Ocean Alkalinity Enhancement - Avoiding runaway CaCO$_3$ precipitation during quick and hydrated lime dissolution

Charly A. Moras1,*, Lennart T. Bach2, Tyler Cyronak3, Renaud Joannes-Boyau1, Kai G. Schulz1

1Faculty of Science and Engineering, Southern Cross University, Lismore, NSW, Australia
2Institute for Marine and Antarctic Studies, Ecology & Biodiversity, University of Tasmania, Hobart, TAS, Australia
3Department of Marine and Environmental Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA

* Correspondence to: Charly A. Moras (c.moras.10@student.scu.edu.au)

Abstract. Ocean Alkalinity Enhancement (OAE) has been proposed as a method to remove carbon dioxide (CO$_2$) from the atmosphere and to counteract ocean acidification. It involves the dissolution of alkaline minerals such as quick lime, CaO, and hydrated lime, Ca(OH)$_2$. However, a critical knowledge gap exists regarding their dissolution in natural seawater. Particularly, how much can be dissolved before secondary precipitation of calcium carbonate (CaCO$_3$) occurs is yet to be established. Secondary precipitation should be avoided as it reduces the atmospheric CO$_2$ uptake potential of OAE. Here we show that both CaO and Ca(OH)$_2$ powders (>63 µm of diameter) dissolved in seawater within a few hours. However, CaCO$_3$ precipitation, in the form of aragonite, occurred at a saturation (Ω_{ar}) threshold of about 5. This limit is much lower than what would be expected for typical pseudo-homogeneous precipitation in the presence of colloids and organic materials. Secondary precipitation at unexpectedly low Ω_{ar} was the result of so-called heterogeneous precipitation onto mineral phases, most likely onto CaO and Ca(OH)$_2$ prior to full dissolution. Most importantly, this led to runaway CaCO$_3$ precipitation by which significantly more alkalinity (TA) was removed than initially added, until Ω_{ar} reached levels below 2. Such runaway precipitation would reduce the CO$_2$ uptake efficiency from about 0.8 moles of CO$_2$ per mole of TA down to only 0.1 mole of CO$_2$ per mole of TA. Runaway precipitation appears to be avoidable by dilution below the critical Ω_{ar} threshold of 5, ideally within hours of the addition to minimise initial CaCO$_3$ precipitation. Finally, model considerations suggest that for the same Ω_{ar} threshold, the amount of TA that can be added to seawater would be more than three times higher at 5 °C than at 30 °C, and that equilibration to atmospheric CO$_2$ levels during mineral dissolution would further increase it by a factor of ~6 and ~3 respectively.

https://doi.org/10.5194/bg-2021-330
Preprint. Discussion started: 10 December 2021
© Author(s) 2021. CC BY 4.0 License.
1 Introduction

Climate change is currently considered one of the largest threats to humankind (Hoegh-Guldberg et al., 2019; The Royal Society and Royal Academy of Engineering, 2018; Ipcc, 2021). Global mean temperature have increased by 1.0 °C since pre-industrial times, and could reach +1.2-1.9 °C in the next 20 years, and +2.1-5.7 °C by the end of this century (Ipcc, 2021). Furthermore, up to 30% of anthropogenic CO2 emissions have been taken up by the ocean through air-sea gas exchange, leading to a decrease in the average open ocean pH of 0.1 units in a process termed ocean acidification – OA (Canadell et al., 2007; Carter et al., 2019; Hoegh-Guldberg et al., 2007; Bates et al., 2012; Cyronak et al., 2014; Doney et al., 2009).

The CO2 reduction pledges by the signatory states of the 2015 Paris Agreement aim to limit the negative impacts of global warming and OA on ecosystems and human societies by limiting warming to less than +2.0 °C, ideally around +1.5 °C, by the end of this century (Goodwin et al., 2018). However, current and pledged reductions will likely not be enough and additional mitigation strategies are being discussed, such as ocean alkalinity enhancement – OAE (Gattuso et al., 2015; Lenton and Vaughan, 2009; The Royal Society and Royal Academy of Engineering, 2018; Boyd et al., 2019). OAE is one with the highest carbon dioxide removal potential, and modelling suggests that at a global scale, between 264 and 790 Gigatonnes (1 Gt = 1e12 kg) of atmospheric CO2 could be removed by 2100 (Feng et al., 2017).

OAE typically relies on the dissolution of alkaline minerals in seawater, similar to what occurs during natural rock weathering (Kheshgi, 1995). In this regard, magnesium-rich minerals such as brucite, periclase or forsterite, and calcium-rich minerals such as quick and hydrated lime have been considered (Renforth and Henderson, 2017). The last two minerals are of particular interest, due to their high solubility in seawater as well as their relatively rapid dissolution. Quick lime, also known as calcium oxide (CaO), is obtained by the calcination of limestone, mainly composed of calcium carbonate (CaCO3) and present in large quantities in the Earth’s crust (Kheshgi, 1995). Once heated to temperatures of ~1200 °C, each molecule of CaCO3 breaks down into one molecule of CaO and one molecule of CO2 (Kheshgi, 1995; Ilyina et al., 2013). CaO can then be hydrated into hydrated lime, also known as calcium hydroxide (Ca(OH)2) (Kheshgi, 1995). The addition of either CaO or Ca(OH)2 to seawater leads to the dissociation of Ca(OH)2 into one calcium Ca2+ and two hydroxyl ions OH− (Feng et al., 2017; Harvey, 2008). Including the subsequent oceanic uptake of atmospheric CO2, and ignoring the non-linearities of the seawater carbonate system, i.e., changes in total alkalinity, TA, and dissolved inorganic carbon, DIC, are not 1:1, a conceptual model of CaO and Ca(OH)2 dissolution can be summarised as per:

\[(CaO + H_2O \rightleftharpoons Ca(OH)_2) + 2CO_2 \rightarrow Ca^{2+} + 2HCO_3^-\]

(1)

This chemical equation suggests that each mole of CaO or Ca(OH)2 reacts with two moles of CO2 to produce one mole of Ca2+ and two moles of bicarbonate ions (HCO3−). A different way to look at this is that adding Ca2+ to seawater increases TA by two moles per mole of Ca2+, while leaving the concentration of DIC unchanged (Wolf-Gladrow et al., 2007). This increases the pH, lowering the CO2 concentration, [CO2], and increasing the carbonate ion concentration, [CO32−] (Figure A 1, Appendix).
(Wolf-Gladrow et al., 2007; Dickson et al., 2007; Zeebe and Wolf-Gladrow, 2001). This in turn reduces the partial pressure of CO₂ (pCO₂) in seawater. Depending on the amount of TA added and the initial seawater pCO₂, the water would either take up CO₂ from the atmosphere or degas less until equilibrium is restored, hence acting as a sink for atmospheric CO₂. Factoring in carbonate system non-linearities, about 1.6 moles of atmospheric CO₂ could be taken up per mole of CaO or Ca(OH)₂ (Köhler et al., 2010).

Furthermore, dissolving CaO and Ca(OH)₂ can also counteract OA in two ways, raising the pH of seawater and raising the calcium carbonate saturation state by increasing both dissolved [Ca²⁺] and [CO₃²⁻]. Therefore, OAE is a dual solution for both removing CO₂ from the atmosphere and changing ocean acidification trajectories (Feng et al., 2017; Harvey, 2008; Boyd et al., 2019). However, major knowledge gaps exist regarding OAE, considering most research to date has been based on conceptual and numerical modelling (Feng et al., 2016; Renforth and Henderson, 2017; González and Ilyina, 2016; Mongin et al., 2021). One of the major constraints is keeping CaCO₃ saturation state (Ω) of the seawater below a critical threshold, beyond which CaCO₃ would precipitate inorganically. Such secondary precipitation would increase seawater [CO₂] through decreasing [CO₃²⁻], and if all added alkalinity is being precipitated, only 1 mole of atmospheric CO₂ per mole of Ca²⁺ would be removed, instead of about 1.6 without. If even more CaCO₃ precipitates, the efficiency would be further reduced.

