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Abstract 10 

Short and long-term variability of seawater carbon dioxide (CO2) system shows large differences between 

different ecosystems which are derived from the characteristic processes of each area. The high variability 

of coastal ecosystems, their ecological and economic significance, the anthropogenic influence on them 

and their behavior as sources or sinks of atmospheric CO2, highlight the relevance to better understand the 

processes that underlie the variability and the alterations of the CO2 system at different spatiotemporal 15 

scales. To confidently achieve this purpose, it is necessary to have high-frequency data sustained over 

several years in different regions. In this work, we contribute to this need by configuring and training two 

neural networks with the capacity to model the weekly variability of pH and total alkalinity (AT) in the 

upper 50 m of the water column of the Ría de Vigo (NW Spain), with an error of 0.031 pH units and 10.9 

µmol kg-1 respectively. With these networks, we generated weekly time series of pH and AT in seven 20 

locations of the Ría de Vigo in three depth ranges (0-5 m, 5-10 m and 10-15 m), which adequately represent 

independent discrete measurements. In a first analysis of the time series, a high short-term variability is 

observed, being larger for the inner stations of the Ría de Vigo. The lowest values of pH and AT were 

obtained for the inner zone, showing a progressive increase towards the outer/middle zone of the ría. The 

mean seasonal cycle also reflects the gradient between both zones, with a larger amplitude and variability 25 

for both variables in the inner zone. On the other hand, the long-term trends derived from the time series of 

pH show a higher acidification than that obtained for the open ocean, with surface trends ranging from -

0.020 pH units per year in the outer/middle zone to -0.032 pH units per year in the inner zone. In addition, 

positive long-term trends of AT were obtained ranging from 0.39 µmol kg-1 per year in the outer/middle 

zone to 2.86 µmol kg-1 per year in the inner zone. The results presented in this study show the changing 30 

conditions both in the short and long-term variability as well as the spatial differentiation between the inner 

and outer/middle zone to which the organisms of the Ría de Vigo are subjected. The neural networks and 

the database provided in this study offer the opportunity to evaluate the CO2 system in an environment of 
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high ecological and economic relevance, to validate high-resolution regional biogeochemical models and 

to evaluate the impacts on organisms of the Ría de Vigo by refining the ranges of the biogeochemical 35 

variables included in experiments. 

1 Introduction 

Anthropogenic activities as consumption of fossil fuels, cement production and land use change have 

increased the atmospheric concentration of carbon dioxide (CO2) from 277 to 410 parts per million (ppm) 

since 1750, stablished as the beginning of the Industrial Era (Ciais et al., 2013). This anthropogenic CO2 40 

circulates through the different carbon reservoirs modifying the natural carbon cycle (Friedlingstein et al., 

2019). The ocean is the largest carbon reservoir and dissolved inorganic carbon (DIC) is its predominant 

pool (Ciais et al., 2013). Absorption of anthropogenic CO2 by seawater increases the DIC pool and modifies 

the natural carbon cycle in the ocean, causing chemical changes as decreasing pH and calcium carbonate 

saturation states (Rhein et al., 2013). These changes define the concept of ocean acidification (Doney et al., 45 

2009) and are a major concern for marine ecosystems (Orr et al., 2005). The rate of surface ocean 

acidification process detected in open ocean for the last decades is between -0.0017 and -0.0026 pH units 

per year (Bates et al., 2014). In contrast to acidification rates in open ocean, positive to negative long-term 

trends of pH are exhibit in different coastal ecosystems (Carstensen and Duarte, 2019), evidencing the 

diversity of processes that can drive ocean acidification beyond the absorption of anthropogenic CO2. 50 

Several studies in coastal environments characterized the processes behind the variability of the CO2 system 

variables and the acidification process (Cai et al., 2021; Waldbusser and Salisbury, 2014  and references 

therein). The freshwater balance between seawater and atmosphere modifies total alkalinity (AT) and DIC 

concentrations through the concentration or dilution of the ions that make up these two variables (Turk et 

al., 2010). Similarly, continental discharge of freshwater also contributes to the variability of the CO2 55 

system variables (Joesoef et al., 2017; Salisbury et al., 2009). In addition, these fluxes from land to sea have 

very different concentrations of AT, DIC, nutrients and multiple dissolved and particulate organic 

substances that play a role in the variability of the CO2 system (Carstensen et al., 2018; Carstensen and 

Duarte, 2019; Joesoef et al., 2017). Biological processes as respiration, primary production or calcium 

carbonate precipitation are important drivers of the variability of the CO2 system at different time scales, 60 

mainly because of the consumption and production of CO2 (Cai et al., 2020; Cyronak et al., 2018; 

Waldbusser and Salisbury, 2014). Upwelling regions have an extra source of variability since this process 

brings waters to the surface with low pH, high CO2 and high nutrient concentration (Cai et al., 2020; Feely 

et al., 2010). The interaction between all the previous processes, their variability at different time scales 

and the anthropogenic alterations are reflected in the complex variability of the CO2 system variables. 65 

Coastal ecosystems have gained attention in the last years in the evaluation of the impacts of ocean 

acidification on marine life (e.g., Barton et al., 2012, 2015; Hendriks et al., 2015; Sunday et al., 2017). 

Nevertheless, a previous effort to better understand the changing carbon cycle in these environments of 

high variability and for this obtain sustained high-frequency measurements of CO2 chemistry system 

variables is still needed to elucidate which processes and how they drive both the short-term variability and 70 

long-term trends in coastal CO2 chemistry and properly address the impacts (Hofmann et al., 2011; 

Waldbusser and Salisbury, 2014). The manner at which physical, chemical, biological, geological and 
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anthropogenic processes interact, generates totally different characteristics among coastal ecosystems that 

highlights the need to study the peculiarities of each one to understand the variability of the CO2 system in 

detail. 75 

The present study is centered in the Ría de Vigo (NW Spain), a coastal embayment affected by the Canary 

Current upwelling system. The upwelling season typically occurs between March and October (Figueiras 

et al., 2002), bringing high CO2, low pH and nutrient-rich waters from the Eastern North Atlantic Central 

Water (Fraga, 1981; Ríos et al., 1992) to the Ría de Vigo and promoting a positive estuarine circulation. 

