1 Main drivers of plant diversity patterns of rubber plantations in the

2	Greater Mekong Sub-region
3	Guoyu Lan ^{a,c#*} , Bangqian Chen ^{a,c#*} , Chuan Yang ^{a,c} , Rui Sun ^{a,c} , Zhixiang Wu ^{a,c} , Xicai
4	Zhang ^{a,c}
5	
6	a. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou
7	City, Hainan Province, 571737, P. R. China;
8	c. Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture
9	and Rural Affairs, Danzhou City, Hainan Province, 571737, P. R. China
10	
11	#These authors contributed equally to this work.

- 12 *Author for correspondence
- 13 Tel: +86-898-23301800
- 14 Fax: +86-898-23300315
- 15 E-mail: <u>langyrri@163.com</u>
- 16 Running headline: Drivers of plant diversity of rubber plantations
- 17

18 Abstract: The Greater Mekong Sub-region (GMS) is one the global biodiversity hotspots. However, the 19 diversity has been seriously threatened due to environmental degradation and deforestation, 20 especially by expansion of rubber plantations. Yet, little is known about the impact of 21 22 expansion of rubber plantations on regional plant diversity as well as the drivers for plant diversity of rubber plantation in this region. In this study, we analyzed plant diversity patterns 23 of rubber plantations in the GMS based on a ground survey of a large number of samples. We 24 found that diversity varied across countries due to varying agricultural intensities. Laos had 25 26 the highest diversity, then followed China, Myanmar, Cambodia. Plant species richness of Laos was about 1.5 times that of Vietnam. We uncovered latitudinal gradients in plant 27 diversity across these artificial forests of rubber plantations, and these gradients caused by 28 environmental variables such as temperature, Results of RDA, multiple regression as well as 29 30 random forests demonstrated that latitude and temperature were the two most important 31 drivers for the composition and diversity of rubber plantations in GMS. Meanwhile, we also found that higher dominance of some exotic species (such as Chromolaena odorata and 32 Mimosa pudica) were associated with a loss of plant diversity within rubber plantations. 33 34 however, not all exotic plants cause the loss of plant diversity in rubber plantations. In conclusion, not only environmental factors (temperature), but also exotic species were the 35 main factors affecting plant diversity of these artificial stands. Much more effort should be 36 37 made to balance agricultural production with conservation goals in this region, particularly to minimize the diversity loss in Vietnam and Cambodia. 38 39 Keywords: Rubber plantation, Plant diversity, Exotic species, Mekong regions, Greater

```
删除的内容:
```

删除的内容: Thailand and Vietnam were the lowest among
them.
删除的内容: and longitudinal
删除的内容:
删除的内容: T
删除的内容: could be explained
删除的内容: by the traditional ecological theories
删除的内容: Furthermore, null deviation of observed
community to the randomly assembled communities were
larger than zero indicating deterministic process were more
important for structuring the community.
删除的内容: the results also showed
删除的内容:
带格式的: 字体:(中文) 宋体,非加粗,非倾斜

删除的内容: such as elevation and latitude

55	Mekong Sub-regions (GMS),
56	1. Introduction
57	Many tropical regions contain hotspots of biodiversity (Myers et al., 2000), especially for the
58	Great Mekong Sub-region (GMS), threatened by agriculture (Delzeit et al., 2017; Egli et al.,
59	2018; Shackelford et al., 2014; Kehoe et al., 2017), Much of the land has recently been
60	converted from forest to agriculture (Li et al., 2007), and rubber plantations have quickly
61	expanded throughout the region (Ziegler et al., 2009; Li et al., 2015 <u>: Ahrends et al., 2015</u>),
62	due to a surge in the global demand for natural rubber, driven largely by the growth of tire
63	and automobile industries. For example, 23.5% of Cambodia's forest cover, was destroyed
64	between 2001 and 2015 make way for crops such as rubber (Figure S1h) and palm oil
65	(Grogan et al., 2019). In southwest China, nearly 10% of the total area of nature reserves had
66	been converted to rubber monoculture by 2010 (Chen et al., 2016). At present, GMS are
67	globally important rubber-planting regions (Xiao et al., 2021)
68	Agricultural land-uses can exacerbate many infectious diseases in Southeast Asia (Shah et
69	al., 2019) and reduce biodiversity (Xu, 2011; Warren-Thomas et al., 2018; Fitzherbert et al.,
70	2018; Zabel et al., 2019; Singh et al., 2019). Previous study showed that rubber cultivation
71	not only affect plant diversity (Hu et al., 2016), but also affects the soil fauna (Chaudhuri et
72	al., 2013; Xiao et al., 2014), bird diversity (Aratrakorn et al., 2006; Li et al., 2013) as well as
73	bat diversity (Phommexay et al., 2011), There is also a large body of literature on the effects
74	of forest conversion from tropical forest to rubber plantations on soil microbial composition
75	and diversity (Tripathi et al., 2012; Schneider et al., 2015; Kerfahi et al., 2016, Lan et al.,
76	2017a; 2017b; 2017c; <u>Cai et al., 2018;</u> Lan et al., 2020a; 2020b; 2020c), <u>However, the impact</u>

