (1 M HCl) plastic bucket

and pre-filtered (200 μ m mesh size) to remove large grazers. To prepare high CO₂ (HC)

seawater, CO₂-saturated seawater was added into pre-filtered seawater until a decrease of

-0.4 units in pH (corresponding CO₂ concentrations being 22.0–39.7 μ M) was

approached (Gattuso et al., 2010). Seawater that was collected from the same location as

124 PP and filtered by cellulose acetate membrane $(0.22 \ \mu m)$ was used to make the

125 CO₂-saturated seawater, which was made by directly flushing with pure CO₂ until pH

126 reached around 4.50. When saturated-CO₂ seawater was added to the HC treatment,

127 equivalent filtered seawater (without flushing with CO₂) was also added to the AC

128 treatment as a control. The ratios of added saturated-CO₂ seawater to incubation seawater

129 were about 1:1000. Seawater was incubated within half an hour after they were collected.

130 Prepared AC and HC seawater was allocated into 50-mL quartz tubes in triplicate,

inoculated with 5 μ Ci (0.185 MBq) NaH¹⁴CO₃ (ICN Radiochemicals, USA), and then

- 132 incubated for 24 h (over a day-night cycle) under 100 % incident solar irradiances in a
- 133 water bath for temperature control by running through surface seawater. Due to heating

134	by the deck, the temperatures in the water bath were $0-2$ °C higher than in situ surface
135	seawater temperatures. TA and pH of seawater before and after 24h incubation were
136	measured to monitor the changes of carbonate systems. After the incubation, the cells
137	were filtered onto GF/F filters (Whatman) and immediately frozen at -20 °C for later
138	analysis. In the laboratory, the frozen filters were transferred to 20 mL scintillation vials,
139	thawed and exposed to HCl fumes for 12 h, and dried (55 $^{\circ}$ C, 6 h) to expel non-fixed 14 C,
140	as previously reported (Gao et al., 2017). Then 3 mL scintillation cocktail (Perkin
141	Elmer®, OptiPhase HiSafe) was added to each vial. After 2 h of reaction, the
142	incorporated radioactivity was counted by a liquid scintillation counting (LS 6500,
143	Beckman Coulter, USA). The carbon fixation for 24 h incubation was taken as
144	chlorophyll (Chl) <i>a</i> -normalized daily primary productivity (PP, μ g C (μ g Chl <i>a</i>) ⁻¹) (Gao et
145	al., 2017). The changes (%) of PP induced by ocean acidification were expressed as
146	$(PP_{HC}-PP_{AC})/PP_{AC} \times 100$, where PP_{HC} and PP_{AC} are the daily primary productivity under
147	HC and AC, respectively.
148	2.5 Chl <i>a</i> measurement

149 Pre-filtered (200 µm mesh size) surface seawater (500–2000 mL) at each station was

150 filtered onto GF/F filter (25 mm, Whatman) and then stored at -80 °C. After returning to

151 laboratory, phytoplankton cells on the GF/F filter were extracted overnight in absolute

methanol at 4 $^{\circ}$ C in darkness. After centrifugation (5000 g for 10 min), the absorption

values of the supernatants were analyzed by a UV–VIS spectrophotometer (DU800,

154	Beckman, Fullerton, California, USA). The concentration of chlorophyll <i>a</i> (Chl <i>a</i>) was
155	calculated according to Porra (2002).

156 **2.6 Data analysis**

157 The data of environmental parameters were expressed in raw and the data of PP were 158 the means of triplicate incubations. Two-way analysis of variance (ANOVA) was used to 159 analyze the effects of SA and location on PP. Least significant difference (LSD) was used 160 to for *post hoc* analysis. Linear fitting analysis was conducted with Pearson correlation 161 analysis to assess the relationship between PP and environmental factors. A 95%

162 confidence level was used in all analyses.

163 **3 Results**

During the cruises, surface temperature ranged from 25.0 to 29.9 °C in the Taiwan 164 Strait and from 27.1 to 30.2 °C in the South China Sea (Fig. 2a). Surface salinity ranged 165 from 30.0 to 34.0 in the Taiwan Strait and from 31.0 to 34.3 in the South China Sea (Fig. 166 2b). The lower salinities were found in the estuaries of Minjiang and Jiulong Rivers as 167 well as Mekong River-induced Rip current. High salinities were found in the SCS basin. 168 Surface pH_T changed between 7.99–8.20 in the Taiwan Strait with the higher values in 169 the estuary of Minjiang River (Fig. 2c). Compared to the Taiwan Strait, the South China 170 Sea had lower surface pH (7.91–8.08) with the lowest value near the island in the 171 Philippines. TA ranged from 2100 to 2359 µmol kg⁻¹ SW in the Taiwan Strait and 2126 to 172 2369 µmol kg⁻¹ SW in the South China Sea (Fig. 2d). The lowest value occurred in the 173