From November to March, poleward winds change the dynamics of the outer part of the ría to a negative 80 

estuarine circulation and the inner part conserves the positive circulation forced by continental freshwater 

inputs (Álvarez-Salgado et al., 2000; Piedracoba et al., 2005). The nutrient enrichment because of 

upwelling, but also because of terrestrial run off (Nogueira et al., 1997), is translated into high primary 

production rates supporting a variety of fisheries in the area, which are very important for local economy 

(Fernández et al., 2016). 85 

The main processes affecting the Ría de Vigo and its interaction are drivers of the variability of the CO2 

system, as previously showed by the studies cited for other coastal locations. Very few studies have focused 

on analyzing the variability of the CO2 system in the Ría de Vigo. Essentially, the scarce studies have 

assessed the short-term variability of partial pressure and fluxes of CO2 (Gago et al., 2003; Pérez et al., 

1999). The large short-term variability and the long-term trends presented by the drivers of the CO2 system, 90 

as the weakening of the upwelling intensity (Lemos and Sansó, 2006; Pardo et al., 2011; Pérez et al., 2010), 

warming (Lemos and Sansó, 2006; Pérez et al., 2010), increased nutrients (Doval et al., 2016) and 

deoxygenation (Padin et al., 2020), show the need to obtain high-frequency data over a long period of time 

to robustly evaluate the variability of the system at different time scales. 

In this study, we reconstruct time series of in situ pH on the total hydrogen ion scale and AT at seven 95 

locations in the Ría de Vigo in three depth ranges (0-5 m, 5-10 m and 10-15 m) with a weekly frequency 

between 1992 and 2019 to provide a database for the detailed analysis of the CO2 system in this coastal 

environment of great ecological and economic significance. The non-linearity of the CO2 system leads us 

to use the ability of neural networks to capture the nonlinear relationships among different variables and 

thus obtain the time series with a low uncertainty in this highly dynamic system. Based on the good results 100 

of several studies to model variables of the CO2 system using feed-forward neural networks both in open 

ocean (Bittig et al., 2018; Broullón et al., 2019, 2020a; Landschützer et al., 2013; Velo et al., 2013) and in 

coastal environments (Li et al., 2020a, 2020b), and the higher performance showed among other methods 

(ocean: Velo et al., 2013; coastal: Li et al., 2020a), we selected this type of neural network for the obtention 

of the time series. 105 

2 Methodology 

2.1 Neural Networks 

Feed-forward neural networks are powerful tools to model complex nonlinear functions (Hagan et al., 

2014). A neural network is fed with data pairs of inputs and a target in order to obtain a global relation 

between both type of variables to compute the target variable from independent data with considerably low 110 
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error. The network structure is made up of different layers with specific tasks (Fig S1a). The first layer 

(input layer) stores the input data and sends them to the next layer. In the second layer (hidden layer), a 

tunable number of neurons receive the data from the previous layer after being weighted by a different 

coefficient for each input variable and for each neuron in which the information goes in. Inside each neuron 

(Fig S1b), the weighted data is summed and passed through an activation function, which typically is a 115 

sigmoid function, to obtain an output. The network can have several hidden layers depending on the 

problem to be solved. Finally, if a single target variable is being modeled, the final layer (output layer) 

contains one neuron with a linear activation function to obtain the desired output, following the process 

explained for a neuron of the hidden layer. 

The goal of a neural network like the previously described is to reach output values closest to the target 120 

ones, that is, with a low difference between them. To achieve the goal, this difference is backpropagated 

through the network to adjust the weights in order to reduce the error through the minimization of a cost 

function in multiple iterations of the procedure described so far. This process is known as training and its 

reliability must be tested in independent data to avoid the overfitting of the training data, that is, the output 

of the network on independent data should have a low error (good generalization). A full description on 125 

how the error is reduced through the backpropagation algorithm and the different stopping conditions of 

the training process can be consulted in Hagan et al. (2014). 

In the present study, multiple feed-forward neural networks with one hidden layer were configured to 

extract the relations between different combinations of input variables: temperature (T), salinity (S), 

phosphate (P), nitrate (N), silicate (Si), dissolved oxygen (O), position (LL: latitude and longitude; D: 130 

depth) and time (Y: year; W: week); and the target ones: pH and AT. These variables were used as inputs 

to the networks in the combinations as follows, given their influence in the variability of the target variables, 

which have been shown in different studies (Sect. 1): DTS, DTSN, DTSO, DTSON, DTSOPN, DTSPN, 

DTSPNSi, DTSPNSiO, DTSPNSiOW, DTSPNSiOY, DTSPNSiOYW, DTSPNSiW, DTSPNSiY, 

DTSPNSiYW, LLDTSPNSi, LLDTSPNSiO, LLDTSPNSiOW, LLDTSPNSiOY, LLDTSPNSiOYW, 135 

LLDTSPNSiW, LLDTSPNSiY and LLDTSPNSiYW. The position and time were included to disentangle 

the different processes occurred in different locations of the Ría de Vigo, which may not always be fully 

captured by biogeochemical variables (Broullón et al., 2020a), such as continental runoff (Gago et al., 2005; 

Perez et al., 1992). The periodicity of the input week was represented by: 

𝑐𝑊 = cos (
𝜋

53/2
· 𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟)   (1) 140 

𝑠𝑊 = sin (
𝜋

53/2
· 𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟)   (2) 

For each combination of the input variables, the tested number of neurons in the hidden layer were: 28, 34, 

40, 46, and 52. The number of neurons was selected increasing and decreasing by six the first number tested 

and testing in which direction the error in the independent dataset decreases to select the following number 

to test. A sigmoid activation function was selected for the hidden layer, since together with the linear 145 

function of the output layer make the network able to fit almost any continuous function (Hagan et al., 

2014). The Levenberg-Marquardt algorithm (Hagan and Menhaj, 1994; Levenberg, 1944; Marquardt, 1963) 
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was used for the training based on several good results obtained in similar studies (Broullón et al., 2019, 

2020a; Landschützer et al., 2013; Li et al., 2020a, 2020b; Velo et al., 2013). The training process with this 

algorithm was carried out in the MATLAB software with the trainlm function, detailed in Beale et al. 150 

(2018). 

The dataset used to train the networks (Sect. 2.2) was divided in three sets: data used to assess the 

generalization of the network (testing dataset; 10% of the total data); data used to train the network (90% 

of the total data), which was divided in: training (85%) and validation (15%) datasets. The training dataset 

is used to extract the relations between the input variables and the target. The validation dataset is used to 155 

stop the training process when the performance on this dataset does not improve during six consecutive 

iterations of the training process. 

2.2 Data 

The neural networks designed in the present study were trained with data collected by different cruises 

carried out by the Instituto de Investigaciones Marinas (IIM), dependent of the Consejo Superior de 160 

Investigaciones Científicas (CSIC) from 1976 to 2018. Temperature, salinity, phosphate, nitrate, silicate, 

dissolved oxygen, pH and AT were measured in discrete samples from multiple profiles around the waters 

off the Northwestern Iberian Peninsula, mostly collected in the Ría de Vigo (Fig .1). We selected the data 

inside the Ría de Vigo and in the upper 50m of the water column to specifically capture the processes that 

control the variability of AT and pH in the area of study (Fig .1). A full description of this database can be 165 

consulted in Padin et al. (2020), where sampling techniques are widely described. 