L

删除的内容:

已下移 [8]: The Great Mekong Sub-region (GMS) is one of the most important biodiversity hotspots in the world (Myers et al., 2000).

 删除的内容: It covers Yunnan province of south China, Thailand, Vietnam, Cambodia, Laos, and Myanmar.
 带格式的: 缩进: 首行缩进: 0 字符
 已移动(插入) [8]

删除的内容: The Great Mekong Sub-region (GMS) is one of the most important biodiversity hotspots in the world (Myers et al., 2000).

删除的内容: Conservation and management of forests in this area are difficult due to conflicting external social and economic factors. Cambodia, Laos, and Myanmar have been recognized among the least developed countries in the world by the United Nations. Meanwhile, the urban and rural development of Vietnam and Thailand is unbalanced, and there are still a large number of population under poverty line. Recently, the GMS has been identified as a major strategic source of raw, extractable materials in Asia (77km)

删除的内容: M

删除的内容: . A large area of natural forest has been replaced by rubber plantations (Ahrends et al., 2015) 删除的内容: - more than 2.2 million hectares -删除的内容: Almost one-quarter of cleared land has been used for plantations of the non-native rubber tree. 删除的内容: Though rubber expansion caused deforestation, cultivated rubber plantations have help [2] 已移动(插入) [7] 已移动(插入) [2] 删除的内容: 已上移 [7]: Agricultural land-uses can exacerbate many infectious diseases in Southeast Asia (Shah et al., 2019) and 删除的内容: For example, compared with natural forest, rubber plantations reduces the taxa richness of earth 删除的内容: Expansion of rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodivarcity [4] 删除的内容: Compared to primary forests, agricultural systems tend to have higher bacterial richness but low

165	of expansion of rubber plantations on regional plant diversity as well as the drivers for plant
166	diversity of rubber plantation in GMS are still unclear.
167	Latitudinal gradients in species diversity are well known (Mccoy and Connor, 1980),
168	which holds that there is a fairly regular increase in the numbers of species of some higher
169	taxon from the poles to the equator. It has been suggested that the latitudinal diversity
170	gradient could be caused by environmental variables such as temperature and precipitation.
171	Previous study also demonstrated temperature (Nottingham et al., 2018) and soil nutrients
172	(Soons et al., 2017) as well as water resource utilization efficiency (Han et al., 2020), were
173	the dominant drivers of plant diversity. However, whether latitudinal gradients in species-
174	diversity exists in rubber plantation which is greatly affected by management measures, is
175	still unknown. In addition, rubber plantations have lower biodiversity than natural forests
176	(Chaudhary et al., 2016). Generally speaking, species rich zones showed a higher proportion
177	of alien plant species in their flora (Stadler et al., 2000), thus exotic plants are ubiquitous in
178	rubber plantations which in indicating that. Though exotic species invasion significantly
179	decreased plant diversity (Xu et al., 2022) is universally known, we still do not have idea that
180	whether exotic species are the main driver for the sharp decline of plant diversity in rubber
181	plantation. Thus, we hypothesize that (1) latitudinal gradients in plant diversity would not
182	exit in rubber plantation due to strong intensity of management; (2) exotic plants will result in
183	a sharp decline in the plant diversity of rubber plantation because areas of low plant species
184	richness may be invaded more easily than areas of high plant species richness (Stohlgren et_
185	al., 1999) and exotic species may results in loss of plant diversity (Xu et al., 2022), To testify
186	these hypothesis, we surveyed a large number of plots on rubber plantations in the GMS to

