1	Contrasting responses of phytoplankton productivity between coastal and offshore
2	surface waters in the Taiwan Strait and the South China Sea to short-term seawater
3	acidification
4	
5	Guang Gao ¹ , Tifeng Wang ¹ , Jiazhen Sun ¹ , Xin Zhao ¹ , Lifang Wang ¹ , Xianghui Guo ¹ ,
6	Kunshan Gao ^{1,2} *
7	¹ State Key Laboratory of Marine Environmental Science & College of Ocean and Earth
8	Sciences, Xiamen University, Xiamen 361005, China
9	² Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean
10	University, Lianyungang 222005, China
11	
12	*Corresponding author: ksgao@xmu.edu.cn

14 Abstract

33

1 Introduction

Seawater acidification (SA) has been documented to either inhibit or enhance or result in 15 no effect on marine primary productivity (PP). In order to examine effects of SA in 16 changing environments, we investigated the influences of SA (a decrease of 0.4 pH_{total} 17 units with corresponding CO_2 concentrations ranged 22.0–39.7 μ M) on PP through 18 19 deck-incubation experiments at 101 stations in the Taiwan Strait and the South China Sea, 20 including the continental shelf and slope, as well as deep-water basin. The daily primary productivities in surface seawater under incident solar radiation ranged from 17–306 µg 21 C (μ g Chl a)⁻¹ d⁻¹, with the responses of PP to SA being region-dependent and the 22 SA-induced changes varying from -88% (inhibition) to 57% (enhancement). The 23 SA-treatment stimulated PP in surface waters of coastal, estuarine and shelf waters, but 24 25 suppressed it in the South China Sea basin. Such SA-induced changes in PP were significantly related to in situ pH and solar radiation in surface seawater, but negatively 26 27 related to salinity changes. Our results indicate that phytoplankton cells are more 28 vulnerable to a pH drop in oligotrophic waters. Contrasting responses of phytoplankton productivity in different areas suggest that SA impacts on marine primary productivity 29 are region-dependent and regulated by local environments. 30 31 **Keywords:** CO₂; Taiwan Strait; seawater acidification; photosynthesis; primary productivity; South China Sea 32

34	The oceans have absorbed about one-third of anthropogenically released CO ₂ , which
35	increased dissolved CO ₂ and decreased pH of seawater (Gattuso et al., 2015), leading to
36	ocean acidification (OA). This process is ongoing and likely intensifying (IPCC, 2019).
37	OA has been shown to result in profound influences on marine ecosystems (see the
38	reviews and literature therein, Mostofa et al., 2016; Doney et al., 2020). Marine
39	photosynthetic organisms, which contribute about half of the global primary production,
40	are also being affected by OA (see the reviews and literatures therein, Riebesell et al.,
41	2018; Gao et al., 2019a). In addition to the slow change of ocean acidification, some
42	processes, such as freshwater inputs, upwelling, typhoon and eddies, can lead to
43	instantaneous CO ₂ rising and short-term changes in carbonate chemistry, termed seawater
44	acidification (SA) (Moreau et al., 2017; Yu et al., 2020). Since SA occurs in many
45	locations of ocean, it is important to understand the responses of the key players of
46	marine biological CO ₂ pump, the phytoplankton, to seawater acidification.
47	Elevated CO_2 is well recognized to lessen the dependence of algae and
48	cyanobacteria on energy-consuming CO ₂ concentrating mechanisms (CCMs) which
49	concentrate CO_2 around Rubisco, the key site for photosynthetic carbon fixation (Raven
50	& Beardall, 2014 and references therein; Hennon et al., 2015). The energy freed up from
51	the down-regulated CCMs under increased CO ₂ concentrations can be applied to other
52	metabolic processes, resulting in a modest increase in algal growth (Wu et al., 2010;
53	Hopkinson et al., 2011; Xu et al., 2017). Accordingly, elevated CO ₂ availability could

54	potentially enhance marine primary productivity (Schippers et al., 2004). For instance,
55	across 18 stations in the central Atlantic Ocean primary productivity was stimulated by
56	15–19% under elevated dissolved CO ₂ concentrations up to 36 μ M (Hein and
57	Sand-Jensen 1997). On the other hand, neutral effects of seawater acidification (SA) on
58	growth rates of phytoplankton communities were reported in five of six CO ₂
59	manipulation experiments in the coastal Pacific (Tortell et al., 2000). Furthermore,
60	simulated future SA reduced surface PP in pelagic surface waters of Northern South
61	China Sea and East China Sea (Gao et al., 2012). It seems that the impacts of SA on PP
62	could be region-dependent. The varying effects of SA may be related to the regulation of
63	other factors such as light intensity (Gao et al., 2012), temperature (Holding et al., 2015),
64	nutrients (Tremblay et al., 2006) and community structure (Dutkiewicz et al., 2015).
65	Taiwan Strait of the East China Sea, located between southeast Mainland China and
66	the Taiwan Island, is an important channel in transporting water and biogenic elements
67	between the East China Sea and the South China Sea. Among the Chinese coastal areas,
68	the Taiwan Strait is distinguished by its unique location. In addition to riverine inputs, it
69	also receives nutrients from upwelling (Hong et al., 2011). Primary productivity is much
70	higher in coastal waters than that in basin zones due to increased supply of nutrients
71	through river runoff and upwelling (Chen, 2003; Cloern et al., 2014). The South China
72	Sea, located from the equator to 23.8 N, from 99.1 to 121.1 E and encompassing an area
	Sea, located from the equator to 25.6 iv, from 55.1 to 121.1 E and encompassing an area

74	of the Western Pacific Ocean, it has a deep semi-closed basin (with depths > 5000 m) and
75	wide continental shelves, characterized by a tropical and subtropical climate (Jin et al.,
76	2016). Approximately 80% of ocean organic carbon is buried in the Earth's continental
77	shelves and therefore continental margins play an essential role in the ocean carbon cycle
78	(Hedges & Keil, 1995). Investigating how SA affects primary productivity in the Taiwan
79	Strait and the South China Sea could help us to understand the contribution of marginal
80	seas to carbon sink under the future CO ₂ -increased scenarios. Although small-scale
81	studies on SA impacts have been conducted in the East China Sea and the South China
82	Sea (Gao et al., 2012, 2017), our understanding of how SA affects PP in marginal seas is
83	still fragmentary and superficial. In this study, we conducted three cruises in the Taiwan
84	Strait and the South China Sea, covering an area of 8.3×10^5 km ² , and aimed to provide
85	in-depth insight into how SA and/or episodic pCO ₂ rise affects PP in marginal seas with
86	comparisons to other types of waters.
87	2 Materials and Methods
88	2.1 Investigation areas
89	To study the impacts of projected SA (dropping by ~0.4 pH) by the end of this
90	century (RCP8.5) on marine primary productivity in different areas (Gattuso et al., 2015),

