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Abstract. The development of accurate water quality modeling tools is necessary for integrated water quality management of

river systems. Even though some water quality models can simulate dissolved oxygen (DO) concentration accurately during

high flow periods and phytoplankton blooms in rivers, significant discrepancies remain during low flow periods, when the

dilution capacity of the rivers is reduced. We use the C-RIVE biogeochemical model to evaluate the influence of controlling

parameters on DO simulations at low flow. Based on a coarse model pre-analysis, three sensitivity analyses (SA) are carried out5

using the Sobol method. The parameters studied are related to bacterial community (e.g., bacterial growth rate), organic matter

(OM; partitioning and degradation of OM into constituent fractions), and physical factors (e.g., reoxygenation of the river

due to navigation and wind). Bacterial growth and mortality rates are found to be by far the two most influential parameters,

followed by bacterial growth yield. More refined SA results indicate that the biodegradable fraction of dissolved organic matter

(BDOM) and the bacterial growth yield are the most influential parameters under conditions of a high net bacterial growth rate10

(= growth rate – mortality rate), while bacterial growth yield is independently dominant in low net growth situations. Based on

the results of this study, proposals are made for in situ measurement of BDOM under an urban area water quality monitoring

network that provides high-frequency data. The results also indicate the need for bacterial community monitoring in order to

detect potential bacterial community shifts after transient events such as combined sewer overflows and post-infrastructure

improvement in treatment plants. Furthermore, we discuss the integration of BDOM in data assimilation framework for better15

estimation of BDOM contribution from boundary conditions.

1 Introduction

Dissolved oxygen (DO) has been considered the most important indicator of water quality in surface water resources (Streeter

and Phelps, 1925; Odum, 1956; Escoffier et al., 2018), because it integrates the biological functioning of a system as well

as the impact of anthropogenic forcing. It is the main variable used to evaluate river metabolism (Odum, 1956; Staehr et al.,20

2010; Demars et al., 2015) by comparing the gross primary production (GPP) with ecosystem respiration (ER) and defining

whether an ecosystem is autotrophic or heterotrophic based on the net ecosystem production (NEP = GPP-ER) being positive

or negative, respectively (Garnier et al., 2020). Maintaining a sufficient level of DO is necessary for the overall health of
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rivers, not only because of the life dependency of water species (Garvey et al., 2007), but also for preventing smell and taste

degradation (Bailey and Ahmadi, 2014).25

The situation of rivers during low flow is of particular interest since studies have demonstrated that the river water quality

during such flow periods is more vulnerable to degradation due to lower dilution rates. This is particularly the case if the river

receives organic matter load from waste water treatment plants (WWTP) and combined sewer overflows (CSO). These OM

loads lead to heterotrophic conditions in the river, where very low DO levels and high fish mortality can be observed (Seidl

et al., 1998a; Even et al., 2004; Vilmin et al., 2016; Garnier et al., 2020). Therefore, river water quality modeling has been one30

of the main research interests of water quality managers and researchers ever since the use of the very first water quality model

(Streeter and Phelps, 1925) to more complex ones (Billen et al., 1994; Garnier et al., 1995; Even et al., 1998; Vanrolleghem

et al., 2001; Flipo, 2005; Wang et al., 2013). Its aim is to identify the main determinants of DO evolution and to forecast the

response of aquatic systems to human-induced pressure, in particular due to waste water treatment plants (WWTPs) outflows.

Large discrepancies exist between DO simulations and observations during low-flow periods in water quality models. These35

mismatches were found in the QUESTOR model applied on the Thames (UK) (Hutchins et al., 2020), in the Riverstrahler model

applied on the Mosel river (Germany) (Garnier et al., 1999), the Scheldt river (Belgium) (Thieu et al., 2009), and the Seine river

(France) (Garnier et al., 2020). Yang et al. (2010) found the same results in the WASP model and noted that the uncertainty of

the model lies in characterization of OM degradation and nitrification rates. Bailey and Ahmadi (2014) found similar results in

the QUAL2E-OTIS water quality model. The ProSe model also has mismatches at low flow (Even et al., 2004, 2007; Vilmin40

et al., 2018; Garnier et al., 2020; Wang et al., 2022). Among the parameters that control DO concentration in water (Cox,

2003), Wang et al. (2022) assume that the uncertainties related to the parameterization of OM degradation kinetics and OM

biodegradability at system’s boundaries (tributary rivers, WWTPs, and CSOs) play a major role in the discrepancies observed

during low flow periods.