4

带格式的:	字体颜色: 文字 1
带格式的:	字体颜色: 文字 1
带格式的:	缩进:首行缩进:1字符
带格式的:	字体颜色: 文字 1
带格式的: AdvOT86318	字体: (默认) Times New Roman, (中文) 80fb, 小四, 字体颜色: 文字 1, 图案: 清除

已下移 [1]: Forests that are intensively managed for production purposes generally have lower biodiversity than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations (He and Martin, 2016). Plant diversity of artificial forests is greatly affected by agricultural and management activities, such as the application of herbicides and sprout control.

删除的内容: Forests that are intensively managed for production purposes generally have lower biodiversity than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations (He and Martin, 2016). Plant diversity of artificial forests is greatly affected by agricultural and management activities, such as the application of herbicides and sprout control. However, there were few reports on the effects of forest conversion on plant diversity in this region. W

带格式的:字体:(中文)Adv0T863180fb **删除的内容:**do

删除的内容: not know, for example, if there are differences in plant diversity among countries and how exotic plants may affect local plant diversity in rubber plantations?

已移动(插入) [1]

謝除的内容: Forests that are intensively managed for production purposes generally have lower biodiversity than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations (He and Martin, 2016). Plant diversity of artificial forests is greatly affected by agricultural and management activities, such as the application of herbicides and sprout control.Two types of processes, deterministic (Lan et al., 2011) and stochastic (Hu et al., 2012), not only affect tropical forest plant community assembly, but also microbial assembly (Stegen et al., 2012; Zhou et al., 2014). However, the relative influences of the two processes on plant community for rubber plantation and drivers of plant diversity are still unclear.

删除的内容: address

删除的内容: questions

Figure 1 Sampling plot localities within rubber plantations in GMS 5

242

243 2.2 Sampling methods

Before the field investigation, we first determined the investigation route according to the 244 distribution of rubber plantation in this regions. Then, plots were randomly selected 245 246 approximately equidistant from each other (every 10-20 km according to the actual situation) along the investigation route (Yaseen, 2013). We did not deliberately select plots according 247 types of rubber plantation, thus these plots were independent from each other. Consequently, a 248 total of 240 plots, each with an area of 100 m² (10 m × 10 m), were selected in the GMS, with 249 32 plots in Vietnam, 24 in Cambodia, 15 in Laos, 73 in Thailand, 47 in Myanmar, and 49 in 250 251 China (Figure 1). We started the investigation only after the guide (local people) asked the farmer's consent. Plot measurements, such as longitude, latitude, elevation, slope degree, slope 252 aspect, rubber tree height, and canopy density were recorded in detail (Table S1). Annual and 253 254 perennial plant species, shrubs, trees and lianas as well as theirs seedlings were recorded. We 255 do not investigate bryophytes, but ferns were investigated. Species information, such as species name, height and coverage, life form (non-woody, shrub, liana or tree) (Lan et al., 2014), from 256 each plot in the rubber plantations were also recorded. We visually assigned a cover value to 257 each species in each quadrant of the plot, using an ordinal cover class scale with class limits 258 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, and thereafter every 10% up to 100%. The cover values 259 for each species in the plot were then averaged across the four quadrants (Sabatini et al., 2016). 260 261 Climate data, including annual average temperature and annual average precipitation, were 262 obtained from WorldClim (http://worldclim.org) based on the geographic coordinates of each 263 sample site.