The relations extracted with the neural networks from the previously mentioned database were used to 

create the time series of pH and AT at seven locations in the Ría de Vigo (Fig. 1). The data used to feed the 

trained neural networks and to obtain the pH and AT values were measured by the Instituto Tecnolóxico 

para o Control do Medio Mariño (INTECMAR) in a weekly basis from 1992 to 2019 (INTECMAR-170 

database). Temperature, salinity, phosphate, nitrate, silicate and dissolved oxygen were measured in three 

different depth ranges: 0-5 m, 5-10 m and 10-15 m. Temperature, salinity and oxygen were averaged from 

the CTD SBE 25 with an SBE 43 oxygen sensor that recorded data in each 0.1 m. Sampling for the analysis 

of inorganic nutrients (phosphate, nitrate and silicate) was performed using a PVC hose that collected water 

from three depth intervals (0-5 m, 5-10 m and 10-15 m). Analytical techniques were based on colorimetric 175 

methods of continuous segmented flow analysis (CFA). The precisions are 0.1 µM for nitrate, 0.01 µM for 

phosphate and 0.06 µM for silicate. More details of this database can be consulted in Doval et al., (2016), 

where the sampling and analytical techniques were extensively described. Time series of these variables 

were compared with discrete data from the IIM-database to assess their consistency (Appendix A). 

Temporal gaps in nutrients time series were filled using neural networks (Appendix B). Furthermore, 180 

several inconsistencies between the dissolved oxygen in the INTECMAR-database and the one in IIM-

database led us to reconstruct the time series of this variable (Appendix C). 
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2.3 Time series reconstruction 185 

Weekly time series of pH and AT were obtained passing through the neural networks the inputs from the 

INTECMAR-database. The measured pH and AT from the IIM-database were used to validate the neural 

network derived time series. The validation data used for each time series station is depicted in Fig. S2. 

Distances from time series stations to validation points were selected based on a trade-off between spatial 

variability and the availability of samples with high temporal resolution around the stations. As an example, 190 

station V1 (Fig. S2) has a wider validation area than others to capture discrete samples with both monthly 

and weekly time resolution. 

The seasonal cycle of pH and AT was obtained averaging the time series to describe the annual amplitude, 

the variability and the differences among stations. The long-term trends were also obtained for the two 

variables to show the possible future conditions in the Ría de Vigo. A seasonal detrending to remove the 195 

seasonality following the detrending method used by Bates et al. (2014) was applied to obtain the trends. 

The uncertainty of the trends was obtained based on a Monte Carlo simulation. To properly compute the 

aforementioned values, the outliers were removed from each time series based on the scaled median 

absolute deviation (sMAD; Hampel, 1974), which has been proposed as a robust outlier estimator (e.g., 

Leys et al., 2013), following Eq. (3): 200 

𝑠𝑀𝐴𝐷 =
1

0.6745
∗ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑥𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥)|)  (3) 

where 𝑥𝑖 is each value of the time series and 𝑥 the full time series. Outliers were those values that exceeded 

more than three sMAD away from the median. 

3 Results and discussion 

3.1 Neural network mapping 205 

Figure 2 shows the RMSE and the determination coefficient (r2) obtained for each combination of inputs 

for pH and AT. In general, these statistics improve with increasing the number of inputs to the network, 

with no significant differences among the tested number of neurons. Considering these averaged statistics 

of the three networks with the best performance (lowest RMSE in the test dataset) for each number of 

neurons, the networks with the combinations of inputs LLDTSPNSiOWY for pH and LLDTSPNSiWY for 210 

AT reach the best fits (Figs. 2b and 2c). The inclusion of dissolved oxygen as an input was evaluated (Figs. 

2b and 2d) because of the large differences found between the measured dissolved oxygen by IIM and by 

INTECMAR (Appendix A), and therefore to evaluate the need of reconstruct the time series of dissolved 

oxygen (Appendix C). For pH, the inclusion of dissolved oxygen considerably improves the mapping for 

the different combinations (Fig. 2b). This result is probably because of the high correlation between the 215 

variability of dissolved oxygen and pH through the organic matter formation and degradation, this process 

being more remarkable in productive coastal environments (Baumann and Smith, 2018; Cai et al., 2011; 

O’Boyle et al., 2013; Padin et al., 2020). For AT, the addition of the input dissolved oxygen does not result 

in a general improvement (Fig. 2d). AT variability is mainly controlled by freshwater fluxes and therefore 

reflected in salinity changes (Beldowski et al., 2010; Millero et al., 1998), with a minor contribution of the 220 

https://doi.org/10.5194/bg-2021-33
Preprint. Discussion started: 15 February 2021
c© Author(s) 2021. CC BY 4.0 License.



7 
 

biological activity and dissolution and precipitation of biogenic calcium carbonate (Brewer et al., 1975; 

Brewer and Goldman, 1976; Cai et al., 2010). 

When each network is individually analyzed, other combinations of inputs show better statistics (Table 1) 

than the ones of the previously mentioned combinations, where averages of the three best networks per 

each number of neurons were analyzed. Based on these results, a trade-off between the RMSE and r2 in the 225 

test dataset and the most accurate representation of the validation data when constructing the time series of 

pH and AT (Sect. 3.2), was followed to select the networks which best represent the weekly variability of 

pH and AT from 1992 to 2019. Considering this evaluation, DTSPNSiOYW trained with 28 neurons in the 

hidden layer for pH (hereinafter referred to as pH_NN) and LLDTSPNSiYW trained with 52 neurons in 

the hidden layer for AT (hereinafter referred to as AT_NN) were selected to reconstruct the time series 230 

(Table 1). 

The modeled pH and AT with pH_NN and AT_NN show the largest differences with the measured values 

in samples where temperature or dissolved oxygen are higher than 16 ºC or 300 µmol kg-1 respectively, and 

in those where salinity, nitrate or depth are lower than 35, 2.5 µmol kg-1 or 15 m respectively (Fig. 3). This 

result suggests the same biogeochemical conditions are similarly affecting the modeling of the two 235 

variables. Nevertheless, most of the differences in these samples are not very large, considering the high 

variability in the Ría de Vigo regarding both the physical (Nogueira et al., 1997) and the biogeochemical 

(Doval et al., 2016; Nogueira et al., 1997) context. In samples where the measured pH is lower than 8 and 

higher than 8.1 and AT is lower than 2300 µmol kg-1, the computed values are slightly biased (Fig. 3). These 

biases are mainly determined by samples where absolute differences between the measured and modeled 240 

values are higher than 3 times the root mean square error (3RMSE), which represent 1% of the samples 

used to create each network. For pH, 48% of the samples with differences higher than 3RMSE in the biased 

ranges are in the 0-15 m layer with nitrate concentrations lower than 2.5 µmol kg-1. For AT, 86% of the 

samples with differences higher than 3RMSE in the biased range are in the 0-10 m layer with salinities 

lower than 35 and most of them with nitrate concentrations lower than 2.5 µmol kg-1. Although it is 245 

important to know the conditions where the neural networks present the largest differences with the 

measured data, these samples only represent 1.7% for pH and 5.7% for AT of the total samples in the 

mentioned ranges, suggesting that pH and AT values with low uncertainties can be obtained for very 

different conditions. 