In order to objectively evaluate the controlling parameters of DO during such periods, a sensitivity analysis (SA) is con-45

ducted. Several applications of SA methods can be found for water quality modeling (Nossent et al., 2011; Bailey and Ahmadi,

2014; Cho et al., 2017; Wang et al., 2018). Moreover, SA applications in hydrological and water quality modeling are summa-

rized by (Reusser et al., 2011; Wang et al., 2018). In this study, the Sobol method (Sobol, 1993) is chosen in order to understand

the inter-parameter interactions.

For the first time, the influence of bacterial properties and that of the quantity and different fractions of OM sources are50

investigated on DO evolution at low flow using C-RIVE model (Vilmin et al., 2012; Wang et al., 2018). It is conducted for

better understanding of the short-term (5 days) and mid-term (45 days) effects of the rapidly and slowly biodegradable OM,

respectively. To further understand the functioning of the Sobol’ SA, the inter-parameter interactions are calculated to address

how one parameter hides the influence of other parameters. On the basis of the SA results, suggestions are made for water

quality monitoring in urban areas. Finally, proposals are made for a better integration of the influential parameters in data55

assimilation.

Based on the above discussion, we address three research questions:
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1. What are the influential parameters controlling DO during a post-bloom summer low flow period where discrepancies

are observed in different water quality models? Is a model that includes bacteria physiological parameters (growth and

yield rates) only sufficient to describe DO variation?60

2. To what extent is the knowledge of the quantity of OM share, especially that of the biodegradable fraction of dissolved

organic matter (BDOM), influential for water quality modeling?

3. What is the hierarchy (importance ranking) among the influential parameters ?

2 Material and methods

Here we represent the C-RIVE model (section 2.1) as the forward model of the study and identify the parameters that need to65

be included in the study. Then, two new sets of parameters are added to the study to account for the uncertainties related to the

parameterization of OM degradation kinetics and its partitioning into different constituent fractions. This is followed by the

determination of the variation ranges of the introduced parameters (section 2.1.2). Then, the strategy for conducting different

SAs is detailed in section 2.3 to determine the influential parameters.

2.1 C-RIVE Biogeochemical model70

C-RIVE is a C ANSI library that implements RIVE concepts (Billen et al., 1994; Garnier et al., 1995). It simulates the cycles of

carbon, oxygen, and other nutrients both in the water column and sediments of river systems (Fig. 1). The model is community

centered and explicitly describes micro-organisms’ communities, such as phytoplankton and heterotrophic bacteria. The phys-

iological parameters of those communities were determined through multiple lab experiments. Both the RIVE model and its

parameters were coupled in two river water quality models : RIVERSTRAHLER (Billen et al., 1994) and ProSe (Even et al.,75

1998). These two models are calibrated and validated on real case applications in different river basins over the world such as

in the Danube river (Romania and Bulgaria) (Garnier et al., 2002), in the Day-Nhue river (Vietnam) (Luu et al., 2021), in the

Grand Morin river (France) (Flipo et al., 2004, 2007), in the Lule and Kalix rivers (Sweden) (Sferratore et al., 2008), in the

Mosel river (Germany) (Garnier et al., 1999), in the Red river system (Vietnam and China) (Quynh et al., 2014), in the Scheldt

river (Belgium and Netherlands) (Billen et al., 2005; Thieu et al., 2009), in the Seine river (France) (Even et al., 2004, 2007;80

Raimonet et al., 2015; Vilmin et al., 2015, 2016; Garnier et al., 2020), in the Somme river (France) (Thieu et al., 2009, 2010),

and in the Zenne river (Belgium) (Garnier et al., 2013).

In the C-RIVE model, DO in the water column depends on physical, bacterial, and phytoplanktonic processes (Fig. 1). The

physical and phytoplanktonic processes tend to provide DO while bacterial processes consume DO. The bacterial respiration,

that is the main source of oxygen consumption, depends on the heterotrophic bacterial kinetics and the availability of substrate85

matter. These equations are accessible in previous publications (Billen et al., 1988; Servais, 1989; Billen, 1991; Wang et al.,

2018). For the readability of the paper, they are developed in the supplementary material sections A1 and A2 only.
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Figure 1. Schematic description of the OM-related processes accounted for by C-RIVE in the water column where OM is partitioned into

six fractions of dissolved and particulate matter using the five partitioning parameters, namely, t, b1, s1, b2, s2; POM: particulate organic

matter; DOM: dissolved organic matter; BDOM:biodegradable DOM, BPOM:biodegradable POM (subscripts 1, 2, and 3 refer to rapidly

degradable, slowly degradable, and non-biodegradable fractions of OM, respectively); Blue dashed-double dotted lines: OM input from

sources and partitioning between POM and DOM; Solid black lines: partitioning of DOM and POM into biodegradability pools ; Dotted

black lines: Hydrolysis; Remaining solid lines: Biogeochemical processes. Resp.:Respiration; Photo,:Photosynthesis; PP: primary producers;

