Contrasting responses of phytoplankton productivity between coastal and offshore surface waters in the Taiwan Strait and the South China Sea to future CO₂-induced acidification

Guang Gao¹, Tifeng Wang¹, Jiazhen Sun¹, Xin Zhao¹, Lifang Wang¹, Xianghui Guo¹, Kunshan Gao^{1,2}*

¹State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China

²Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China

*Corresponding author: ksgao@xmu.edu.cn

Table S1 Pearson Correlation coefficients between ocean acidification induced effects on primary productivity and in situ temperature, salinity, total alkalinity (TAIK), light intensity (PAR), mix layer NO_x supply (indicated by NO₃⁻ + NO₂⁻ concentration at bottom of mix layer), and chlorophyll a concentration. '*r*' represents correlation coefficient and *p* (two tailed) represents the probability that a hypothesis test with a correlation coefficient of 0 is established. "*" represents significant difference (*p* < 0.05, Pearson correlation analysis).

		pН	Temperature	Salinity	TAIK	PAR	NOx	Chl a
OA	r	0.379	0.028	-0.418	0.132	0.311	0.727	0.130
Effects	р	< 0.001*	0.784	< 0.001*	0.187	0.002*	0.002*	0.195