The importance of each input variable extracted with the connection weight approach (Olden and Jackson, 250 

2002) (Table 2) reveals that pH is mainly modeled through salinity, temperature and year. Depth, sW and 

dissolved oxygen are the second group of variables with the largest influence on the modeled pH. Nutrients 

and cW are the input variables with the lowest relative importance. On the other hand, the modeled AT is 

highly influenced by silicate, with a secondary importance of phosphate and with temperature and year in 

the third place of relevance. The other input variables have a low influence. Although surface AT is highly 255 

correlated with salinity worldwide (e.g., Millero et al., 1998), the low influence of this input variable in the 

modeled AT does not reduce the high correlation between the two variables (measured data 𝑟 = 0.96; 
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modeled data 𝑟 = 0.97) nor the linear regression (measured data 𝐴𝑇 = 61.9 · 𝑆 + 132; modeled data 𝐴𝑇 =

62 · 𝑆 + 129). 

3.2 Time series reconstruction 260 

Time series of pH and AT obtained with the neural networks over the INTECMAR-database are depicted 

in Figs. 4 and 5 for the seven stations in the 0-5 m range. The other two depth ranges have a similar pattern 

but there is a general pH decrease and AT increase with depth, together with a reduction of the amplitude 

of the annual cycles (Figs. S3, S4, S5 and S6). In general, the time series agree with the validation data for 

both variables (Figs. 4, 5, S3, S4, S5 and S6), although there are some extreme values of AT which are not 265 

fully captured and few outliers (not shown in the figures) in samples where one or more input variables 

have extreme values or fall out of the range of the training data. In addition to the error of the networks, 

some of the differences between the measured and the computed data come from the high spatiotemporal 

variability of the area, since validation data are not exactly from the same location and day of the year as 

data from the INTECMAR-database. The large temporal variability can be seen from the validation data of 270 

V1 between 1994 and 1995, where sampling with a 3-4 days frequency shows changes of approximately 

0.2 pH units at that frequency (Fig. 4). 

pH time series present a clear annual cycle in all the stations, which is similar year by year (Fig. 4), whereas 

the annual cycle of the AT time series is quite variable mainly because of the different magnitude of short 

events of strong decrease in AT in some years (Fig. 5). In general, strong decreases of AT are coincident 275 

with strong decreases of salinity, remarking the high correlation between both variables. Validation data in 

years with a weekly or monthly frequency allow to show how both the amplitude and timing of the annual 

cycle are adequately represented by the computed time series (Figs. 4, 5, S3, S4, S5 and S6). All the stations 

present a high short-term variability for the two variables (Table 3). This rate of change is larger in the 

inner stations than in the outer ones in the 0-5 m layer (Table 3), showing the higher variability of the inner 280 

zone of the Ría de Vigo. In the 10-15 m layer, the rate of change presents the mentioned difference between 

zones for AT but to the contrary for pH (Table 3). 

Differences in the magnitude of the values can be appreciated between the outer and the inner zones (Fig. 

Figs. 4, 5, S3, S4, S5 and S6). The inner zone presents lower values of pH and AT than the outer one. Lower 

pH values could be partially explained by the stronger upwelling intensity in the inner zone (Álvarez-285 

Salgado et al., 2008). Upwelled waters present low pH values as well as dissolved oxygen concentrations 

because of the remineralization of organic matter, as can be noted from the time series of dissolved oxygen 

(Fig. C2). The lower values of AT in the inner zone can be essentially explained by the high positive 

correlation between this variable and salinity, since the presence of a river in the innermost part of the Ría 

de Vigo generates a salinity gradient with the lowest values in the inner zone. 290 

3.2.1 Seasonal cycle 

The surface mean seasonal cycle of pH and AT depicted in Figs. 6 and 7 allows to distinguish a clear 

difference in both the amplitude and the variability of the two variables for the different stations, being 

larger for the inner ones (Table 4). The higher variability of the physical and biogeochemical processes in 

the inner zone, which is reflected in both the amplitude of the seasonal cycle and the variability for the 295 
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input variables (Table S1), is transferred to the computed variables resulting in the aforementioned 

difference between zones. In general, a reduction of both the amplitude and the variability with depth is 

obtained for pH and AT (Table 4). The reduction of the amplitude of the seasonal cycle is also obtained for 

all the input variables, except for dissolved oxygen in the inner stations (Table S1). 

Maxima of pH occur in March and April and minima in October and November (Fig. 6). In general, the 300 

seasonal cycle is highly correlated with that of dissolved oxygen (Fig. S7), which is mainly driven by the 

net balance of production and respiration of organic matter. High photosynthetic activity of the 

phytoplankton community is maintained in the Ría de Vigo from early spring to late summer thanks to 

influence of the upwelling events (Cermeño et al., 2006; Tilstone et al., 1999), which in average occur 

between March and October (Figueiras et al., 2002), fostering high values of dissolved oxygen (Fig. S7) 305 

and increasing the pH through the removal of dissolved CO2. The steepest decline of pH in the inner stations 

is probably due to the positive estuarine circulation, which brings deep waters to the surface with low pH 

and low dissolved oxygen because of the remineralization of the organic matter through the water column 

in the outer zone of the Ría de Vigo (Alvarez-Salgado et al., 1993). The slower decline in the outer/middle 

zone reflects the contribution of the photosynthetic activity in the transit of the surface inner waters with 310 

low pH to the outer zone of the Ría de Vigo. 

Maxima of AT seasonal cycle emerge in August and September, but minima are not clearly defined since 

low concentrations are maintained between November and May (Fig. 7). This feature is determined by the 

correlation between AT and salinity, reflecting the net freshwater input through the year, with high salinity 

values in summer due to the excess of evaporation and low values in winter and spring determined by 315 

precipitation and continental runoff (Fig. S8). The higher amplitude and variability in the inner zone (Table 

4 and Fig. 7) are mainly determined by the hydrological cycle of the river which flows into the inner zone 

of the Ría de Vigo. 

Spatial differences in the magnitude of the seasonal cycle of pH and AT follow a longitudinal gradient, 

showing higher values in the outer zone with a progressively decrease towards the inner zone (Fig. 8). As 320 

previously remarked, these differences mainly reflect the dissolved oxygen gradient for pH and the salinity 

gradient for AT, since both input variables decrease towards the inner zone (Table S1 and Figs. S7 and S8). 