HB: heterotrophic bacteria; WWTP: waste water treatment plant; CSO: combined sewer overflow

2.1.1 OM partitioning parameters: from total organic carbon to six OM fractions

The OM partitioning parameters are a novelty added in C-RIVE. Indeed, former version of C-RIVE did not include any pa-

rameter to define the partitioning of OM into DOM and POM and then further into their corresponding fractions DOM1,2,390

and POM1,2,3 (see Fig. 1 for the definitions). In the recent development of C-RIVE, the total organic carbon (TOC) is initially

divided into dissolved (DOM ) and particulate (POM ) forms by t parameter (Fig. 1). Then, DOM is divided into biodegrad-

able (BDOM) and refractory (DOM3) fractions by b1 parameter. Then, thanks to s1 parameter, BDOM is further divided into

(i) DOM1 as the limiting substrate (rapidly biodegradable DOM in 5 days) and (ii) DOM2 (slowly biodegradable DOM in
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45 days). POM is similarly divided into its constituent fractions using b2 and s2 parameters. The equations concerning these95

five parameters and that of OM degradation are accessible in supplementary material section A3. To further clarify, the only

required forced information is TOC that comes from experimental data. Therefore, the five OM partitioning parameters (t, b1,

b2, s1, s2) give us the possibility to conduct a sensitivity analysis to quantify their influence on DO concentration. Given this

model, we can take into account for boundary conditions, per say river inflows, varying DOM1,2,3 and POM1,2,3 fractions

that depend on the values of the five parameters t, b1, s1, b2 and s2.100

2.1.2 Parameters for SA and their variation ranges

The influence of 17 parameters on oxygen concentrations are evaluated in this study (Tab. 1). Various types of parameters are

identified: two physical parameters that account for O2 re-aeration; seven bacterial parameters that account for bacteria growth,

mortality, and respiration; three OM degradation parameters; and five OM partitioning parameters (Fig. 1).

Before proceeding to a SA, it is necessary to specify the range of variation of each parameter according to a a prior distri-105

bution based on former knowledge. Those distributions are assumed to be uniform within a range, whose definition relies on a

literature review. The range of variation of the partitioning and degradation parameters (Tab. 1) is selected based on a detailed

bibliographical review (Hasanyar et al., 2020, 2021; Wang et al., 2018). Table 1 also includes the range of variation of TOC,

which represents the total organic matter input in the model due to the boundary conditions and varies from 1 to 10 mgC L-1

under low flow (Hasanyar et al., 2020).110
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Table 1. List of the parameters accounted for in the sensitivity analyses and their corresponding ranges of variation

Parameter Description Min.

Val.

Max.

Val.

Unit References

TOC Total organic carbon 1 10 [mgC L-1]

OM partitioning parameters

t ratio between dissolved and total organic matter (DOM/TOC) 0.4 0.9 [-]

H
as

an
ya

re
ta

l.
(2

02
0,

20
21

)b1 ratio between biodegradable DOM and DOM (BDOM/DOM) 0.1 0.5 [-]

b2 ratio between biodegradable POM and POM (BPOM/POM) 0.1 0.5 [-]

s1 ratio between rapidly biodegradable DOM and BDOM

(DOM1/BDOM)

0.4 0.95 [-]

s2 ratio between high biodegradable POM and BPOM

(POM1/BPOM)

0.4 0.95 [-]

OM degradation parameters

Ks constant of semi saturation for bacterial substrate uptake 0.02 0.15 [mgC L-1]

KDOM2 constant of semi saturation for the hydrolysis of DOM2 0.2 1.5 [mgC L-1]

khyd,max coefficient of the hydrolysis of DOM2 to DOM1 0.25 0.75 [h-1]

Bacterial parameters

Topt,hb optimum temperature for bacterial growth 15 30 [◦C]

W
an

g
et

al
.(

20
18

)

σhb standard deviation of temperature function for bacterial growth 12.75 21.25 [◦C]

Vsed,hb settling velocity of bacteria 0 0.1 [m h-1]

KO2 ,hb Half-saturation constant for dissolved oxygen 0.375 0.625 [mgO2 L-1]

µmax,hb maximum growth rate of bacteria 0.01 0.07 * [h-1]

Yhb bacterial growth yield 0.03 0.5 [-]

morthb bacterial mortality rate 0.01 0.08 [h-1]

Physical parameters

Knavig re-aeration coefficient due to navigation 0 0.05 [m h-1]