264 2.3 Data analysis

265	Relative height (RH), relative dominance (RD, using coverage), and relative frequency (RF)	, ¹	删除的内容: According to Sun's (2000) classification of plant uses, species were divided into medicinal plants, edible
266	were calculated for each species to estimate the importance value (IV). Importance value, as		plants, economic plants, forage plants, ornamental plants, ecological plants and others (unknown use).
267	defined here, differs from previous studies (e.g., Curtis and Mcintosh 1950, 1951; Greig-		
268	Smith 1983; Linares-Palomino and Alvarez 2005) because most understory species are herbs,		
269	which make precise measure of abundance difficult. We define the importance value as:		
270	Importance value: $IV_j = RF_j + RH_j + RD_j$, Relative frequency: $RF_j = 100 \times F_j / \sum_j F_j$		删除的内容:
271	Relative height: $RH_j = 100 \times H_j / \sum_j H_j$, Relative dominance: $RD_j = 100 \times D_j / \sum_j D_j$,	删除的内容:
272	where F_j was the number of plots containing species j ; D_j was the coverage of species j ; and		
273	H_j was the height of species <i>j</i> . For local community, there was no frequency data, therefore		
274	importance value is defined as: $IV_j = RH_j + RD_j$.		
275	Species richness, the Shannon index were used to measure α diversity of each plot. It		带格式的: 缩进: 首行缩进: 1 字符
276	should be noted that the importance values of each species were used to calculate the		
277	Shannon diversity (i.e., replace "abundance" or "number of individuals" with "important		
278	value"). Principal coordinates analysis (PCoA) based on Bray-Curtis distance of species IVs	, 1 ¹	删除的内容: Whittaker's β diversity was used to estimate the diversity across different countries and was calculated as
279	(importance values) was performed to compare plant species composition across countries		follows (Whittaker, 1960) . $\beta \; w = S/m_{*} 1 \; . \label{eq:basic}$
280	using R package "amplicon". Analysis of similarity (ANOSIM) was used to test for		where S is the total species richness of all samples and m_{*} is the mean species richness of these samples.
281	differences in diversity indices among <u>countries</u> . <u>Multiple linear regression</u> was used to find	<	删除的内容: study sites
282	whether there were positive or negative correlations between diversity (richness) and		删除的内容: Linear
283	environmental variables including latitude, longitude, elevation, rainfall, temperature, slope		删除的内容:, Shannon index
284	degree, tree age, tree height as well as canopy densityMachine learning algorithm, Random		
285	forests, was used to model α diversity (richness) and rank the feature importance of		
1			

301	environmental factors with 999 iterations. In order to understand how plant compositions are
302	structured by environmental factors, a redundancy analysis (RDA) for the importance value
303	of species was carried out using the Vegan package in R environment. Statistical significance
304	was assessed using Monte Carlo tests with 999 permutations.

305 3 Results

306 3.1 Plant composition of rubber plantations

307 A total of 949 plant species, representing 550 genera and 153 families, were recorded across rubber plantations of the six countries (Table 1 & Table S2), Our results also showed that 445 308 309 (46.89%) were herbs, with a largest number of Compositae (Table 1). Plant communities of 310 rubber plantation tended to be dominated by Fabaceae, Euphorbiaceae, Poaceae, Rubiaceae, 311 and Compositae (Table <u>S3</u>). The five most common species observed were Cyrtococcum patens, 312 Chromolaena odorata, Asystasia chelonoides, Axonopus compressus, and M. pudica (Table 313 <u>\$4</u>). 237 plots containing exotic plant species, most of them were from tropical America. A 314 total of 121 (12.75%) species were identified as exotic (belonging to 45 families and 91 genera). 315 The five most common exotic species were C. odorata, M. pudica, Axonopus compressus, 316 Ageratum conyzoides, and Borreria latifolia. C. odorata and M. pudica were recorded in almost every plot (Figure 2), 317 318 PCoA and ANOSIM were used to reveal the difference in plant compositions among these 319 six countries. And the results showed that significant differences (R = 0.383, P = 0.001) in 320 species composition among these countries (Figure 3a-b). Meanwhile, the first and second axes 321 of RDA explained 5.95% and 3.11% of variation of species compositions, respectively (Figure

322 <u>4a). All environmental factors explained 18.65% of the total variation (Figure 4b). Countries,</u>

删	除	的	内	容:	
---	---	---	---	----	--

	带格 体,	i式的: 小四,	字体: 字体颜	(默认) 色:文	Times 字 1	New	Roman,	(中文)	宋
	带格 体,	;式的: 小四,	字体: 字体颜	(默认) 色:文	Times 字 1	New	Roman,	(中文)	宋
1	带格 体,	i式的: 小四,	字体: 字体颜	(默认) 色:文	Times 字 1	New	Roman,	(中文)	宋
	带格 体,	;式的: 小四,	字体: 字体颜	(默认) 色:文	Times 字 1	New	Roman,	(中文)	宋
١	带格 体,	i式的: 小四,	字体: 字体颜	(默认) 色:文	Times 字 1	New	Roman,	(中文)	宋