- 91 we carried out deck-based experiments during the 3 cruises supported by National
- 92 Natural Science Foundation of China (NSFC), which took place in the Taiwan Strait (Jul
- 93 14th–25th, 2016), the South China Sea basin (Sep 6–24th, 2016), and the West South China

94	Sea (Sep 14 th to Oct 24 th , 2017), respectively. The experiments were conducted at 101
95	stations with coverage of 12 $^{\circ}N$ –26 $^{\circ}N$ and 110 $^{\circ}E$ –120 $^{\circ}E$ (Fig. 1). Investigation areas
96	include the continental shelf (0–200 m, 22 stations) and the slope (200–3400 m, 44
97	stations), and the vast deep-water basin (> 3400 m, 35 stations). In the continental shelf,
98	the areas with depth < 50 m are defined as coastal zones (9 stations).
99	2.2 Measurements of temperature and carbonate chemistry parameters
100	The temperature and salinity of surface seawater at each station were monitored with
101	an onboard CTD (Seabird, USA). pH_{NBS} was measured with an Orion 2-Star pH meter
102	(Thermo scientific, USA) that was calibrated with standard National Bureau of Standards
103	(NBS) buffers (pH=4.01, 7.00, and 10.01 at 25.0 °C; Thermo Fisher Scientific Inc., USA).
104	After the calibration, the electrode of pH meter was kept in surface seawater for half an
105	hour and then the formal measurements were conducted. The analytical precision was
106	±0.001. Total alkalinity (TA) was determined using Gran titration on a 25-mL sample
107	with a TA analyzer (AS-ALK1, Apollo SciTech, USA) that was regularly calibrated with
108	certified reference materials supplied by A. G. Dickson at the Scripps Institution of
109	Oceanography (Gao et al., 2018a). The analytical precision was $\pm 2 \ \mu mol \ kg^{-1}$. CO ₂
110	concentration in seawater and the $pH_{Total}(pH_T)$ values was calculated by using CO2SYS
111	(Pierrot et al., 2006) with the input of pH_{NBS} and TA data.

112 2.3 Solar radiation

3 The incident solar radiation intensity during the cruises was recorded with an

Eldonet broadband filter radiometer (Eldonet XP, Real Time Computer, Germany). This device has three channels for PAR (400–700 nm), UV-A (315–400 nm) and UV-B (280– 315 nm) irradiance, respectively, which records the means of solar radiations over each minute. The instrument was fixed at the top layer of the ship to avoid shading.

118

2.4 Determination of primary productivity

119 Surface seawater (0–1m) was collected a 10 L acid-cleaned (1 M HCl) plastic bucket

and pre-filtered (200 μ m mesh size) to remove large grazers. To prepare high CO₂ (HC)

seawater, CO₂-saturated seawater was added into pre-filtered seawater until a decrease of

 $122 \sim 0.4$ units in pH (corresponding CO₂ concentrations being 22.0–39.7 μ M) was

approached (Gattuso et al., 2010). Seawater that was collected from the same location as

124 PP and filtered by cellulose acetate membrane $(0.22 \ \mu m)$ was used to make the

125 CO₂-saturated seawater, which was made by directly flushing with pure CO₂ until pH

126 reached values around 4.50. When saturated-CO₂ seawater was added to the HC

127 treatment, equivalent filtered seawater (without flushing with CO₂) was also added to the

ambient CO_2 (AC) treatment as a control. The ratios of added saturated- CO_2 seawater to

129 incubation seawater were about 1:1000. Samples were incubated within half an hour after

130 they were collected. Prepared AC and HC seawater was allocated into 50-mL quartz

131 tubes in triplicate, inoculated with 5 μ Ci (0.185 MBq) NaH¹⁴CO₃ (ICN Radiochemicals,

- 132 USA), and then incubated for 24 h (over a day-night cycle) under 100 % incident solar
- 133 irradiances in a water bath for temperature control by running through surface seawater.

134	Due to heating by the deck, the temperatures in the water bath were $0-2$ °C higher than in
135	situ surface seawater temperatures. TA and pH of seawater before and after 24h
136	incubation were measured to monitor the changes of carbonate systems. After the
137	incubation, the cells were filtered onto GF/F filters (Whatman) and immediately frozen at
138	-20 °C for later analysis. In the laboratory, the frozen filters were transferred to 20 mL
139	scintillation vials, thawed and exposed to HCl fumes for 12 h, and dried (55 $^{\circ}$ C, 6 h) to
140	expel non-fixed ¹⁴ C, as previously reported (Gao et al., 2017). Then 3 mL scintillation
141	cocktail (Perkin Elmer®, OptiPhase HiSafe) was added to each vial. After 2 h of reaction,
142	the incorporated radioactivity was counted by a liquid scintillation counting (LS 6500,
143	Beckman Coulter, USA). The carbon fixation for 24 h incubation was taken as
144	chlorophyll (Chl) <i>a</i> -normalized daily primary productivity (PP, μ g C (μ g Chl <i>a</i>) ⁻¹) (Gao et
145	al., 2017). The changes (%) of PP induced by SA were expressed as (PP_{HC} -
146	PP_{AC} / PP_{AC} ×100, where PP_{HC} and PP_{AC} are the daily primary productivity under HC and
147	AC, respectively.
1/18	2.5 Chl <i>a</i> measurement

148 **2.5 Chl** *a* measurement

149 Pre-filtered (200 µm mesh size) surface seawater (500–2000 mL) at each station was

150 filtered onto GF/F filter (25 mm, Whatman) and then stored at -80 °C. After returning to

151 laboratory, phytoplankton cells on the GF/F filter were extracted overnight in absolute

152 methanol at 4 °C in darkness. After centrifugation (5000 g for 10 min), the absorption

values of the supernatants were analyzed by a UV–VIS spectrophotometer (DU800,

154	Beckman, Fullerton, California, USA). The concentration of chlorophyll <i>a</i> (Chl <i>a</i>) was
155	calculated according to Porra (2002).

156 **2.6 Data analysis**

157 The data of environmental parameters were expressed in raw and the data of PP were 158 the means of triplicate incubations. Two-way analysis of variance (ANOVA) was used to 159 analyze the effects of SA and location on PP. Least significant difference (LSD) was used 160 to for *post hoc* analysis. Linear fitting analysis was conducted with Pearson correlation 161 analysis to assess the relationship between PP and environmental factors. A 95%

162 confidence level was used in all analyses.