Kwind re-aeration coefficient due to wind 0.885 1.475 [m h-1]

* The upper limit identified by Wang et al. (2018) is decreased from 0.13/h to 0.07/h in order to avoid complete DO depletion in

simulations longer than 5 days

2.2 Case study

The synthetic case developed by Wang et al. (2018) is adapted for the application of SAs on C-RIVE parameters during a

low-flow period (Fig. 2). It is a river stretch with a width of 100 m and a length of 1000 m representing the Seine river. The
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low-flow period is characterized with a discharge of 80 m3 s-1. The simulation period is 45 day-long in order to be coherent

with the experimental protocol of the BDOM measurement (Servais et al., 1995), that considers 45 days as a limit between115

refractory and slowly biodegradable organic matter. Moreover, a 45-day simulation period is also necessary for studying the

long-term effect of TOC degradation on river metabolism.

Figure 2. Synthetic scheme representing a reach of the Seine river (modified from Wang et al. (2018)).

Considering the discharge and the wet section, the numerical experiment can be viewed as a lagrangian one, where we follow

a river body along a river network of the above mentioned dimension with a speed of 0.14 m s-1.

2.2.1 Initial conditions120

The initial concentrations for both water and sediment compartments (Tab. 2) are set based on the mean concentrations of the

simulations at Bougival station during the 2007-2012 period (Vilmin et al., 2016) except for water temperature (depending on

summer season), DO (depending on oxygen solubility), POM and DOM fractions (depending on the TOC concentration and

partitioning parameters), and phytoplankton and bacterial biomass (depending on a post-bloom condition). As far as organic

matter is concerned, TOC is first defined and then distributed into its DOM and POM fractions depending on the values of125

the five OM partitioning parameters (t, b1, s1, b2, s2). The hyporheic exchanges (between groundwater and river) are ignored

in this work because the contribution of groundwater to a downstream river (Strahler order > 6), such as the Seine river at the

crossing of the Paris urban area, is negligible with respect to the discharge of the river itself. For the Seine river the groundwater

contribution along a 100 km is around 1 m3 s−1 with respect to the Seine discharge amounting for 80 m3 s−1 during severe

low flow conditions (Pryet et al., 2015).130
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Table 2. Initial concentrations of the simulations

No Species Cini,water Cini,sediment Unit

1 NH4 0.12 0.33 [mgN L-1]

2 NO2 0.04 0.04 [mgN L-1]

3 NO3 7 4.54 [mgN L-1]

4 TSS 16.82 95010 [mg L-1]

5 PO4 0.1 0.27 [mgP L-1]

6 O2 8.62 6.65 [mgO2 L-1]

7 HB 0.023 0.016 [mgC L-1]

8 PP 0.010 0.003 [mgC L-1]

9 DOM1 f(TOC, partitioning parameters) 0.12 [mgC L-1]

10 DOM2 f(TOC, partitioning parameters) 1.28 [mgC L-1]

11 DOM3 f(TOC, partitioning parameters) 1.94 [mgC L-1]

12 POM1 f(TOC, partitioning parameters) 44 [mgC L-1]

13 POM2 f(TOC, partitioning parameters) 696 [mgC L-1]

14 POM3 f(TOC, partitioning parameters) 2555 [mgC L-1]

15 Tmean 22.4 ± 3.0 ◦C

2.3 Sensitivity analysis strategy

Before defining in detail the SA, a coarse pre-analysis consisting in forward simulations of the C-RIVE model is conducted

with extreme parameter values. Then, various SA are developed to assess the assumptions and conclusions put in place in the

pre-analysis.

2.3.1 Pre-analysis of the model with extreme parameter values135

First, we need to select certain parameters for the pre-analysis. We consider µmax,hb, morthb and Yhb as they were found to

be influential in the study of Wang et al. (2018) under non-bloom situations. However, to decrease the number of parameters,

morthb and µmax,hb are represented together as a single parameter called "net growth (NG)."

Net Growth (NG) = µmax,hb −morthb

Fixing morthb = 0.02 h-1 at its reference value and µmax,hb ranging between 0.022 h-1 and 0.07 h-1, the net growth ranges140

from 0.002 h-1 to 0.05 h-1 while the range for Yhb is taken from Table 1. As the OM partitioning parameters are not C-RIVE

inputs, we consider BDOM to represent them in the model. Its range is given by Eq. (1)-(2) as follows:
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BDOMmin = TOCref ∗ tref ∗ b1,min (1)

BDOMmax = TOCref ∗ tref ∗ b1,max (2)145

Here, TOCref is a reference TOC value and fixed at 5 mgC L-1 (considered as the baseline concentration of TOC in the

Seine river (Vilmin et al., 2016)), the reference t (tref ) = 0.7 is the average value of t variation range and b1 is taken from

Table 1. This way BDOM varies following b1 only and therefore remains statistically independent from the other parameters.