174	estuary of Minjiang River. CO ₂ concentration in surface seawater changed from 6.4–13.3
175	μ M kg ⁻¹ SW in the Taiwan Strait, and 9.3–14.3 μ M kg ⁻¹ SW in the SCS (Fig. 1e). It
176	showed an opposite pattern to surface pH, with the lowest value in the estuary of
177	Minjiang River in the Taiwan Strait and highest value in near the islands in the
178	Philippines in the South China Sea. During the PP investigation period, the daytime mean
179	PAR intensity ranged from 126.6 to 145.2 W m ⁻² s ⁻¹ in the Taiwan Strait and 37.3 to 150.0
180	W m ⁻² s ⁻¹ in the SCS (Fig. 2f).
181	The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 μ g L ⁻¹ in the Taiwan Strait (Fig.
182	3). The highest concentration occurred in the estuary of the Minjiang River. The
183	concentration of Chl <i>a</i> in the SCS ranged from 0.037 to 7.43 μ g L ⁻¹ . The highest
184	concentration was found in the coastal areas of Guangdong province in China. For both
185	the Taiwan Strait and the SCS, there were high Chl <i>a</i> concentrations (> 1.0 μ g L ⁻¹) in
186	coastal areas, particularly in the estuaries of the Minjing River, Jiulong River and Pearl
187	River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower than 0.2 μ g L ⁻¹ .
188	Surface primary productivity changed from 99–302 µg C (µg Chl a) ⁻¹ d ⁻¹ in the
189	Taiwan Strait, and from 17–306 μ g C (μ g Chl a) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4).
190	High surface primary productivity (> 200 µg C (µg Chl a) ⁻¹ d ⁻¹) was found in the
191	estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of
192	Vietnam. In basin zones, the surface primary productivity was usually lower than 100 μ g
193	C (μ g Chl a) ⁻¹ d ⁻¹ .

194	A series of onboard CO ₂ -enrich experiments in the investigated regions were
195	conducted during three cruises. In the high CO_2 treatments, pH_{total} had a decrease of
196	0.34–0.43 units, while pCO ₂ and CO ₂ had an increase of 676–982 μatm and 17–25 μM
197	kg ⁻¹ SW, respectively (Table S1). Carbonate chemistry parameters after 24 h of
198	incubation were stable ($\bigtriangleup pH < 0.06, ~\bigtriangleup TA < 53~\mu mol~kg^{-1}~SW)$, indicating the
199	successful manipulation (Table S1). It was observed that instantaneous effects of elevated
200	pCO ₂ on primary productivity of surface phytoplankton community in all investigated
201	regions ranged from -88% (inhibition) to 57% (promotion), revealing significant regional
202	differences (ANOVA, $F_{(100, 404)} = 4.103$, $p < 0.001$, Fig. 5). Among 101 stations, 70
203	stations showed insignificant SA effects. SA increased PP at 6 stations and reduced PP at
204	25 stations. Positive effects of SA on surface primary productivity were observed in the
205	Taiwan Strait and the western SCS (Fig. 5, red-yellow shading areas), with the maximal
206	enhancement of 57% in the station approaching the Mekong River plume (LSD, $p <$
207	0.001). Reductions in PP induced by the elevated CO_2 were mainly found in the central
208	SCS basin within the latitudes of 10 °N to14 °N and the longitudes of 114.5 °E to 118 °E
209	(Fig. 5, blue-purple shading areas), with inhibition rates ranging from 24% to 88% (Fig. 5,
210	LSD, $p < 0.05$). These results showed a region-related effect of SA on photosynthetic
211	carbon fixation of surface phytoplankton assemblages. Overall, the elevated pCO_2 had
212	neutral or positive effects on primary productivity in the continental shelf and slope
213	regions, while having adverse effects in the deep-water basin.

214	By analyzing the correlations between SA-induced PP changes and regional
215	environmental parameters, we found that SA-induced changes in phytoplankton primary
216	productivity was significantly positively related with <i>in situ</i> pH ($p < 0.001$, $r = 0.379$),
217	and PAR density ($p = 0.002$, $r = 0.311$) (Fig. 6 and Table S1). On the other hand, the
218	influence induced by SA was negatively related to salinity that ranged from 30.00 to
219	34.28 ($p < 0.001$, $r = -0.418$).
220	4 Discussion
221	In the present study, we found that the elevated pCO_2 and associated pH drop
222	increased or did not affect PP in the continental shelf and slope waters but reduced it in
223	basin waters. Our results suggested that the enhanced effects of the SA treatment on
224	photosynthetic carbon fixation depend on regions of different physicochemical conditions,
225	including pH, light intensity and salinity. In addition, coastal diatoms appear to benefit
226	more from SA than pelagic ones (Li et al., 2016). Therefore, community structure
227	differences might also be responsible for the differences of the short-term high
228	CO ₂ -induced acidification between coastal and basin waters.
229	SA is deemed to have two kinds of effects at least (Xu et al., 2017; Shi et al., 2019).
230	The first one is the enrichment of CO_2 , which is usually beneficial for photosynthetic
231	carbon fixation and growth of algae because insufficient ambient CO ₂ limits algal
232	photosynthesis (Hein & Sand-Jensen, 1997; Bach & Taucher, 2019). The other effect is
233	the decreased pH which could be harmful because it disturbs the acid-base balance

234	between extracellular and intracellular environments. For instance, the decreased pH
235	projected for future SA was shown to reduce the growth of the diazotroph Trichodesmium
236	(Hong et al., 2017), decrease PSII activity by reducing the removal rate of PsbD (D2)
237	(Gao et al., 2018b) and increase mitochondrial and photo-respirations in diatoms and
238	phytoplankton assemblages (Yang and Gao 2012, Jin et al., 2015). In addition, SA could
239	reduce the Rubisco transcription of diatoms, which also contributed to the decreased
240	growth (Endo et al., 2015). Therefore, the net impact of SA depends on the balance
241	between its positive and negative effects, leading to enhanced, inhibited or neutral
242	influences, as reported in diatoms (Gao et al., 2012, Li et al., 2021) and phytoplankton
243	assemblages in the Arctic and subarctic shelf seas (Hoppe et al., 2018), the North Sea
244	(Eberlein et al., 2017) and the South China Sea (Wu and Gao 2010, Gao et al., 2012). The
245	balance of positive and negative effects of SA can be regulated by other factors, including
246	pH, light intensity, salinity, population structure, etc. (Gao et al., 2019a, b; Xie et al.,
247	2022).
248	In the present study, SA increased or did not affect PP in coastal waters but reduced it
249	in offshore waters, which is significantly related to pH, light intensity and salinity (Fig. 6).
250	The effect of SA changed from negative to positive with the increase of local pH. The

