

1 **Main drivers of plant diversity patterns of rubber plantations in the**
2 **Greater Mekong Sub-region**

3 Guoyu Lan^{a,c#*}, Bangqian Chen^{a,c#*}, Chuan Yang^{a,c}, Rui Sun^{a,c}, Zhixiang Wu^{a,c}, Xicai
4 Zhang^{a,c}

5

6 a. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou
7 City, Hainan Province, 571737, P. R. China;
8 c. Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture
9 and Rural Affairs, Danzhou City, Hainan Province, 571737, P. R. China

10

11 #These authors contributed equally to this work.

12 *Author for correspondence

13 Tel: +86-898-23301800

14 Fax: +86-898-23300315

15 E-mail: langyri@163.com

16 Running headline: Drivers of plant diversity of rubber plantations

17

18 **Abstract:**

19 The Greater Mekong Sub-region (GMS) is one the global biodiversity hotspots. However, the
20 diversity has been seriously threatened due to environmental degradation and deforestation,
21 especially by expansion of rubber plantations. Yet, little is known about the impact of
22 expansion of rubber plantations on regional plant diversity as well as the drivers for plant
23 diversity of rubber plantation in this region. In this study, we analyzed plant diversity patterns
24 of rubber plantations in the GMS based on a ground survey of a large number of samples. We
25 found that diversity varied across countries due to varying agricultural intensities. Laos had
26 the highest diversity, then followed China, Myanmar, Cambodia. Plant species richness of
27 Laos was about 1.5 times that of Vietnam. We uncovered latitudinal gradients in plant
28 diversity across these artificial forests of rubber plantations. and these gradients caused by
29 environmental variables such as temperature. Results of RDA, multiple regression as well as
30 random forests demonstrated that latitude and temperature were the two most important
31 drivers for the composition and diversity of rubber plantations in GMS. Meanwhile, we also
32 found that higher dominance of some exotic species (such as *Chromolaena odorata* and
33 *Mimosa pudica*) were associated with a loss of plant diversity within rubber plantations.
34 however, not all exotic plants cause the loss of plant diversity in rubber plantations. In
35 conclusion, not only environmental factors (temperature), but also exotic species were the
36 main factors affecting plant diversity of these artificial stands. Much more effort should be
37 made to balance agricultural production with conservation goals in this region, particularly to
38 minimize the diversity loss in Vietnam and Cambodia.

39 **Keywords:** Rubber plantation, Plant diversity, Exotic species, Mekong regions, Greater

刪除的內容: .

刪除的內容: Thailand and Vietnam were the lowest among them.

刪除的內容: and longitudinal

刪除的內容: .

刪除的內容: T

刪除的內容: could be explained

刪除的內容: by the traditional ecological theories

刪除的內容: Furthermore, null deviation of observed community to the randomly assembled communities were larger than zero indicating deterministic process were more important for structuring the community.

刪除的內容: the results also showed

刪除的內容: .

帶格式的: 字體: (中文) 宋體, 非加粗, 非傾斜

刪除的內容: such as elevation and latitude

55 Mekong Sub-regions (GMS),

56 **1. Introduction**

57 Many tropical regions contain hotspots of biodiversity (Myers et al., 2000), especially for the

58 Great Mekong Sub-region (GMS), threatened by agriculture (Delzeit et al., 2017; Egli et al.,

59 2018; Shackelford et al., 2014; Kehoe et al., 2017). Much of the land has recently been

60 converted from forest to agriculture (Li et al., 2007), and rubber plantations have quickly

61 expanded throughout the region (Ziegler et al., 2009; Li et al., 2015; Ahrends et al., 2015),

62 due to a surge in the global demand for natural rubber, driven largely by the growth of tire

63 and automobile industries. For example, 23.5% of Cambodia's forest cover was destroyed

64 between 2001 and 2015 make way for crops such as rubber (Figure S1h) and palm oil

65 (Grogan et al., 2019). In southwest China, nearly 10% of the total area of nature reserves had

66 been converted to rubber monoculture by 2010 (Chen et al., 2016). At present, GMS are

67 globally important rubber-planting regions (Xiao et al., 2021).

68 Agricultural land-uses can exacerbate many infectious diseases in Southeast Asia (Shah et

69 al., 2019) and reduce biodiversity (Xu, 2011; Warren-Thomas et al., 2018; Fitzherbert et al.,

70 2018; Zabel et al., 2019; Singh et al., 2019). Previous study showed that rubber cultivation

71 not only affect plant diversity (Hu et al., 2016), but also affects the soil fauna (Chaudhuri et

72 al., 2013; Xiao et al., 2014), bird diversity (Aratrakorn et al., 2006; Li et al., 2013) as well as

73 bat diversity (Phommexay et al., 2011). There is also a large body of literature on the effects

74 of forest conversion from tropical forest to rubber plantations on soil microbial composition

75 and diversity (Tripathi et al., 2012; Schneider et al., 2015; Kerfahi et al., 2016; Lan et al.,

76 2017a; 2017b; 2017c; Cai et al., 2018; Lan et al., 2020a; 2020b; 2020c). However, the impact

删除的内容: .

已下移 [8]: The Great Mekong Sub-region (GMS) is one of the most important biodiversity hotspots in the world (Myers et al., 2000).

删除的内容: It covers Yunnan province of south China, Thailand, Vietnam, Cambodia, Laos, and Myanmar.

带格式的: 缩进: 首行缩进: 0 字符

已移动(插入) [8]

删除的内容: The Great Mekong Sub-region (GMS) is one of the most important biodiversity hotspots in the world (Myers et al., 2000).

删除的内容: Conservation and management of forests in this area are difficult due to conflicting external social and economic factors. Cambodia, Laos, and Myanmar have been recognized among the least developed countries in the world by the United Nations. Meanwhile, the urban and rural development of Vietnam and Thailand is unbalanced, and there are still a large number of population under poverty line. Recently, the GMS has been identified as a major strategic source of raw, extractable materials in Asia [Zhou ... 1]

删除的内容: M

删除的内容: A large area of natural forest has been replaced by rubber plantations (Ahrends et al., 2015)

删除的内容: - more than 2.2 million hectares -

删除的内容: Almost one-quarter of cleared land has been used for plantations of the non-native rubber tree.

删除的内容: Though rubber expansion caused deforestation, cultivated rubber plantations have helped [2]

已移动(插入) [7]

已移动(插入) [2]

删除的内容: .

已上移 [7]: Agricultural land-uses can exacerbate many infectious diseases in Southeast Asia (Shah et al., 2019) and

删除的内容: For example, compared with natural forest, rubber plantations reduces the taxa richness of earthworms [3]

删除的内容: Expansion of rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodiversity [4]

删除的内容: Compared to primary forests, agricultural systems tend to have higher bacterial richness but lower [5]

165 of expansion of rubber plantations on regional plant diversity as well as the drivers for plant
166 diversity of rubber plantation in GMS are still unclear.
167 Latitudinal gradients in species diversity are well known (Mccoy and Connor, 1980),
168 which holds that there is a fairly regular increase in the numbers of species of some higher
169 taxon from the poles to the equator. It has been suggested that the latitudinal diversity
170 gradient could be caused by environmental variables such as temperature and precipitation.
171 Previous study also demonstrated temperature (Nottingham et al., 2018) and soil nutrients
172 (Soons et al., 2017) as well as water resource utilization efficiency (Han et al., 2020), were
173 the dominant drivers of plant diversity. However, whether latitudinal gradients in species-
174 diversity exists in rubber plantation which is greatly affected by management measures, is
175 still unknown. In addition, rubber plantations have lower biodiversity than natural forests
176 (Chaudhary et al., 2016). Generally speaking, species rich zones showed a higher proportion
177 of alien plant species in their flora (Stadler et al., 2000), thus exotic plants are ubiquitous in
178 rubber plantations which in indicating that. Though exotic species invasion significantly
179 decreased plant diversity (Xu et al., 2022) is universally known, we still do not have idea that
180 whether exotic species are the main driver for the sharp decline of plant diversity in rubber
181 plantation. Thus, we hypothesize that (1) latitudinal gradients in plant diversity would not
182 exit in rubber plantation due to strong intensity of management; (2) exotic plants will result in
183 a sharp decline in the plant diversity of rubber plantation because areas of low plant species
184 richness may be invaded more easily than areas of high plant species richness (Stohlgren et
185 al., 1999) and exotic species may results in loss of plant diversity (Xu et al., 2022). To testify
186 these hypothesis, we surveyed a large number of plots on rubber plantations in the GMS to

带格式的: 字体颜色: 文字 1
带格式的: 字体颜色: 文字 1
带格式的: 缩进: 首行缩进: 1 字符
带格式的: 字体颜色: 文字 1
带格式的: 字体: (默认) Times New Roman, (中文) Adv0T863180fb, 小四, 字体颜色: 文字 1, 图案: 清除

已下移 [1]: Forests that are intensively managed for production purposes generally have lower biodiversity than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations (He and Martin, 2016). Plant diversity of artificial forests is greatly affected by agricultural and management activities, such as the application of herbicides and sprout control.

删除的内容: Forests that are intensively managed for production purposes generally have lower biodiversity than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations (He and Martin, 2016). Plant diversity of artificial forests is greatly affected by agricultural and management activities, such as the application of herbicides and sprout control. However, there were few reports on the effects of forest conversion on plant diversity in this region. W

带格式的: 字体: (中文) Adv0T863180fb

删除的内容: do

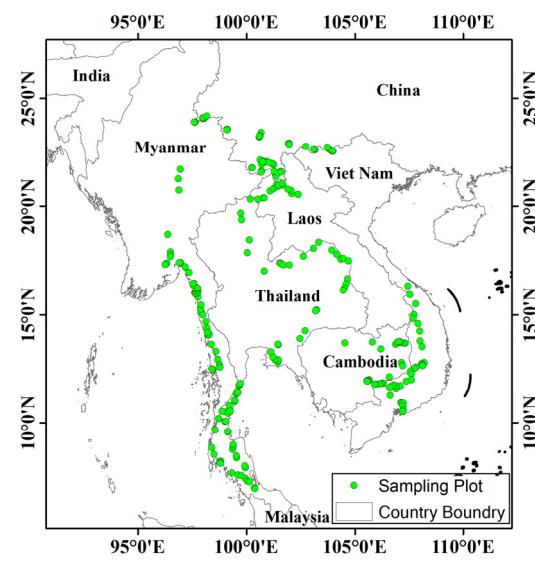
删除的内容: not know, for example, if there are differences in plant diversity among countries and how exotic plants may affect local plant diversity in rubber plantations?