These spatial differences in the CO2 system variables generate a gradient in the buffer capacity between the 

outer and the inner zones. The ratio DIC/AT, which can be seen as an indicator of the sensitivity of seawater 

to changes in CO2 since the Revelle factor is proportional to it (Egleston et al., 2010), is higher in the inner 325 

zone (0.91) than in the outer one (0.89), indicating a lower capacity of the seawater of the inner zone to 

buffer changes because of the increasing anthropogenic CO2. 

3.2.2 Long-term trends 

pH trends reveal a stronger acidification in the Ría de Vigo than the one found in open ocean. The trends 

range between -0.019 and -0.037 pH units per year, except for station V7 where the unique statistically 330 

significant trend is positive (Table 5). Spatial differences are also obtained, with the inner zone presenting 

the higher trends. The acidification process is increased with depth for all the stations where the pH trends 

are statistically significant. For comparison, two ocean time series stations located in the North Atlantic 
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Ocean present pH trends of -0.017 and -0.018 pH units per year in BATS and ESTOC sites respectively 

(Bates et al., 2014). In coastal environments, higher acidification rates can be found in very different 335 

ecosystems (e.g., Kapsenberg et al., 2017; Wootton and Pfister, 2012), although there are very different 

trends, including positive ones, depending on the specific conditions of the area (Carstensen et al., 2018; 

Carstensen and Duarte, 2019). 

An analysis of the average pH for each decade reveals that the acidification process is stronger for all the 

stations between the 90s and the 00s (Fig. 9). Furthermore, the lack of data in 1990 and 1991 would likely 340 

increase the pH difference between both decades because of the probably lower pH values for those two 

years that in the following ones. It can also be appreciated that the fact that pH trends are larger in the inner 

zone than in the outer/middle one (Table 5) increases the difference in the average pH between both zones 

from 90s to 10s from 0.082 to 0.110 pH units. 

Higher long-term trends and lower pH values in coastal environments than open ocean have been attributed 345 

to different processes, as upwelling and eutrophication (Cai et al., 2011; Feely et al., 2010; Wallace et al., 

2014). The trends obtained here for the Ría de Vigo are probably explained by the two mentioned processes. 

Upwelling brings waters to the surface with low pH and high nutrients concentration. In addition, nutrients 

from other sources fertilize the area promoting the increase of primary production and the consequent 

remineralization, decreasing dissolved oxygen concentrations and pH. Fernández et al. (2016) categorized 350 

that allochthonous sources of inorganic nitrogen correspond to coastal upwelling in 76%, wastewater in 

22% and continental and atmospheric sources in 2%. Positive and statistically significant long-term trends 

of nitrate in all the stations (except for V7) ranged between 0.013 and 0.024 µmol kg-1 reveal that some or 

all of these sources have increased their contribution year after year in the analyzed period. In addition, 

negative and statistically significant long-term trends of dissolved oxygen in all the stations (except for V7, 355 

where trends are positive) ranged between -0.13 and -0.47 µmol kg-1 show a deoxygenation, probably 

because of a higher remineralization activity. The increased remineralization could be a consequence of the 

weakening of the upwelling intensity in the region (Pérez et al., 2010; Pardo et al., 2011), driving a higher 

renewal time of the waters of the Ría de Vigo (Álvarez-Salgado et al., 2008). This explanation is only a 

first approximation, since a driver analysis in future studies will elucidate and quantify the importance of 360 

each process behind the long-term trends obtained in the present study. 

Most of AT trends indicate an annual increase of this variable, although one statistically significant negative 

trend is obtained in V7 in the 10-15 m range, showing the decrease of AT in the period from 2007 to 2019 

(Table 5). As for pH, the largest trends are in the surface of the inner zone and decrease outwards. The AT 

trends cannot be explained by salinity trends (except in V7), contrary to the expected by the correlation 365 

between both variables. The higher trends in the inner zone suggest that an increase in the riverine AT could 

be contributing to generate them. This process has been associated to positive AT trends in other locations 

(Kapsenberg et al., 2017). Nevertheless, it is necessary a detailed analysis to find what processes cause the 

trends, but this is beyond the scope of the present study. 

 370 
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4 Conclusions 

A reconstruction of time series of pH and AT in the Ría de Vigo has been presented. Neural networks trained 

with discrete samples from the region of study for both variables allowed to add high accurate values of pH 

and AT to the INTECMAR-database, which is composed by weekly oceanographic measurements at seven 375 

locations in the Ría de Vigo from 1992 to 2019. 

A first analysis of the product exposed differences between the inner and the outer/middle zone of the Ría 

de Vigo, where a larger variability and amplitude of the seasonal cycle and lower values for pH and AT 

were obtained for the inner zone. Furthermore, significant negative long-term trends were obtained for pH 

with a higher magnitude than the ones typically found for open ocean, revealing a higher acidification for 380 

this coastal ecosystem. On the other hand, significant positive long-term trends were obtained for AT. A 

spatial gradient was also revealed for the magnitude of the trends presented by the two variables, increasing 

towards the inner zone. 

The database provided in the present study offers an opportunity to evaluate the variability of the CO2 

system in an ecologically and economically important ecosystem as the Ría de Vigo. It can be very useful 385 

in regional and high-resolution modeling, in driver analysis for different variables of the CO2 system, as 

some of high relevance for calcifying organisms like calcium carbonate saturation state, and to stablish 

more accurate conditions in experiments evaluating the impacts of climate change in the organisms living 

in the Ría de Vigo. 

Appendix A: Consistency assessment 390 

Time series of the input variables from the INTECMAR-database have been compared to discrete 

measurements from the IIM-database to assess the consistency between both datasets. This analysis is 

necessary because of the differences in the methods used to measure some of the variables. For example, 

dissolved oxygen in IIM-database was measured using the Winkler method, as others described in Padin et 

al. (2020), which generally provide more accurate values than the measured in the INTECMAR-database 395 

through a SBE 43 dissolved oxygen sensor integrated in a CTD. 

Temperature comparison shows a good agreement between the two datasets (Fig. A1). The typical annual 

cycle with the highest values in summer and the lowest in winter is depicted in the two datasets. 

Furthermore, episodes of temperature decrease in the warm season because of upwelling events are well 

defined in the two datasets. 400 

In general, salinity from the two datasets also shows a good agreement (Fig. A1). Nevertheless, there are 

some discrepancies in all the stations in the winter of 2018, where salinity in the IIM-database shows a 

homogeneous increase from winter to spring and in the INTECMAR-database a high short-term variability 

with an extremely high peak (which is still higher with depth) was obtained. These differences are probably 

because of some problem (e.g., bad calibration) in the conductivity sensor of the CTD used by INTECMAR 405 

and are probably translated to the computed values of pH and AT. 