删除的内容: Machine learning algorithm, Random forests, was used to rank the feature importance of environmental factors with 999 iterations. To evaluate the influences of the neutral processes on plant community of rubber plantation, the null deviation was measured as the difference of the β diversity (i.e., Bray-Curtis dissimilarity) between the observed and randomly plant communities. A null deviation of zero indicates that the communities follow the stochastic or near-stochastic distribution, whereas a null deviation larger than zero indicates that deterministic processes cause the communities to be more dissimilar than null expectations (Liu et al., 2021, Zhou et al., 2014). Null deviations were calculated for plant communities across six countries from 1000 stochastic assemblages (Lee et al., 2017).

带格式的: 体,小四,	字体: 字体意	(默り 页色:	() Times 文字 1	New	Roman,	(中文)	浨
带格式的							
					1 000		

带格式的: 字体: Times New Roman, 小四 **带格式的**

带格式的: 缩进: 首行缩进: 0 字符

删除的内容: There are 597 species of medicinal plants, 163 species of edible plants, 220 species of economic plants, 64 species of forage plants, 158 species of ornamental plants, 62 species of ecological plants, and 170 species of unidentified uses under rubber plantation in GMS (Table S3).

删除的内容: S4

删除的内容: S4

删除的内容:S5

删除的内容:

已下移 [3]: The exotic species richness of rubber plantations was relatively higher in Cambodia, Vietnam, and Myanmar compared to China, Laos, and Thailand (Figure 3c).

带格式的: 缩进: 首行缩进: 1.5 字符

latitude, longitude, canopy height as well as elevation all significantly impacted plant
compositions of rubber plantations in GMS, and explained 5.62%, 3.37%, 3.14%, 1.11% and
1.10% of the total variations (Table 2).

355

Table 1 Composition of plants of rubber plantations in GMS

Types No. of		Lifeform (%)	No. of families	No. of genera	No. of species
Ferns	76 (8.00)	Non-woody plant	86 (38.05)	278 (45.65)	445 (46.89)
Gymnosperms	3 (0.32)	Liana	32 (14.16)	62 (10.18)	101 (10.64)
Angiosperm	870 (91.68)	Shrub	42 (18.58)	118 (19.38)	192 (20.23)
		Tree	66 (29.20)	151 (24.79)	211 (22.23)
Total	949 (100)	Total	226 (100.00)	609	949

358 Figure 2 Distribution maps of two common exotic species (a: Chromolaena odorata, b:

359 Mimosa pudica) of rubber plantation in the GMS (circle size is proportional to importance

360 value)

<u>Latitude</u>	<u>1</u>	<u>19.89</u>	<u>3.37</u>	<u>9.22</u>	0.001 ***
Longitude	<u>1</u>	<u>18.53</u>	<u>3.14</u>	<u>8.59</u>	0.001 ***
<u>Height</u>	<u>1</u>	<u>6.54</u>	<u>1.11</u>	3.03	0.001 ***
Elevation	<u>1</u>	<u>6.50</u>	<u>1.10</u>	<u>3.01</u>	0.001 ***
Age	<u>1</u>	<u>5.54</u>	<u>0.94</u>	<u>2.56</u>	0.001 ***
<u>Slope</u>	<u>1</u>	<u>5.01</u>	<u>0.85</u>	<u>2.32</u>	0.002 ***
Temperature	<u>2</u>	4.63	<u>0.78</u>	<u>2.16</u>	0.005**
<u>Rainfall</u>	<u>2</u>	<u>3.19</u>	<u>0.54</u>	<u>1.49</u>	0.032*
<u>Canopy</u>	<u>1</u>	4.01	<u>0.68</u>	<u>1.86</u>	0.001 ***
Aspect	<u>1</u>	<u>2.97</u>	<u>0.50</u>	<u>1.38</u>	0.073
Residual	<u>224</u>	479.91	82.68		

381

382

375 *3.2 Plant diversity of rubber plantations*

376 Species richness of rubber plantations in Laos was the highest among the six countries,

377 followed by China and Myanmar, while the richness of Thailand, Cambodia, and Vietnam

378 were relatively lower (Figure 5a). The same was true for Shannon diversity (Figure 5b).

richness; b: Shannon diversity; c: Exotic species richness).