The critical threshold for Ω with respect to the CaCO₃ mineral phase calcite, Ωₘₐ, has been determined experimentally for so-called pseudo-homogeneous precipitation, i.e., in the presence of colloids and organic materials (Marion et al., 2009; Morse and He, 1993). For a salinity of 35 and at a temperature of 21 °C, the critical Ωₘₐ value is ~18.8. Assuming a typical open-ocean TA and DIC concentrations, i.e., ~2350 µmol kg⁻¹ and ~2100 µmol kg⁻¹ respectively (Dickson et al., 2007), this threshold would be reached by an increase in TA of ~810 µmol kg⁻¹, corresponding to a critical threshold for Ω₉₄ for aragonite, i.e., Ω₉₄, of ~12.3. Furthermore, there are two other types of precipitation, i.e., homogeneous (in the absence of any precipitation nuclei) and heterogeneous (in the presence of mineral phases), but these thresholds are poorly constrained (Marion et al., 2009).

A better understanding of dissolution and precipitation kinetics is needed to address knowledge gaps in OAE research. In order to do so, several dissolution experiments with CaO and Ca(OH)₂ were carried out to determine 1) how much alkaline material can be dissolved without inducing CaCO₃ precipitation, 2) what causes CaCO₃ precipitation, and 3) how it can be avoided if observed.

2 Material & Methods

2.1 Experimental setup

Two different calcium minerals were sourced, calcium oxide (CaO) powder from Ajax Finechem (CAS no 1305-78-8) and an industrial calcium hydroxide (Ca(OH)₂) powder (Hydrated Lime 20kg, Dingo). The elemental composition of these powders was analysed on Agilent 7700 Inductively Coupled Plasma Mass Spectrometer, coupled to a laser ablation unit NWR213 from...
For that purpose, the samples were embedded in resin and calibrated against standard reference materials #610 and #612 from the National Institute of Standards and Technology.

The dissolution experiments were conducted in natural seawater. The seawater was sampled about 200 to 300 m from the shore, avoiding collecting sand or silt, at Broken Head, New South Wales, Australia (28°42′12″ S, 153°37′03″ E). It was stored up to 14 days at 4 °C in the dark to slow bacterial metabolic activity before being sterile-filtered using a peristaltic pump, connected to a 0.2 µm Whatman Polycap 75 AS filter. For salinity measurements, about 200 mL of seawater were placed in a gas-tight polycarbonate container and allowed to equilibrate to room temperature overnight. The sample's conductivity was then measured using a measuring cell (Metrohm 6.017.080), connected to a 914 pH/Conductometer. The conductivity was recorded in millisiemens per cm (mS/cm), and the temperature in °C. Salinity was calculated according to Lewis and Perkin (1981) on the 1978 practical salinity scale.

2.2 OAE experiments

For each experiment, seawater was accurately weighed into high-quality borosilicate 3.3 2L or 5L Schott Duran beakers, and the temperature was controlled via a Tank Chiller Line TK 1000 set to 21 °C, feeding a re-circulation water jacket (Figure A2, supplementary material). A magnetic stir bar was placed in the beaker, and the natural seawater was constantly stirred at ~200rpm. To minimise gas exchange, a floating lid with various sampling ports was placed on top. Finally, after one hour of equilibration, calculated amounts of alkaline compounds were added. Upon addition, samples for DIC and TA were taken in increasing time intervals to fully capture the dissolution kinetics and check for potential secondary precipitation. Furthermore, the pH was monitored for the first hour before alkalinity addition, and over 5 hours after addition to determine when alkalinity was fully released. Once the maximum TA was reached, the entire content of the beaker was carefully transferred to a clean Schott bottle of the corresponding volume. The bottles were kept in the dark for the duration of each experiment, i.e., up to 48 days, with the same constant stirring of ~200 rpm at 21 °C. Each bottle was exposed to UV light for at least 30 minutes after each sampling to avoid bacterial growth.

2.2.1 CaO and Ca(OH)\textsubscript{2} dissolution

The additions of sieved CaO and Ca(OH)\textsubscript{2} were performed using a 63 µm mesh. The mesh was placed in a clean upside-down 50 mL Falcon tube cap, avoiding losing any material smaller than 63 µm when weighing, and the overall weight was recorded. Then, the mesh was placed above the Schott bottle, and mineral was added by gently tapping the side of the sieve. Finally, the sieve was placed in the same upside-down Falcon tube cap and the weight of the whole setup was recorded again, making sure that the desired amount had been added. The weighing steps were carefully performed to avoid material loss between the bottle and the balance, and was achieved in less than 5min. Two alkalinity additions, +250 and +500 µmol kg-1 with each calcium powder were performed (Table 1).
2.2.2 Na₂CO₃ alkalinity and particles addition and filtration

A 1M solution of sodium carbonate (Na₂CO₃, CAS number 497-19-8) was freshly prepared before the experiment. Ultrapure Na₂CO₃ (CAS number 497-19-8) was accurately weighed into a clean 100 mL Schott bottle and made up to 100g with MilliQ (18.2 MΩ). The solution was then sonicated for 15 minutes with gentle shaking. The amount of Na₂CO₃ to be added was calculated so that a similar maximum Ωᵣ would be reached, i.e., ~7.7, as in the previous experiments with the highest addition of CaO and Ca(OH)₂. This required almost twice the alkalinity increase as before (Table 1), because Na₂CO₃ additions concomitantly increase DIC when dissociating in two sodium ions, i.e., Na⁺, and one CO₃²⁻, making the Ω₃CaCO₃ increase smaller. Calculations were done in CO₂SYS (see below).

In another, otherwise identical, experiment with the Na₂CO₃ solution, quartz powder was added after two days. The addition of quartz powder was similar to the sieved CaO and Ca(OH)₂ addition, i.e., through a 63 µm mesh. The amount of quartz particles added was determined to provide the same amount of mineral surface as for the Ca(OH)₂ experiments with a TA increase of 500 µmol kg⁻¹. It was calculated using densities and masses for Ca(OH)₂ and quartz, and assuming spherical particles with a diameter of 63 µm. Quartz powder was chosen as it does not dissolve on timescales relevant to the experiment and hence does not supply extra TA (Montserrat et al., 2017).

Finally, a particle filtering experiment was carried out using Ca(OH)₂ as the alkaline compound following the same setup as described above. Here we first added Ca(OH)₂ to increase TA by ~500 µmol kg⁻¹ (Table 1). After 4h of reaction, the entire content of the 2L Schott beaker was filtered through a nylon Captiva Econofilter (25mm) with a pore size of 0.45 µm into a clean 1L Schott bottle using a peristaltic pump. The bottle was filled from bottom to top, with overflow to minimise gas exchange.

2.2.3 Dilution experiments

A last set of experiments diluted alkalinity enriched samples with natural seawater over time, to test if secondary precipitation can be avoided through dilution. Ca(OH)₂ was added to reach a final alkalinity enrichment of 500 and 2000 µmol kg⁻¹. These initial concentrations were then diluted with NSW in several steps as described in the following.

For the experiment with a targeted TA increase of 500 µmol kg⁻¹, two 5L Schott bottles were filled with 5kg of natural seawater and placed on a magnetic stirring platform. Calculated amounts of Ca(OH)₂ were added to the first bottle, while the natural seawater in the second bottle was left for future dilutions. Both bottles were kept on the same bench under the same conditions, both stirring at a rate of ~200rpm, for the duration of the experiment. Ca(OH)₂ powder was added as described above using the 63 µm sieve. Following the Ca(OH)₂ addition, 1:1 dilutions were performed in 1L Schott bottles that were kept in the dark and placed on a magnetic platform at a stirring rate of ~200rpm. After each sampling, the bottles were exposed to UV light for at least 30 minutes. The second dilution experiment was set up like the first one, the only difference being that the targeted TA increase was 2000 µmol kg⁻¹. The dilution ratio was 1:7 to, again, reduce the targeted TA increase to 250 µmol kg⁻¹. All dilutions were performed 10 minutes, 1 hour, 1 day and 1 week after Ca(OH)₂ addition.
2.3 Carbonate chemistry measurements

Samples for TA and DIC were filtered through a nylon Captiva Econofilter (0.45 µm) using a peristaltic pump into 100 mL Borosilicate 3.3 Schott DURAN glass stopper bottles. The bottles were gently filled from the bottom to top, using a 14-gauge needle as described in Schulz et al. (2017), with at least half of their volume overflowed (Dickson et al., 2007). 50µL of saturated mercuric chloride solution was added to each sample before being stored without headspace in the dark at 4 °C. TA was analysed via potentiometric titrations on an 848 Titrino Plus coupled to a 869 Compact Sample Changer from Metrohm using 0.05M HCl, with the ionic strength adjusted to 0.72 mol kg\(^{-1}\), corresponding to a salinity of 35 with NaCl. Titrations and calculations followed the open-cell protocols by Dickson et al. (2007). DIC was measured using an Automated Infra-Red Inorganic Carbon Analyzer (AIRICA) coupled to a LICOR Li7000 Infra-Red detector as described in Gafar and Schulz (2018). Measured values of TA and DIC were corrected using an internal Standard prepared as per Dickson et al. (2007) which had been calibrated against Certified Reference Materials Batch #175 and #190 (Dickson, 2010).