- 251 higher pH occurred in coastal zones which may be caused by higher biomass of
- 252 phytoplankton (Fig. 3). Higher pH caused by intensive photosynthesis of phytoplankton
- 253 is companied with decreased CO_2 levels. In this case, CO_2 is more limited for

254	photosynthesis of phytoplankton compared to lower pH. Therefore, SA could stimulate
255	primary productivity via supplying more available CO ₂ (Hurd et al., 2019). On the other
256	hand, lower pH occurred in deep-water basin. Lower pH represents higher CO ₂
257	availability. CO_2 is not limited or less limited in this case. Therefore, more CO_2 brought
258	by SA may not benefit photosynthesis of phytoplankton. Instead, decreased pH
259	accompanied by SA may inhibit photosynthesis or growth of phytoplankton, which is
260	found in cyanobacteria (Hong et al., 2017). Furthermore, the negative effects of SA are
261	particularly significant when nutrient is limited (Li et al., 2018). The nutrient levels in
262	basin are usually lower than shelf (Yuan et al., 2011; Lu et al., 2020; Du et al., 2021),
263	which may exacerbate the negative effects of OA in the basin zone.
264	The negative effects of SA disappeared with the increase of light intensity in this
265	study. This results in inconsistent with Gao et al (2012)' study, in which SA increased
266	photosynthetic carbon fixation of three diatoms (Phaeodactylum tricornutum,
267	Thalassiosira pseudonana and Skeletonema costatum) under lower light intensities but
268	increased it under higher light intensities. The divergent findings may be due to different
269	population structure that varies in different areas. Coastal zones where nutrients are
270	relatively sufficient usually have abundant diatoms while picophytoplanktons mainly
271	Prochlorococcus and Synechococcus, dominate oligotrophic areas (Xiao et al., 2018,
272	Zhong et al., 2020). In this study, most investigated areas are oligotrophic and thus the
273	response of local phytoplankton to the combination of light intensity and SA may be

274	different from diatoms. It is worth noting that the samples were not mixed down in the
275	water bath in the present study and the 100% incident solar irradiances may have high
276	light stress on cells. Lower incident solar irradiances or some devices can be used to
277	simulate seawater mixing in future studies. Negative correlation between SA-induced
278	changes of PP and salinity was found in this study. The decrease of salinity (from 35 to
279	30) has been shown to alleviate the negative effect of SA on photosynthetic carbon
280	fixation of a coccolithorphorid Emiliania huxleyi (Xu et al., 2020) although the potential
281	mechanisms remain unknown. On the other hand, the change of salinity (from 6 to 3) did
282	not affect effective quantum yield of microplanktonic community in the Baltic Sea grown
283	under different CO_2 levels (Wulff et al., 2018). In this study, we presume that the negative
284	relationship between salinity and SA effects may be mainly related to local pH because
285	lower salinity occurred in coastal waters where seawater pH was higher while the basin
286	zone had higher salinities and lower pH.
287	The specific environmental conditions have profound effects on shaping diverse
288	dominant phytoplankton groups (Boyd et al., 2010). Larger eukaryotic groups (especially
289	diatoms) usually dominate the complex coastal regions, while picophytoplanktons
290	(Prochlorococcus and Synechococcus), characterizing with more efficient nutrients
291	uptake, dominate the relatively stable offshore waters (Dutkiewicz et al., 2015). In
292	summer and early autumn, previous investigations demonstrated that diatoms dominated
293	in the northern waters and the Taiwan Strait (coastal and shelf regions) with the high

294	abundance of phytoplankton, which are consistent with our Chl a data; Prochlorococcus
295	and Synechococcus dominated in the SCS basin and the north of SCS (slope and basin
296	regions) (Xiao et al., 2018, Zhong et al., 2020). In addition, it has been reported that
297	larger cells benefit more from SA because a thicker diffusion layer around the cells limits
298	the transport of CO_2 (Feng et al., 2010; Wu et al., 2014). In contrast, a thinner diffusion
299	layer and higher surface to volume ratio in smaller phytoplankton cells can make them
300	easier to transport CO ₂ near the cell surface and within the cells, and therefore
301	picophytoplankton species are less CO ₂ -limited (Bao and Gao, 2021). Therefore, different
302	community structures between coastal and basin areas could also be responsible for the
303	enhanced and inhibitory effects of SA. It is worth noting that seasonality may also lead to
304	the differential effects of SA on primary productivity since the Taiwan Strait cruise was
305	conducted in July and the cruises of the South China Sea basin and the West South China
306	Sea were conducted in September. The SST and solar PAR intensity of the Taiwan Strait
307	in July was 2–3 $^{\circ}$ C and 22 ± 22 W m ⁻² s ⁻¹ higher than that in September (Zhang et al.,
308	2008, 2009; Table S3). Although the effects of SA were not related to temperature as
309	shown in this study (Table S2), the higher solar radiation in July may contribute to the
310	positive effect of SA on primary productivity.