删除的内容: 3a

删除的内容: diversity

删除的内容:3b

删除的内容: PCoA plots showed significant differences in species composition among some countries (Figure 4a). Beta diversity among countries showed that Cambodia and Vietnam had similar species compositions, as did Thailand and Myanmar (Figure 4b). The beta diversity between China and other countries was consistently high.

删除的内容:3

492 exotic species can reduce plant diversity, we analyzed the relationship between the dominance of exotic species and the species richness in the plot. In view of the fact that C. odorata and M. 493 pudica are the two most common exotic species in rubber plantations (Figure 7a) the two 494 species were selected for analysis. The importance values of exotic species C. odorata (Figure 495 496 S2a) and *M. pudica* (Figure <u>S2b</u>) were negatively correlated with species richness, suggesting that exotic species with high dominance will reduced rubber plantation diversity. However, 497 exotic species richness was positively correlated with species richness (Figure 7c). Richness of 498 communities where C. odorata (M. pudica) was present was not lower than those where it was 499 500 absent (Figure 7b). In sum, diversity of the community was reduced only when the dominance 501 of exotic species was high.

509

502

删除的内容: S2k

删除的内容:E

512 4. Discussion

513	4.1 Main drivers for plant composition and diversity of rubber plantations	ij,
514	Rubber plantations constitute one of the most important agro-ecosystems of tropical regions	
515	and play an important role in their carbon budgets (Chen et al., 2020). For, plant composition,	
516	latitude ranks the second (Table2) in terms of its impact on plant composition which	Ï
517	indicating that latitude is an important driver of plant composition of rubber plantation. For	
518	plant diversity, both multiple linear regression and random forests showed that temperature	
519	was the most important factor for plant diversity of rubber plantations. Our results consistent	
520	with previous study which revealed that temperature is the main driver for plant diversity	
521	(Nottingham et al., 2018). We were surprised to find that understory plant diversity of	
522	artificial rubber plantations increased with latitude, similar to that of the global diversity	
523	patterns (Rohde 1992; Perrigo et al., 2013) that latitudinal gradients are known in which	
524	maximum diversity does not occur near the equator (Stehli, 1968). One suggest that the	
525	diversity of plant communities was directly affected by latitude (Li et al., 2019). Our results	
526	showed that elevation was not as important as other factors which is different from our	
527	previous cognition that elevation significantly affect plant species diversity (Li et al., 2019).	
528	Plant diversity of north Laos and south China was relatively higher than other countries. This	
529	observation may be due to the large variation in elevation in these areas, which translates into	
530	greater environmental heterogeneity. In addition, greater slope may increase environmental	
531	heterogeneity and expand niche space (Morrison-Whittle and Goddard, 2015). Anyway, the	
532	latitudinal diversity gradient and temperature, could largely contribute explaining	

533 <u>composition and diversity patterns of artificial rubber plantations</u>

删除的内容: Traditional ecological theory, in part, explain

删除的内容: patterns

带格式的: 定义网格后不调整右缩进,不调整西文与中 文之间的空格,不调整中文和数字之间的空格

已下移 [4]: In artificial forests such as rubber plantations, there is no doubt that management measures and agricultural intensity are two most important factors affecting plant diversity. For example, herbicide application causes low diversity of understory plants. This is especially true of rubber plantations of Vietnam (Figure S1f).

删除的内容: Usually, species richness increases with lower latitude. However, we found that species richness increases with higher latitude, peaking at about 25 degrees which was the highest latitude we studied.

删除的内容: and decreased with longitude

删除的内容: This patterns is first widely observed in regional rubber plantations. It has been suggested that the latitudinal diversity gradient could be caused by habitat variables such elevation and slope degree.