2.4 Particulate Inorganic Carbon and Scanning Electron Microscopy (SEM)

Samples for total particulate carbon (TPC) and particulate organic carbon (POC) were collected at the end of some experiments on pre-combusted (450 °C) GF/F filters, and stored frozen until analysis. Then, POC filters were fumed with HCl for 2 hours before drying over night at 60 °C while TPC filters were dried untreated. Both TPC and POC were quantified on an Elemental Analyser Flash EA, Thermo Fisher, coupled to an Isotope Ratio Mass Spectrometer (IRMS), Delta V Plus. Particulate inorganic carbon (PIC), or CaCO\(_3\), was calculated from the difference between TPC and POC. The results are reported in µmol kg\(^{-1}\) with an uncertainty estimate calculated by an error propagation from the square root of the sum of the squared standard deviations for TPC and POC. Finally, samples of CaO and Ca(OH)\(_2\) were analysed for their carbon content. This analysis aimed to identify the presence and estimate the amount of particulate carbon, most likely CaCO\(_3\), in the respective mineral powders.

When CaCO\(_3\) was suspected to have precipitated in the experiments, samples for SEM analysis were taken. For that purpose, 10 to 15 mL of the sample water was collected on polycarbonate Whatman Cyclopore filters with a 0.2 µm pore size, and rinsed with 50 mL of MilliQ. The filters were dried at 60 °C overnight and kept in a desiccator until analysis on a tabletop Scanning Electron Microscope TM4000 Plus from Hitachi, coupled to an Energy Dispersive X-Ray (EDX) Analyser, allowing to identify the morphotype and elemental composition of precipitates.

2.5 Carbonate chemistry calculations

Most seawater parameters were calculated using the CO\(_2\)SYS script for MATLAB® (MathWorks), using the dissociation constants for carbonic acid by Lueker et al. (2000) and for boric acid by Uppstrom (1974). With two measured carbonate chemistry parameters, i.e., DIC and TA, most of the others can be calculated straight away. An exception in our experiments
was that the addition of CaO and Ca(OH)$_2$ changes the calcium concentration and hence the salinity-based Ω_{CaCO_3} calculated by CO$_2$SYS is erroneous. Ω_{CaCO_3} is defined by the solubility product of CaCO$_3$ as:

\[\Omega_{\text{CaCO}_3} = \frac{[\text{Ca}^{2+}] \times [\text{CO}_3^{2-}]}{K_{sp}} \]

where [Ca$^{2+}$] and [CO$_3^{2-}$] denote seawater concentration of Ca$^{2+}$ and CO$_3^{2-}$, and K_{sp} the solubility product for calcite or aragonite. To calculate saturation states, CO$_2$SYS was used to determine K_{sp} and [CO$_3^{2-}$] from measured DIC and TA. The correct calcium concentration [Ca$^{2+}$]$_{\text{corr}}$ was estimated from measured salinity (Riley and Tongudai, 1967) plus half the amount of alkalinity that was generated during CaO or Ca(OH)$_2$ dissolution or lost due to CaCO$_3$ precipitation ΔTA:

\[[\text{Ca}^{2+}]_{\text{corr}} = \frac{0.02128}{40.087} \times \frac{\text{Salinity}}{1.80655} + \frac{\Delta TA}{2} \]

The corrected Ω_{Ca} and Ω_{Ar} were then calculated from in-situ [CO$_3^{2-}$], [Ca$^{2+}$]$_{\text{corr}}$ and K_{sp}. Please note that we have opted to rather report Ω_{Ar} than Ω_{Ca} since aragonite is more likely to be precipitated in natural seawater (Berner, 1975; Riebesell et al., 2011; Zeebe and Wolf-Gladrow, 2001).

3 Results

3.1 Chemical composition of CaO and Ca(OH)$_2$

The chemical composition of the CaO and Ca(OH)$_2$ powders were analysed for their major ions. As to be expected, both consisted mainly of calcium, with minor contributions by magnesium and silicon (see Table A 1, Appendix, for a more extensive list). Furthermore, CaO and Ca(OH)$_2$ contained about 9.4 ±0.1 mg g$^{-1}$ and 18.0 ±0.2 mg g$^{-1}$ of particulate carbon respectively, i.e., ~0.9% and ~1.8%.

3.2 CaO dissolution in filtered natural seawater

In the first CaO experiment with ~250 µmol kg$^{-1}$ TA addition, TA increased by ~200 µmol kg$^{-1}$ within the first 4 hours (Figure 1a). Following this increase, TA was stable over time. In contrast, DIC increased slowly over time, reaching about +50 µmol kg$^{-1}$ on day 47 of the experiment (Figure 1b). Finally, Ω_{Ar} showed a similar trend to the ΔTA, increasing from ~2.9 to ~5.1 within the first 4 hours before slowly decreasing to 5.0 as of day 47 (Figure 1c).

In the second CaO experiment with about 500 µmol kg$^{-1}$ TA addition, TA increased by ~410 µmol kg$^{-1}$ within the first 4 hours before slowly decreasing two days later (Figure 1a), followed by more rapid decreases over the following week, before slowing down and eventually reaching steady state at a ΔTA of about ~540 µmol kg$^{-1}$. This corresponds to a total loss of TA of ~950
μmol kg$^{-1}$. Similarly, a slight decrease in DIC of ~10 μmol kg$^{-1}$ was observed over the first two days before a much more considerable reduction in the following week before levelling off at a ΔDIC of about ~465 μmol kg$^{-1}$ (Figure 1b). Finally, Ω$_{Ar}$ increased rapidly during the first 4 hours of the experiment from 2.8 up to 7.6 (Figure 1c). Following this quick increase, Ω$_{Ar}$ decreased by 0.3 units within the first two days before rapidly dropping to 2.4 on day 13, and reaching ~1.8 on day 47, corresponding to a reduction of 1.0 compared to the starting value.

3.3 Ca(OH)$_2$ dissolution in filtered natural seawater

In the first Ca(OH)$_2$ experiment with a TA addition of ~250 μmol kg$^{-1}$, TA increased by ~220 μmol kg$^{-1}$ after 4h of reaction, before stabilising at a ΔTA of ~210 μmol kg$^{-1}$ for the rest of the experiment (Figure 2a). The DIC concentration increased steadily following the TA addition by ~70 μmol kg$^{-1}$ until the end of the experiment (Figure 2b). Finally, Ω$_{Ar}$ reached ~4.1 after 4 hours, slightly decreasing over time, down to 3.3 on day 28 (Figure 2c).

In the second Ca(OH)$_2$ experiment with a TA addition of ~500 μmol kg$^{-1}$, TA increased by ~440 μmol kg$^{-1}$ within the first 4h (Figure 2a). This was followed by a relatively steady decrease over the next 2 weeks, after which the decrease accelerated before levelling off at a ΔTA of about ~420 μmol kg$^{-1}$ towards the end of the experiment. Overall, ~860 μmol kg$^{-1}$ of TA was lost compared to the highest TA recorded. The DIC concentration decreased as well, dropping in a similar fashion as TA and reaching a ΔDIC of about ~395 μmol kg$^{-1}$ compared to the initial DIC concentration (Figure 2b). Finally, Ω$_{Ar}$ increased from 2.5 to 7.4 in the first 4 hours before decreasing, similarly to TA and DIC, reaching ~2.0 on day 42 (Figure 2c).