311 **5 Conclusions**

By investigating the impacts of the elevated pCO_2 on PP in the Taiwan Strait and the SCS, we demonstrated that such short SA-treatments induced changes in PP were mainly

314	related to pH, light intensity and salinity based on Pearson correlation coefficients,
315	supporting the hypothesis that negative impacts of SA on PP increase from coastal to
316	basin waters (Gao et al., 2019a). In view of ocean climate changes, strengthened
317	stratification due to global warming would reduce the upward transports of nutrients and
318	thus marine primary productivity. The negative effect of SA in basin zones would further
319	reduce primary productivity. Meanwhile, PP in coastal waters would be increased by
320	SA
321	Data availability. All data are included in the article or Supplement.
322	Author contributions. KG and TW developed the original idea and designed research.
323	TW and JS carried out fieldwork. GG provided statistical analyses and prepared figures.
324	GG, KG, and XZ wrote the manuscript. All contributed to revising the paper.
325	Competing interests. The contact author has declared that neither they nor their
326	co-authors have any competing interests.
327	Disclaimer. Publisher's note: Copernicus Publications remains neutral with regard to
328	jurisdictional claims in published maps and institutional affiliations.
329	Acknowledgements. This work was supported by the National Natural Science
330	Foundation of China (41720104005, 41890803 and 42076154) and the Fundamental
331	Research Funds for the Central Universities (20720200111). The authors are grateful to
332	the students He Li, Xiaowen Jiang and Shanying Tong, and the laboratory technicians
333	Xianglan Zeng and Wenyan Zhao. We appreciate the NFSC Shiptime Sharing Project
	17

- (project number: 41849901) for supporting the Taiwan Strait cruise (NORC2016-04). We
- appreciate the chief scientists Yihua Cai, Huabin Mao and Chen Shi and the R/V Yanping
- 336 II, Shiyan I and Shiyan III for leading and conducting the cruises.

337 **References**

- Bach, L. T., and Taucher, J.: CO₂ effects on diatoms: a synthesis of more than a decade of
- 339 ocean acidification experiments with natural communities, Ocean Sci., 15,
 340 1159-1175, 2019.
- Bao, N., and Gao, K.: Interactive effects of elevated CO₂ concentration and light on the
 picophytoplankton *Synechococcus*, Front. Mar. Sci., 8, 1-7, 2021.
- Boyd, P. W., Strzepek, R., Fu, F. X., and Hutchins, D. A.: Environmental control of openocean phytoplankton groups: Now and in the future, Limnol. Oceanogr, 55,
 1353-1376, 2010.
- Chen, C. T. A.: Rare northward flow in the Taiwan Strait in winter: A note, Cont. Shelf
 Res., 23, 387-391, 2003.
- Cloern, J. E., Foster, S.Q. and Kleckner, A. E.: Phytoplankton primary production in the
 world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477-2501, 2014.
- 350 Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The impacts of ocean
- 351 acidification on marine ecosystems and reliant human communities, Annu. Rev. Env.
- 352 Resour., 45, 83-112, 2020.
- 353 Du, C., He, R., Liu, Z., Huang, T., Wang, L., Yuan, Z., Xu, Y., Wang, Z. and Dai, M.:

354	Climatology of nutrient distributions in the South China Sea based on a large data
355	set derived from a new algorithm. Prog. Oceanogr., 195, 102586, 2021.
356	Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., and
357	Berman-Frank, I.: Impact of ocean acidification on the structure of future
358	phytoplankton communities, Nat. Clim. Change, 5, 1002-1006, 2015.
359	Eberlein, T., Wohlrab, S., Rost, B., John, U., Bach, L. T., Riebesell, U., and Van de Waal,
360	D. B.: Effects of ocean acidification on primary production in a coastal North Sea
361	phytoplankton community, Plos One, 12, 1-15, 2017.
362	Endo, H., Sugie, K., Yoshimura, T., and Suzuki, K.: Effects of CO ₂ and iron availability
363	on rbcL gene expression in Bering Sea diatoms, Biogeosciences, 12, 2247-2259,
364	2015.
365	Feng, Y., Hare, C. E., Rose, J. M., Handy, S. M., DiTullio, G. R., Lee, P. A., Smith, W. O.,
366	Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar, R. B., Long, M. C., Sohst, B.,
367	Lohan, M., and Hutchins, D. A.: Interactive effects of iron, irradiance and CO ₂ on
368	Ross Sea phytoplankton, Deep-Sea Res. PT. I, 57, 368-383, 2010.
369	Flynn, K. J., Blackford, J. C., Baird, M. E., Raven, J. A., Clark, D. R., Beardall, J.,
370	Brownlee, C., Fabian, H., and Wheeler, G. L.: Changes in pH at the exterior surface
371	of plankton with ocean acidification, Nat. Clim. Change, 2, 510-513, 2012.
372	Gao, G., Xu, Z. G., Shi, Q., and Wu, H. Y.: Increased CO ₂ exacerbates the stress of
373	ultraviolet radiation on photosystem II function in the diatom Thalassiosira

- 374 *weissflogii*, Environ. Exp. Bot., 156, 96-105, 2018b.
- Gao, G., Jin, P., Liu, N., Li, F. T., Tong, S. Y., Hutchins, D. A., and Gao, K. S.: The
- acclimation process of phytoplankton biomass, carbon fixation and respiration to the
- 377 combined effects of elevated temperature and pCO_2 in the northern South China Sea,
- 378 Mar. Pollut. Bull., 118, 213-220, 2017.
- Gao, G., Qu, L., Xu, T., Burgess, J.G., Li, X. and Xu, J.: Future CO₂-induced ocean
- acidification enhances resilience of a green tide alga to low-salinity stress. ICES J.
- 381 Mar. Sci., 76, 2437-2445, 2019b.
- Gao, G., Xia, J. R., Yu, J. L., Fan, J. L., and Zeng, X. P.: Regulation of inorganic carbon
- acquisition in a red tide alga (*Skeletonema costatum*): The importance of phosphorus
 availability, Biogeosciences, 15, 4871-4882, 2018a.
- 385 Gao, K. S., Beardall, J., Häder, D. P., Hall-Spencer, J. M., Gao, G., and Hutchins, D. A.:
- Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation, Front. Mar. Sci., 6, 1-18, 2019a.
- 389 Gao, K. S., Xu, J. T., Gao, G., Li, Y. H., Hutchins, D. A., Huang, B. Q., Wang, L., Zheng,
- 390 Y., Jin, P., Cai, X. N., Hader, D. P., Li, W., Xu, K., Liu, N. N., and Riebesell, U.:
- Rising CO₂ and increased light exposure synergistically reduce marine primary productivity, Nat. Clim. Change, 2, 519-523, 2012.
- 393 Gattuso, J. P., Gao, K. S., Lee, K., Rost, B., and Schulz, K. G.: Approaches and tools to