163 **3 Results**

During the cruises, surface temperature ranged from 25.0 to 29.9 °C in the Taiwan 164 Strait and from 27.1 to 30.2 °C in the South China Sea (Fig. 2a). Surface salinity ranged 165 from 30.0 to 34.0 in the Taiwan Strait and from 31.0 to 34.3 in the South China Sea (Fig. 166 2b). The lower salinities were found in the estuaries of Minjiang and Jiulong Rivers as 167 well as Mekong River-induced Rip current. High salinities were found in the South China 168 Sea basin. Surface pH_T changed between 7.99–8.20 in the Taiwan Strait with the higher 169 values in the estuary of Minjiang River (Fig. 2c). Compared to the Taiwan Strait, the 170 South China Sea had lower surface pH (7.91-8.08) with the lowest value near the island 171 in the Philippines. TA ranged from 2100 to 2359 µmol kg⁻¹ SW in the Taiwan Strait and 172 2126 to 2369 µmol kg⁻¹ SW in the South China Sea (Fig. 2d). The lowest value occurred 173

175 $6.4-13.3 \ \mu\text{mol kg}^{-1} \ \text{SW}$ in the Taiwan Strait, and $9.3-14.3 \ \mu\text{mol kg}^{-1} \ \text{SW}$ in the South176China Sea (Fig. 2e). It showed an opposite pattern to surface pH, with the lowest value in177the estuary of Minjiang River in the Taiwan Strait and highest value in near the islands in178the Philippines in the South China Sea. During the PP investigation period, the daytime179mean PAR intensity ranged from 126.6 to 145.2 W m ⁻² s ⁻¹ in the Taiwan Strait and 37.3 to180150.0 W m ⁻² s ⁻¹ in the South China Sea (Fig. 2f).181The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 µg L ⁻¹ in the Taiwan Strait (Fig.1823). The highest concentration occurred in the estuary of the Minjiang River. The184highest concentration was found in the coastal areas of Guangdong province in China.185For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations186(> 1.0 µg L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong187River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower188than 0.2 µg L ⁻¹ .189Surface primary productivity changed from 99 to 302 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹ in the190Taiwan Strait, and from 17 to 306 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the191High surface primary productivity (> 200 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the192vietnam. In basin zones, the surface primary productivity was usually lower than 100 µg	174	in the estuary of Minjiang River. CO ₂ concentration in surface seawater changed from
177the estuary of Minjiang River in the Taiwan Strait and highest value in near the islands in178the Philippines in the South China Sea. During the PP investigation period, the daytime179mean PAR intensity ranged from 126.6 to 145.2 W m ⁻² s ⁻¹ in the Taiwan Strait and 37.3 to180150.0 W m ⁻² s ⁻¹ in the South China Sea (Fig. 2f).181The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 µg L ⁻¹ in the Taiwan Strait (Fig.1823). The highest concentration occurred in the estuary of the Minjiang River. The183concentration of Chl <i>a</i> in the South China Sea ranged from 0.037 to 7.43 µg L ⁻¹ . The184highest concentration was found in the coastal areas of Guangdong province in China.185For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations186(> 1.0 µg L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong187River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower188than 0.2 µg L ⁻¹ .189Surface primary productivity changed from 99 to 302 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹ in the190Taiwan Strait, and from 17 to 306 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4).191High surface primary productivity (> 200 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the192estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	175	6.4–13.3 μ mol kg ⁻¹ SW in the Taiwan Strait, and 9.3–14.3 μ mol kg ⁻¹ SW in the South
178the Philippines in the South China Sea. During the PP investigation period, the daytime179mean PAR intensity ranged from 126.6 to 145.2 W m ⁻² s ⁻¹ in the Taiwan Strait and 37.3 to180150.0 W m ⁻² s ⁻¹ in the South China Sea (Fig. 2f).181The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 µg L ⁻¹ in the Taiwan Strait (Fig.1823). The highest concentration occurred in the estuary of the Minjiang River. The183concentration of Chl <i>a</i> in the South China Sea ranged from 0.037 to 7.43 µg L ⁻¹ . The184highest concentration was found in the coastal areas of Guangdong province in China.185For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations186(> 1.0 µg L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong187River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower188than 0.2 µg L ⁻¹ .190Surface primary productivity changed from 99 to 302 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹ in the191High surface primary productivity (> 200 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the192estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	176	China Sea (Fig. 2e). It showed an opposite pattern to surface pH, with the lowest value in
mean PAR intensity ranged from 126.6 to 145.2 W m ⁻² s ⁻¹ in the Taiwan Strait and 37.3 to 150.0 W m ⁻² s ⁻¹ in the South China Sea (Fig. 2f). The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 µg L ⁻¹ in the Taiwan Strait (Fig. 3). The highest concentration occurred in the estuary of the Minjiang River. The concentration of Chl <i>a</i> in the South China Sea ranged from 0.037 to 7.43 µg L ⁻¹ . The highest concentration was found in the coastal areas of Guangdong province in China. For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations (> 1.0 µg L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower than 0.2 µg L ⁻¹ . Surface primary productivity changed from 99 to 302 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹ in the Taiwan Strait, and from 17 to 306 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	177	the estuary of Minjiang River in the Taiwan Strait and highest value in near the islands in
180150.0 W m ⁻² s ⁻¹ in the South China Sea (Fig. 2f).181The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 µg L ⁻¹ in the Taiwan Strait (Fig.1823). The highest concentration occurred in the estuary of the Minjiang River. The183concentration of Chl <i>a</i> in the South China Sea ranged from 0.037 to 7.43 µg L ⁻¹ . The184highest concentration was found in the coastal areas of Guangdong province in China.185For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations186(> 1.0 µg L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong187River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower188than 0.2 µg L ⁻¹ .189Surface primary productivity changed from 99 to 302 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹ in the190Taiwan Strait, and from 17 to 306 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4).191High surface primary productivity (> 200 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the192estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	178	the Philippines in the South China Sea. During the PP investigation period, the daytime
181The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 µg L ⁻¹ in the Taiwan Strait (Fig.1823). The highest concentration occurred in the estuary of the Minjiang River. The183concentration of Chl <i>a</i> in the South China Sea ranged from 0.037 to 7.43 µg L ⁻¹ . The184highest concentration was found in the coastal areas of Guangdong province in China.185For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations186(> 1.0 µg L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong187River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower188than 0.2 µg L ⁻¹ .189Surface primary productivity changed from 99 to 302 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹ in the190Taiwan Strait, and from 17 to 306 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the191High surface primary productivity (> 200 µg C (µg Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the192estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	179	mean PAR intensity ranged from 126.6 to 145.2 W $m^{-2} s^{-1}$ in the Taiwan Strait and 37.3 to
3). The highest concentration occurred in the estuary of the Minjiang River. The concentration of Chl <i>a</i> in the South China Sea ranged from 0.037 to 7.43 μ g L ⁻¹ . The highest concentration was found in the coastal areas of Guangdong province in China. For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations (> 1.0 μ g L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower than 0.2 μ g L ⁻¹ . Surface primary productivity changed from 99 to 302 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹ in the Taiwan Strait, and from 17 to 306 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	180	150.0 W m ⁻² s ⁻¹ in the South China Sea (Fig. 2f).
concentration of Chl <i>a</i> in the South China Sea ranged from 0.037 to 7.43 μ g L ⁻¹ . The highest concentration was found in the coastal areas of Guangdong province in China. For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations (> 1.0 μ g L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower than 0.2 μ g L ⁻¹ . Surface primary productivity changed from 99 to 302 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹ in the Taiwan Strait, and from 17 to 306 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	181	The concentration of Chl <i>a</i> ranged from 0.11 to 12.13 μ g L ⁻¹ in the Taiwan Strait (Fig.
184highest concentration was found in the coastal areas of Guangdong province in China.185For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations186 $(> 1.0 \ \mu g \ L^{-1})$ in coastal areas, particularly in the estuaries of the Minjing River, Jiulong187River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower188than 0.2 \ \mu g \ L^{-1}.189Surface primary productivity changed from 99 to 302 \ \mu g C (\ \mu g Chl a)^{-1} d^{-1} in the190Taiwan Strait, and from 17 to 306 \ \mu g C (\ \mu g Chl a)^{-1} d^{-1} in the South China Sea (Fig. 4).191High surface primary productivity (> 200 \ \mu g C (\ \mu g Chl a)^{-1} d^{-1}) was found in the192estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	182	3). The highest concentration occurred in the estuary of the Minjiang River. The
For both the Taiwan Strait and the South China Sea, there were high Chl <i>a</i> concentrations (> 1.0 μ g L ⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower than 0.2 μ g L ⁻¹ . Surface primary productivity changed from 99 to 302 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹ in the Taiwan Strait, and from 17 to 306 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4). High surface primary productivity (> 200 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	183	concentration of Chl <i>a</i> in the South China Sea ranged from 0.037 to 7.43 μ g L ⁻¹ . The
 (> 1.0 µg L⁻¹) in coastal areas, particularly in the estuaries of the Minjing River, Jiulong River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower than 0.2 µg L⁻¹. Surface primary productivity changed from 99 to 302 µg C (µg Chl <i>a</i>)⁻¹ d⁻¹ in the Taiwan Strait, and from 17 to 306 µg C (µg Chl <i>a</i>)⁻¹ d⁻¹ in the South China Sea (Fig. 4). High surface primary productivity (> 200 µg C (µg Chl <i>a</i>)⁻¹ d⁻¹) was found in the estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of 	184	highest concentration was found in the coastal areas of Guangdong province in China.
187River and Pearl River. On the contrary, Chl <i>a</i> concentrations in offshore areas were lower188than 0.2 μ g L ⁻¹ .189Surface primary productivity changed from 99 to 302 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹ in the190Taiwan Strait, and from 17 to 306 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4).191High surface primary productivity (> 200 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the192estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	185	For both the Taiwan Strait and the South China Sea, there were high Chl a concentrations
 than 0.2 µg L⁻¹. Surface primary productivity changed from 99 to 302 µg C (µg Chl a)⁻¹ d⁻¹ in the Taiwan Strait, and from 17 to 306 µg C (µg Chl a)⁻¹ d⁻¹ in the South China Sea (Fig. 4). High surface primary productivity (> 200 µg C (µg Chl a)⁻¹ d⁻¹) was found in the estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of 	186	$(> 1.0 \ \mu g \ L^{-1})$ in coastal areas, particularly in the estuaries of the Minjing River, Jiulong
189Surface primary productivity changed from 99 to 302 μ g C (μ g Chl a) ⁻¹ d ⁻¹ in the190Taiwan Strait, and from 17 to 306 μ g C (μ g Chl a) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4).191High surface primary productivity (> 200 μ g C (μ g Chl a) ⁻¹ d ⁻¹) was found in the192estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	187	River and Pearl River. On the contrary, Chl a concentrations in offshore areas were lower
190 Taiwan Strait, and from 17 to 306 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4). 191 High surface primary productivity (> 200 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the 192 estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	188	than 0.2 $\mu g L^{-1}$.
High surface primary productivity (> 200 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹) was found in the estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	189	Surface primary productivity changed from 99 to 302 μ g C (μ g Chl a) ⁻¹ d ⁻¹ in the
192 estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of	190	Taiwan Strait, and from 17 to 306 μ g C (μ g Chl <i>a</i>) ⁻¹ d ⁻¹ in the South China Sea (Fig. 4).
	191	High surface primary productivity (> 200 µg C (µg Chl a) ⁻¹ d ⁻¹) was found in the
193 Vietnam. In basin zones, the surface primary productivity was usually lower than 100 µg	192	estuaries of the Minjing River, Jiulong River, and Pearl River and areas near the East of
	193	Vietnam. In basin zones, the surface primary productivity was usually lower than 100 μ g