Eight simulations pertaining to eight different combinations of the minimum and maximum values of the net growth, its

associated yield and BDOM are launched (Table 3) and accordingly for each combination, the evolution of DO, DOM1,150

DOM2, and BDOM is plotted (Fig. 3).

Table 3. Definition of the eight single simulations achieved with extreme values of biodegradable dissolved organic matter, net growth of

bacteria community and its associated yield

Sim. No. BDOM Net growth Yhb

1 0.35 0.05 0.03

2 0.35 0.002 0.03

3 1.75 0.05 0.03

4 1.75 0.002 0.03

5 1.75 0.05 0.5

6 1.75 0.002 0.5

7 0.35 0.05 0.5

8 0.35 0.002 0.5

From the pre-analysis, we hypothesize that:

1. The net growth is one of the most influential parameters on DO because all simulations on the left side with a high net

growth demonstrate significant depletion of DO than those on the right side having low net growth rates.

2. DO is sensitive to BDOM under high net growth conditions. This could be observed by comparing simulations 3 and 4155

(under high net growth condition) with simulations 4 and 6 (under low net growth condition) (Fig. 3).

3. DO is not sensitive to BDOM under low net growth rates. Comparison of simulations 6 and 7 demonstrate that even a

high BDOM coupled with low net growth (simulation 6) has less effect on DO than a low BDOM coupled with high net

growth (simulation 7) .
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Figure 3. Eight plots of single simulations; (XX yy ZZ) Any parameter name written in capital or small letters means that its maximum or

minimum value is used, respectively, in that specific single simulation. For example, plot #3 (BDOM NG y) that corresponds to simulation

#3 in Table 3 is a simulation where the maximum values of BDOM and net growth and the minimum value of Yhb are used

2.3.2 Understanding river metabolism controls with multiple sensitivity analyses160

Three sensitivity analyses (SAs) are derived to test the former three hypotheses. The detail of each SA parameterization is

available in Table 4.

The first SA is conducted by assuming the general influence of net growth parameters in the pre-analysis, and in order to

have a broader view of the model sensitivity with respect to all the model parameters. Based on the pre-analysis, we observed

that the main effect due to BDOM is linked to high net growth rates, therefore, we can assume that the effect of parameters165

other than net growth parameters is demonstrated when they are coupled with a high net growth condition. In addition, since a
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significant interaction (the difference between the first and total sensitivity indices) is observed between net growth parameters

in Wang et al. (2018), they are assumed to be hiding the influence of other parameters. We therefore implement a second SA

where net growth parameters are fixed at its highest value. This SA removes the possibility of interactions among net growth

and other model parameters. It results in a better evaluation of the model sensitivity with respect to the parameters whose170

influences might be hidden by the dominant and interacting parameters.

The third SA is performed to verify the second SA assumption that parameters other than net growth exert their influence

only under a high net growth condition, and thus the same parameters could be deemed non-influential under a low net growth

situation. The net growth parameter is fixed at its lowest value.

To summarize, the settings for the three SAs are as follows:175

1. First SA (All parameters included): There are 17 defined parameters (Table 1 & Table 4) in the model, the simulation

period is 45 days. It is repeated for each TOC concentration from 1 to 10 mgC L-1, with a 1 mgC L-1 increase step.

2. Second SA (Fixed high net growth): The influence of twelve parameters is evaluated (Table 4). The bacteria net growth

rate is fixed to its maximum value using the highest value of the bacteria growth rate (µmax,hb= 0.07 h−1) and a mortality

rate of 0.02 h−1. Furthermore, to decrease the computational cost of the model, the three OM partitioning parameters180

(t, b1 and b2) from the first SA are narrowed to BDOM and BPOM whose variation ranges are calculated based on the

following Eq. (3)-(6):

BDOMmin = TOC ∗ tref ∗ b1,min (3)

BDOMmax = TOC ∗ tref ∗ b1,max (4)185

BPOMmin = TOC ∗ (1− tref ) ∗ b2,min (5)

BPOMmax = TOC ∗ (1− tref ) ∗ b2,max (6)

Where, tref is set to 0.7. TOC varies between 1 and 10 mgC L-1, with a 1 mgC L-1 increase step. The time length is190

set to 5 days accordingly to the pre-analysis, which demonstrated that BDOM or precisely the substrate (DOM1) was

consumed in less than 5 days under the high net growth condition (simulations 1, 3, 5 & 7).