已移动(插入) [1]

删除的内容: Forests that are intensively managed for production purposes generally have lower biodiversity than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations (He and Martin, 2016). Plant diversity of artificial forests is greatly affected by agricultural and management activities, such as the application of herbicides and sprout control. Two types of processes, deterministic (Lan et al., 2011) and stochastic (Hu et al., 2012), not only affect tropical forest plant community assembly, but also microbial assembly (Stegen et al., 2012; Zhou et al., 2014). However, the relative influences of the two processes on plant community for rubber plantation and drivers of plant diversity are still unclear.

删除的内容: address

删除的内容: questions


222 investigate plant diversity and analyzed the associated drivers. Our study provides an
223 empirical case for understanding the effect of rubber plantations on plant diversity in the
224 Greater Mekong region and the restoration and protection of biodiversity in this region.

删除的内容: causes

225 2. Methods

226 2.1 Study area

227 The Mekong River Basin has a total length of 4880 km and a drainage area of 795000 square
228 kilometers, with 326 million people living in the basin. The GMS encompasses a variety of
229 climate types and geographical characteristics, and is rich in water and biological resources
230 (Wu et al., 2020). Rubber plantations are one of the most widespread vegetation types in the
231 region, and are distributed throughout the south of Yunnan province, almost all states of
232 Thailand and Laos, the southern half of Vietnam and Myanmar, and the eastern half of
233 Cambodia.

234

235 **Figure 1** Sampling plot localities within rubber plantations in GMS

242

243 **2.2 Sampling methods**

244 Before the field investigation, we first determined the investigation route according to the
245 distribution of rubber plantation in this regions. Then, plots were randomly selected
246 approximately equidistant from each other (every 10-20 km according to the actual situation)
247 along the investigation route (Yaseen, 2013). We did not deliberately select plots according
248 types of rubber plantation, thus these plots were independent from each other. Consequently, a
249 total of 240 plots, each with an area of 100 m² (10 m × 10 m), were selected in the GMS, with
250 32 plots in Vietnam, 24 in Cambodia, 15 in Laos, 73 in Thailand, 47 in Myanmar, and 49 in
251 China (Figure 1). We started the investigation only after the guide (local people) asked the
252 farmer's consent. Plot measurements, such as longitude, latitude, elevation, slope degree, slope
253 aspect, rubber tree height, and canopy density were recorded in detail (Table S1). Annual and
254 perennial plant species, shrubs, trees and lianas as well as theirs seedlings were recorded. We
255 do not investigate bryophytes, but ferns were investigated. Species information, such as species
256 name, height and coverage, life form (non-woody, shrub, liana or tree) (Lan et al., 2014), from
257 each plot in the rubber plantations were also recorded. We visually assigned a cover value to
258 each species in each quadrant of the plot, using an ordinal cover class scale with class limits
259 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, and thereafter every 10% up to 100%. The cover values
260 for each species in the plot were then averaged across the four quadrants (Sabatini et al., 2016).
261 Climate data, including annual average temperature and annual average precipitation, were
262 obtained from WorldClim (<http://worldclim.org>) based on the geographic coordinates of each
263 sample site.

264 **2.3 Data analysis**

265 Relative height (RH), relative dominance (RD , using coverage), and relative frequency (RF)
266 were calculated for each species to estimate the importance value (IV). Importance value, as
267 defined here, differs from previous studies (e.g., Curtis and McIntosh 1950, 1951; Greig-
268 Smith 1983; Linares-Palomino and Alvarez 2005) because most understory species are herbs,
269 which make precise measure of abundance difficult. We define the importance value as:

270 Importance value: $IV_j = RF_j + RH_j + RD_j$, Relative frequency: $RF_j = 100 \times F_j / \sum_i F_i$
271 Relative height: $RH_j = 100 \times H_j / \sum_i H_i$, Relative dominance: $RD_j = 100 \times D_j / \sum_i D_i$
272 where F_j was the number of plots containing species j ; D_j was the coverage of species j ; and
273 H_j was the height of species j . For local community, there was no frequency data, therefore
274 importance value is defined as: $IV_j = RH_j + RD_j$.

275 Species richness, the Shannon index were used to measure α diversity of each plot. It
276 should be noted that the importance values of each species were used to calculate the
277 Shannon diversity (i.e., replace “abundance” or “number of individuals” with “important
278 value”). Principal coordinates analysis (PCoA) based on Bray–Curtis distance of species IVs
279 (importance values) was performed to compare plant species composition across countries
280 using R package “amplicon”. Analysis of similarity (ANOSIM) was used to test for
281 differences in diversity indices among countries. Multiple linear regression was used to find
282 whether there were positive or negative correlations between diversity (richness) and
283 environmental variables including latitude, longitude, elevation, rainfall, temperature, slope
284 degree, tree age, tree height as well as canopy density. Machine learning algorithm, Random
285 forests, was used to model α diversity (richness) and rank the feature importance of

删除的内容: According to Sun's (2000) classification of plant uses, species were divided into medicinal plants, edible plants, economic plants, forage plants, ornamental plants, ecological plants and others (unknown use).

删除的内容: .

删除的内容: .

带格式的: 缩进: 首行缩进: 1 字符

删除的内容: Whittaker's β diversity was used to estimate the diversity across different countries and was calculated as follows (Whittaker, 1960) .

$\beta w = S/m - 1$.

where S is the total species richness of all samples and m is the mean species richness of these samples.

删除的内容: study sites

删除的内容: Linear

删除的内容: , Shannon index

301 environmental factors with 999 iterations. In order to understand how plant compositions are
302 structured by environmental factors, a redundancy analysis (RDA) for the importance value
303 of species was carried out using the Vegan package in R environment. Statistical significance
304 was assessed using Monte Carlo tests with 999 permutations.

305 3 Results

306 3.1 Plant composition of rubber plantations

307 A total of 949 plant species, representing 550 genera and 153 families, were recorded across
308 rubber plantations of the six countries (Table 1 &Table S2). Our results also showed that 445
309 (46.89%) were herbs, with a largest number of Compositae (Table 1). Plant communities of
310 rubber plantation tended to be dominated by Fabaceae, Euphorbiaceae, Poaceae, Rubiaceae,
311 and Compositae (Table S3). The five most common species observed were *Cyrtococcum patens*,
312 *Chromolaena odorata*, *Asystasia chelonoides*, *Axonopus compressus*, and *M. pudica* (Table
313 S4). 237 plots containing exotic plant species, most of them were from tropical America. A
314 total of 121 (12.75%) species were identified as exotic (belonging to 45 families and 91 genera).
315 The five most common exotic species were *C. odorata*, *M. pudica*, *Axonopus compressus*,
316 *Ageratum conyzoides*, and *Borreria latifolia*. *C. odorata* and *M. pudica* were recorded in almost
317 every plot (Figure 2).

318 PCoA and ANOSIM were used to reveal the difference in plant compositions among these
319 six countries. And the results showed that significant differences ($R = 0.383$, $P = 0.001$) in
320 species composition among these countries (Figure 3a-b). Meanwhile, the first and second axes
321 of RDA explained 5.95% and 3.11% of variation of species compositions, respectively (Figure
322 4a). All environmental factors explained 18.65% of the total variation (Figure 4b). Countries,

删除的内容: .

带格式的: 字体: (默认) Times New Roman, (中文) 宋体, 小四, 字体颜色: 文字 1

带格式的: 字体: (默认) Times New Roman, (中文) 宋体, 小四, 字体颜色: 文字 1

带格式的: 字体: (默认) Times New Roman, (中文) 宋体, 小四, 字体颜色: 文字 1

带格式的: 字体: (默认) Times New Roman, (中文) 宋体, 小四, 字体颜色: 文字 1

带格式的: 字体: (默认) Times New Roman, (中文) 宋体, 小四, 字体颜色: 文字 1

删除的内容: Machine learning algorithm, Random forests, was used to rank the feature importance of environmental factors with 999 iterations. To evaluate the influences of the neutral processes on plant community of rubber plantation, the null deviation was measured as the difference of the β diversity (i.e., Bray-Curtis dissimilarity) between the observed and randomly plant communities. A null deviation of zero indicates that the communities follow the stochastic or near-stochastic distribution, whereas a null deviation larger than zero indicates that deterministic processes cause the communities to be more dissimilar than null expectations (Liu et al., 2021, Zhou et al., 2014). Null deviations were calculated for plant communities across six countries from 1000 stochastic assemblages (Lee et al., 2017).

带格式的: 字体: (默认) Times New Roman, (中文) 宋体, 小四, 字体颜色: 文字 1

带格式的

带格式的: 字体: Times New Roman, 小四

带格式的

带格式的: 缩进: 首行缩进: 0 字符

删除的内容: There are 597 species of medicinal plants, 163 species of edible plants, 220 species of economic plants, 64 species of forage plants, 158 species of ornamental plants, 62 species of ecological plants, and 170 species of unidentified uses under rubber plantation in GMS (Table S3).