194 C (μ g Chl a)⁻¹ d⁻¹.

195	A series of onboard CO ₂ -enrich experiments in the investigated regions were
196	conducted during three cruises. In HC treatments, pH_{total} decreased by 0.34–0.43 units,
197	while pCO ₂ and CO ₂ increased by 676–982 μ atm and 17–25 μ mol kg ⁻¹ SW, respectively
198	(Table S1). Carbonate chemistry parameters after 24 h of incubation were stable (\triangle pH <
199	0.06, $\triangle TA < 53 \mu mol \text{ kg}^{-1} \text{ SW}$), indicating the successful manipulation (Table S1). It
200	was observed that instantaneous effects of elevated pCO ₂ on primary productivity of
201	surface phytoplankton community in all investigated regions ranged from -88%
202	(inhibition) to 57% (promotion), revealing significant regional differences among
203	continental shelf, slope and deep-water basin (ANOVA, $F_{(2, 98)} = 3.747$, $p = 0.027$, Fig. 5).
204	Among 101 stations, 70 stations showed insignificant SA effects. SA increased PP at 6
205	stations and reduced PP at 25 stations. Positive effects of SA on surface primary
206	productivity were observed in the Taiwan Strait and the western South China Sea (Fig. 5,
207	red-yellow shading areas), with the maximal enhancement of 57% in the station
208	approaching the Mekong River plume (LSD, $p < 0.001$). Reductions in PP induced by the
209	elevated CO ₂ were mainly found in the central South China Sea basin within the latitudes
210	of 10 °N to 14 °N and the longitudes of 114.5 °E to 118 °E (Fig. 5, blue-purple shading
211	areas), with inhibition rates ranging from 24% to 88% (Fig. 5, LSD, $p < 0.05$). These
212	results showed a region-related effect of SA on photosynthetic carbon fixation of surface
213	phytoplankton assemblages. Overall, the elevated pCO_2 had neutral or positive effects on

214 primary productivity in the continental shelf and slope regions, while having adverse215 effects in the deep-water basin.