394	manipulate the carbonate chemistry, pp 41-52. Guide to best practices for ocean
395	acidification research and data reporting, edited by: Riebesell, U., Fabry, V. J.,
396	Hansson, L., and Gattuso JP., Luxembourg: Publications Office of the European
397	Union, 2010.
398	Gattuso, J. P., Magnan, A., Bill é, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand,

- 399 D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Portner,
- 400 H. O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette,
- 401 J., Sumaila, U. R., Treyer, S., and Turley, C.: Contrasting futures for ocean and 402 society from different anthropogenic CO₂ emissions scenarios, Science, 349,
- 403 aac4722, 2015.
- Geider, R. J., La Roche, J., Greene, R. M., and Olaizola, M.: Response of the
 photosynthetic apparatus of *Phaeodactylum tricornutum* (Bacillariophyceae) to
 nitrate, phosphate, or iron starvation, J. Phycol., 29, 755-766, 1993.
- 407 Häder, D. P., Williamson, C. E., Wängberg, S. A., Rautio, M., Rose, K. C., Gao, K. S.,
- 408 Helbling, E. W., Sinha, R. P., and Worrest, R.: Effects of UV radiation on aquatic
- 409 ecosystems and interactions with other environmental factors, Photoch. Photobio.
- 410 Sci., 14, 108-126, 2015.
- Hedges, J. I., and Keil, R. G.: Sedimentary organic matter preservation: an assessment
 and speculative synthesis, Mar. Chem., 49, 81-115, 1995.
- 413 Hein, M., and Sand-Jensen, K.: CO₂ increases oceanic primary production, Nature, 388,

414 526-527, 1997.

- Hennon, G. M. M., Ashworth, J., Groussman, R. D., Berthiaume, C., Morales, R. L., 415 416 Baliga, N. S., Orellana, M. V., and Armbrust, E. V.: Diatom acclimation to elevated CO₂ via cAMP signalling and coordinated gene expression, Nat. Clim. Change, 5, 417 761-765, 2015. 418 Hofmann, G. E., Smith, J. E., Johnson, K. S., Send, U., Levin, L. A., Micheli, F., Paytan, 419 A., Price, N. N., Peterson, B., Takeshita, Y., Matson, P. G., Crook, E. D., Kroeker, K. 420 J., Gambi, M. C., Rivest, E. B., Frieder, C. A., Yu, P. C., and Martz, T. R.: 421 422 High-frequency dynamics of ocean pH: A multi-ecosystem comparison, Plos One, 6, 1-11, 2011. 423 Holding, J. M., Duarte, C. M., Sanz-Mart n, M., Mesa, E., Arrieta, J. M., Chierici, M., 424 425 Hendriks, I. E., Garcia-Corral, L. S., Regaudie-de-Gioux, A., Delgado, A., Reigstad, M., Wassmann, P., and Agusti, S.: Temperature dependence of CO₂-enhanced 426 primary production in the European Arctic Ocean, Nat. Clim. Change, 5, 1079-1082, 427 428 2015. Hong, H. S., Chai, F., Zhang, C. Y., Huang, B. Q., Jiang, Y. W., and Hu, J. Y.: An 429
- 430 overview of physical and biogeochemical processes and ecosystem dynamics in the
 431 Taiwan Strait, Cont. Shelf Res., 31, S3-S12, 2011.
- 432 Hong, H. Z., Shen, R., Zhang, F. T., Wen, Z. Z., Chang, S. W., Lin, W. F., Kranz, S. A.,
- 433 Luo, Y. W., Kao, S. J., Morel, F. M. M. and Shi, D. L.: The complex effects of ocean

- 434 acidification on the prominent N₂-fixing cyanobacterium *Trichodesmium*. Science,
 435 356, 527-530, 2017.
- Hopkinson, B. M., Dupont, C. L., Allen, A. E., and Morel, F. M.: Efficiency of the
 CO₂-concentrating mechanism of diatoms, P. Natl. Acad. Sci. USA., 108, 3830-3837,
 2011.
- Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D., and Rost, B.: Compensation
 of ocean acidification effects in Arctic phytoplankton assemblages. Nat. Clim.
 Change, 8, 529-533, 2018.
- 442 Hurd, C.L., Beardall, J., Comeau, S., Cornwall, C.E., Havenhand, J.N., Munday, P.L.,
- Parker, L.M., Raven, J.A. and McGraw, C.M.: Ocean acidification as a multiple
 driver: how interactions between changing seawater carbonate parameters affect
 marine life. Mari. Freshwater Res., 71, 263-274, 2019.
- 446 IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate
- 447 [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E.
- Poloczanska, K. Mintenbeck, A. Alegr á, M. Nicolai, A. Okem, J. Petzold, B. Rama,
 N.M. Weyer (eds.)]. In press.
- 450 Jin, P., Gao, G., Liu, X., Li, F. T., Tong, S. Y., Ding, J. C., Zhong, Z. H., Liu, N. N., and
- 451 Gao, K. S.: Contrasting photophysiological characteristics of phytoplankton 452 assemblages in the Northern South China Sea, Plos One, 11, 1-16, 2016.
- 453 Jin, P., Wang, T. F., Liu, N. N., Dupont, S., Beardall, J., Boyd, P. W., Riebesell, U., and