删除的内容: S4

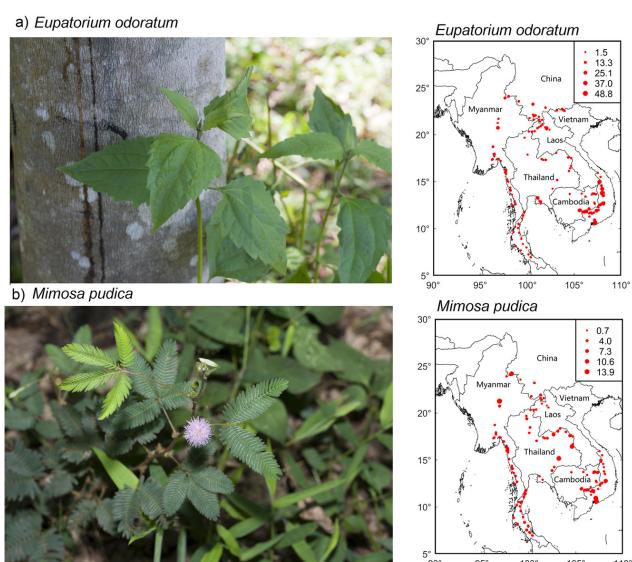
删除的内容: S4

删除的内容: S5

删除的内容:

已下移 [3]: The exotic species richness of rubber plantations was relatively higher in Cambodia, Vietnam, and Myanmar compared to China, Laos, and Thailand (Figure 3c).

带格式的: 缩进: 首行缩进: 1.5 字符


351 latitude, longitude, canopy height as well as elevation all significantly impacted plant
352 compositions of rubber plantations in GMS, and explained 5.62%, 3.37%, 3.14%, 1.11% and
353 1.10% of the total variations (Table 2).

354

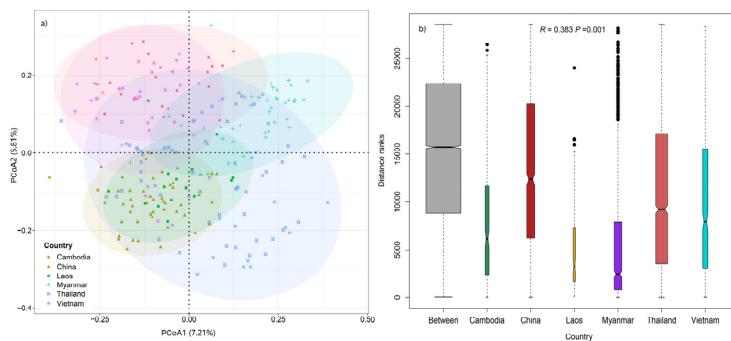
355 **Table 1 Composition of plants of rubber plantations in GMS**

Types	No. of	Lifeform (%)	No. of families	No. of genera	No. of species
Ferns	76 (8.00)	Non-woody plant	86 (38.05)	278 (45.65)	445 (46.89)
Gymnosperms	3 (0.32)	Liana	32 (14.16)	62 (10.18)	101 (10.64)
Angiosperm	870 (91.68)	Shrub	42 (18.58)	118 (19.38)	192 (20.23)
		Tree	66 (29.20)	151 (24.79)	211 (22.23)
Total	949 (100)	Total	226 (100.00)	609	949

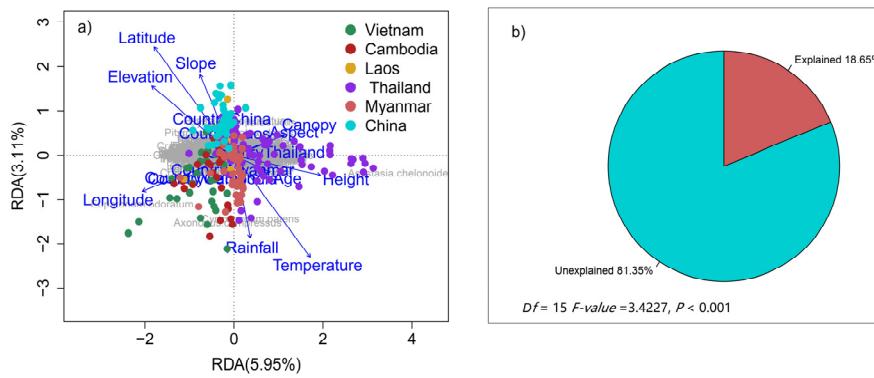
356

357

358 **Figure 2** Distribution maps of two common exotic species (a: *Chromolaena odorata*, b:
359 *Mimosa pudica*) of rubber plantation in the GMS (circle size is proportional to importance
360 value)


删除的内容:

带格式的: 居中


已下移 [9]:

已移动(插入) [9]

363

364 Figure 3 Significant difference in plant community compositions of rubber plantations among
 365 countries in GMS. a: Principal coordinate analysis (PCoA) based on Bray-curtis distance; b:
 366 Analysis of similarity among countries.

367

368 Figure 4 Redundancy analysis of plant community compositions of rubber plantation in the
 369 GMS (a: RDA ordination, b: Percentage of explained and unexplained by RDA results).

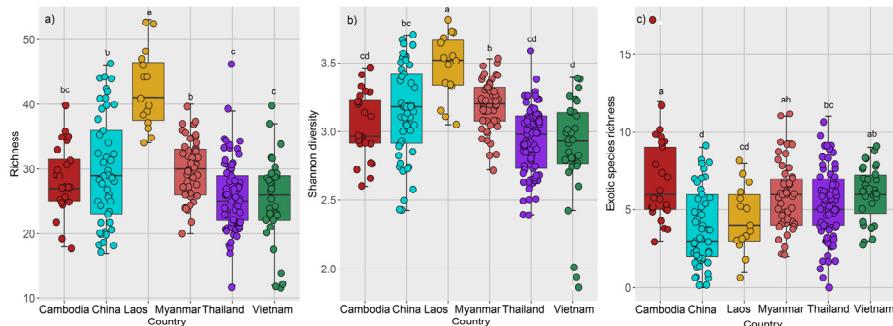
370

371 Table 2 Explained percentage of environmental factors on the variation of plant community
 372 compositions of rubber plantations in GMS based on the RDA results

Contents	Df	Variance	Explained (%)	F	Pr (> F)
Country	1	33.18	5.62	3.08	0.007 **

<u>Latitude</u>	<u>1</u>	<u>19.89</u>	<u>3.37</u>	<u>9.22</u>	<u>0.001 ***</u>
<u>Longitude</u>	<u>1</u>	<u>18.53</u>	<u>3.14</u>	<u>8.59</u>	<u>0.001 ***</u>
<u>Height</u>	<u>1</u>	<u>6.54</u>	<u>1.11</u>	<u>3.03</u>	<u>0.001 ***</u>
<u>Elevation</u>	<u>1</u>	<u>6.50</u>	<u>1.10</u>	<u>3.01</u>	<u>0.001 ***</u>
<u>Age</u>	<u>1</u>	<u>5.54</u>	<u>0.94</u>	<u>2.56</u>	<u>0.001 ***</u>
<u>Slope</u>	<u>1</u>	<u>5.01</u>	<u>0.85</u>	<u>2.32</u>	<u>0.002 ***</u>
<u>Temperature</u>	<u>2</u>	<u>4.63</u>	<u>0.78</u>	<u>2.16</u>	<u>0.005 **</u>
<u>Rainfall</u>	<u>2</u>	<u>3.19</u>	<u>0.54</u>	<u>1.49</u>	<u>0.032 *</u>
<u>Canopy</u>	<u>1</u>	<u>4.01</u>	<u>0.68</u>	<u>1.86</u>	<u>0.001 ***</u>
<u>Aspect</u>	<u>1</u>	<u>2.97</u>	<u>0.50</u>	<u>1.38</u>	<u>0.073</u>
<u>Residual</u>	<u>224</u>	<u>479.91</u>	<u>82.68</u>		

374


375

3.2 Plant diversity of rubber plantations

376 Species richness of rubber plantations in Laos was the highest among the six countries,

377 followed by China and Myanmar, while the richness of Thailand, Cambodia, and Vietnam

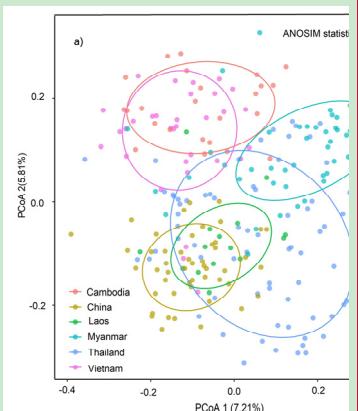
378 were relatively lower (Figure 5a). The same was true for Shannon diversity (Figure 5b).

379

380 Figure 5 Plant species diversity of rubber plantations across countries in the GMS (a: species
381 richness; b: Shannon diversity; c: Exotic species richness).

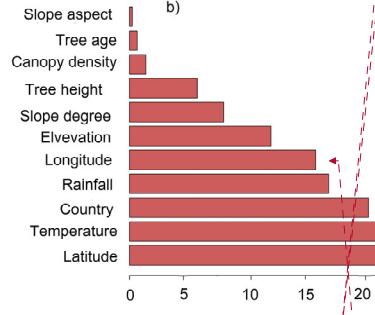
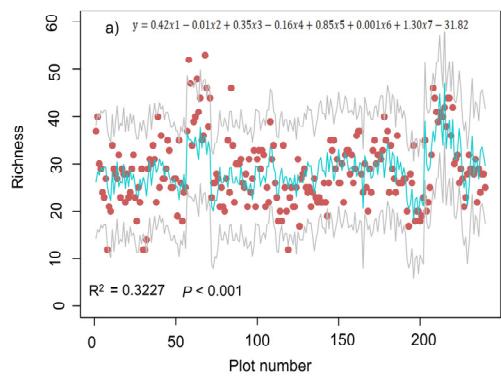
382

← 带格式的: 两端对齐, 缩进: 首行缩进: 1 字符
 ← 带格式的: 两端对齐, 缩进: 首行缩进: 1 字符

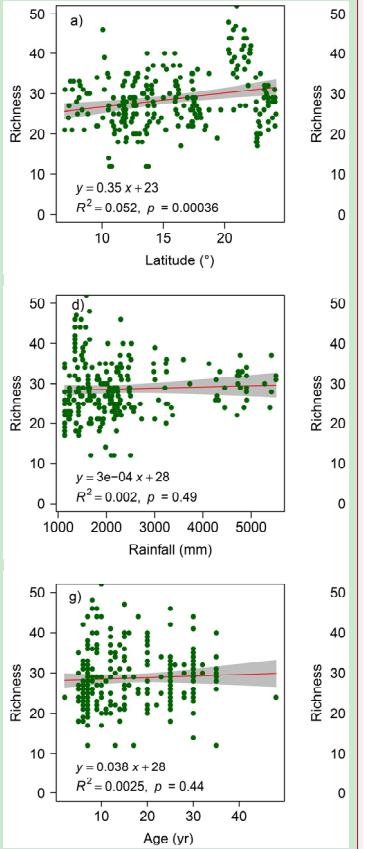

删除的内容: 3a

删除的内容: diversity

删除的内容: 3b



删除的内容: PCoA plots showed significant differences in species composition among some countries (Figure 4a). Beta diversity among countries showed that Cambodia and Vietnam had similar species compositions, as did Thailand and Myanmar (Figure 4b). The beta diversity between China and other countries was consistently high.