3. Third SA (Fixed low net growth): The influence of twelve parameters is evaluated (Table 4). This SA is conducted in a

similar way than the second SA except that this time µmax,hb is fixed at a lower value of 0.022 h−1 in order to simulate a

very low net growth rate condition of approximately 0.002 h−1. This SA is also implemented for a 5-day period of time195

and repeated 10 times to simulate TOC ranging from 1 to 10 mgC L-1.
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Table 4. The parameters considered in each of the four sensitivity analyses

1st SA 2nd SA 3rd SA

OM partitioning parameters

t BDOM BDOM

b1 BPOM BPOM

s1

b2

s2

OM degradation parameters

Ks Ks Ks

KDOM2 KDOM2 KDOM2

khyd,max khyd,max khyd,max

Bacterial parameters

Topt,hb Topt,hb Topt,hb

σhb σhb σhb

Vsed,hb Vsed,hb Vsed,hb

KO2 ,hb KO2 ,hb KO2 ,hb

Yhb Yhb Yhb

µmax,hb

morthb

Physical parameters
Knavig Knavig Knavig

Kwind Kwind Kwind

total number of parameters 17 12 12

Each of the three aforementioned SAs is implemented based on an innovative SA methodology initially proposed in Wang

et al. (2018) and adopted in this study, where the influence of input parameters (X) is evaluated on the C-RIVE model according

to the variations of a large set of DO simulations (model output, Y). The necessary steps pursued for SA are summarized in

supplementary material section B.200

Each SA is performed with a Python script that computes on an Intel(R) Xeon(R) E5-2640 (20 cores @ 2.4 GHz). The

computational time is 12h per TOC value for the first SA, while it is reduced to only 3h per TOC value for the second and third

ones.

3 Results

This section presents the results of the three Sobol SAs during a summer low-flow period. The influential parameters of each205

analysis are discussed in the following paragraphs.
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3.1 First SA: All parameters

Figure 4. Sobol SA results of first SA: All parameters (a) Sobol SA results for TOC = 5 mgCL-1; (b) Evolution of the normalized total

sensitivity indices of the influential parameters with TOC

Figure 4a presents the results of the Sobol SA method for TOC = 5 mgCL-1. It is expressed by a bar plot of the total

sensitivity (ST ), first-order sensitivity (S1), and second-order sensitivity (S2) indices of the parameters. The higher-order

sensitivity indices are also calculated in terms of the difference between the total and the first- and second-order indices (ST -210

S1-S2). The parameters are ranked based on their ST and the most influential parameters are shown by the shaded area, which

includes parameters constituting 95% of the total variance of the model output. As the first SA is conducted for TOC values

ranging from 1 to 10 mgCL-1, which corresponds to ten runs. For each run, the evolution of the normalized total sensitivity

indices (S∗
T ) of the six most influential parameters is plotted (Fig. 4b).

DO is controlled by the bacterial mortality rate (morthb), maximum bacterial growth rate (µmax,hb), and bacterial yield215

(Yhb), whatever the TOC concentration (Fig. 4b). By increasing TOC, we observe a gradual decrease in the influence of

morthb, but an increase in the influence of Yhb. This result obtained over the 45-day simulation period (Fig. 4) confirms the

assumption made in the pre-analysis step (sec 2.3.1) regarding the overall dominance of bacterial parameters in long-term

low-flow periods.
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Apart from the constant of navigation (Knavig), which is a physical parameter, the other two influential parameters (Ks, b1)220

are OM-related parameters that were introduced in this study. Ks seems to be more important in lower TOC concentrations

compared to b1 whose influence increases in higher TOC concentrations.

These results also confirm the assumptions made in the pre-analysis step that the dominant parameters tend to hide the

influence of other parameters. Observing the second-order (S2) and higher-order sensitivity (ST -S1-S2) indices of morthb,

µmax,hb and Yhb in Fig. 4a, very strong interactions can be highlighted between these parameters, i.e., a significant portion225

of their total sensitivity indices is due to their internal interactions. b1 and Ks exert their influence only through higher-order

interactions with these three parameters.

In the first SA, the three OM parameters (t, s1 and s2) are found to be non-influential, which means they can be excluded

from SA by fixation in the second and third SA while calculating the variation ranges of BDOM and BPOM (Eq. (1)-(4)).

Finally, the inclusion of b1 among influential parameters out of the five OM parameters validates the selection of the BDOM230

concentration instead of other OM components in the pre-analysis step.