216	By analyzing the correlations between SA-induced PP changes and regional
217	environmental parameters (Table S2), we found that SA-induced changes in
218	phytoplankton primary productivity was significantly positively related with in situ pH (p
219	< 0.001, $r = 0.379$), and PAR density ($p = 0.002$, $r = 0.311$) (Fig. 6). On the other hand,
220	the influence induced by SA was negatively related to salinity that ranged from 30.00 to
221	34.28 ($p < 0.001$, $r = -0.418$).
222	4 Discussion
223	In the present study, we found that the elevated pCO_2 and associated pH drop
224	increased or did not affect PP in the continental shelf and slope waters but reduced it in
225	basin waters. Our results suggested that the enhanced effects of the SA treatment on
226	photosynthetic carbon fixation depend on regions of different physicochemical conditions,
227	including pH, light intensity and salinity. In addition, coastal diatoms appear to benefit
228	more from SA than pelagic ones (Li et al., 2016). Therefore, community structure
229	differences might also be responsible for the differences of the short-term high
230	CO ₂ -induced acidification between coastal and basin waters.
231	SA is deemed to have two kinds of effects at least (Xu et al., 2017; Shi et al., 2019).
232	The first one is the enrichment of CO ₂ , which is usually beneficial for photosynthetic
233	carbon fixation and growth of algae because insufficient ambient CO ₂ limits algal

234	photosynthesis (Hein & Sand-Jensen, 1997; Bach & Taucher, 2019). The other effect is
235	the decreased pH which could be harmful because it disturbs the acid-base balance
236	between extracellular and intracellular environments. For instance, the decreased pH
237	projected for future SA was shown to reduce the growth of the diazotroph Trichodesmium
238	(Hong et al., 2017), decrease PSII activity by reducing the removal rate of PsbD (D2)
239	(Gao et al., 2018b) and increase mitochondrial and photo-respirations in diatoms and
240	phytoplankton assemblages (Yang and Gao 2012, Jin et al., 2015). In addition, SA could
241	reduce the Rubisco transcription of diatoms, which also contributed to the decreased
242	growth (Endo et al., 2015). Therefore, the net impact of SA depends on the balance
243	between its positive and negative effects, leading to enhanced, inhibited or neutral
244	influences, as reported in diatoms (Gao et al., 2012, Li et al., 2021) and phytoplankton
245	assemblages in the Arctic and subarctic shelf seas (Hoppe et al., 2018), the North Sea
246	(Eberlein et al., 2017) and the South China Sea (Wu and Gao 2010, Gao et al., 2012). The
247	balance of positive and negative effects of SA can be regulated by other factors, including
248	pH, light intensity, salinity, population structure, etc. (Gao et al., 2019a, b; Xie et al.,
249	2022).

In the present study, SA increased or did not affect PP in coastal waters but reduced it in offshore waters, which is significantly related to pH, light intensity and salinity (Fig. 6). The effect of SA changed from negative to positive with the increase of local pH. The higher pH occurred in coastal zones which may be caused by higher biomass of

254	phytoplankton (Fig. 3). Higher pH caused by intensive photosynthesis of phytoplankton
255	is companied with decreased CO_2 levels. In this case, CO_2 is more limiting for
256	photosynthesis of phytoplankton compared to lower pH. Therefore, SA could stimulate
257	primary productivity via supplying more available CO_2 (Hurd et al., 2019). On the other
258	hand, lower pH occurred in deep-water basin. Lower pH represents higher CO ₂
259	availability. CO ₂ is not limited or less limited in this case. Therefore, more CO ₂ brought
260	by SA may not benefit photosynthesis of phytoplankton. Instead, decreased pH
261	accompanied by SA may inhibit photosynthesis or growth of phytoplankton, which is
262	found in cyanobacteria (Hong et al., 2017). Furthermore, the negative effects of SA are
263	particularly significant when nutrient is limited (Li et al., 2018). The nutrient levels in the
264	basin are usually lower than on the shelf (Yuan et al., 2011; Lu et al., 2020; Du et al.,
265	2021), which may exacerbate the negative effects of SA in the basin zone.
266	The negative effects of SA disappeared with increasing light intensity in this study.
267	This results in inconsistent with Gao et al (2012)' study, in which SA increased
268	photosynthetic carbon fixation of three diatoms (Phaeodactylum tricornutum,
269	Thalassiosira pseudonana and Skeletonema costatum) under lower light intensities but
270	decreased it under higher light intensities. The divergent findings may be due to different
271	population structure that varies in different areas. Coastal zones where nutrients are
272	relatively sufficient usually have abundant diatoms while picophytoplanktons mainly
273	Prochlorococcus and Synechococcus, dominate oligotrophic areas (Xiao et al., 2018,

274	Zhong et al., 2020). In this study, most investigated areas are oligotrophic and thus the
275	response of local phytoplankton to the combination of light intensity and SA may be
276	different from diatoms. Meanwhile, the weak correlation ($r = 0.311$) between light
277	intensity and SA effect suggests the deviation from linear relationship in the context of
278	multiple variables needs to be further illuminated in future studies. It is worth noting that
279	the samples were not mixed down in the water bath in the present study and exposed to
280	100% incident solar irradiances. Lower incident solar irradiances or some devices can be
281	used to simulate seawater mixing in future studies. A negative correlation between
282	SA-induced changes of PP and salinity was found in this study. The decrease of salinity
283	(from 35 to 30) has been shown to alleviate the negative effect of SA on photosynthetic
284	carbon fixation of a coccolithorphorid Emiliania huxleyi (Xu et al., 2020) although the
285	potential mechanisms remain unknown. On the other hand, the change of salinity (from 6
286	to 3) did not affect effective quantum yield of microplanktonic community in the Baltic
287	Sea grown under different CO_2 levels (Wulff et al., 2018). In this study, the negative
288	relationship between salinity and SA effects seems to be an autocorrelation between
289	salinity and in situ pH (Fig. S1) because lower salinity occurred in coastal waters where
290	seawater pH was higher while the basin zone usually had higher salinities and lower pH.
291	The specific environmental conditions have profound effects on shaping diverse
292	dominant phytoplankton groups (Boyd et al., 2010). Larger eukaryotic groups (especially
293	diatoms) usually dominate the complex coastal regions, while picophytoplanktons

294	(Prochlorococcus and Synechococcus), characterizing with more efficient nutrients
295	uptake, dominate the relatively stable offshore waters (Dutkiewicz et al., 2015). In
296	summer and early autumn, previous investigations demonstrated that diatoms dominated
297	in the northern waters and the Taiwan Strait (coastal and shelf regions) with high
298	abundances of phytoplankton, which is consistent with our Chl a data; Prochlorococcus
299	and Synechococcus dominated in the South China Sea basin and the north of South China
300	Sea (slope and basin regions) (Xiao et al., 2018, Zhong et al., 2020). In addition, it has
301	been reported that larger cells benefit more from SA because a thicker diffusion layer
302	around the cells limits the transport of CO ₂ (Feng et al., 2010; Wu et al., 2014). In
303	contrast, a thinner diffusion layer and higher surface to volume ratio in smaller
304	phytoplankton cells can make them easier to transport CO ₂ near the cell surface and
305	within the cells, and therefore picophytoplankton species are less CO ₂ -limited (Bao and
306	Gao, 2021). Therefore, different community structures between coastal and basin areas
307	could also be responsible for the enhanced and inhibitory effects of SA. It is worth noting
308	that seasonality may also lead to the differential effects of SA on primary productivity
309	since the Taiwan Strait cruise was conducted in July and the cruises of the South China
310	Sea basin and the West South China Sea were conducted in September. The SST and
311	solar PAR intensity of the Taiwan Strait in July was 2–3 ^{o}C and 22 \pm 22 W m $^{-2}$ s $^{-1}$ higher
312	than that in September (Zhang et al., 2008, 2009; Table S3). Although the effects of SA
313	were not related to temperature as shown in this study (Table S2), the higher solar

radiation in July may contribute to the positive effect of SA on primary productivity. In
addition, species succession of phytoplankton with season may also affect the response to
SA (Xiao et al., 2018).