带格式的: 字体: (默认) Times New Roman, (中文) Adv01863180fb, 小四, 字体颜色: 文字 1 **带格式的:** 字体: (中文) Adv01863180fb, 字体颜色: 文字 1

带格式的: 字体:(默认) Times New Roman,(中文) Adv0T863180fb,小四,字体颜色:文字 1 已移动(插入) [6]

删除的内容: Here, we uncovered a positive correlation between elevation (slope degree) and latitude (Figure S3). We also found that there was a negative relationship between rainfall and longitude. This may suggest that plant diversity increased with latitude mainly because elevation and slope increase with latitude, and the diversity decrease with longitude was due to decreased rainfall in the study area. Our results also showed that tree height positively correlated with understory diversity. The possible explanation for this phenomenon is that higher height possible means there are more space under the plantation and make more shade tolerant species survival.

删除的内容:

Plant diversity of north Laos and south China was relatively higher than other countries. This observation may be due to 120

带格式的:字体:(中文)Adv0T863180fb

已上移 [6]: In addition, greater slope may increase environmental heterogeneity and expand niche space

617	4.2 Not all exotic plants cause the loss of plant diversity in rubber plantations
618	Rubber plantation expansion and intensification has occurred in many regions that are key for 文之间的空格,不调整中文和数字之间的空格
619	biodiversity conservation. Monoculture plantations have been promoted to restore the world's
620	forested areas, but have done little to slow the loss of biodiversity (Zhang et al., 2021). It has
621	been hypothesized that exotic species might more easily invade areas of low species diversity
622	than areas of high species diversity (Stohlgren et al., 1999). A recent study shows exotic
623	plants account for ~17% and ~35% of the total importance value indices of natural and
624	human-modified ecosystems, respectively (Chandrasekaran et al., 2000). Here, in rubber
625	plantations, exotic plants made up roughly 12% of the total recorded species and 22.80% of
626	the coverage. C. odorata is a noxious perennial weed in many parts of the world (Kushwaha
627	et al., 1981), and it is unsurprising that it was recorded in almost all plantation plots in our
628	study. These indicated that invasion by exotic species has either already occurred or is 带格式的: 字体: (中文) 宋体, 小四, 字体颜色: 蓝色
629	inevitable in many systems (Stohlgren et al., 1999), M. pudica, the "sensitive plant", is a
630	worldwide, pan-tropical invasive species (Melkonian et al., 2014). M. pudica, as many
631	tropical grasses and herbs, is tolerant of low pH (Humphreys 1997, Paudel 2018), which
632	explains its ubiquity in acidic rubber plantation soil.
633	More importantly, our study demonstrated that the diversity of the community reduced More importantly, our study demonstrated that the diversity of the community reduced 整右缩进, 不调整西文与中文之间的空格, 不调整中文和数字之间的空格
634	only when the importance value of exotic species is large enough and not all exotic species
635	cause the loss of plant diversity in rubber plantations, which follow the theory that many
636	species can coexist in spatially heterogeneous areas as long as nutrients and light are not
637	<u>limiting (Huston and DeAngelis, 1994). Our results also were consistent with idea that</u> T 带格式的: 字体: (中文) Adv0T863180fb, 小四, 字体 颜色: 文字 1
638	inhibition of plant diversity by exotic species invasion gradually weakened with increased 颜色:文字 1

639	precipitation (Xu et al., 2022) due to higher precipitation in GMS. In addition, management	
640	of rubber plantation reduces the dominance of exotic species to a great extent, thus providing_	1
641	space for the survival of other plants,	
642	4.3 Plant composition and diversity is largely affected by of management.	
643	Forests that are intensively managed for production purposes generally have lower biodiversity	A V 100 IV 100 I V
644	than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations	
645	(He and Martin, 2016). In artificial forests such as rubber plantations, there is no doubt that	
646	management measures and agricultural intensity are two most important factors affecting plant	```````````````````````````````````````
647	diversity. The application of herbicides and sprout control causes low diversity of understory	1
648	plants, this is especially true of rubber plantations of Vietnam (Figure S1f). Also, it is not easy	
649	for farmers to clear understory plants on the steep slopes of rubber plantations at high elevation;	Ì,
650	thus high slope degree indirectly results in low agricultural intensity and high diversity, RDA	
651	analysis only explained 18.65% of the variation of community compositions, and multiple	
652	linear regression only explained 32.27% of the variation of plant diversity. Most of the	
653	unexplained variation are caused by management intensity and measures. In sum, plant	
654	compositions and diversity is largely affected by the measures and intensity of management.	
655	In poor areas, we cannot just talk about ecological goals without first understanding local	
656	cultures and economies. Well-managed forests can alleviate poverty in rural areas, as outlined	
657	by the United Nations Sustainable Development Goals (Lewis et al., 2019). Previous study	1 11 1 11 1 11
658	conducted in India demonstrated that a no-weeding practice in mature rubber plantations did	
659	not affect rubber yield (Abraham and Joseph, 2016). A similar study conducted in China also	
660	showed that natural management strategies can improve biodiversity without reducing latex	