删除的内容: 3



删除的内容:

带格式的: 居中

删除的内容: Figure 4 Beta diversity of rubber plantations in ... [6]

394

395 **Figure 6** Factors affecting plant diversity of rubber plantation in GMS. a: Predicting species
396 richness by using multiple linear regression. (The red point was the observed richness, the green
397 solid line was the estimated richness, and the grey solid line was the 95% confidence interval.
398 y: Richness, x1: Latitude, x2: Elevation, x3: Slope, x4: Age, x5: Height, x6:
399 Rainfall, x7: Temperature.) b: Predictions of the importance of environmental variables
400 based on random forests.

401 The results of multiple linear regression ($R^2 = 0.3227, P < 0.001$) showed that
402 temperature ($P < 0.001$), tree height ($P < 0.001$), latitude ($P < 0.01$) and slope degree ($P <$
403 0.001) were positively correlated with the species richness (Figure 6a). Among these factors,
404 temperature (with the highest intercept 1.3) is the most important factor affecting plant
405 diversity. Random forest results showed that high mean squared errors of latitude,
406 temperature, and countries were the top three features affecting plant diversity of rubber
407 plantation (Figure 6b).

408 **3.3 Effects of exotic species on plant diversity of rubber plantations**

409 The exotic species richness of rubber plantations was relatively higher in Cambodia, Vietnam,
410 and Myanmar compared to China, Laos, and Thailand (Figure 3c). In order to clarify whether

删除的内容:

带格式的: 两端对齐

删除的内容: 5

带格式的

带格式的

带格式的

带格式的

带格式的

带格式的

带格式的

带格式的

删除的内容: Linear regressions of species richness of rubber ... [15]

带格式的

带格式的

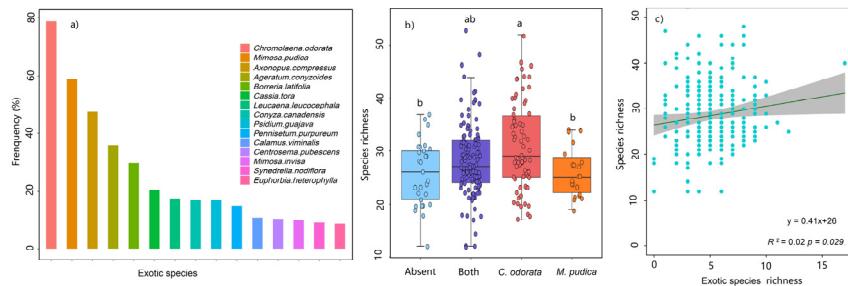
带格式的: 缩进: 首行缩进: 1.5 字符

删除的内容: Diversity was significantly correlated with ... [18]

删除的内容: .

带格式的: 字体: 小四

带格式的: 行距: 2 倍行距


已移动(插入) [3]

带格式的: 两端对齐, 缩进: 首行缩进: 0 字符

删除的内容: .

... [19]

492 exotic species can reduce plant diversity, we analyzed the relationship between the dominance
 493 of exotic species and the species richness in the plot. In view of the fact that *C. odorata* and *M.*
 494 *pudica* are the two most common exotic species in rubber plantations (Figure 7a) the two
 495 species were selected for analysis. The importance values of exotic species *C. odorata* (Figure
 496 S2a) and *M. pudica* (Figure S2b) were negatively correlated with species richness, suggesting
 497 that exotic species with high dominance will reduced rubber plantation diversity. However,
 498 exotic species richness was positively correlated with species richness (Figure 7c). Richness of
 499 communities where *C. odorata* (*M. pudica*) was present was not lower than those where it was
 500 absent (Figure 7b). In sum, diversity of the community was reduced only when the dominance
 501 of exotic species was high.

502
 503 **Figure 7** Effects of exotic species on plant diversity of rubber plantations in the GMS (a:
 504 Frequency of the most common exotic species; b: Richness comparison of different
 505 communities (sky blue bar: plots without *C. odorata* and *M. pudica*; blue bar: plots with both
 506 *C. odorata* and *M. pudica*; red bar: plots only with *C. odorata*; yellow bar: plots only with *M.*
 507 *pudica*) c: relationship between exotic species richness of given plot and species richness of
 508 given plot)

509

512 4. Discussion

513 4.1 Main drivers for plant composition and diversity of rubber plantations

514 Rubber plantations constitute one of the most important agro-ecosystems of tropical regions
515 and play an important role in their carbon budgets (Chen et al., 2020). For, plant composition,
516 latitude ranks the second (Table2) in terms of its impact on plant composition which
517 indicating that latitude is an important driver of plant composition of rubber plantation. For
518 plant diversity, both multiple linear regression and random forests showed that temperature
519 was the most important factor for plant diversity of rubber plantations. Our results consistent
520 with previous study which revealed that temperature is the main driver for plant diversity
521 (Nottingham et al., 2018). We were surprised to find that understory plant diversity of
522 artificial rubber plantations increased with latitude, similar to that of the global diversity
523 patterns (Rohde 1992; Perrigo et al., 2013) that latitudinal gradients are known in which
524 maximum diversity does not occur near the equator (Stehli, 1968). One suggest that the
525 diversity of plant communities was directly affected by latitude (Li et al., 2019). Our results
526 showed that elevation was not as important as other factors which is different from our
527 previous cognition that elevation significantly affect plant species diversity (Li et al., 2019).
528 Plant diversity of north Laos and south China was relatively higher than other countries. This
529 observation may be due to the large variation in elevation in these areas, which translates into
530 greater environmental heterogeneity. In addition, greater slope may increase environmental
531 heterogeneity and expand niche space (Morrison-Whittle and Goddard, 2015). Anyway, the
532 latitudinal diversity gradient and temperature, could largely contribute explaining
533 composition and diversity patterns of artificial rubber plantations.

删除的内容: *Traditional ecological theory, in part, explain*

删除的内容: *patterns*

带格式的: 定义网格后不调整右缩进, 不调整西文与中文之间的空格, 不调整中文和数字之间的空格

已下移 [4]: In artificial forests such as rubber plantations, there is no doubt that management measures and agricultural intensity are two most important factors affecting plant diversity. For example, herbicide application causes low diversity of understory plants. This is especially true of rubber plantations of Vietnam (Figure S1f).

删除的内容: Usually, species richness increases with lower latitude. However, we found that species richness increases with higher latitude, peaking at about 25 degrees which was the highest latitude we studied.

删除的内容: and decreased with longitude

删除的内容: This patterns is first widely observed in regional rubber plantations. It has been suggested that the latitudinal diversity gradient could be caused by habitat variables such elevation and slope degree.

带格式的: 字体: (默认) Times New Roman, (中文) Adv0T863180fb, 小四, 字体颜色: 文字 1

带格式的: 字体: (中文) Adv0T863180fb, 字体颜色: 文字 1

已移动(插入) [6]

删除的内容: Here, we uncovered a positive correlation between elevation (slope degree) and latitude (Figure S3). We also found that there was a negative relationship between rainfall and longitude. This may suggest that plant diversity increased with latitude mainly because elevation and slope increase with latitude, and the diversity decrease with longitude was due to decreased rainfall in the study area. Our results also showed that tree height positively correlated with understory diversity. The possible explanation for this phenomenon is that higher height possible means there are more space under the plantation and make more shade tolerant species survival.

删除的内容: .

Plant diversity of north Laos and south China was relatively higher than other countries. This observation may be due to

带格式的: 字体: (中文) Adv0T863180fb

已上移 [6]: In addition, greater slope may increase environmental heterogeneity and expand niche space

617 **4.2 Not all exotic plants cause the loss of plant diversity in rubber plantations**

618 Rubber plantation expansion and intensification has occurred in many regions that are key for

619 biodiversity conservation. Monoculture plantations have been promoted to restore the world's
620 forested areas, but have done little to slow the loss of biodiversity (Zhang et al., 2021). It has

621 been hypothesized that exotic species might more easily invade areas of low species diversity
622 than areas of high species diversity (Stohlgren et al., 1999). A recent study shows exotic

623 plants account for ~17% and ~35% of the total importance value indices of natural and
624 human-modified ecosystems, respectively (Chandrasekaran et al., 2000). Here, in rubber
625 plantations, exotic plants made up roughly 12% of the total recorded species and 22.80% of
626 the coverage. *C. odorata* is a noxious perennial weed in many parts of the world (Kushwaha
627 et al., 1981), and it is unsurprising that it was recorded in almost all plantation plots in our
628 study. These indicated that invasion by exotic species has either already occurred or is
629 inevitable in many systems (Stohlgren et al., 1999). *M. pudica*, the “sensitive plant”, is a
630 worldwide, pan-tropical invasive species (Melkonian et al., 2014). *M. pudica*, as many
631 tropical grasses and herbs, is tolerant of low pH (Humphreys 1997, Paudel 2018), which
632 explains its ubiquity in acidic rubber plantation soil.

633 More importantly, our study demonstrated that the diversity of the community reduced
634 only when the importance value of exotic species is large enough and not all exotic species
635 cause the loss of plant diversity in rubber plantations, which follow the theory that many
636 species can coexist in spatially heterogeneous areas as long as nutrients and light are not
637 limiting (Huston and DeAngelis, 1994). Our results also were consistent with idea that
638 inhibition of plant diversity by exotic species invasion gradually weakened with increased

带格式的: 两端对齐

带格式的: 定义网格后不调整右缩进, 不调整西文与中文之间的空格, 不调整中文和数字之间的空格

带格式的: 字体: (中文) 宋体, 小四, 字体颜色: 蓝色

带格式的: 缩进: 首行缩进: 1 字符, 定义网格后不调整右缩进, 不调整西文与中文之间的空格, 不调整中文和数字之间的空格

带格式的: 字体: (中文) Adv0T863180fb, 小四, 字体颜色: 文字 1

639 precipitation (Xu et al., 2022) due to higher precipitation in GMS. In addition, management
640 of rubber plantation reduces the dominance of exotic species to a great extent, thus providing
641 space for the survival of other plants.