Nutrients are very consistent between the two databases (Fig. A1), probably because of the high accurate 

methods used by the two institutions to measure them. Nevertheless, very few extremely high peaks are 
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present in the INTECMAR-database in both nitrate and silicate time series, which differ considerably from 

the largest values in the IIM-database. For this reason, pH and AT derived from these samples were flagged 410 

as questionable in the database generated from this study. It should be noted the lack of measurements of 

phosphate before 1995 and several gaps in both nitrate and silicate time series in the INTECMAR-database, 

which led us to fill the time series using neural networks (Appendix B).  

Dissolved oxygen is the variable that shows the largest discrepancies (Fig. A1). On one hand, data from the 

INTECMAR-database present considerably higher values for several years before 2004 than the ones 415 

measured in the following 16 years of the time series. These values are also higher than the ones available 

in the IIM-database before 2004. On the other hand, the INTECMAR-database contains lower values of 

dissolved oxygen than the ones measured in the IIM-database in 2018 and 2019. Considering that dissolved 

oxygen data in the IIM-database were obtained through accurate methods and the ones in the INTECMAR-

database were obtained from an oxygen sensor in a CTD, we decided to discard the dissolved oxygen data 420 

from the INTECMAR-database and obtain new values using neural networks (Appendix C). 

Appendix B: Gap filling in nutrient time series 

Time series of nutrients measured by INTECMAR have some gaps which reduce the time range and the 

time resolution (Fig. A1). To fill these gaps, different neural networks were configured. As nutrient 

measurements in the INTECMAR-database are consistent with the ones in the IIM-database (Fig. A1), we 425 

decided to train the neural networks with data from the two databases to obtain highly representative 

relations of the sampling sites between inputs and targets and properly fill the gaps in the time series. The 

inputs used for the three modeled nutrients were position (latitude, longitude and depth), temperature, 

salinity, nitrate (to model phosphate and silicate since it was measured where there are gaps in these two 

variables), silicate (to model nitrate since it was measured where there are gaps in this variable) and week 430 

of sampling (as in Eq. (3)). The position and time were included to disentangle the different processes 

occurred in different locations of the Ría de Vigo, which may not always be fully captured by 

biogeochemical variables, such as continental runoff (Pérez et al., 1992; Gago et al., 2005). We decided to 

take as inputs all the possible variables related to nutrients variability based on the results of Sect. 3.1, 

where the increase in the number of input variables improves the neural network fitting. The number of 435 

neurons tested were: 10, 16, 22, 28, 34, 40 and 46; following the same method described in Sect. 2.1. The 

division of the dataset to train the network, the training algorithm and the stopping rule were the same as 

mentioned in Sect. 2.1. 

The RMSE and r2 in the test dataset for the number of neurons tested were between: 0.13-0.14 µmol kg-1 

and 0.66-0.73 for phosphate; 1.5-1.6 µmol kg-1 and 0.70-0.84 for nitrate; and 1.5-1.7 µmol kg-1 and 0.75-440 

0.8 for silicate respectively. There are not significant differences among the RMSE for each number of 

neurons and slight differences in the r2. We decided to select the networks with the best statistics regarding 

these two parameters. The selected networks show that the inclusion of a nutrient as an input is relevant to 

obtain accurate values of the modeled nutrients as it is showed by the relative importance of the input 

variables (Table B1). 445 
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In general, all the networks adequately represent the time series from the INTECMAR-database (Fig. B1), 

except the extremely high peaks described in Appendix A, which are not fully represented. The filling of 

phosphate time series before 1995 captures the annual cycles and their amplitude as it is showed by the 

consistency with the discrete samples from the IIM-database (Fig. B1). The gaps filled in both the nitrate 

and silicate time series also represent the annual cycles and their amplitude with a similar magnitude than 450 

in the time series from the INTECMAR-database (Fig. B1). Unfortunately, there are no samples from the 

IIM-database where there are gaps in these time series, but the filling through the neural networks is clearly 

consistent with the INTECMAR-database, which have been shown in Appendix A the high quality of the 

nutrient measurements. 

Appendix C: Reconstruction of dissolved oxygen time series 455 

The inconsistencies described in Appendix A between time series of dissolved oxygen from the 

INTECMAR-database and discrete data from the IIM-database, together with the correlation between 

dissolved oxygen and pH (Baumann and Smith, 2018; Cai et al., 2011; O’Boyle et al., 2013; Padin et al., 

2020), show the need to obtain higher-quality time series of dissolved oxygen. For this purpose, we trained 

different neural networks using the IIM-database and the same configuration described in Sect. 2.1 for the 460 

division of the dataset, the training algorithm and the stopping rule. The input variables were tested in the 

following combinations: DTS, DTSN, DTSPN, DTSPNSi, DTSPNSiW, DTSPNSiY, DTSPNSiYW, 

LLDTSPNSi, LLDTSPNSiW, LLDTSPNSiY and LLDTSPNSiYW. The number of neurons tested were: 

10, 16, 22, 28, 34, 40 and 46 following the same method described in Sect. 2.1. 

As in Sect. 3.1, the RMSE and the r2 improves with increasing number of inputs, when the statistics of the 465 

three networks with the best performance in the test dataset are averaged (Fig. C1). For the best combination 

of inputs, that is, LLDTSPNSiYW, we selected one of the ten networks trained with 28 neurons to 

reconstruct the time series of dissolved oxygen, since the computed values with this network showed the 

highest correlation with the measured data in the test dataset (RMSE: 16.2 µmol kg-1; r2: 0.85). The relative 

importance of each input variable (Table C1) shows that salinity and phosphate are the main variables used 470 

by the selected network to compute dissolved oxygen. 

The reconstructed time series of dissolved oxygen (Fig. C2) were computed used as nutrient inputs the ones 

of the filled time series in Appendix B so as not to reduce the time range and resolution. In addition, the 

gaps in dissolved oxygen time series in several months in the years 2000 and 2001 were filled in thanks to 

the neural network and the availability of measurements of the input variables. 475 

The comparison between the time series of dissolved oxygen from the INTECMAR-database, those 

reconstructed with the neural network created in this section and the discrete data from the IIM-database 

shows that the reconstructed time series better represent the discrete measurements for all the stations (Fig. 