3.2 Second SA under high bacteria net growth rate

The bacteria yield, Yhb, and BDOM are the most influential parameters under high net growth rate conditions (Fig. 5a). This is

due to the fact that the bacterial community manages to consume most of BDOM under a high net growth condition and then

at some point, BDOM becomes a limiting factor for their growth. This result confirms the assumption made in the pre-analysis235

that the influence of parameters other than net growth parameters will be displayed if they are studied under a high net growth

condition. The other important parameters are Knavig and Ks whose influence is reduced by increase in TOC. Moreover, very

small interactions are observed between the parameters because almost all of their global influence stem from their main effects

(ST ≈ S1 for each parameter), which once again confirms the previous consideration that interactions are related to the effect

of a varying net growth rate.240

3.3 Third SA under low bacteria net growth rate

The results of the third SA (Fig. 5b) reveal that Yhb only is the influential parameter under a low net growth rate condition

across whatever the TOC concentrations. This is due to the fact that, with such a low net growth rate, the bacterial community

hardly grows at all and BDOM is subsequently not a limiting factor for such a small bacterial growth. This result confirms the

assumption made in the second SA by displaying all previous influential parameters except Yhb as non-influential.245

Finally, the second and third SA show that the influence of BDOM on DO increases with an increasing bacteria net growth

rate.
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Figure 5. Results of (a) Second SA: Fixed high net growth; (b) Third SA: Fixed low net growth

4 Discussion

In this section, we propose first synthesize of our results, before analyzing the limitations in terms of physical processes

accounted for. We then discuss what consequences do our results have on water quality monitoring in urban areas and on data250

assimilation.

4.1 Hierarchy of the most influential parameters on DO during low flow period

This study confirms that over a 45-day post-bloom summer low-flow period and whatever the TOC concentration, the bacterial

net growth rate and Yhb control the DO evolution. This is in agreement with the findings of the study by Wang et al. (2018),

which was conducted over a 4-day simulation period. However, the mentioned bacteria physiological parameters are not suf-255

ficient to describe DO variation because the OM partitioning parameter, b1, and the OM degradation parameter, Ks, are also

influential at low flow under a high bacteria net growth rate.

Conducting the Sobol’ SA for 5-days under a high bacterial net growth rate condition demonstrated the significant influence

of BDOM and Yhb at low flow. This is in connection with the findings of Hullar et al. (2006); Crump et al. (2003) that

emphasized the importance of BDOM on bacteria population. This result is also in accordance with Bailey and Ahmadi (2014)260

who consider the model boundary condition as influential on DO but they do not specify which portion of the OM neither

do they conduct their study at low flow. Nevertheless, this work is the first quantitative recognition of the role of BDOM on
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DO evolution that illustrates BDOM as the most influential fraction of the total organic matter entering a river system from its

boundary conditions.

4.2 Limitations of the sensitivity analysis265

This study is conducted under carbon source conditions where TOC varies between 1 and 10 mgC L-1. It is also assumed that

a carbon sink condition never happens. Indeed, carbon depletion would preclude the possibility to quantify the influence of

the carbon on the DO concentration. Therefore the upper limit of µmax,hb is reduced from 0.13 h-1 to 0.07 h-1 so as to avoid

depletion of both carbon and oxygen during the simulation period.

Moreover, since C-RIVE currently lacks the radiation effects of bacteria population, this process is not considered in this270

work. Nevertheless, it is recommended to be considered in future researches as radiation is found to damage the bacteria DNA

impacting their growth and oxygen intake rates (Matallana-Surget and Wattiez, 2013). This phenomenon could be included

in the model in a simplistic approach either by increasing bacterial mortality or decreasing its growth rate by a given factor.

However, it is necessary to find experimental data in order to quantify the effects of radiation that also depend on the type of

bacterial community (Fernandes et al., 2021).275

4.3 Consequences of the results on water quality monitoring in urban areas

Rivers are highly sensitive to urban outflows at low flow (Seidl et al., 1998a; Huang et al., 2017) due to their low diluation

capacity at this period of the year. Moreover, the construction or renewal of sanitary facilities, such as WWTP and CSO during

transient events, induce changes in water quality due to changes in DOM, and BDOM concentrations (Servais and Garnier,

1993; Seidl et al., 1998b). As a result, this induces potential shifts in bacterial communities, which have been found to be280

related to DOM source and its biodegradability (Hullar et al., 2006; Crump et al., 2003) such that an increase in BDOM is

considered to increase the diversity of bacterial populations (Landa et al., 2013). Even et al. (2004) therefore recommended a

regular reassessment of the influential bacterial parameters. The sampling frequency in the monitoring stations should be set-up

not only considering the temporal variability of the variable of interest, but also integrating possible successions of species.