454	Gao, K. S.: Ocean acidification increases the accumulation of toxic phenolic
455	compounds across trophic levels, Nat. Commun., 6, 1-6, 2015.
456	Johnson, M. D., and Carpenter, R. C.: Nitrogen enrichment offsets direct negative effects
457	of ocean acidification on a reef-building crustose coralline alga, Biol. Letters, 14,
458	1-5, 2018.
459	Li, F. T., Wu, Y. P., Hutchins, D. A., Fu, F. X., and Gao, K. S.: Physiological responses of
460	coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry
461	under two CO ₂ concentrations, Biogeosciences, 13, 6247-6259, 2016.
462	Li, F. T., Beardall, J., and Gao, K. S.: Diatom performance in a future ocean: interactions
463	between nitrogen limitation, temperature, and CO2-induced seawater acidification,
464	ICES J. Mar. Sci., 75, 1451-1464, 2018.
465	Li, G., Gao, K. S., Yuan, D. X., Zheng, Y., and Yang, G. Y.: Relationship of
466	photosynthetic carbon fixation with environmental changes in the Jiulong River
467	estuary of the South China Sea, with special reference to the effects of solar UV
468	radiation, Mar. Pollut. Bull., 62, 1852-1858, 2011.
469	Li, H. X., Xu, T. P., Ma, J., Li, F. T., and Xu, J. T.: Physiological responses of
470	Skeletonema costatum to the interactions of seawater acidification and the
471	combination of photoperiod and temperature, Biogeosciences, 18, 1439-1449, 2021.
472	Li, W., Gao, K., and Beardall, J.: Nitrate limitation and ocean acidification interact with
473	UV-B to reduce photosynthetic performance in the diatom Phaeodactylum

- 474 *tricornutum*, Biogeosciences, 12, 2383-2393, 2015.
- Lu, Z., Gan, J., Dai, M., Zhao, X. and Hui, C. R.: Nutrient transport and dynamics in the
 South China Sea: A modeling study. Prog. Oceanogr., 183, 102308, 2020.
- 477 McNicholl, C., Koch, M. S., and Hofmann, L. C.: Photosynthesis and light-dependent
- proton pumps increase boundary layer pH in tropical macroalgae: A proposed
 mechanism to sustain calcification under ocean acidification, J. Exp. Mar. Biol.
 Ecol., 521, 1-12, 2019.
- 481 Moreau, S., Penna, A. D., Llort, J., Patel, R., Langlais, C., Boyd, P. W., Matear, R. J.,
- Phillips, H. E., Trull, T. W., Tilbrook, B. and Lenton, A.: Eddy-induced carbon
 transport across the Antarctic Circumpolar Current. Global Biogeochem. Cy., 31,
 1368-1386, 2017
- 485 Mostofa, K.M., Liu, C.Q., Zhai, W., Minella, M., Vione, D., Gao, K., Minakata, D.,
- 486 Arakaki, T., Yoshioka, T., Hayakawa, K. and Konohira, E.: Reviews and Syntheses:
- 487 Ocean acidification and its potential impacts on marine ecosystems, Biogeosciences,
- 488 13, 1767-1786, 2016.
- 489 Pierrot, D., Wallace, D.W. R., and Lewis, E.: MS Excel program developed for CO₂
- 490 system calculations. ORNL/CDIAC-105a, Carbon Dioxide Information Analysis
- 491 Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,
- 492 Tennessee, USA., 2006.
- 493 Porra, R. J.: The chequered history of the development and use of simultaneous equations

- 494 for the accurate determination of chlorophylls a and b, Photosynth. Res., 73,
 495 149-156, 2002.
- 496 Raven, J. A., and Beardall, J.: CO₂ concentrating mechanisms and environmental change,
 497 Aquat. Bot., 118, 24-37, 2014.
- Schippers, P., Lürling, M., and Scheffer, M.: Increase of atmospheric CO₂ promotes
 phytoplankton productivity, Ecol. Lett., 7, 446-451, 2004.
- 500 Shi, D. L., Hong, H. Z., Su, X., Liao, L. R., Chang, S. W., and Lin, W. F.: The
- 501 physiological response of marine diatoms to ocean acidification: Differential roles of 502 seawater pCO_2 and pH, J. Phycol., 55, 521-533, 2019.
- Taylor, A. R., Brownlee, C., and Wheeler, G. L.: Proton channels in algae: Reasons to be
 excited, Trends Plant Sci., 17, 675-684, 2012.
- 505 Tortell, P. D., Rau, G. H., and Morel, F. M. M.: Inorganic carbon acquisition in coastal
- 506 Pacific phytoplankton communities, Limnol. Oceanogr., 45, 1485-1500, 2000.
- 507 Tremblay, J. E., Michel, C., Hobson, K. A., Gosselin, M., and Price, N. M.: Bloom
- dynamics in early opening waters of the Arctic Ocean. Limnol. Oceanogr., 51,
 900-912, 2006.
- 510 Riebesell, U., Aberle-Malzahn, N., Achterberg, E. P., Alguer ó-Muñiz, M.,
- 511 Alvarez-Fernandez, S., Ar śtegui, J., Bach, L. T., Boersma, M., Boxhammer, T.,
- 512 Guan, W. C., Haunost, M., Horn, H. G., Loscher, C. R., Ludwig, A., Spisla, C.,
- 513 Sswat, M., Stange, P., and Taucher, J.: Toxic algal bloom induced by ocean