3.4 Na$_2$CO$_3$, particle filtration and addition

Three experiments assessed the influence of particles on CaCO$_3$ precipitation. In the first one, ~1050 μmol kg$^{-1}$ of TA was added using a 1M Na$_2$CO$_3$ solution, designed to result in a similar maximum Ω$_{Ar}$ as in the previous experiments when TA precipitated (Table 1). Upon addition, TA increased by ~1060 μmol kg$^{-1}$ and DIC by ~530 μmol kg$^{-1}$ within minutes. For the remainder of the experiment, ΔTA was fairly constant between 1060 and 1040 μmol kg$^{-1}$ (Figure 3a). In contrast, DIC slightly increased over 42 days from a ΔDIC of ~530 μmol kg$^{-1}$ on day 1 to ~560 μmol kg$^{-1}$ on day 42 (Figure 3b). Finally, Ω$_{Ar}$ increased from ~2.3 to ~8.5 within minutes and slightly decreased to ~8.1 after 42 days of experiment (Figure 3c).

In the second experiment, the addition of aliquots of 1M Na$_2$CO$_3$ solution (Table 1) increased TA by 1070 μmol kg$^{-1}$, while DIC increased by ~540 μmol kg$^{-1}$ within minutes and remained stable (Figure 3a, 3b). Then, after 2 days, quartz was added. While one day later ΔTA and ΔDIC remained unchanged, about a week later, ΔTA had decreased to ~220 μmol kg$^{-1}$ while ΔDIC had dropped to ~120 μmol kg$^{-1}$ (Figure 3a, 3b). Over the next month, ΔTA and ΔDIC kept on decreasing, although at a slowing pace, reaching about ~200 and ~110 μmol kg$^{-1}$ respectively. Finally, Ω$_{Ar}$ followed a similar trend, with an increase from ~2.8 up to ~9.2 within the first 1.5 hours, and a pronounced decline to ~2.0 at the end of the experiment.

In the last experiment, Ca(OH)$_2$ was added for a TA increase of 500 μmol kg$^{-1}$ (Table 1), a level at which a significant TA decrease had been observed after 5 hours previously (Figure 2a). In contrast, however, upon filtration of the entire experimental bottle content after reaching ~470 μmol kg$^{-1}$ at the 4-hour mark, ΔTA remained relatively constant between 465 and 470 μmol.
kg-1 over the following 48 days of experiment (Figure 3a). ΔDIC increased from ~5 to 55 µmol kg⁻¹ after filtration (Figure 3b). Finally, ΩAr increased from ~2.8 to ~8.2 within the first 1.5 hours, and then slightly decreased to ~7.5 over the 48 days of experiment (Figure 3c).

3.5 Dilution experiments

3.5.1 500 µmol kg⁻¹ addition

In this set of experiments with a TA addition of ~500 µmol kg⁻¹ by Ca(OH)₂, ΔTA increased similarly to the other Ca(OH)₂ experiment to ~450 µmol kg⁻¹ after 2 hours. These changes in TA were followed by a decline to ~320 µmol kg⁻¹ after 14 days, although the latter being a slightly slower decrease than previously (Figure 4a, 4d). After a first increase in ΔDIC by ~10 µmol kg⁻¹ on day 1, it steadily decreased to about -20 µmol kg⁻¹ after two weeks (Figure 4b, 4e). Finally, ΩAr was calculated, to increase from ~2.7 to ~7.8 after 2 hours, before steadily decreasing to ~6.4 on day 14 (Figure 4c, 4f).

After 10 minutes, 1 hour, 1 day, and 1 week, dilutions of the ~500 µmol kg⁻¹ of TA by Ca(OH)₂ addition were performed. In these diluted samples, ΔTA remained relatively stable over time, until the end of the experiments on day 29, regardless of dilution time (Figure 4a, 4d). Upon dilution, ΔTA was reduced, being very similar for the 10 minutes, 1 hour and 1 day dilutions. Overall, ΔTA in the 1 week dilution, however, was slightly lower. In all dilutions, ΔDIC increased over time, ranging between ~20 µmol kg⁻¹ and ~60 µmol kg⁻¹, independent of dilution timing. Finally, ΩAr showed similar trends like ΔTA, reaching between ~4.8 and ~5.2, slightly decreasing over time until end of the experiment.

3.5.2 2000 µmol kg⁻¹ addition

Similarly to the previous experiment, this experiment consisted of a TA increase of ~2000 µmol kg⁻¹ by Ca(OH)₂ addition. The TA only increased to ~1/3 of the theoretical alkalinity addition, i.e., ~725 µmol kg⁻¹ within the first two hours (Figure 4a, 4d). Following this increase, TA rapidly decreased during the first day, reaching a ΔTA of about -1260 µmol kg⁻¹, and -1440 µmol kg⁻¹ in the following week (Figure 4a, 4d). From then on, TA appeared to stabilise up to day 14, before slightly increasing until day 21. A similar trend was observed for ΔDIC, decreasing by ~580 µmol kg⁻¹ within the first two hours, before radically dropping to about -1590 µmol kg⁻¹ on day 1, and -1660 µmol kg⁻¹ after 7 days (Figure 4b, 4e). Over the remaining 41 days, ΔDIC then increased by ~210 µmol kg⁻¹, although remaining about 1450 µmol kg⁻¹ under the starting DIC concentration. Finally, ΩAr reached up to ~16.7 after 2 hours of reaction, followed by a rapid drop down to ~3.2 on day 1 and ~2.0 on day 14, while slightly increasing the following 34 days, varying between 2.0 and 2.1 (Figure 4c, 4f).

Dilutions were performed after 10 minutes, 1 hour, 1 day and 1 week after Ca(OH)₂ addition, in this case in a 1:7 ratio. Concerning ΔTA, ΔDIC and ΩAr, the 10 minutes and 1 hour dilutions showed similar responses, as did the 1 day and 1 week dilutions. Upon dilution, ΔTA reached values ~240 µmol kg⁻¹ after the 10 minutes and 1 hour dilutions, and about -160 to -190 µmol kg⁻¹ for the 1 day and 1 week dilutions. With the exception of one data point in the 1 week dilution time data, ΔTA remained relatively constant throughout all dilution experiments (Figure 4a, 4d). DIC changes were similar to the TA changes,
with very similar values reached for the 10 minutes and 1 hour dilutions, as opposed to the 1 day and 1 week ones (Figure 4b, 4e). In all dilutions, ΔDIC slowly increased over time. Finally, Ω_{Ar} dropped to ~5.0 in the 10 minutes and 1 hour dilutions, while it dropped to ~2.3-2.8 (1:7) in the 1 day and 1 week dilution. In all experiments, Ω_{Ar} decreased slightly over time after dilutions (Figure 4c, 4f).

3.6 Particulate inorganic carbon

With the exception of the ~1050 TA addition by Na$_2$CO$_3$ plus quartz particles, measured PIC in experiments was always higher than estimates from measured ΔTA (Table 2). Furthermore, PIC estimated from the theoretically maximum TA increase upon full mineral dissolution, ΔTA$_{Theo}$, was always higher than estimated PIC from ΔTA, by about 30% in the ~500 µmol kg$^{-1}$ TA additions, and almost 90% in the ~2000 µmol kg$^{-1}$ TA addition.

4 Discussion

This study presents the first results on the dissolution of CaO and Ca(OH)$_2$ in natural seawater in the context of ocean alkalinity enhancement. In some of our experiments, secondary precipitation was detected. More specifically, we observed “runaway CaCO$_3$ precipitation” at TA additions equal or higher than 500 µmol kg$^{-1}$, i.e., not only was the added TA completely removed, but significant portions of residual seawater TA as well, until a new steady state was reached. This would vastly reduce the desired CO$_2$ removal potential by OAE and should therefore be avoided. Hence, in a set of experiments, we simulated ocean mixing to test required timescales to avoid secondary CaCO$_3$ precipitation for applications that initially had TA additions above the critical threshold.