C2). More precisely, the good correlation between the discrete measurements of dissolved oxygen and the 

computed time series for those dates where data from the INTECMAR-database present anomalies 480 

(Appendix A) clearly reflects the bad quality of the dissolved oxygen from the INTECMAR-database on 

those dates. The unreliability of the positive anomalies in the INTECMAR-database before 2004 can be 

seen at V1 and V6 around 1995 (Fig. C2) when compared with discrete data from the IIM-database. 
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Similarly, the unreliability of the negative anomalies can be seen at V5 and V6 around 2018 (Fig. C2). With 

these results, we demonstrated that the new dissolved oxygen time series may be useful in obtaining the 485 

time series of the target variables of this study: pH and AT. 
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Table 1. Statistics of the ten networks with the best performance in the test dataset for pH and AT. Units of RMSE are 730 
pH units for pH and micromoles per kilogram (µmol kg−1) for AT. 

    

Training 

dataset 
Test dataset 

 Combination Number of neurons Network number RMSE r2 RMSE r2 

pH 

LLDTSPNSiOYW 34 3 0.027 0.89 0.03 0.86 

LLDTSPNSiOYW 34 6 0.028 0.89 0.031 0.86 

LLDTSPNSiOYW 52 2 0.028 0.89 0.031 0.85 

DTSPNSiOYW 28 3 0.029 0.88 0.031 0.85 

LLDTSPNSiOYW 40 4 0.026 0.9 0.031 0.85 

DTSPNSiOYW 28 4 0.028 0.88 0.031 0.85 

DTSPNSiOYW 52 10 0.027 0.89 0.032 0.85 

DTSPNSiOYW 28 7 0.028 0.89 0.032 0.85 

DTSPNSiOYW 46 9 0.027 0.9 0.032 0.85 

LLDTSPNSiOYW 28 4 0.027 0.89 0.032 0.85 

AT  

DTSPNSiY 28 4 14.7 0.96 10.5 0.94 

DTSPNSiY 28 10 14.9 0.96 10.6 0.94 

DTSPNSiOW 46 6 13.9 0.97 10.7 0.97 

DTSPNSiY 28 3 13.8 0.97 10.7 0.94 

LLDTSPNSiYW 52 8 10.3 0.98 10.9 0.97 

LLDTSPNSiYW 52 7 14.7 0.96 10.9 0.97 

DTSPNSiOY 40 2 10.5 0.98 10.9 0.96 

LLDTSPNSiYW 52 4 10.8 0.98 11 0.97 

LLDTSPNSiYW 34 10 9.4 0.99 11.1 0.96 

LLDTSPNSiOYW 52 2 10.3 0.98 11.4 0.97 

 

 

 

 735 

 

Table 2. Relative importance of each input variable for pH_NN and AT_NN. Lat: latitude; Lon: longitude; D: depth; T: 

temperature; S: salinity; P: phosphate; N: nitrate; Si: Silicate; O2: dissolved oxygen; Y: year; cW: Eq. (1); sW: Eq. (2). 

Variable    Inputs relative importance (%) 

 Lat Lon D T S P N Si O2 Y cW sW 

pH - - 11 15.4 22.5 3.2 4.1 6.2 7.3 16 4.4 9.9 

AT 2.4 3.1 1.9 10.1 2.2 23 2.6 42.5 - 8.1 3 1.2 
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Table 3. Average weekly rate of change for pH and AT. 740 

  Station 

 Depth range Inner Outer/Middle 

  V3 V4 V2 V7 V1 V6 V5 

pH (week-1) 

0-5 m 0.056 0.052 0.051 0.050 0.043 0.040 0.041 

5-10 m 0.038 0.042 0.045 0.048 0.042 0.038 0.038 

10-15 m 0.033 0.036 0.041 0.048 0.047 0.045 0.040 

AT (µmol kg−1 week-1) 

0-5 m 127.7 63.8 52.9 34.3 35.1 34.5 30.9 

5-10 m 61.8 36.4 31.4 24.9 25.1 23.5 22.9 

10-15 m 38.2 29.7 27.3 20.3 22.5 20.2 19.3 

 

 

Table 4. Maxima, minima, amplitude and variability of the seasonal cycle of pH and AT. 

 
  pH AT (µmol kg-1) 

Zone Station Depth Max Min Amplitude Variability Max Min Amplitude Variability 

Inner 

V3 

0-5 m 8.08 7.92 0.16 0.064 ± 0.013 2284.3 2116.6 167.7 118.7 ± 59.6 

5-10 m 8.06 7.92 0.15 0.054 ± 0.011 2302 2239.3 62.7 56.2 ± 21.4 

10-15 m 8.05 7.92 0.13 0.053 ± 0.011 2316.8 2263.8 53 44.7 ± 17.3 

V4 

0-5 m 8.10 7.93 0.18 0.061 ± 0.015 2295.7 2207.5 88.2 69.9 ± 30.2 

5-10 m 8.08 7.94 0.15 0.054 ± 0.014 2311.6 2275.5 36.1 42.1 ± 14.3 

10-15 m 8.06 7.94 0.13 0.053 ± 0.012 2326.9 2297.4 29.5 34.5 ± 11.3 

V2 

0-5 m 8.12 7.95 0.17 0.058 ± 0.016 2297.6 2210.9 86.7 64.4 ± 31 

5-10 m 8.10 7.96 0.14 0.053 ± 0.016 2313.3 2279.6 33.7 38.3 ± 12.9 

10-15 m 8.08 7.96 0.12 0.052 ± 0.014 2325.7 2299.9 25.7 32.3 ± 10.1 

Outer/Middle 

V7 

0-5 m 8.12 7.98 0.14 0.053 ± 0.019 2327.1 2286.3 40.8 39.2 ± 15.3 

5-10 m 8.09 7.99 0.10 0.053 ± 0.022 2328.8 2307.6 21.2 28.6 ± 10.8 

10-15 m 8.08 7.97 0.11 0.053 ± 0.021 2331.2 2308.9 22.2 22.7 ± 8.2 

V1 

0-5 m 8.14 8.02 0.12 0.050 ± 0.014 2308.8 2259.6 49.2 50.1 ± 24.7 

5-10 m 8.13 8.02 0.11 0.050 ± 0.018 2319.9 2279.2 40.8 34.8 ± 14 

10-15 m 8.10 8.02 0.08 0.053 ± 0.019 2327.8 2301.7 26.1 27 ± 8.1 

V6 

0-5 m 8.15 8.04 0.11 0.050 ± 0.016 2316.3 2276.9 39.4 43.7 ± 21.1 

5-10 m 8.13 8.03 0.10 0.048 ± 0.016 2324.1 2284.8 39.3 32.9 ± 13.8 

10-15 m 8.11 8.03 0.08 0.052 ± 0.017 2331 2297.2 33.8 26 ± 10 

V5 

0-5 m 8.15 8.05 0.11 0.049 ± 0.013 2324.9 2287.9 36.9 39.2 ± 15.3 

5-10 m 8.13 8.04 0.09 0.048 ± 0.014 2331.8 2294.5 37.3 28.6 ± 10.8 

10-15 m 8.11 8.03 0.08 0.049 ± 0.015 2337 2310.8 26.2 22.7 ± 8.2 

 