- acidification disrupts the pelagic food web, Nat. Clim. Change, 8, 1082-1086, 2018. 514 Wu, Y., Gao, K., and Riebesell, U.: CO₂-induced seawater acidification affects 515 516 physiological performance of the marine diatom Phaeodactylum tricornutum, Biogeosciences, 7, 2915-2923, 2010. 517 Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., and Finkel, Z. V.: Ocean 518 519 acidification enhances the growth rate of larger diatoms. Limnol. Oceanogr., 59, 1027-1034, 2014. 520 Wu, Y. P., and Gao, K. S.: Combined effects of solar UV radiation and CO₂-induced 521 522 seawater acidification on photosynthetic carbon fixation of phytoplankton assemblages in the South China Sea. Chinese Sci. Bull., 55, 3680-3686, 2010. 523 Xiao, W. P., Wang, L., Laws, E., Xie, Y. Y., Chen, J. X., Liu, X., Chen, B. Z., and Huang, 524 B. Q.: Realized niches explain spatial gradients in seasonal abundance of 525 phytoplankton groups in the South China Sea, Prog. Oceanogr., 162, 223-239, 2018. 526 527 Xie, S., Lin, F., Zhao, X. and Gao, G.: Enhanced lipid productivity coupled with carbon
- and nitrogen removal of the diatom *Skeletonema costatum* cultured in the high CO₂
 level. Algal Res. 61, 102589, 2022.
- 530 Xu, J. K., Sun, J. Z., Beardall, J., and Gao, K. S.: Lower salinity leads to improved
- 531 physiological performance in the coccolithophorid *Emiliania huxleyi*, which partly
- ameliorates the effects of ocean acidification, Front. Mar. Sci., 7, 1-18, 2020.
- 533 Xu, Z. G., Gao, G., Xu, J. T., and Wu, H. Y.: Physiological response of a golden tide alga

- 534 (*Sargassum muticum*) to the interaction of ocean acidification and phosphorus
 535 enrichment, Biogeosciences, 14, 671-681, 2017.
- Yang, G. Y., and Gao, K. S.: Physiological responses of the marine diatom *Thalassiosira pseudonana* to increased pCO_2 and seawater acidity, Mar. Environ. Res., 79, 142-151, 2012.
- Yoshimura, T., Nishioka, J., Suzuki, K., Hattori, H., Kiyosawa, H. and Watanabe, Y. W.:
 Impacts of elevated CO₂ on organic carbon dynamics in nutrient depleted Okhotsk
 Sea surface waters. J. Exp. Mar. Biol. Ecol., 395, 191-198, 2010.
- 542 Yu, P., Wang, Z. A., Churchill, J., Zheng, M., Pan, J., Bai, Y. and Liang, C.: Effects of
- typhoons on surface seawater pCO₂ and air-sea CO₂ fluxes in the northern South
 China Sea. J. Geophys. Res-Oceans, 125, p.e2020JC016258, 2020.
- 545 Yuan, X., He, L., Yin, K., Pan, G. and Harrison, P. J.: Bacterial distribution and nutrient
- 546 limitation in relation to different water masses in the coastal and northwestern South
- 547 China Sea in late summer. Cont. Shelf Res., 31, 1214-1223, 2011.
- 548 Zhong, Y. P., Liu, X., Xiao, W. P., Laws, E. A., Chen, J. X., Wang, L., Liu, S. G., Zhang,
- 549 F., and Huang, B. Q.: Phytoplankton community patterns in the Taiwan Strait match
- the characteristics of their realized niches, Prog. Oceanogr., 186, 1-15, 2020.

551 **Figure captions**

Fig. 1 Sampling stations for the incubation experiments in the Taiwan Strait and the 552 South China Sea during three cruises. Taiwan Strait cruise was conducted in July 2016 553 (red dots), South China Sea Basin cruise were conducted in September 2016 (blue dots) 554 and Western South China Sea cruise was conducted in September 2017 (black dots). 555 556 **Fig. 2** Temperature (°C, panel a), salinity (panel b), pH (panel c), total alkalinity (µmol L^{-1} , panel d), and CO₂ (µmol kg⁻¹ SW, panel e) in surface seawater and mean PAR 557 intensity (W $m^{-2} s^{-1}$, panel f) during the PP incubation experiments. 558 **Fig. 3** Chl *a* concentration ($\mu g L^{-1}$) in the Taiwan Strait and the South China Sea during 559 research cruises. 560 **Fig. 4** Surface primary productivity ($\mu g C (\mu g Chl a)^{-1} d^{-1}$) in the Taiwan Strait and the 561 South China Sea during research cruises. 562

- 563 Fig. 5 Ocean acidification (pH decreases of 0.4 units) induced changes (%) of surface
- primary productivity in the Taiwan Strait and the South China Sea. Red-yellow shading
- represents a positive effect on PP and blue-purple shading represents a negative effect.

Fig. 6 Ocean acidification (pH decreases of 0.4 units) induced changes (%) on surface primary productivity in the South China Sea as a function of ambient pH (a), PAR (b), and salinity (c). The dotted lines represent 95% confidence intervals.