4.1 Identifying CaCO$_3$ precipitation and the problem of not measured precipitation

CaCO$_3$ precipitation can occur via three pathways, i.e., heterogeneous, homogeneous and pseudo-homogeneous nucleation and precipitation (Marion et al., 2009; Chen et al., 2005; Wolf et al., 2008). Heterogeneous precipitation relies on the presence of existing solid mineral phases. This differs from homogeneous precipitation, characterised by the formation of CaCO$_3$ crystals from Ca$^{2+}$ and CO$_3^{2-}$ ions present in the solution in the absence of any nucleation surfaces (Chen et al., 2005; Wolf et al., 2008). Finally, the last type of precipitation, termed pseudo-homogeneous, is similar to homogeneous nucleation, however it occurs on nuclei other than solid minerals such as colloids, organic particles or glassware in a laboratory setting (Marion et al., 2009). Concerning the Ω_{CaCO3} thresholds beyond which CaCO$_3$ precipitation is expected to occur, the lowest would be for heterogeneous and the highest for homogeneous, with pseudo-homogeneous nucleation in between.

When 1 mole of CaCO$_3$ is precipitated, the TA of the solution decreases by 2 moles because of the removal of CO$_3^{2-}$ ions, accounting for 2 moles of TA (Equation 1). Simultaneously, the loss of 1 mole of CO$_3^{2-}$ ions decrease the DIC concentration by 1 mole. Hence, any loss of TA and DIC following a 2:1 ratio can be linked to CaCO$_3$ precipitation. When CaCO$_3$ precipitation was suspected in our experiments, SEM and particulate inorganic carbon samples were taken to confirm the
presence of CaCO₃ and to identify which morphotypes were predominant. In the +250 µmol kg⁻¹ TA additions by CaO and Ca(OH)₂, both appeared to fully dissolve without inducing CaCO₃ precipitation, as TA and Ωₐr quickly increased within minutes until reaching their respective maximum after about a day and remaining stable over weeks (Figure 1a and 1c, Figure 2a and 2c) A slight increase in DIC was observed over time, expected when atmospheric CO₂ is ingassing from the headspace. This in turn lead to slowly decreasing Ω_{CaCO₃} at constant TA, when increasing DIC and [CO₂], lowering the pH and [CO₃²⁻] (Equation 2). The reason why the measured TA increase was slightly below the theoretically expected one is most likely a combination of impurities present (in the case of CaO, a significant fraction could be hydrated), and loss of the finely ground material during the weighing and sieving process despite all efforts. On average, ~25-27% of alkalinity added was not measured in the experiments with CaO, and about 13-17% in the experiments with Ca(OH)₂ (Table 1, Figure 1 and Figure 2) In contrast, in the +500 µmol kg⁻¹ TA additions by CaO and Ca(OH)₂ additions, TA started decreasing after about 4 hours, upon the initial increase. This decrease in TA was accompanied by a decrease in DIC. In the CaO experiment (exactly the same conclusions could be reached for the Ca(OH)₂ experiment), TA reached a maximum of about +410 µmol kg⁻¹ after 4 hours of reaction, before dropping to about -560 µmol kg⁻¹ after 34 days, constituting an overall loss of about -970 µmol kg⁻¹. If this TA loss would be by CaCO₃ precipitation, DIC should be reduced by half this amount, i.e., about -485 µmol kg⁻¹. And indeed, measured DIC loss was exactly the same, suggesting that TA was precipitated in the form of CaCO₃. Although a perfect match, a caveat here is that the DIC loss is underestimated as of concurrent ingassing of CO₂ from the head space, becoming visible when precipitation ceases towards the end (Figure 1b). Hence, the DIC loss should have been higher, requiring also higher TA removal than actually measured. This discrepancy can be explained by the fact that the maximum increase in TA from full dissolution of CaO or Ca(OH)₂ cannot be measured in the presence of concurrent CaCO₃ precipitation. This is mostly evident in the +2000 µmol kg⁻¹ TA addition (Figure 4), where DIC decreases due to CaCO₃ precipitation, yet TA increases due to higher Ca(OH)₂ dissolution rates. It also explains why estimated PIC calculated from measured TA changes are smaller than actually measured PIC concentrations (Table 2). In the experiment with 1M Na₂CO₃ and quartz particles, both estimated PIC have similar results. However, the measured PIC is about twice as low. This could be explained by a combination of precipitation on both the quartz particles and bottle walls. In this sense, trying to estimate CaCO₃ precipitation from measured changes in TA, without considering theoretical TA generation by dissolution or actual PIC measurements, might underestimate total precipitation. Finally, next to impurities and issues with mineral handling, the reason why measured seawater PIC concentrations are in between the other estimates lies in the fact that a small portion of the CaCO₃ precipitated on the bottle walls, at least in the 2000 µmol kg⁻¹ TA experiment. While being a laboratory artefact, this has no practical consequences as in a natural setting, the TA would eventually precipitate in the water column.

4.2 The presence of mineral phases enhances CaCO₃ precipitation

An interesting finding in our experiments was that whenever CaCO₃ precipitation was observed, it continued even if the solution dropped below an Ωₐr of ~4.5, levels at which no precipitation was observed in the +250 µmol kg⁻¹ TA addition experiments. Furthermore, in all these experiments, precipitation decreased and seemingly ceased at a Ωₐr of ~1.8-2.0. It
appears that when CaCO$_3$ is initially precipitated, CaCO$_3$ continues to precipitate in a runaway fashion, even if Ω_{Ar} drops below levels where precipitation would not be initiated in natural seawater. This is to be expected as precipitation rates of CaCO$_3$ into CaCO$_3$ mineral phases are directly related to Ω_{CaCO_3}, decreasing exponentially until reaching zero at an Ω_{CaCO_3} value of 1 (Zhong and Mucci, 1989; Morse et al., 2007). However, why did precipitation occur at a much lower Ω_{CaCO_3}, i.e. $\Omega_{\text{Ar}} \sim 7.5$, than expected, i.e., ~ 12.3 (Marion et al., 2009)? It is known that the presence of particles in suspension can initiate and accelerate CaCO$_3$ precipitation (Millero et al., 2001; Morse et al., 2003; Wurgaft et al., 2021). It is unlikely that the presence of CaCO$_3$ impurities in CaO (less than 1% carbon) and Ca(OH)$_2$ (less than 2% carbon) from imperfect calcination would have caused precipitation, as the presence of CaCO$_3$ mineral phases should have caused precipitation at any saturation state above 1, i.e., also in the $+250 \mu\text{mol kg}^{-1}$ TA addition experiments. Furthermore, modelling precipitation using experimentally determined Ω_{Ar} and surface area dependant aragonite precipitation rates onto CaCO$_3$ mineral phases suggests that once precipitation becomes analytically detectable, it should proceed very rapidly before levelling off, i.e., within a couple of days (Zhong and Mucci, 1989). However, that is in contrast to what we observed here. We observed the bulk of precipitation occurring over a period of at least a week, with apparent differences between the different dissolving minerals (i.e., CaO, Ca(OH)$_2$ and quartz, although it is acknowledged that experiments were not replicated).

Another explanation is heterogeneous precipitation on not yet dissolved CaO and Ca(OH)$_2$ particles (or other impurities), leading to CaCO$_3$ crystal formation and initiating runaway precipitation. The Ω_{Ar} threshold for this process would depend on lattice compatibility of the mineral phases (Tang et al., 2020). For instance, CaCO$_3$ precipitation has been observed at any saturation states above 1 when introducing CaCO$_3$ seed particles. In contrast, the addition of quartz particles did not trigger precipitation at an Ω_{Ar} of up to 3.5 (Lioliou et al., 2007). For that to occur, Ω_{Ar} would need to be further increased. And indeed, above an Ω_{Ar} of ~ 9.2, CaCO$_3$ precipitation did actually occur (Figure 3). The reason for an initially slower but then more rapid precipitation could be a combination of exponentially increasing CaCO$_3$ surface area, as well as concomitantly increasing lattice compatibility (Lioliou et al., 2007; Pan et al., 2021). The filtration of TA enriched seawater supports this idea. Not yet dissolved mineral phases that could facilitate early nucleation are removed, preventing runaway CaCO$_3$ precipitation (Figure 3).