642 *4.3 Plant composition and diversity is largely affected by of management*

643 Forests that are intensively managed for production purposes generally have lower biodiversity
644 than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations
645 (He and Martin, 2016). In artificial forests such as rubber plantations, there is no doubt that
646 management measures and agricultural intensity are two most important factors affecting plant
647 diversity. The application of herbicides and sprout control causes low diversity of understory
648 plants, this is especially true of rubber plantations of Vietnam (Figure S1f). Also, it is not easy
649 for farmers to clear understory plants on the steep slopes of rubber plantations at high elevation;
650 thus high slope degree indirectly results in low agricultural intensity and high diversity. RDA
651 analysis only explained 18.65% of the variation of community compositions, and multiple
652 linear regression only explained 32.27% of the variation of plant diversity. Most of the
653 unexplained variation are caused by management intensity and measures. In sum, plant
654 compositions and diversity is largely affected by the measures and intensity of management.

655 In poor areas, we cannot just talk about ecological goals without first understanding local
656 cultures and economies. Well-managed forests can alleviate poverty in rural areas, as outlined
657 by the United Nations Sustainable Development Goals (Lewis et al., 2019). Previous study
658 conducted in India demonstrated that a no-weeding practice in mature rubber plantations did
659 not affect rubber yield (Abraham and Joseph, 2016). A similar study conducted in China also
660 showed that natural management strategies can improve biodiversity without reducing latex

带格式的: 字体: (中文) Adv0T863180fb, 小四, 字体颜色: 文字 1

删除的内容: .

删除的内容: *Suggestions to improve rubber plantation plant diversity*

带格式的: 字体: (默认) Times New Roman, (中文) Adv0T863180fb

带格式的: 字体: (默认) Times New Roman, (中文) Adv0T863180fb, 小四, 倾斜, 字体颜色: 文字 1, 图案: 清除

带格式的: 字体: (默认) Times New Roman, (中文) Adv0T863180fb, 小四, 倾斜, 字体颜色: 文字 1, 图案: 清除

带格式的: 右侧: 0.93 厘米, 行距: 最小值 22.5 磅, 批行控制

带格式的: 字体: (默认) Times New Roman, (中文) Adv0T863180fb, 倾斜, 字体颜色: 文字 1

带格式的: 字体: (默认) Arial, (中文) 宋体, 小五, 非加粗, 字体颜色: 黑色

带格式的: 缩进: 首行缩进: 0 字符

已移动(插入) [4]

删除的内容: .

删除的内容: For example, herbicide application

已上移 [2]: Previous study showed that rubber cultivation not only affect plant diversity (Hu et al., 2016), but also affects the soil fauna, bird diversity as well as bat diversity. For example, compared with natural forest, rubber plantations reduces the taxa richness of earthworm (Chaudhuri et al., 2013), about 30% nematode taxa richness (Xiao et al., 2014), 50-60 % bird species (Aratrakorn et al., 2006; Li et al., 2013) and bat species (Phommexay et al., 2011).

删除的内容: Many tropical regions, especially the GMS, contain hotspots of biodiversity that are threatened by agriculture (Delzeit et al., 2017, Egli et al., 2018; Shackelford et al., 2014, Kehoe et al., 2017). We must balance conservation with the economic goals of the GMS

已下移 [5]: Well-managed forests can alleviate poverty in

删除的内容: .

删除的内容: T

删除的内容: .

删除的内容: Harvesting rubber latex may be the only way

带格式的: 字体: 非倾斜

带格式的: 字体: 非倾斜

带格式的: 字体: 非倾斜

已移动(插入) [5]

699 production (Lan et al., 2017d). There is strong evidence that adopting more natural
700 management strategies improves plant diversity without reducing latex production (Lan et al.,
701 2017d). More innovative management measures, such as cease of weeding and herbicide
702 application (He and Martin, 2015), must be implemented to improve the biodiversity of rubber
703 plantations, so as to promote the biodiversity of the region.

704

705 5. Conclusion

706 We provide a large regional study on the plant diversity of rubber plantations in a global
707 biodiversity hotspot. Plant diversity followed global trends with respect to latitude and
708 temperature. Exotic species were very common in rubber plantations, especially where
709 agricultural intensity was strong. However, not all exotic species directly drive the loss of
710 biodiversity. Only higher dominance of some exotic species were associated with a loss of
711 plant diversity within rubber plantations. We must make greater efforts to balance agricultural
712 production with conservation goals in this region, particularly in Vietnam and Cambodia, to
713 minimize the loss of biodiversity.

714

715 Code availability

716 Not applicable

717 Authors' contributions

718 **Guoyu Lan:** Conceptualization, Methodology, Writing, Reviewing and Editing; **Bangqian**
719 **Chen:** Methodology, Reviewing and Editing, **Chuan Yang, Rui Sun, Bangqian Chen,**
720 **Zhixiang Wu and Xicai Zhang:** Investigation

带格式的: 字体: (中文) Adv0T863180fb

删除的内容: Due to the low Human Development Index, people in GMS .

must prioritize supporting their families before protecting the biodiversity of the region. It cannot fall squarely on local peoples to solve biodiversity crises. .

In poor areas, we cannot just talk about ecological goals without first understanding local cultures and economies. The rubber industry has not made preserving forest biodiversity a major priority, and has struggled to meet conservation goals while minimizing economic loss (Lan et al., 2017). Our results showed that diversity of different countries varies significantly due to the variation in agricultural practice. In Vietnam, where diversity was low, rubber farmers clear the understory to facilitate tapping and other production activities (Figure S1f). The lower diversity in Cambodia may be due to the rubber plantations in northeastern which are managed by Vietnamese rubber companies. Vietnam and Cambodia, and regions that allow similar practices, augment the conflicts between agricultural production activities and biodiversity conservation. More effort must be given to balance agricultural production with biodiversity conservation goals in these regions. Thus, more innovative management measures, such as cease of weeding and herbicide application (He and Martin, 2015), must be implemented to improve the biodiversity of rubber plantations, so as to promote the biodiversity of the region. Previous study conducted in India demonstrated that a no-weeding practice in mature rubber plantations did not affect rubber yield (Abraham and Joseph, 2016). A similar study conducted in China also showed that natural management strategies can improve biodiversity without reducing latex production (Lan et al., 2017d). Thesis ... 23

带格式的: 两端对齐, 缩进: 首行缩进: 1.5 字符, 定义网格后自动调整右缩进, 调整中文与西文文字的间距, 调整中文与数字的间距

删除的内容: longitude,

删除的内容: ,

删除的内容: altitude

删除的内容: Thus, artificial rubber plantation communities still conform to some common ecological patterns.

删除的内容: .

带格式的: 两端对齐, 定义网格后自动调整右缩进, 段落间距段前: 0 磅, 段后: 0 磅, 行距: 2 倍行距, 调整中文与西文文字的间距, 调整中文与数字的间距

796 **Competing interests**

797 The authors declared that they have no conflicts of interest to this study.

798 **Disclaimer**

799 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims
800 in published maps and institutional affiliations.

801

802 **Acknowledgements**

803 We thank the help of the Rubber Research Bureau of Thailand, Perennial Crop Research
804 Institute of Myanmar, the Rubber Research Institute of Cambodia, Vietnam Agricultural
805 University, and the Yunnan Rubber Group. We would like to thank Prof. Fangliang He at
806 University of Alberta and Dr. Ian Gilman at Yale University for his assistance with English
807 language and grammatical editing.

808

809 **Funding**

810 This large-scale field investigation was supported by National Natural Science Foundation of
811 China (42071418), the Lancang-Mekong international cooperation project of the Ministry of
812 Foreign Affairs (081720203994192003) and the Earmarked Fund for China Agriculture
813 Research System (CARS-33-ZP3).

814

815 **Reference**

816 Abraham, J., Joseph, P. A new weed management approach to improve soil health in a tropical
817 plantation crop, rubber (*Hevea brasiliensis*). *Exp. Agr.*, 52, 36-50, 2016
818 Ahrends, A., Hollingsworth, P.M., Ziegler, A.D., Fox, J.M., Chen, H., Su, Y., Xu, J.X.
819 Current trends of rubber plantation expansion may threaten biodiversity and livelihoods.

820 Global Environ. Chang., 34, 48-58, 2015.

821 Aratrakorn, S., Thunhikorn, S., Donald, P.F. Changes in bird communities following
822 conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird
823 Conserv. Int., 16, 71-82, 2006.

824 Cai, Z. Q., Zhang, Y. H., Yang, C., Wang, S. Land-use type strongly shapes community
825 composition, but not always diversity of soil microbes in tropical China. Catena, 165,
826 369-380, 2018.

827 Chandrasekaran, S., Sundarapandian, S.M., Chandrasekar, P., Swamy, P.S. Exotic plant
828 invasions in disturbed and man-modified forest ecosystems in the Western Ghats of
829 Tamil Nadu. Tropical Forestry Research: Challenges in the New Millennium.
830 Proceedings of the International Symposium, Peechi, India, 2-4 August, 2000, 32-39,
831 2001.

832 Chaudhary, A., Burivalova, Z., Koh, L.P., Hellweg, S. Impact of forest management on
833 species richness: Global meta-analysis and economic trade-offs. Sci. Rep., 6, 23954,
834 2016.

835 Chaudhuri, P.S., Bhattacharjee, S., Dey, A., Chattopadhyay, S., Bhattacharya, D. Impact of age
836 of rubber (*Hevea brasiliensis*) plantation on earthworm communities of West Tripura (India).
837 J Environ Biol., 34, 59-65, 2013.