5 Conclusions

318	By investigating the impacts of the elevated pCO_2 on PP in the Taiwan Strait and the
319	South China Sea, we demonstrated that such short SA-treatments induced changes in PP
320	were mainly related to pH, light intensity and salinity based on Pearson correlation
321	coefficients, supporting the hypothesis that negative impacts of SA on PP increase from
322	coastal to basin waters (Gao et al., 2019a). In addition, phytoplankton community
323	structures may also modulate SA induced changes. In view of ocean climate changes,
324	strengthened stratification due to global warming would reduce the upward transports of
325	nutrients and thus marine primary productivity. The negative effect of SA in basin zones
326	may further reduce primary productivity. Meanwhile, PP in some coastal waters may be
327	increased by SA.
328	Data availability. All data are included in the article or Supplement.
329	Author contributions. KG and TW developed the original idea and designed research.
330	TW and JS carried out fieldwork. GG provided statistical analyses and prepared figures.
331	GG, KG, and XZ wrote the manuscript. All contributed to revising the paper.
332	Competing interests. The contact author has declared that neither they nor their
333	co-authors have any competing interests.

334	Disclaimer. Publisher's note: Copernicus Publications remains neutral with regard to
335	jurisdictional claims in published maps and institutional affiliations.
336	Acknowledgements. This work was supported by the National Natural Science
337	Foundation of China (41720104005, 41890803, 41721005, and 42076154) and the
338	Fundamental Research Funds for the Central Universities (20720200111). The authors
339	are grateful to the students He Li, Xiaowen Jiang and Shanying Tong, and the laboratory
340	technicians Xianglan Zeng and Wenyan Zhao. We appreciate the NFSC Shiptime Sharing
341	Project (project number: 41849901) for supporting the Taiwan Strait cruise
342	(NORC2016-04). We appreciate the chief scientists Yihua Cai, Huabin Mao and Chen Shi
343	and the R/V Yanping II, Shiyan I and Shiyan III for leading and conducting the cruises.
344	References
345	Bach, L. T., and Taucher, J.: CO ₂ effects on diatoms: a synthesis of more than a decade of
346	ocean acidification experiments with natural communities, Ocean Sci., 15,
347	1159-1175, 2019.
348	Bao, N., and Gao, K.: Interactive effects of elevated CO ₂ concentration and light on the
349	picophytoplankton Synechococcus, Front. Mar. Sci., 8, 1-7, 2021.
350	Boyd, P. W., Strzepek, R., Fu, F. X., and Hutchins, D. A.: Environmental control of open-
351	ocean phytoplankton groups: Now and in the future, Limnol. Oceanogr, 55,

352 1353-1376, 2010.

353 Chen, C. T. A.: Rare northward flow in the Taiwan Strait in winter: A note, Cont. Shelf

- 354 Res., 23, 387-391, 2003.
- 355 Cloern, J. E., Foster, S.Q. and Kleckner, A. E.: Phytoplankton primary production in the
- world's estuarine-coastal ecosystems, Biogeosciences, 11, 2477-2501, 2014.
- 357 Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The impacts of ocean
- acidification on marine ecosystems and reliant human communities, Annu. Rev. Env.
 Resour., 45, 83-112, 2020.
- 360 Du, C., He, R., Liu, Z., Huang, T., Wang, L., Yuan, Z., Xu, Y., Wang, Z. and Dai, M.:
- 361 Climatology of nutrient distributions in the South China Sea based on a large data 362 set derived from a new algorithm. Prog. Oceanogr., 195, 102586, 2021.
- 363 Dutkiewicz, S., Morris, J. J., Follows, M. J., Scott, J., Levitan, O., Dyhrman, S. T., and 364 Berman-Frank, I.: Impact of ocean acidification on the structure of future 365 phytoplankton communities, Nat. Clim. Change, 5, 1002-1006, 2015.
- Eberlein, T., Wohlrab, S., Rost, B., John, U., Bach, L. T., Riebesell, U., and Van de Waal,
- 367 D. B.: Effects of ocean acidification on primary production in a coastal North Sea
 368 phytoplankton community, Plos One, 12, 1-15, 2017.
- 369 Endo, H., Sugie, K., Yoshimura, T., and Suzuki, K.: Effects of CO₂ and iron availability
- on rbcL gene expression in Bering Sea diatoms, Biogeosciences, 12, 2247-2259,
 2015.
- 372 Feng, Y., Hare, C. E., Rose, J. M., Handy, S. M., DiTullio, G. R., Lee, P. A., Smith, W. O.,
- Peloquin, J., Tozzi, S., Sun, J., Zhang, Y., Dunbar, R. B., Long, M. C., Sohst, B.,

374	Lohan, M., and Hutchins, D. A.: Interactive effects of iron, irradiance and CO ₂ on
375	Ross Sea phytoplankton, Deep-Sea Res. PT. I, 57, 368-383, 2010.

- Gao, G., Xu, Z. G., Shi, Q., and Wu, H. Y.: Increased CO₂ exacerbates the stress of
 ultraviolet radiation on photosystem II function in the diatom *Thalassiosira weissflogii*, Environ. Exp. Bot., 156, 96-105, 2018b.
- Gao, G., Jin, P., Liu, N., Li, F. T., Tong, S. Y., Hutchins, D. A., and Gao, K. S.: The
- acclimation process of phytoplankton biomass, carbon fixation and respiration to the
- 381 combined effects of elevated temperature and pCO_2 in the northern South China Sea,
- 382 Mar. Pollut. Bull., 118, 213-220, 2017.
- Gao, G., Qu, L., Xu, T., Burgess, J.G., Li, X. and Xu, J.: Future CO₂-induced ocean
 acidification enhances resilience of a green tide alga to low-salinity stress. ICES J.
 Mar. Sci., 76, 2437-2445, 2019b.
- Gao, G., Xia, J. R., Yu, J. L., Fan, J. L., and Zeng, X. P.: Regulation of inorganic carbon
 acquisition in a red tide alga (*Skeletonema costatum*): The importance of phosphorus
- 388 availability, Biogeosciences, 15, 4871-4882, 2018a.
- 389 Gao, K. S., Beardall, J., Häder, D. P., Hall-Spencer, J. M., Gao, G., and Hutchins, D. A.:
- Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation, Front. Mar.
- 392 Sci., 6, 1-18, 2019a.
- 393 Gao, K. S., Xu, J. T., Gao, G., Li, Y. H., Hutchins, D. A., Huang, B. Q., Wang, L., Zheng,