Needle-shaped aragonite precipitation onto quartz particles (Figure 5c and 5d) was directly observed by SEM imaging, and confirmed by EDX analysis, identifying the larger base mineral to be rich in silicon, a key characteristic of quartz, and the needle-shaped particles composed of carbon, oxygen and calcium (Chang et al., 2017; Ni and Ratner, 2008; Pan et al., 2021). In contrast, aragonite precipitation in the $+500 \mu\text{mol kg}^{-1}$ TA addition by CaO and Ca(OH)$_2$ did not reveal any insoluble base-element other than Ca, suggesting initial CaCO$_3$ precipitation onto CaO and Ca(OH)$_2$ (Figure 5a and 5b). In some situations (Figure 5b), round crystals were also observed, suggesting the presence of vaterite (Chang et al., 2017). However, aragonite crystals represented the majority of CaCO$_3$ observed by SEM. Early CaCO$_3$ precipitation onto CaO and Ca(OH)$_2$ particles, providing some sort of coating could also, or at least partially, explain why maximum measured TA was lower than theoretically anticipated.
4.3 Impacts of CaCO$_3$ precipitation on OAE potential

From an OAE perspective, CaCO$_3$ precipitation is an important chemical reaction that needs to be avoided. When CaCO$_3$ precipitates, TA and DIC decrease in a 2:1 fashion. Simultaneously, dissolved [CO$_2$] and Ω_{CaCO_3} are decreasing, and [CO$_2$] is increasing, impacting OAE potential. Considering typical open ocean TA and DIC concentrations of 2350 and 2100 µmol kg$^{-1}$ respectively, at a salinity of 35 and a temperature of 19 °C, this water mass would have a pCO$_2$ close to atmospheric equilibrium, ~416 ppm, a pH$_T$ value (total scale) of ~8.04, and an Ω_{Ar} of ~2.80. Without CaCO$_3$ precipitation, an addition of 500 µmol kg$^{-1}$ TA would lower pCO$_2$ to ~92 µatm and increase pH$_T$ and Ω_{Ar} to about 8.61 and 8.45 respectively. If fully equilibrated with the atmosphere, DIC would increase by about 420 µmol kg$^{-1}$, leading to a pH$_T$ and Ω_{Ar} 0.07 and 1.10 higher than prior to the addition, respectively (Table 3). The resulting OAE efficiency would be 0.83 mole of atmospheric CO$_2$ absorbed per mole of TA, very similar to estimates by Köhler et al. (2010). Considering that CaCO$_3$ is the base material for CaO and Ca(OH)$_2$, and the fact that 2 moles of TA are produced per mole of mineral dissolution, ~0.7 tonnes of CO$_2$ could be captured per tonne of source material, assuming CO$_2$ capture during the calcination process. At a global-scale, using all available ship capacity and assuming a slow discharge of 1.7 to 4.0 Gt of Ca(OH)$_2$ per year, between 1.2 and 2.8 Gt of CO$_2$ per year could be absorbed by the ocean (Caserini et al., 2021). Similarly, following the models from Feng et al. (2016) with a constant addition of Ca(OH)$_2$ at 10 Gt/year$^{-1}$, we could expect to absorb about 7 Gt of CO$_2$ per year. This would eventually lead to more than 546 Gt of CO$_2$ by 2100 if implemented in 2022.

However, these substantial numbers assume a complete dissolution without CaCO$_3$ precipitation. If as much CaCO$_3$ precipitates as TA was added, only 0.50 mole of DIC can be absorbed per mole of TA after equilibration with atmospheric pCO$_2$ (Table 3). This represents a decrease by nearly 40% in OAE potential. Similarly, assuming runaway CaCO$_3$ precipitation until $\Omega_{\text{Ar}} = 2.0$ decreases the OAE potential further by almost 90%. Then, only ~0.11 mole of DIC would be absorbed per mole of TA added (Table 3). Finally, secondary CaCO$_3$ precipitation higher than TA addition will lead to pH$_T$ and Ω_{CaCO_3} levels lower than initial ones. For instance, runaway precipitation for a TA addition of 500 µmol kg$^{-1}$ will see pH$_T$ drop by about 0.1 from 8.04 to 7.93 and Ω_{Ar} from 2.80 to 1.66, significantly enhancing ongoing ocean acidification (Table 3). Runaway CaCO$_3$ precipitation for a TA addition of 1000 µmol kg$^{-1}$ would even see Ω_{Ar} drop below 1. Under such conditions, aragonite, an important biomineral for a variety of marine organisms, e.g., sessile corals, benthic molluscs and planktonic pteropods, would start to dissolve (Zeebe and Wolf-Gladrow, 2001; Riebesell et al., 2011). In summary, runaway CaCO$_3$ precipitation in OAE has to be avoided as not only reducing CO$_2$ uptake efficiency significantly but also enhancing ocean acidification. Keeping track of OAE efficiency from changes in TA concentrations can be challenging as CaCO$_3$ precipitation can be underestimated as described earlier, requiring new and clever monitoring strategies to ensure effective dilutions take place.

4.4 Avoiding CaCO$_3$ precipitation by dilution and other TA addition strategies

While above considerations stress the importance for monitoring CaCO$_3$ precipitation, they do not take into account the natural dilution that would occur in the wake of ships releasing TA in the ocean, or by natural mixing of TA-enriched water with
surrounding seawater (Caserini et al., 2021; Feng et al., 2017; Mongin et al., 2021). In our experiments, a 1:1 dilution of seawater in which CaCO$_3$ precipitation was taking place upon a 500 µmol kg$^{-1}$ TA addition was seemingly stopped, even if initiated only after one week. This comes a bit at a surprise as precipitation nuclei would only be diluted by half, hence reducing surface area and precipitation rates by a factor of 2. However, as Ω$_{Ar}$ is significantly reduced simultaneously, precipitation rates are further reduced by a factor of 10 (see Figure A 4). Hence, overall precipitation would see a reduction by a factor of 20. This however, should slow down continuing precipitation initially, if on CaCO$_3$ particles, but not completely inhibit it (Zhong and Mucci, 1989). A possible explanation could be that dilution would have lowered Ω$_{Ar}$ below the critical threshold for overcoming lattice mismatch, as most of the aragonite precipitation appears to be on the original seed mineral itself rather than on the newly formed aragonite (compare Figure 5c and 5d).

Overall, CaCO$_3$ precipitation can be avoided if the TA+500 µmol kg$^{-1}$ enriched sample is diluted 1:1, reaching an Ω$_{Ar}$ of ~5.0. The quicker dilution takes place, the less CaCO$_3$ would precipitate prior. Similar results were found for a TA addition of +2000 µmol kg$^{-1}$, i.e., the ability to stop precipitation at an Ω$_{Ar}$ of ~5.0, after a 1:7 dilution. However, only the 10 minutes and 1 hour dilutions seem to be suitable in an OAE context, as much more rapidly occurring aragonite precipitation at a higher initial Ω$_{Ar}$ of about 16.7 would significantly reduce the CO$_2$ uptake efficiency. Furthermore, the difficulty to monitor precipitation form simple TA measurements (as described above) would also mean that verification of permanent CO$_2$ removal is problematic. Hence, in order to assign carbon credits, TA additions have to be done in a way that rule out secondary CaCO$_3$ precipitation. This is the case for any type of TA addition, and is not specific to quick and hydrated lime.

Adding TA from land, as modelled by Feng et al. (2017), shows that the more TA is added, the higher coastal Ω$_{Ar}$ would be. Staying clearly below the Ω$_{Ar}$ 5 threshold, up to ~550 Gt of carbon in the form of CO$_2$ could be removed from the atmosphere by 2100, corresponding to a reduction of about 260 ppm (Feng et al., 2017). The critical Ω$_{Ar}$ threshold beyond which secondary CaCO$_3$ precipitation would be observed could be higher for other minerals, theoretically allowing for higher TA additions. However, it has to be kept in mind that in waters with high sediment load, often found in coastal settings, CaCO$_3$ could precipitate onto other mineral particles than those added to increase TA. This has been observed in river plumes (Wurgaft et al., 2021), on the Bahama Banks by resuspended sediments (Bustos-Serrano et al., 2009) and in the Red Sea following flash flood deposition of resuspended sediments and particles (Wurgaft et al., 2016). Hence, even with minerals potentially allowing for higher TA additions, an Ω$_{Ar}$ threshold of 5 might be safer to adopt. However, atmospheric CO$_2$ removal could be increased if TA would also be added to the open ocean, e.g., on ships of opportunity. Here, additions could be much higher as ship movement and rapid mixing within its wake would significantly dilute added TA (Caserini et al., 2021; Köhler et al., 2013) as opposed to coastal point source.