838 Chen, B.Q., Yun, T., Ma, J., Kou, W.L., Li, H.L., Yang, C., Xiao, X.M., Zhang, X., Sun, R.,
839 Xie, G.S., Wu, Z.X. High-Precision stand age data facilitate the estimation of rubber
840 plantation biomass: A case study of Hainan Island, China. Remote Sens., 12, 3853,
841 2020.

842 Chen, H., Yi, Z.F., Schmidt-Vogt, D., Ahrends, A., Beckschäfer, P., Kleinn, C., Ranjitkar, S.,
843 Xu, J.C. Pushing the Limits: The Pattern and Dynamics of Rubber Monoculture
844 Expansion in Xishuangbanna, SW China. PLoS ONE, 11(2), e0150062, 2016.

845 Curtis, J.T., Melntosh, R.P. The interactions of certain analytic and synthetic
846 phytosociological characters. Ecology, 31, 435-455, 1950.

847 Curtis, J.T., Melntosh, R.P. An upland forest continuum in the prairie-forest border region of
848 Wisconsin. Ecology, 32(3), 476-496, 1951.

849 Delzeit, R., Zabel, F., Meyer, C., Václavík, T. Addressing future trade-offs between
850 biodiversity and cropland expansion to improve food security. Reg. Environ. Change,
851 17, 1429-1441, 2017.

852 Egli, L., Meyer, C., Scherber, C., Kreft, H., Tscharntke, T. Winners and losers of national and
853 global efforts to reconcile agricultural intensification and biodiversity conservation.
854 Global Change Biol., 24, 2212-2228, 2018.

855 Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Carsten, A., Brühl, Donald, P.F.,
856 Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol., 23(10),
857 538-545, 2008.

删除的内容: -

删除的内容: -

860 Greig-Smith, P. W. Use of perches as vantage points during foraging by male and female
861 Stonechats *Saxicola torquata*. *Behaviour*, 86(3-4), 215-236, 1983.

862 Grogan, K., Pflugmacher, D., Hostert, P., Mertz, O., Fensholt, R. Unravelling the link
863 between global rubber price and tropical deforestation in Cambodia. *Nat Plants*, 5(1),
864 47-53, 2019.

865 Han, Z.Q., Liu, T., Wang, T., Liu, H.F., Li, B. L. Quantification of water resource utilization ←
866 efficiency as the main driver of plant diversity in the water-limited ecosystems. Ecol.
867 Model., 429, 108974, 2020.

868 He, P., Martin, K. 2016. Effects of rubber cultivation on biodiversity in the Mekong Region.
869 CAB Reviews, 10, 44

870 Humphreys, L.R. The Evolving Science of Grassland Improvement. Cambridge University
871 Press, Cambridge, UK, 1997.

872 Kehoe, L. Romero-Muoz, A., Polaina, E., Estes, L., Kuemmerle, T. Biodiversity at risk under
873 future cropland expansion and intensification. *Nat. Ecol. Evol.*, 1, 1129-1135, 2017.

874 Kerfahi, D. B. M. T., Dong, K., Go, R., Adams, J. M. Rainforest conversion to rubber
875 plantation may not result in lower soil diversity of bacteria fungi and nematodes.
876 *Microb. Ecol.*, 72, 359-371, 2016.

877 Kushwaha, S.P.S., Tripathi, P.S.R.S. Population dynamics of *Chromolaena odorata* in
878 successional environments following slash and burn agriculture. *J Appl. Ecol.*, 18(2):
879 529-535, 1981.

880 Lan, G.Y., Hu, Y.H., Cao, M., Zhu, H. Topography related spatial distribution of dominant
881 tree species in a tropical seasonal rain forest in China, *For. Ecol. Manage.*, 262(8):1507-
882 1513, 2011.

883 Lan, G.Y., Li, Y.W., Jatoi, M.T., Tan, Z.H., Wu, Z.X., Xie, G.S. Change in soil microbial
884 community compositions and diversity following the conversion of tropical forest to
885 rubber plantations in Xishuangbanna, Southwest China. *Trop. Conserv. Sci.*, 10, 1-14,
886 2017c.

887 Lan, G.Y., Li, Y.W., Wu, Z.X., Xie, G.S. Impact of tropical forest conversion on soil
888 bacterial diversity in tropical region of China. *Eur. J. Soil Biol.*, 83, 91-97, 2017a.

889 Lan, G.Y., Li, Y.W., Wu, Z.X., Xie, G.S. Soil bacterial diversity impacted by conversion of
890 secondary forest to rubber or eucalyptus plantations-A case study of Hainan Island,
891 South China. *For. Sci.*, 63(1), 87-93, 2017b.

892 Lan, G.Y., Wu, Z.X., Chen, B.Q., Xie, G.S. Species diversity in a naturally managed rubber
893 plantation in Hainan island, south China. *Trop. Conserv. Sci.*, 10, 1-7, 2017d.

894 Lan, G.Y., Wu, Z.X., Li, Y.W., Chen, B.Q. The drivers of soil bacterial communities in
895 rubber plantation at local and geographic scales. *Arch. Agron. Soil Sci.*, 66(3), 358-369,
896 2020c.

删除的内容:

删除的内容:

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符,
首行缩进: -1 字符, 行距: 1.5 倍行距

带格式的: 字体: (中文) 宋体, 字体颜色: 蓝色

删除的内容: Hu, Y.H., Lan, G.Y., Sha, L.Q., Cao, M., Tang,
Y., Li, Y.D., Xu, D.P. Strong neutral spatial effects shape
tree species distributions across life stages at multiple
scales. *PLoS ONE* 7(5): e38247, 2012. .

删除的内容: -

删除的内容:

删除的内容:

906 Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X. Tropical rainforest
 907 conversion into rubber plantations results in changes in soil fungal composition, but
 908 underling mechanisms of community assembly remain unchanged. *Geoderma*, 375,
 909 114505, 2020b,
 910 Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X.C. 2020a. Forest conversion
 911 changed the structure and functional process of tropical forest soil microbiome. *Land*
 912 *Degrad. Dev.*, 32(2):613-627, 2021
 913 Lan, G.Y., Wu, Z.X., Xie, G.X. Characteristics of plant species diversity of rubber plantation
 914 in Hainan Island. *Biodivers. Sci.*, 22 (5): 658-666, 2014.
 915 Lewis, S.L., Wheeler, C.E., Mitchard, E.T.A., Koch, A. Regenerate natural forests to store
 916 carbon. *Nature*, 568(7750), 25-28, 2019.
 917 Li, S., Zou, F., Zhang, Q., Sheldon, F.H. Species richness and guild composition in rubber
 918 plantations compared to secondary forest on Hainan Island, China. *Agroforestry Syst.* 87,
 919 1117-28, 2013.
 920 Li, Y.W., Xia, Y.J., Lei, Y.B., Deng, Y., Chen, H., Sha, L.Q., Cao, M., Deng, X.B.
 921 Estimating changes in soil organic carbon storage due to land use changes using a
 922 modified calculation method. *Iforest*, 8, 45-52, 2015.
 923 Li, H.M., Aide, T., Ma, Y.X., Liu, W.J., Cao, M. Demand for rubber is causing the loss of
 924 high diversity rain forest in SW China. *Biodivers. Conserv.*, 16 (6), 1731-1745, 2007.
 925 Linares-Palomino, R., Alvarez, S.I.P. Tree community patterns in seasonally dry tropical
 926 forests in the Cerros de Amotape Cordillera, Tumbes, Peru. *For. Ecol. Manage.*, 209,
 927 261-272, 2005.
 928 Mccoy, E.D., Connor, E. F. Latitudinal gradients in the species diversity of north American
 929 mammals. Evolution, 34, 193-203, 1980.
 930 Melkonian, R., Moulin, L., Béna, G., Tisseyre, P., Chaintreuil, C., Heulin, K., Rezkallah,
 931 N., Klonowska, A., Gonzalez, S., Simon, M., Chen, W.M., James, E. K. and Laguerre, G.,
 932 The geographical patterns of symbiont diversity in the invasive legume *mimosa*
 933 *pudicacan* be explained by the competitiveness of its symbionts and by the host
 934 genotype. *Environ. Microbiol.*, 16(7), 2099-2111, 2014.
 935 Morrison-Whittle, P., Goddard, M. R. Quantifying the relative roles of selective and neutral
 936 processes in defining eukaryotic microbial communities. *ISME J.*, 9, 2003-2011, 2015
 937 Myers, N., Mittermeier, R. A., Mittermeier, C.G., Fonseca, G.A.B.D., Kent, J. Biodiversity
 938 hotspots for conservation priorities. *Nature*, 403(6772), 853-858, 2000.
 939 Nottingham, A., Fierer, N., Turner, B.L., Whitaker, J., Ostle, N.J., Mcnamara, N.P., Bardgett,
 940 R.D., Leff, J.W., Salinas, N., Silman, M. R., Kruuk, L. E. B., Meir, P. Temperature drives
 941 plant and soil microbial diversity patterns across an elevation gradient from the Andes to
 942 the Amazon. Ecology, 99(11), 2455-2466, 2018.

删除的内容: Biodiversity

删除的内容: ence,

删除的内容: Lee, S.H., Sorensen, J., Grady, K. Tobin, T. C., Shade, A. Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire. *ISME J.*, 11, 1447-1459, 2017. .

删除的内容:

删除的内容:

带格式的: 无, 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符, 首行缩进: -1 字符, 定义网格后不调整右缩进

带格式的: 字体: (中文) 宋体, 字体颜色: 蓝色

删除的内容: Liu, L., Zhu, K., Krause, S. M.B., Li, S.P., Wang, X., Zhang, Z. C., Shen, M.W., Yang, Q.S., Lian, J.Y., Wang, X.H., Ye, W.H., Zhang, J. Changes in assembly processes of soil microbial communities during secondary succession in two subtropical forests, *Soil Biol. Biochem.*, 154, 108144, 2021. .

带格式的: 无, 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符, 首行缩进: -1 字符, 定义网格后不调整右缩进, 行距: 1.5 倍行距

带格式的: 字体: (默认) +西文正文 (等线), (中文) +中文正文 (等线), 五号, 字体颜色: 自动设置

959 Paudel, N. Seasonal variation in phenophases of *Mimosa pudica* (fabaceae) in grazed pasture
960 of Barandabhar corridor forest Chitwan, Nepal. Curr. Trends Biomed. Eng. Biosci., 11.
961 DOI: 10.19080/CTBEB.2018.11.555825, 2018.