 745 
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Table 5. Long-term trends of pH and AT between 1992 and 2019 (2007-2019 for V7). Bold trends are statistically 

significant (p-value<0.01). 750 

Zone Station Depth pH (yr-1) AT (µmol kg-1 yr-1) 

Inner 

V3 

0-5 m -0.0032 ± 0.0001 2.86 ± 0.04 

5-10 m -0.0036 ± 0.0001 1.01 ± 0.04 

10-15 m -0.0037 ± 0.0001 0.95 ± 0.04 

V4 

0-5 m -0.0030 ± 0.0001 1.04 ± 0.04 

5-10 m -0.0032 ± 0.0001 0.75 ± 0.04 

10-15 m -0.0035 ± 0.0001 0.46 ± 0.04 

V2 

0-5 m -0.0026 ± 0.0001 1.13 ± 0.04 

5-10 m -0.0027 ± 0.0001 0.66 ± 0.04 

10-15 m -0.0028 ± 0.0001 0.27 ± 0.03 

Outer/Middle 

V7 

0-5 m 0.0001 ± 0.0003 -0.98 ± 0.14 

5-10 m 0.0021 ± 0.0003 -0.66 ± 0.12 

10-15 m 0.0012 ± 0.0004 -0.77 ± 0.13 

V1 

0-5 m -0.0019 ± 0.0001 0.76 ± 0.04 

5-10 m -0.0022 ± 0.0001 0.35 ± 0.04 

10-15 m -0.0024 ± 0.0001 0.23 ± 0.04 

V6 

0-5 m -0.0022 ± 0.0001 0.62 ± 0.04 

5-10 m -0.0022 ± 0.0001 0.39 ± 0.04 

10-15 m -0.0024 ± 0.0001 0.25 ± 0.04 

V5 

0-5 m -0.0020 ± 0.0001 0.39 ± 0.04 

5-10 m -0.0022 ± 0.0001 0.24 ± 0.04 

10-15 m -0.0024 ± 0.0001 0.08 ± 0.04 

 

Table B1. RMSE, r2 and the relative importance of each input for the three selected networks to fill the gaps in the time 

series of nutrients from the INTECMAR-database. 

Variable Neurons 
RMSE 

(µmol kg-1)* 
r2* Inputs relative importance (%) 

    Lat Lon D T S N Si cW sW 

Phosphate 46 0.13 0.73 2.8 15.3 0.6 4.8 19.1 47.1 - 3.4 6.9 

Nitrate 28 1.4 0.84 6.2 3.4 5.2 11.4 16.4 - 46.6 5.5 5.3 

Silicate 28 1.5 0.8 7.8 8 10.3 10.5 23.7 14.9 - 15.2 9.5 

*Statistics computed in the test dataset. 
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Table C1. Relative importance of each input variable for the neural network designed to compute dissolved oxygen. 755 

Variable Neurons 
RMSE 

(µmol kg-1)* 
r2* Inputs relative importance (%) 

    Lat Lon D T S P N Si Y cW sW 

Oxygen 28 16.2 0.85 8.1 6.3 11.7 2.4 28.1 19.3 0.8 3.8 1.3 4.9 13.2 

 

 

 

Figure 1. Location of the study area: (a) Galicia (NW Spain) and (b): Ría de Vigo. Red dots: IIM-database profiles. 

Blue crosses: INTECMAR-database stations. Stations V2, V3 and V4 are considered as inner zone. Stations V1, V5, 760 
V6 and V7 are considered as outer/middle zone. The bathymetric data for the Ria de Vigo was provided by the 

Oceanographic Observatory of the Iberian Margin (RAIA Observatory; www.marnaraia.org). 
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Figure 2. Statistics of the networks for the different combinations of the input variables. These statistics are obtained 

from the average of the three networks with the best performance in the test dataset, for each input combination and for 765 
each number of neurons tested. (a) and (b) are for pH with the RMSE in pH units and (c) and (d) for AT with the RMSE 

in micromoles per kilogram (µmol kg−1). 
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Figure 3. Histograms of data density and box plots of differences between measured and computed pH and AT against 

different input variables and the target ones. Units of the differences are pH units for pH and micromoles per kilogram 770 
(µmol kg−1) for AT. 
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Figure 4. pH time series in the 0-5 m range. Red dots: validation points from the IIM-database. Stations are placed in 

the figure in such a way to highlight the differences between the inner and the outer/middle zone. The same holds for 

all figures and tables in the present manuscript when all the stations are showed for the same variable. 775 
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Figure 5. AT time series in the 0-5 m range. Red dots: validation points from the IIM-database. 
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Figure 6. Seasonal cycle of pH in the 0-5 m range. Shadow area represents one standard deviation from the mean of 

the full time series for each month. 780 
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Figure 7. Seasonal cycle of AT in the 0-5 m range. Shadow area represents one standard deviation from the mean of the 

full time series for each month. 

https://doi.org/10.5194/bg-2021-33
Preprint. Discussion started: 15 February 2021
c© Author(s) 2021. CC BY 4.0 License.



31 
 

 

Figure 8. Seasonal cycle of pH and AT in the 0-5 m range for all the stations. Dashed lines: inner stations. Solid lines: 785 
outer/middle stations. 
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Figure 9. Average pH by decade and station. Note that V7 2000-2009 is the average from 2007 to 2009. 
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Figure A1. Time series of the input variables from the INTECMAR-database (black line and dots) and discrete 790 
measurements from the IIM-database (red dots). Selected stations are shown to represent the features described in the 

main text, which are common to other stations. Comparisons for the different stations and depths can be easily obtained 

from the datafiles attached to this study (see Sect. Data availability). 
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Figure B1. Time series of nutrients from the INTECMAR-database (black line and dots) and from neural networks 795 
configured in Appendix B (blue dashed line and dots). Selected stations are shown to illustrate the gap filling. Discrete 

samples from the IIM-database are shown in phosphate time series before 1995 to show the good reconstruction of the 

time series using the neural network. Comparisons in the different stations and depths can be easily obtained from the 

datafiles attached to this study (see Sect. Data availability). 
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Figure C1. Statistics of the networks for the different combinations of the input variables. These statistics are obtained 

from the average of the three networks with the best performance in the test dataset, for each input combination and for 

each number of neurons tested. Units of RMSE are micromoles per kilogram (µmol kg−1). 
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Figure C2. Time series of dissolved oxygen from the INTECMAR-database (black line and dots) and from the neural 805 
network configured in Appendix C (blue dashed line and dots). Red dots are validation points from the IIM-database. 

Station V7 is not showed since it does not have validation points. Comparisons for the other two depth ranges can be 

easily obtained from the datafiles attached to this study (Sect. Data availability). 
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