Our study provides the list of important parameters for water quality modeling at low flow. For the bacterial parameters285

(mortality rate, maximum growth rate and growth yield), we propose the implementation of regular bacterial community

sampling campaigns in the framework of the water quality monitoring program. Samples should thus be taken in river waters

upstream from the major urban areas, and in the effluents of major WWTPs and CSOs.

Finally, considering the importance of BDOM at low flow periods, we propose the addition of BDOM measurement in the

existing and new monitoring stations. Innovative methods such as specific ultraviolet absorbance at 254 nm (SUV A254) and290

fluorescence spectroscopy (Parlanti et al., 2000, 2002; Goffin et al., 2017) could be proposed for high frequency measurement

of OM and BDOM specifically. The monitoring stations shall be dense enough in space so that they could characterize the

upstream tributary rivers and the outflow of anthropogenic sources such as WWTP and CSO. Such a spatial density and

consideration of point and non-point pollution sources are necessary to cover all BDOM sources (Dixon et al., 1999; Polus

et al., 2010; Do et al., 2012).295
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4.4 Consequences of the results on data assimilation (DA) in water quality modeling

Data assimilation is a method that combines observation data and physically based modeling in a statistical framework. It

consists in sequentially updating the model parameters so that the output of the model will match the observation at each time

step (Carrassi et al., 2018). These techniques not only estimate the evolution of influential parameters thanks to observation

data such as that of DO, but also provide enhanced simulation results of state variables.300

The first assimilation tool that uses the particle filter technique (a statistical technique where numerous simulations are

launched instead of one single simulation and are weighted based upon how well they reproduce the observed data) to couple

with a water quality model is the ProSe-PA software (Wang et al., 2019b; Wang, 2019a; Wang et al., 2022). While studying a

dry year using this software, mismatches were found between simulated and observed DO during low-flow periods (Wang et al.,

2022). These mismatches were assumed to be due to insufficient biodegradable organic matter loading in the model caused305

by underestimated BDOM inputs to the Seine river. Therefore, based on our SA results, we can confirm that hypothesis and

propose the incorporation of BDOM (the most influential OM-related parameter through the b1 parameter) as a new component

of ProSe-PA. It will facilitate not only the estimation of BDOM, but also improves the simulation results subsequently.

Another consequence of our results is that it would be appropriate to fix one or both of the morthb and µmax,hb parameters

during data assimilation in order to facilitate parameter identification. In addition, the model of OM partitioning (Fig. 1)310

shall be explicitly included in the data assimilation software. The description of BDOM in each major organic matter source

(tributary river, WWTP, and CSO) should also be independently represented in the DA scheme because each source brings its

own specific contribution of organic matter and heterotrophic bacteria in urban rivers (Garnier et al., 1992; Servais and Garnier,

1993; Seidl et al., 1998b).

5 Conclusions315

The objective of this work was to investigate the role of organic matter loadings to river systems and the physiology of bacteria

in river metabolism during a summer non-bloom low-flow period. New parameters were introduced to account for partitioning

and degradation of OM. Then, the sensitivity of the C-RIVE model was analyzed against the newly introduced and the already

existing model parameters. The following conclusions can be drawn from this study:

– The Sobol sensitivity analysis method proved very efficient in the identification of influential parameters on DO evolu-320

tion in the C-RIVE model. Then, by fixing the interaction-inducing parameters, the influence of other parameters was

assessed. This methodology may also be of interest for future sensitivity analysis where parameter interactions may hide

the effect of other parameters;

– The river metabolism is dominated by bacterial activity at low flow during summer non-bloom periods. As a conse-

quence, the net growth rate of bacteria, that combines their maximum growth rate (µmax,hb) and mortality rate (morthb),325

is the most important parameter under different TOC concentrations; therefore, it is essential to have a better estimation

of the variation ranges of the growth and mortality rates of bacterial communities;
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– Model response is very sensitive to the biodegradable share of DOM (BDOM) contributed by the boundary conditions.

The effect of this parameter prevails at higher bacteria net growth rates occurring during summer low-flow periods when

the organic matter brought by urban outflows is abundant in the river;330

– Water quality monitoring networks shall continuously measure the influential parameters of this study in order to provide

the water quality models with update values;

– More frequent sampling of autochtonous bacteria communities upstream and downstream of major urban areas and in

majors WWTP and CSO effluents will be of considerable interest to validate time varying parameter values estimated

by data assimilation frameworks;335

– The results of this study provide a list of influential and non-influential parameters. The latter can be fixed at their average

or preferred value as per the literature, and the former can be introduced to the data assimilation tools in order to estimate

their temporal evolution with assimilation of high-frequency DO data.
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