962 Perrigo, A.L., Baldauf, S.L., Romeralo, M. Diversity of dictyostelid social amoebae in high
963 latitude habitats of Northern Sweden. Fungal Divers., 58(1), 185-198, 2013.

964 Phommexay, P., Satasook, C., Bates, P., Pearch, M., Bumrungsri, S. 2011. The impact of
965 rubber plantations on the diversity and activity of understory insectivorous bats in southern
966 Thailand. Biodiversity and Conservation, 20:1441-56.

967 Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos,
968 65(3), 514-527, 1992.

969 Sabatini, F.M., Burrascano, S., Azzella, M.M., Barbat, A., De Paulis, S., Di Santo, D.
970 Facioni, L., Giularelli, D., Lombardi, F., Maggi, O., Mattioli, W., Parisi, F., Persiani, A.,
971 Ravera, S., Blasi, C. Herb-layer diversity and stand structural complexity are weak predictors
972 of biodiversity in *Fagus sylvatica* forests. Ecol. Indic., 69, 126-137, 2016.

973 Schneider, D., Engelhaupt, M., Allen, K., Kurniawan, S., Krashevsk, V., Heinemann, M.,
974 Scheu, S. Impact of lowland rainforest transformation on diversity and composition of
975 soil prokaryotic communities in Sumatra Indonesia. Front. Microbiol., 6, 296, 2015.

976 Shackelford, G. E., Steward, P. R., German, R. N., Sait, S. M., Benton, T. G. Conservation
977 planning in agricultural landscapes: hotspots of conflict between agriculture and nature.
978 Divers. Distrib., 21, 357-367, 2014.

979 Shah, H.A., Huxley, P., Elmes, J., Murray, K.A. Agricultural land-uses consistently
980 exacerbate infectious disease risks in Southeast Asia. Nat. Commun. 10, 4299, 2019.

981 Singh, D., Slik, J.W.F., Jeon, Y.S., Tomlinson, K.W., Yang, X.D., Wang,
982 J., Kerfahi, D., Porazinska, D.L., Adams, J.M. Tropical forest conversion to rubber
983 plantation affects soil micro & mesofaunal community & diversity. Sci. Rep.,
984 9(1):5893.doi: 10.1038/s41598-019-42333-4, 2019.

985 Soons, M.B., Hefting, M.M., Dorland, E., Lamers, L.P.M., Versteeg, C., Bobbink, R.
986 Nitrogen effects on plant species richness in herbaceous communities are more widespread
987 and stronger than those of phosphorus. Biol. Conserv., 212, 390-397, 2017.

988 Stadler, J., Trefflich, A., Klotz, S., Brandl, R.. Exotic plant species invade diversity hot spots:
989 the alien flora of northwestern Kenya. Ecography, 23(2):169-176, 2000.

990 Stehli, G.G. Taxonomic diversity gradients in pole location: the Recent model, p, 168-227.
991 1968.

992 Stohlgren, T.J., Binkley, D., Chong, G.W., Kalkhan, M. A., Schell, L. D., Bull, K. A.,
993 Otsuki, Y., Newman, G., Bashkin, M., Son, Y. Exotic plant species invade hot spots of

删除的内容:

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符,
首行缩进: -1 字符, 定义网格后不调整右缩进, 行距:
1.5 倍行距, 不调整西文与中文之间的空格, 不调整中
文和数字之间的空格

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符,
首行缩进: -1 字符

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符,
首行缩进: -1 字符, 定义网格后不调整右缩进, 行距:
1.5 倍行距, 不调整西文与中文之间的空格, 不调整中
文和数字之间的空格

995 native plant diversity. *Ecol. Monogr.*, 69(1): 25-46. 1999.

996 Sun, H.L. 2000. *Encyclopedia of resource science of China* [M]. Beijing: *Encyclopedia of*
997 *China Press*

998 Tripathi, B. M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A. N., Adams, J.
999 M. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial
1000 tropics too. *Microb. Ecol.*, 64: 474-484, 2012.

1001 Warren-Thomas, E.M. , Edwards, D.P. , Bebber, D.P. , Chhang, P., Diment, A. N., Evans,
1002 T.D., Lambrick, F.H., Maxwell, J.F., Nut, M., O'Kelly, H.J., Theilade, I., Dolman, P.M.
1003 Protecting tropical forests from the rapid expansion of rubber using carbon
1004 payments. *Nat. Commun.*, 9(1), 911, 2018.

1005 Wu, J., Wang, X., Zhong, B., Yang, A., Liu, Q. Ecological environment assessment for
1006 Greater Mekong Subregion based on pressure-state-response framework by remote
1007 sensing. *Ecol. Indic.*, 117, 106521, 2020.

1008 Xiao, C.W., Li, P., Feng, Z.M., Yang, Y.Z., You, Z.L., Yu M., Zhang, X.Z. Latest 30-m map
1009 of mature rubber plantations in Mainland Southeast Asia and Yunnan province of China:
1010 Spatial patterns and geographical characteristics. *Prog. Phys. Geog.*, 030913332098374.
1011 10.1177/0309133320983746, 2021.

1012 Xiao, H.F., Tian, Y.H., Zhou, H.P., Ai, X.S., Yang, X.D., Schaefer, D.A. Intensive rubber
1013 cultivation degrades soil nematode communities in Xishuangbanna, southwest China. *Soil*
1014 *Biol. Biochem.*, 76, 161-169, 2014.

1015 Xu, H.W., Liu, Q., Wang, S.Y., Yang, G.S., Xue, S. *A global meta-analysis of the impacts of*
1016 *exotic plant species invasion on plant diversity and soil properties. Sci. Total Environ.*,
1017 810, 152286, 2022.

1018 Xu, J.C. China's new forests aren't as green as they seem. *Nature*, 477, 371, 2011.

1019 Yaseen, S. D. Prevalence of economically important fungal diseases at different phenological
1020 stages of peanut (*Arachis hypogaea* L.), pearl millet (*Pennisetum glaucum* L.) and
1021 sorghum (*Sorghum bicolor* L.) in sub-zone Hamelmalo. *J. Agr. Econ. Dev.*, 2(6), 237-245,
1022 2013.

1023 Zabel, F., Delzeit, R., Schneider, J.M., Seppelt, R., Mauser, W., Václavík, T. Global impacts
1024 of future cropland expansion and intensification on agricultural markets and
1025 biodiversity. *Nat. Commun.*, 10, 2844, 2019.

1026 Zhang, J., Fu, B., Stafford-Smith, M., Wang, S., Zhao, W. Improve forest restoration
1027 initiatives to meet sustainable development goal. *Nat. Ecol. Evol.*, 5(1), 10-13, 2021.

1028

1046 **Figure captions**

1047 **Figure 1** Sampling plot localities within rubber plantations in GMS

1048 **Figure 2** Distribution maps of two common exotic species (a: *Chromolaena odorata*, b:
1049 *Mimosa pudica*) of rubber plantation in the GMS (circle size is proportional to importance
1050 value)

1051 **Figure 3** Significant difference in plant community compositions of rubber plantations among
1052 countries in GMS. a: Principal coordinate analysis (PCoA) based on Bray-curtis distance; b:
1053 Analysis of similarity among countries.

1054 **Figure 4** Redundancy analysis of plant community compositions of rubber plantation in the
1055 GMS (a: RDA ordination, b: Percentage of explained and unexplained by RDA results)

1056 **Figure 5** Plant species diversity of rubber plantations across countries in the GMS (a: species
1057 richness; b: Shannon diversity; c: Exotic species richness).

1058 **Figure 6** Factors affecting plant diversity of rubber plantation. a) Predicting species richness
1059 by using multiple linear regression (The red point was the observed richness, the green solid
1060 line was the estimated richness, and the grey solid line was the 95% confidence interval. y:
1061 Richness, x1: Latitude, x2: Elevation, x3: Slope, x4: Age, x5: Height, x6:
1062 Rainfall, x7: Temperature.) b): Predictions of the importance of environmental variables
1063 based on random forests.

1064 **Figure 7** Effects of exotic species on plant diversity of rubber plantations in the GMS (a:
1065 Frequency of the most common exotic species; b: Richness comparison of different
1066 communities (sky blue bar: plots without *C. odorata* and *M. pudica*; blue bar: plots with both
1067 *C. odorata* and *M. pudica*; red bar: plots only with *C. odorata*; yellow bar: plots only with *M.*

带格式的: 字体: (中文) 宋体, 字体颜色: 蓝色

删除的内容: 3

删除的内容: **Figure 4** Beta diversity of rubber plantations in the GMS (a: PCoA ordination plot, b: Whittaker's beta diversity (circle size is proportional to beta diversity value))

删除的内容: 5

删除的内容: Linear regressions of species richness of rubber plantation with environmental variables (a: latitude; b: longitude; c: elevation; d: rainfall; e: temperature; f: slope degree; g: tree age, h: tree height; i: canopy density)

删除的内容: **Figure 6** Divers of plantation community or rubber plantation in GMS (a: Predictions of the importance of environmental variables based on random forests; b: Boxplots showing the relative changes in deterministic and stochastic processes assessed by null deviation analysis. A null deviation close to zero suggests that stochastic processes are more important in structuring the community, whereas a null deviation larger than zero indicates that deterministic processes are more important).

带格式的: 行距: 2 倍行距

1086 *pudica*) c: relationship between exotic species richness of given plot and species richness of
1087 given plot)
1088

删除的内容:

-----分页符-----

Conservation and management of forests in this area are difficult due to conflicting external social and economic factors. Cambodia, Laos, and Myanmar have been recognized among the least developed countries in the world by the United Nations. Meanwhile, the urban and rural development of Vietnam and Thailand is unbalanced, and there are still a large number of population under poverty line. Recently, the GMS has been identified as a major strategic source of raw, extractable materials in Asia (Zhou and Wei, 2009).