Finally, another option to increase atmospheric CO$_2$ uptake would be to not add mineral to seawater directly, but to first equilibrate it with air or CO$_2$ enriched flumes to atmospheric pCO$_2$ levels while dissolving. This would allow reaching an Ω$_{Ar}$ of 5 when equilibrated with the atmosphere, as opposed to 3.3 when equilibration is slow and passive, after +250 µmol kg$^{-1}$ TA increase (Table 3). In this case, nearly 1000 instead of 250 µmol kg$^{-1}$ of TA could be added, allowing for almost 4 times the amount of atmospheric CO$_2$ to be removed (this number is highly sensitive to temperature, and ranges between ~3 and ~6...
between 30 and 5 °C). However, this represent an extra step, which appears to be far more time and cost consuming than a simple mineral addition. It has also to be kept in mind that for the same Ω_{Ar} threshold, the amount of TA that can be added will increase with lower temperature, as of higher CO$_2$ solubility and hence naturally lower Ω_{Ar} in colder waters. At a salinity of 35 and at 5 °C, about three times as much TA can be dissolved as opposed to a temperature of 30 °C.

5 Conclusions

Ocean alkalinity enhancement is a promising negative emission technology. In order to maximise carbon dioxide (CO$_2$) uptake efficiency, secondary calcium carbonate (CaCO$_3$) precipitation has to be avoided. Here, we show that an increase of total alkalinity (TA) by 500 μmol kg$^{-1}$ led to aragonite precipitation, reducing the CO$_2$ uptake potential from about 0.8 moles per mole of alkalinity added to less than 0.2 moles. Precipitation was most likely onto CaO and Ca(OH)$_2$ mineral phases prior to full dissolution. In contrast, an addition of 250 μmol kg$^{-1}$ of TA did not result in CaCO$_3$ precipitation, suggesting that an aragonite saturation state (Ω_{Ar}) of about 5 is a safe upper limit. This is probably also the case for other minerals that would theoretically allow for higher TA additions as of potential precipitation onto naturally present mineral phases, such as resuspended sediments in coastal settings. Safely increasing the amount of TA that could be added to the ocean involves expanding to the open ocean by ships of opportunity, allowing major mixing and dilution of enriched seawater, equilibrating the seawater to atmospheric CO$_2$ levels during mineral dissolution, and targeting low rather than high temperature regimes.

Data availability

Data will be made available on a publicly available repository upon final publication.

Author contributions

CAM and KGS designed the initial experiments. All co-authors contributed to the initial data analysis and designing of follow-up experiments. CAM performed most of the sampling, and the data analyses with the help of KGS. CAM wrote the paper with KGS, with inputs from their respective fields of expertise by all co-authors.

Competing interests

The authors declare that they have no conflict of interest.
Acknowledgements

We would like to thank Marian Bailey for her help with ICPMS sample preparation, as well as Dr Nick Ward for his help with preliminary X-ray Diffraction analyses of the calcium powders. We are also thankful to Dr Matheus Carvalho de Carvalho for the particulate carbon analyses and Nadia Toppler for her help arranging the use of the SEM.

Financial support

This research is part of the PhD project of CAM that is funded by a Cat. 5 – SCU Grad School scholarship from the Southern Cross University, Lismore, Australia. The ICPMS analyses were made possible by the Australian Research Council grants number LE200100022 by RJB and KGS, and LE120100201 obtained by RJB.
References

Table 1: Summary of experimental conditions. Please note that for comparability, more TA was added in the liquid than the sieved approaches to match the theoretical increases in calcium carbonate saturation state (see Methods section for details).

<table>
<thead>
<tr>
<th>TA Agent</th>
<th>TA target (µmol kg(^{-1}))</th>
<th>Additional samples apart from TA and DIC</th>
<th>Seived calcium minerals experiments</th>
<th>Theoretical TA addition (µmol kg(^{-1}))</th>
<th>Experiment duration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO</td>
<td>250</td>
<td>N/A</td>
<td>274.21</td>
<td>47 days</td>
<td>N/A</td>
<td>TP, POC and SEM samples</td>
</tr>
<tr>
<td>CaO</td>
<td>500</td>
<td>N/A</td>
<td>2015.90</td>
<td>47 days</td>
<td>N/A</td>
<td>TP, POC and SEM samples</td>
</tr>
<tr>
<td>Ca(OH)(_2)</td>
<td>250</td>
<td>N/A</td>
<td>7.69</td>
<td>47 days</td>
<td>N/A</td>
<td>15.27, 2004, 2004, 2004, 2004</td>
</tr>
<tr>
<td>Ca(OH)(_2)</td>
<td>500</td>
<td>N/A</td>
<td>15.90</td>
<td>47 days</td>
<td>N/A</td>
<td>15.27, 2004, 2004, 2004, 2004</td>
</tr>
<tr>
<td>Na(_2)CO(_3), particles and filtration experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na(_2)CO(_3)</td>
<td>1050</td>
<td>1M solution after 2 days, 39.30</td>
<td>2004.20</td>
<td>47 days</td>
<td>N/A</td>
<td>TP, POC and SEM samples</td>
</tr>
<tr>
<td>Na(_2)CO(_3)</td>
<td>1050</td>
<td>10M solution, plus quartz after 2 days, 39.30</td>
<td>2004.20</td>
<td>47 days</td>
<td>N/A</td>
<td>TP, POC and SEM samples</td>
</tr>
<tr>
<td>Ca(OH)(_2)</td>
<td>500</td>
<td>Sieved in, filtered after 4 hours, 39.30</td>
<td>2004.20</td>
<td>47 days</td>
<td>N/A</td>
<td>TP, POC and SEM samples</td>
</tr>
</tbody>
</table>

Dilution experiments

<table>
<thead>
<tr>
<th>TA Agent</th>
<th>TA target (µmol kg(^{-1}))</th>
<th>Additional samples apart from TA and DIC</th>
<th>Seived calcium minerals experiments</th>
<th>Theoretical TA addition (µmol kg(^{-1}))</th>
<th>Experiment duration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(OH)(_2)</td>
<td>2000</td>
<td>1:1 dilution after 10min, 1 hour, 1 day and 1 week, 39.30</td>
<td>2000</td>
<td>47 days</td>
<td>77.80</td>
<td>TP, POC and SEM samples</td>
</tr>
<tr>
<td>Ca(OH)(_2)</td>
<td>2000</td>
<td>1:7 dilution after 10min, 1 hour, 1 day and 1 week, 39.30</td>
<td>2000</td>
<td>47 days</td>
<td>77.80</td>
<td>TP, POC and SEM samples</td>
</tr>
</tbody>
</table>
Table 2: Comparison between the estimated PIC based on half the TA change between the theoretical maximum TA increase upon full dissolution of the alkaline material added and the measured TA at the end of the experiment (Table 1), the estimated PIC based on half the TA changes between the measured maximum TA increase and the measured TA at the end of the experiment, and the measured PIC from the particulate carbon analysis.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>PIC ΔTA$_{Theo}$ (µmol kg$^{-1}$)</th>
<th>PIC ΔTA (µmol kg$^{-1}$)</th>
<th>Measured PIC (µmol kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 TA – CaO Addition</td>
<td>543.24</td>
<td>476.38</td>
<td>491.82 ±39.18</td>
</tr>
<tr>
<td>500 TA – Ca(OH)$_2$ Addition</td>
<td>462.28</td>
<td>430.51</td>
<td>550.87 ±71.32</td>
</tr>
<tr>
<td>1050 TA – 1M Na$_2$CO$_3$ Addition + Quartz Particles</td>
<td>627.20</td>
<td>639.07</td>
<td>397.37 ±24.03</td>
</tr>
<tr>
<td>500 TA – Ca(OH)$_2$ Addition</td>
<td>107.05</td>
<td>66.20</td>
<td>89.51 ±4.27</td>
</tr>
<tr>
<td>2000 TA – Ca(OH)$_2$ Addition</td>
<td>1718.83</td>
<td>1030.74</td>
<td>1331.48 ±50.73</td>
</tr>
</tbody>
</table>
Table 3: Simulations of the changes in TA, DIC, Ω_{Ar}, pCO$_2$ and pH$_T$ (total scale) after TA increases of 250, 500 and 1000 µmol kg$^{-1}$, assuming complete mineral dissolution without precipitation, a complete dissolution followed by as much CaCO$_3$ precipitated as the amount of TA added, and a complete dissolution followed by CaCO$_3$ precipitation until reaching an Ω_{Ar} of 2.0, before CO$_2$ re-equilibration to initial pCO$_2$. For each scenario, the amount of moles of CO$_2$ absorbed per moles of TA added has been calculated for comparison. The 500 µmol kg$^{-1}$ TA addition simulation is shown in Figure A3, Appendix. *Note: the value for Ω_{Ar} is rounded to 1.00 but calculated at 0.997.