394	Y., Jin, P., Cai, X. N., Hader, D. P., Li, W., Xu, K., Liu, N. N., and Riebesell, U.:
395	Rising CO ₂ and increased light exposure synergistically reduce marine primary
396	productivity, Nat. Clim. Change, 2, 519-523, 2012.
397	Gattuso, J. P., Gao, K. S., Lee, K., Rost, B., and Schulz, K. G.: Approaches and tools to
398	manipulate the carbonate chemistry, pp 41-52. Guide to best practices for ocean
399	acidification research and data reporting, edited by: Riebesell, U., Fabry, V. J.,
400	Hansson, L., and Gattuso JP., Luxembourg: Publications Office of the European
401	Union, 2010.
402	Gattuso, J. P., Magnan, A., Bill é, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand,
403	D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Portner,
404	H. O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette,
405	J., Sumaila, U. R., Treyer, S., and Turley, C.: Contrasting futures for ocean and
406	society from different anthropogenic CO2 emissions scenarios, Science, 349,
407	aac4722, 2015.
408	Hedges, J. I., and Keil, R. G.: Sedimentary organic matter preservation: an assessment
409	and speculative synthesis, Mar. Chem., 49, 81-115, 1995.
410	Hein, M., and Sand-Jensen, K.: CO ₂ increases oceanic primary production, Nature, 388,
411	526-527, 1997.
412	Hennon, G. M. M., Ashworth, J., Groussman, R. D., Berthiaume, C., Morales, R. L.,

413 Baliga, N. S., Orellana, M. V., and Armbrust, E. V.: Diatom acclimation to elevated

- 414 CO₂ via cAMP signalling and coordinated gene expression, Nat. Clim. Change, 5,
 415 761-765, 2015.
- Holding, J. M., Duarte, C. M., Sanz-Mart ń, M., Mesa, E., Arrieta, J. M., Chierici, M.,
- 417 Hendriks, I. E., Garcia-Corral, L. S., Regaudie-de-Gioux, A., Delgado, A., Reigstad,

M., Wassmann, P., and Agusti, S.: Temperature dependence of CO₂-enhanced

- 419 primary production in the European Arctic Ocean, Nat. Clim. Change, 5, 1079-1082,
 420 2015.
- Hong, H. S., Chai, F., Zhang, C. Y., Huang, B. Q., Jiang, Y. W., and Hu, J. Y.: An
 overview of physical and biogeochemical processes and ecosystem dynamics in the
 Taiwan Strait, Cont. Shelf Res., 31, S3-S12, 2011.
- 424 Hong, H. Z., Shen, R., Zhang, F. T., Wen, Z. Z., Chang, S. W., Lin, W. F., Kranz, S. A.,
- 425 Luo, Y. W., Kao, S. J., Morel, F. M. M. and Shi, D. L.: The complex effects of ocean
- acidification on the prominent N₂-fixing cyanobacterium *Trichodesmium*. Science,
 356, 527-530, 2017.
- Hopkinson, B. M., Dupont, C. L., Allen, A. E., and Morel, F. M.: Efficiency of the
 CO₂-concentrating mechanism of diatoms, P. Natl. Acad. Sci. USA., 108, 3830-3837,
 2011.
- Hoppe, C. J. M., Wolf, K. K. E., Schuback, N., Tortell, P. D., and Rost, B.: Compensation
 of ocean acidification effects in Arctic phytoplankton assemblages. Nat. Clim.
 Change, 8, 529-533, 2018.

434	Hurd, C.L., Beardall, J., Comeau, S., Cornwall, C.E., Havenhand, J.N., Munday, P.L.,
435	Parker, L.M., Raven, J.A. and McGraw, C.M.: Ocean acidification as a multiple
436	driver: how interactions between changing seawater carbonate parameters affect
437	marine life. Mari. Freshwater Res., 71, 263-274, 2019.
438	IPCC, 2019: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate
439	[HO. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E.
440	Poloczanska, K. Mintenbeck, A. Alegr á, M. Nicolai, A. Okem, J. Petzold, B. Rama,
441	N.M. Weyer (eds.)]. In press.
442	Jin, P., Gao, G., Liu, X., Li, F. T., Tong, S. Y., Ding, J. C., Zhong, Z. H., Liu, N. N., and
443	Gao, K. S.: Contrasting photophysiological characteristics of phytoplankton
444	assemblages in the Northern South China Sea, Plos One, 11, 1-16, 2016.
445	Jin, P., Wang, T. F., Liu, N. N., Dupont, S., Beardall, J., Boyd, P. W., Riebesell, U., and
446	Gao, K. S.: Ocean acidification increases the accumulation of toxic phenolic
447	compounds across trophic levels, Nat. Commun., 6, 1-6, 2015.
448	Li, F. T., Wu, Y. P., Hutchins, D. A., Fu, F. X., and Gao, K. S.: Physiological responses of
449	coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry
450	under two CO ₂ concentrations, Biogeosciences, 13, 6247-6259, 2016.
451	Li, F. T., Beardall, J., and Gao, K. S.: Diatom performance in a future ocean: interactions
452	between nitrogen limitation, temperature, and CO2-induced seawater acidification,
453	ICES J. Mar. Sci., 75, 1451-1464, 2018.

454	Li, H. X., Xu, T. P., Ma, J., Li, F. T., and Xu, J. T.: Physiological responses of
455	Skeletonema costatum to the interactions of seawater acidification and the
456	combination of photoperiod and temperature, Biogeosciences, 18, 1439-1449, 2021.
457	Lu, Z., Gan, J., Dai, M., Zhao, X. and Hui, C. R.: Nutrient transport and dynamics in the
458	South China Sea: A modeling study. Prog. Oceanogr., 183, 102308, 2020.
459	Moreau, S., Penna, A. D., Llort, J., Patel, R., Langlais, C., Boyd, P. W., Matear, R. J.,
460	Phillips, H. E., Trull, T. W., Tilbrook, B. and Lenton, A.: Eddy-induced carbon
461	transport across the Antarctic Circumpolar Current. Global Biogeochem. Cy., 31,
462	1368-1386, 2017
463	Mostofa, K.M., Liu, C.Q., Zhai, W., Minella, M., Vione, D., Gao, K., Minakata, D.,
464	Arakaki, T., Yoshioka, T., Hayakawa, K. and Konohira, E.: Reviews and Syntheses:
465	Ocean acidification and its potential impacts on marine ecosystems, Biogeosciences,
466	13, 1767-1786, 2016.
467	Pierrot, D., Wallace, D.W. R., and Lewis, E.: MS Excel program developed for CO ₂
468	system calculations. ORNL/CDIAC-105a, Carbon Dioxide Information Analysis
469	Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge,
470	Tennessee, USA., 2006.
471	Porra, R. J.: The chequered history of the development and use of simultaneous equations

472 for the accurate determination of chlorophylls a and b, Photosynth. Res., 73,
473 149-156, 2002.