In the GMS, logging, mining, and slash and burn agriculture contribute to deforestation and forest degradation.

Though rubber expansion caused deforestation, cultivated rubber plantations have helped alleviate poverty in low-income regions, and rubber cultivation is the main economic source of farmers in remote areas in some areas of the GMS, such as Laos, Myanmar and Cambodia (Figure S1c-e).

For example, compared with natural forest, rubber plantations reduces the taxa richness of earthworm (Chaudhuri et al., 2013), about 30% nematode taxa richness (Xiao et al., 2014), 50-60 % bird species (Aratrakorn et al., 2006; Li et al., 2013) and bat species (Phommexay et al., 2011).

Expansion of rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodiversity loss in this region (Xu, 2011; Warren-Thomas et al., 2018). It is indisputable that the large-scale rubber cultivation in countries of the GMS has an outsized impact on the ecosystem of tropical regions.

第 3 页: [5] 删除的内容 Administrator 2022/3/5 14:33:00

Compared to primary forests, agricultural systems tend to have higher bacterial richness but lower fungal richness (Lan et al., 2017a; Cai et al., 2018; Tripathi et al., 2012; Kerfahi et al., 2016).

第 12 页: [6] 删除的内容 Administrator 2022/3/7 15:18:00

Figure 4 Beta diversity of rubber plantations in the GMS (a: PCoA ordination plot, b: Whittaker's beta diversity (circle size is proportional to beta diversity value))

第 12 页: [7] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [7] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [7] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [7] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [8] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [8] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [9] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [9] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [10] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [10] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [11] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [11] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [12] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [12] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [13] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [13] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [14] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [14] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [14] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [14] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [14] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [14] 带格式的 Administrator 2022/3/7 14:38:00

字体: 小四, 非加粗

第 12 页: [15] 删除的内容 Administrator 2022/3/5 16:36:00

Linear regressions of species richness of rubber plantation with environmental variables (a: latitude; b: longitude; c: elevation; d: rainfall; e: temperature; f: slope degree; g: tree age, h: tree height; i: canopy density)

第 12 页: [16] 带格式的 Administrator 2022/3/7 14:31:00

字体: (默认) TimesNewRomanPSMT, (中文) TimesNewRomanPSMT, 字体颜色: 自动设置, (国际) +西文正文 (等线)

第 12 页: [17] 带格式的 Administrator 2022/3/7 15:42:00

字体: 倾斜

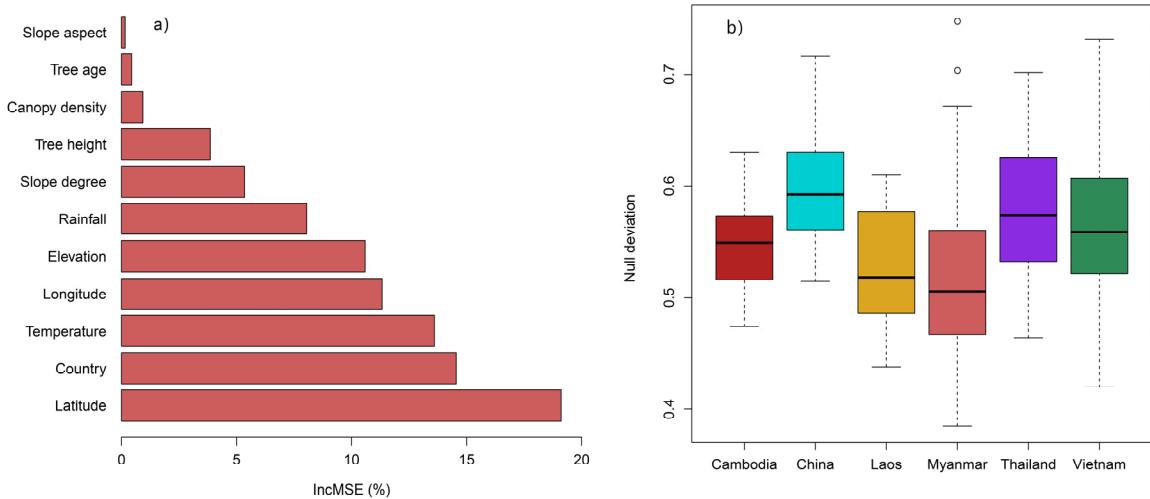
第 12 页: [17] 带格式的 Administrator 2022/3/7 15:42:00

字体: 倾斜

第 12 页: [17] 带格式的 Administrator 2022/3/7 15:42:00

字体: 倾斜

第 12 页: [18] 删除的内容 Administrator 2022/3/7 15:41:00


Diversity was significantly correlated with latitude, longitude, and elevation (Figure 5a-c). Linear regressions showed that diversity indices of richness, Shannon diversity, and Simpson diversity significantly increased with latitude and elevation ($p < 0.05$), however decreased with longitude ($p < 0.001$). Slope ($p < 0.001$) (Figure 5f) and tree height ($p < 0.001$) (Figure 5h) also were also important factors influencing diversity of rubber plantations. Rubber tree ages, canopy density, rainfall, and temperature showed no effects on diversity ($p > 0.05$).

Diversity was significantly correlated with latitude, longitude, and elevation (Figure 5a-c). Linear regressions showed that diversity indices of richness, Shannon diversity, and Simpson diversity significantly increased with latitude and elevation ($p < 0.05$), however decreased with longitude ($p < 0.001$). Slope ($p < 0.001$) (Figure 5f) and tree height ($p < 0.001$) (Figure 5h) also were also important factors influencing diversity of rubber plantations. Rubber tree ages, canopy density, rainfall, and temperature showed no effects on diversity ($p > 0.05$).

Diversity was significantly correlated with latitude, longitude, and elevation (Figure 5a-c). Linear regressions showed that diversity indices of richness, Shannon diversity, and Simpson diversity significantly increased with latitude and elevation ($p < 0.05$), however decreased with longitude ($p < 0.001$). Slope ($p < 0.001$) (Figure 5f) and tree height ($p < 0.001$) (Figure 5h) also were also important factors influencing diversity of rubber plantations. Rubber tree ages, canopy density, rainfall, and temperature showed no effects on diversity ($p > 0.05$).

Diversity was significantly correlated with latitude, longitude, and elevation (Figure 5a-c). Linear regressions showed that diversity indices of richness, Shannon diversity, and Simpson diversity significantly increased with latitude and elevation ($p < 0.05$),

however decreased with longitude ($p < 0.001$). Slope ($p < 0.001$) (Figure 5f) and tree height ($p < 0.001$) (Figure 5h) also were also important factors influencing diversity of rubber plantations. Rubber tree ages, canopy density, rainfall, and temperature showed no effects on diversity ($p > 0.05$).

Figure 6 Divers of plantation community or rubber plantation in GMS (a: Predictions of the importance of environmental variables based on random forests; b: Boxplots showing the relative changes in deterministic and stochastic processes assessed by null deviation analysis. A null deviation close to zero suggests that stochastic processes are more important in structuring the community, whereas a null deviation larger than zero indicates that deterministic processes are more important)

Plant diversity of north Laos and south China was relatively higher than other countries. This observation may be due to the large variation in elevation (for north Laos, elevation ranges from 300 to 900 m; for south China, elevation ranges from 100-1100 m) in these areas, which translates into greater environmental heterogeneity. We also found greater plant diversity at higher elevations (Figure 5c), which may be caused by the reduced agricultural activities on those terrains. It is not easy for farmers to clear understory plants on the steep slopes of rubber plantations at high elevation; thus high slope degree indirectly results in low agricultural intensity. In addition, greater slope may increase environmental heterogeneity and expand niche space (Morrison-Whittle and Goddard, 2015). In sum, the traditional ecological hypotheses, such as the latitudinal diversity gradient and niche partitioning, could also contribute to explaining diversity patterns of artificial rubber plantations. However, comparison of the diversity between rubber plantation and nearby natural forest needs further research.

第 16 页: [21] 刪除的內容

Administrator

2022/3/5 16:52:00

Many tropical regions, especially the GMS, contain hotspots of biodiversity that are threatened by agriculture (Delzeit et al., 2017, Egli et al., 2018; Shackelford et al., 2014, Kehoe et al., 2017). We must balance conservation with the economic goals of the GMS where the livelihood of many people rely on rubber plantations.

第 16 页: [22] 刪除的內容

Administrator

2022/3/7 16:54:00

Harvesting rubber latex may be the only way for many rural populations to generate stable income, but rubber production does not assume a comfortable living. For example, in Cambodia, many school children have to harvest rubber latex after classes to support their families (Figure S1e).

第 17 页：[23] 刪除的內容

Administrator

2022/3/7 16:51:00

Due to the low Human Development Index, people in GMS must prioritize supporting their families before protecting the biodiversity of the region. It cannot fall squarely on local peoples to solve biodiversity crises.

In poor areas, we cannot just talk about ecological goals without first understanding local cultures and economies. The rubber industry has not made preserving forest biodiversity a major priority, and has struggled to meet conservation goals while minimizing economic loss (Lan et al., 2017). Our results showed that diversity of different countries varies significantly due to the variation in agricultural practice. In Vietnam, where diversity was low, rubber farmers clear the understory to facilitate tapping and other production activities (Figure S1f). The lower diversity in Cambodia may be due to the rubber plantations in northeastern which are managed by Vietnamese rubber companies. Vietnam and Cambodia, and regions that allow similar practices, augment the conflicts between agricultural production activities and biodiversity conservation. More effort must be given to balance agricultural production with biodiversity conservation goals in these regions. Thus, more innovative management measures, such as cease of weeding and herbicide application (He and Martin, 2015),

must be implemented to improve the biodiversity of rubber plantations, so as to promote the biodiversity of the region. Previous study conducted in India demonstrated that a no-weeding practice in mature rubber plantations did not affect rubber yield (Abraham and Joseph, 2016). A similar study conducted in China also showed that natural management strategies can improve biodiversity without reducing latex production (Lan et al., 2017d). There is strong evidence that adopting more natural management strategies improves plant diversity without reducing latex production (Lan et al., 2017d). Thus, more innovative management measures must be implemented to improve the plant diversity of rubber plantations, so as to promote the biodiversity of the region.