<table>
<thead>
<tr>
<th></th>
<th>Starting Conditions (salinity = 35 °C)</th>
<th>TA +250 µmol kg$^{-1}$</th>
<th>TA +500 µmol kg$^{-1}$</th>
<th>TA +1000 µmol kg$^{-1}$</th>
<th>CO$_2$ uptake to pCO$_2$ ~416 µatm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TA (µmol kg$^{-1}$)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2350</td>
<td>2600</td>
<td>2850</td>
<td>2350</td>
<td>1748</td>
</tr>
<tr>
<td>DIC (µmol kg$^{-1}$)</td>
<td>2100</td>
<td>2100</td>
<td>2100</td>
<td>1850</td>
<td>1549</td>
</tr>
<tr>
<td>Ω_{Ar}</td>
<td>2.80</td>
<td>5.53</td>
<td>8.45</td>
<td>5.34</td>
<td>2.00</td>
</tr>
<tr>
<td>pCO$_2$ (µatm)</td>
<td>416.2</td>
<td>175.1</td>
<td>91.5</td>
<td>135.6</td>
<td>319.2</td>
</tr>
<tr>
<td>pH$_T$</td>
<td>8.04</td>
<td>8.38</td>
<td>8.61</td>
<td>8.42</td>
<td>8.02</td>
</tr>
<tr>
<td></td>
<td>After re-equilibration, i.e., pCO$_2$ ~416 µatm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final TA (µmol kg$^{-1}$)</td>
<td>2350</td>
<td>2600</td>
<td>2850</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Final DIC (µmol kg$^{-1}$)</td>
<td>2100</td>
<td>2309</td>
<td>2517</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Final Ω_{Ar}</td>
<td>2.80</td>
<td>3.34</td>
<td>3.90</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Final pH$_T$</td>
<td>8.04</td>
<td>8.08</td>
<td>8.11</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>CO$_2$ uptake (mole/mole TA)</td>
<td>NA</td>
<td>0.84</td>
<td>0.83</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Final TA (µmol kg$^{-1}$) 2350 2600 2850 2350 1748 NA 3350 2350 1320 NA

Final DIC (µmol kg$^{-1}$) 2100 2309 2517 2100 1588 NA 2926.5 2100 1216 NA

Final Ω_{Ar} 2.80 3.34 3.90 2.80 1.66 NA 5.14 2.80 1.00* NA

Final pH$_T$ 8.04 8.08 8.11 8.04 7.93 NA 8.17 8.04 7.82 NA

CO$_2$ uptake (mole/mole TA) NA 0.84 0.83 0.50 0.08 0.83 0.50 0.13 NA

Note: the value for Ω_{Ar} is rounded to 1.00 but calculated at 0.997.
Figure 1: Changes in TA (a), DIC (b) and Ω_{Ar} (c) over time following two CaO additions.
Figure 2: Changes in TA (a), DIC (b) and Ω_{Ar} (c) of the samples over time following two Ca(OH)$_2$ additions.
Figure 3: Changes in TA (a), DIC (b) and Ω_{Ar} (c) over time following additions of Na$_2$CO$_3$, Na$_2$CO$_3$ plus quartz particles and Ca(OH)$_2$ followed by a filtration step (see Methods for details).
Figure 4: Changes in TA (a and d), DIC (b and e) and Ω_{Ar} (c and f) following a TA addition of 500 and 2000 µmol kg$^{-1}$ respectively, by Ca(OH)$_2$ (black line), as well as following a 1:1 dilution or the 500 µmol kg$^{-1}$ TA addition (red and yellow lines) and a 1:7 dilution for the 2000 µmol kg$^{-1}$ TA addition (blue lines). The dilutions were performed after 10 minutes, 1 hour, 1 day and 1 week and earlier dilutions are represented by lighter colours.
Figure 5: SEM images from experiments with an increase in TA of ~500 µmol kg$^{-1}$ by CaO (a), Ca(OH)$_2$ (b) and with a TA increase of ~1050 µmol kg$^{-1}$ by 1M Na$_2$CO$_3$, followed by quartz particles addition ((c) and (d)).
Appendix

Table A 1: Main chemical composition of the CaO and Ca(OH)\(_2\) powders used for the TA increase experiments determined by ICPMS analysis.

<table>
<thead>
<tr>
<th>Element</th>
<th>mg g(^{-1})</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>545.15</td>
<td>70.92</td>
</tr>
<tr>
<td>Magnesium</td>
<td>2.10</td>
<td>0.23</td>
</tr>
<tr>
<td>Silicon</td>
<td>2.02</td>
<td>1.79</td>
</tr>
<tr>
<td>Aluminium</td>
<td>0.50</td>
<td>0.19</td>
</tr>
<tr>
<td>Iron</td>
<td>0.32</td>
<td>0.10</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element</th>
<th>mg g(^{-1})</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>529.79</td>
<td>117.30</td>
</tr>
<tr>
<td>Magnesium</td>
<td>6.87</td>
<td>1.98</td>
</tr>
<tr>
<td>Silicon</td>
<td>2.70</td>
<td>1.12</td>
</tr>
<tr>
<td>Aluminium</td>
<td>1.98</td>
<td>0.77</td>
</tr>
<tr>
<td>Iron</td>
<td>0.91</td>
<td>0.34</td>
</tr>
<tr>
<td>Potassium</td>
<td>0.43</td>
<td>0.23</td>
</tr>
<tr>
<td>Titanium</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Phosphorus</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Bromine</td>
<td>0.03</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure A 1: Relative contribution of dissolved CO\(_2\), HCO\(_3^-\) and CO\(_3^{2-}\) to total dissolved inorganic carbon in seawater as a function of pH\(_T\) (total scale), also known as Bjerrum plot (based on the carbonic acid equilibrium constant from Mehrbach et al. (1973) and refitted by Dickson and Millero (1987)), at 25 °C and salinity of 35, with the current surface ocean pH average represented by the dashed line (pH\(_T\) ~8.1).
Figure A 2: Conceptual diagram of the experimental setup used for the dissolution of alkaline minerals.
Figure A 3: Simulation of the changes in TA, DIC, Ω_{Ca}, Ω_{Ar}, pCO$_2$ and pH after addition of 500 µmol kg$^{-1}$ of alkalinity. Four important steps are presented: first assuming the complete Ca(OH)$_2$ dissolution without CaCO$_3$ precipitation, second assuming as much CaCO$_3$ precipitation as the amount of TA added, third assuming CaCO$_3$ precipitation happening until reaching $\Omega_{\text{Ar}} = 2.0$ and fourth CO$_2$ uptake until equilibrium is reached between atmospheric and seawater pCO$_2$ of ~416 ppm.
Figure A 4: Aragonite precipitation rate onto CaCO$_3$ seed crystals in µmol m$^{-2}$ h$^{-1}$ as a function of Ω_{Ar}, based on the calculation of Zhong and Mucci (1989) at 25 °C and for a salinity of 35. The values of Ω_{Ar} for the starting conditions, following a +250, +500 and +1000 µmol kg$^{-1}$ TA increase are presented by the grey dashed lines, i.e., 2.8, 5.5, 8.5 and 14.6 respectively.