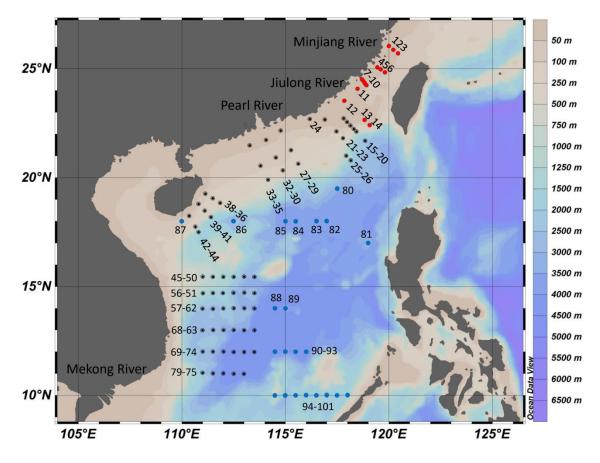


Fig. 1

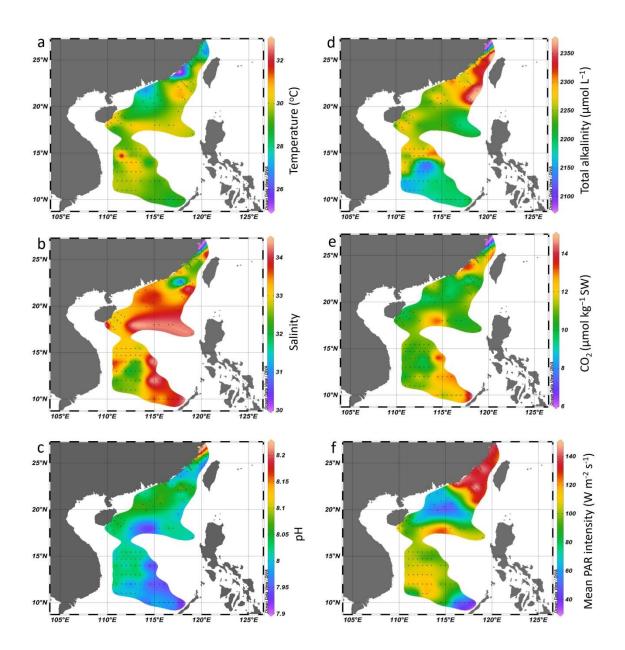


Fig. 2

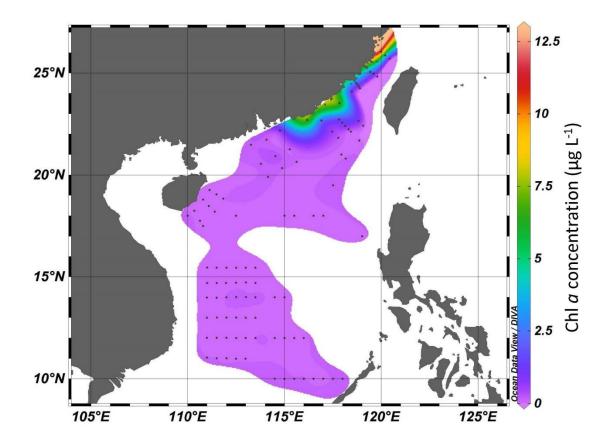


Fig. 3

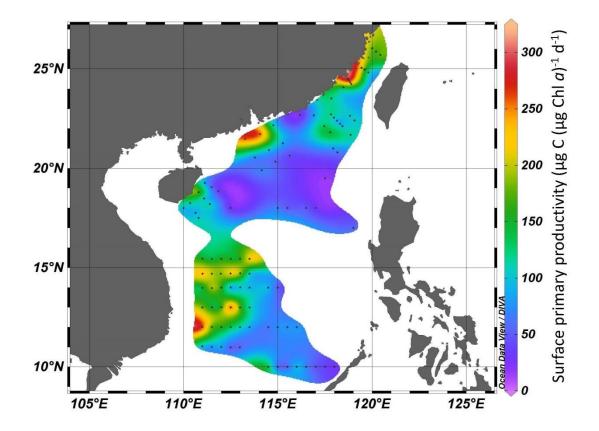


Fig. 4

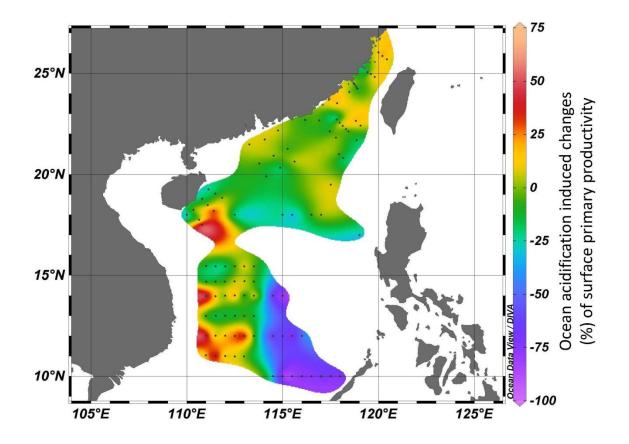


Fig. 5

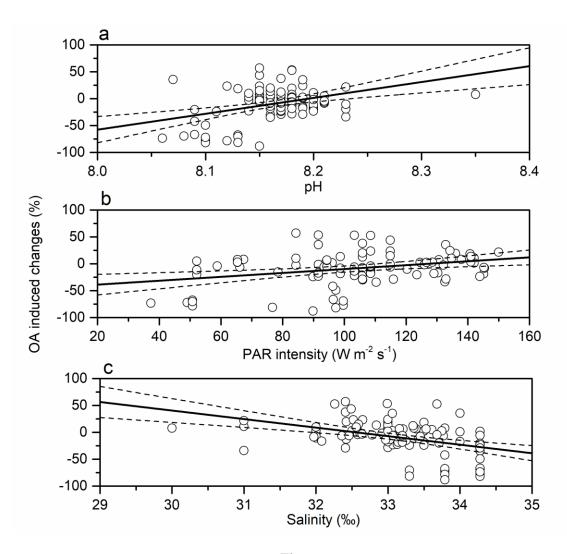


Fig. 6