- Raven, J. A., and Beardall, J.: CO₂ concentrating mechanisms and environmental change,
- 475 Aquat. Bot., 118, 24-37, 2014.
- 476 Schippers, P., Lürling, M., and Scheffer, M.: Increase of atmospheric CO₂ promotes
- 477 phytoplankton productivity, Ecol. Lett., 7, 446-451, 2004.
- 478 Shi, D. L., Hong, H. Z., Su, X., Liao, L. R., Chang, S. W., and Lin, W. F.: The
- 479 physiological response of marine diatoms to ocean acidification: Differential roles of 480 seawater pCO_2 and pH, J. Phycol., 55, 521-533, 2019.
- 481 Tortell, P. D., Rau, G. H., and Morel, F. M. M.: Inorganic carbon acquisition in coastal
- 482 Pacific phytoplankton communities, Limnol. Oceanogr., 45, 1485-1500, 2000.
- Tremblay, J. E., Michel, C., Hobson, K. A., Gosselin, M., and Price, N. M.: Bloom
 dynamics in early opening waters of the Arctic Ocean. Limnol. Oceanogr., 51,
 900-912, 2006.
- 486 Riebesell, U., Aberle-Malzahn, N., Achterberg, E. P., Alguer ó-Muñiz, M.,
- 487 Alvarez-Fernandez, S., Ar śtegui, J., Bach, L. T., Boersma, M., Boxhammer, T.,
- 488 Guan, W. C., Haunost, M., Horn, H. G., Loscher, C. R., Ludwig, A., Spisla, C.,
- 489 Sswat, M., Stange, P., and Taucher, J.: Toxic algal bloom induced by ocean
- 490 acidification disrupts the pelagic food web, Nat. Clim. Change, 8, 1082-1086, 2018.
- Wu, Y., Gao, K., and Riebesell, U.: CO₂-induced seawater acidification affects
 physiological performance of the marine diatom *Phaeodactylum tricornutum*,
 Biogeosciences, 7, 2915-2923, 2010.

494	Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., and Finkel, Z. V.: Ocean
495	acidification enhances the growth rate of larger diatoms. Limnol. Oceanogr., 59,
496	1027-1034, 2014.
497	Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L., Steinhoff, F. S.,

- Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean acidification and desalination:
 Climate-driven change in a Baltic Sea summer microplanktonic community, Mar.
 Biol., 165, 1-15, 2018.
- 501 Xiao, W. P., Wang, L., Laws, E., Xie, Y. Y., Chen, J. X., Liu, X., Chen, B. Z., and Huang,
- 502 B. Q.: Realized niches explain spatial gradients in seasonal abundance of 503 phytoplankton groups in the South China Sea, Prog. Oceanogr., 162, 223-239, 2018.
- Xie, S., Lin, F., Zhao, X. and Gao, G.: Enhanced lipid productivity coupled with carbon
- and nitrogen removal of the diatom *Skeletonema costatum* cultured in the high CO₂
- 506 level. Algal Res. 61, 102589, 2022.
- 507 Xu, J. K., Sun, J. Z., Beardall, J., and Gao, K. S.: Lower salinity leads to improved
- 508 physiological performance in the coccolithophorid *Emiliania huxleyi*, which partly 509 ameliorates the effects of ocean acidification, Front. Mar. Sci., 7, 1-18, 2020.
- 510 Xu, Z. G., Gao, G., Xu, J. T., and Wu, H. Y.: Physiological response of a golden tide alga
- 511 (*Sargassum muticum*) to the interaction of ocean acidification and phosphorus 512 enrichment, Biogeosciences, 14, 671-681, 2017.
- 513 Yang, G. Y., and Gao, K. S.: Physiological responses of the marine diatom *Thalassiosira*

514 *pseudonana* to increased pCO_2 and seawater acidity, Mar. Environ. Res., 79, 515 142-151, 2012.

- Yu, P., Wang, Z. A., Churchill, J., Zheng, M., Pan, J., Bai, Y., and Liang, C.: Effects of
 typhoons on surface seawater pCO₂ and air-sea CO₂ fluxes in the northern South
 China Sea. J. Geophys. Res-Oceans, 125, p.e2020JC016258, 2020.
 Yuan, X., He, L., Yin, K., Pan, G., and Harrison, P. J.: Bacterial distribution and nutrient
 limitation in relation to different water masses in the coastal and northwestern South
- 521 China Sea in late summer. Cont. Shelf Res., 31, 1214-1223, 2011.
- 522 Zhang, C., Zhang, X., Zeng, Y., Pan, W., Lin J.: Retrieval and validation of sea surface
- temperature in the Taiwan Strait using MODIS data. Acta Oceanol. Sin., 30, 153-160,
 2008.
- 525 Zhang, C., Ren, Y., Cai, Y., Zeng, Y., and Zhang, X.: Study on local monitoring model for
- 526 SST in Taiwan strait based on MODIS data. J. Trop. Meteorol., 25, 73-81, 2009.
- 527 Zhong, Y. P., Liu, X., Xiao, W. P., Laws, E. A., Chen, J. X., Wang, L., Liu, S. G., Zhang,
- 528 F., and Huang, B. Q.: Phytoplankton community patterns in the Taiwan Strait match
- 529 the characteristics of their realized niches, Prog. Oceanogr., 186, 1-15, 2020.

530 **Figure captions**

Fig. 1 Sampling stations for the incubation experiments in the Taiwan Strait and the 531 South China Sea during three cruises. Taiwan Strait cruise was conducted in July 2016 532 (red dots), South China Sea Basin cruise were conducted in September 2016 (blue dots) 533 and Western South China Sea cruise was conducted in September 2017 (black dots). 534 **Fig. 2** Temperature (^oC, panel a), salinity (panel b), pH_{total} (panel c), total alkalinity (µmol 535 kg^{-1} SW, panel d), and CO₂ (µmol kg⁻¹ SW, panel e) in surface seawater and mean PAR 536 intensity (W $m^{-2} s^{-1}$, panel f) during the PP incubation experiments. 537 **Fig. 3** Chl *a* concentration ($\mu g L^{-1}$) in the Taiwan Strait and the South China Sea during 538 research cruises. 539

Fig. 4 Surface primary productivity (μ g C (μ g Chl *a*)⁻¹ d⁻¹) in the Taiwan Strait and the South China Sea during research cruises.

- 542 Fig. 5 Seawater acidification (pH decreases of 0.4 units) induced changes (%) of surface
- 543 primary productivity in the Taiwan Strait and the South China Sea. Red-yellow shading
- represents a positive effect on PP and blue-purple shading represents a negative effect.

Fig. 6 Seawater acidification (pH decreases of 0.4 units) induced changes on surface primary productivity (%) in the South China Sea as a function of ambient pH_{total} (a), PAR (b), and salinity (c). The dotted lines represent 95% confidence intervals.

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6