/	带格式的: 字体: (中文) Adv0T863180fb, 小四, 字体 颜色: 文字 1
1	删除的内容:
ĺÌ	删除的内容: Suggestions to improve rubber plantation
1	plant diversity
-1	带格式的: 字体:(默认)Times New Roman,(中文) Adv0T863180fb
	带格式的: 字体: (默认) Times New Roman, (中文) Adv0T863180fb, 小四, 倾斜, 字体颜色: 文字 1, 图 案: 清除
``[带格式的: 字体: (默认) Times New Roman, (中文) Adv0T863180fb, 小四, 倾斜, 字体颜色: 文字 1, 图 案: 清除
	带格式的: 右侧: 0.93 厘米, 行距: 最小值 22.5 磅, 孤行控制
ļ.	带格式的: 字体:(默认) Times New Roman,(中文) Adv0T863180fb,倾斜,字体颜色:文字 1
	带格式的: 字体: (默认) Arial, (中文) 宋体, 小五, 非加粗, 字体颜色: 黑色
1	带格式的: 缩进: 首行缩进: 0 字符
	已移动(插入) [4]
· ,]	删除的内容:
$\langle $	删除的内容: For example, herbicide application
Ì	已上移 [2]: Previous study showed that rubber cultivation not
	only affect plant diversity (Hu et al., 2016), but also affects
	the soil fauna, bird diversity as well as bat diversity. For
	example, compared with natural forest, rubber plantations
	reduces the taxa richness of earthworm (Chaudhuri et al.,
1	2013), about 30% nematode taxa richness (Xiao et al., 2014),
1	50-60 % bird species (Aratrakorn et al., 2006; Li et al., 2013)
1	and bat species (Phommexay et al., 2011).
Ì	删除的内容 : Many tropical regions, especially the GMS,
1	contain hotspots of biodiversity that are threatened by
1	agriculture (Delzeit et al., 2017, Egli et al., 2018; Shackelford
h.	et al., 2014, Kehoe et al., 2017). We must balance
n.	conservation with the economic goals of the GMS where the
	已下移 [5]: Well-managed forests can alleviate poverty in
9	删除的内容:.
	删除的内容: T
	删除的内容:
ii.	删除的内容 : Harvesting rubber latex may be the only way
	带格式的: 字体: 非倾斜
ij	带格式的: 字体: 非倾斜
i	带格式的: 字体: 非倾斜
l	_ 已移动(插入) [5]

699	production (Lan et al., 2017d). There is strong evidence that adopting more natural
700	management strategies improves plant diversity without reducing latex production (Lan et al.,
701	2017d). More innovative management measures, such as cease of weeding and herbicide
702	application (He and Martin, 2015), must be implemented to improve the biodiversity of rubber
703	plantations, so as to promote the biodiversity of the region.
704	۹ ₀
705	5. Conclusion
706	We provide a large regional study on the plant diversity of rubber plantations in a global
707	biodiversity hotspot. Plant diversity followed global trends with respect to latitude and
708	temperature, Exotic species were very common in rubber plantations, especially where
709	agricultural intensity was strong. However, not all exotic species directly drive the loss of
710	biodiversity. Only higher dominance of some exotic species were associated with a loss of
711	plant diversity within rubber plantations. We must make greater efforts to balance agricultural
712	production with conservation goals in this region, particularly in Vietnams and Cambodia, to
713	minimize the loss of biodiversity.

715 Code availability

714

- 716 Not applicable
- 717 Authors' contributions
- 718 Guoyu Lan: Conceptualization, Methodology, Writing, Reviewing and Editing; Bangqian
- 719 Chen: Methodology, Reviewing and Editing, Chuan Yang, Rui Sun, Bangqian Chen,
- 720 Zhixiang Wu and Xicai Zhang: Investigation

带格式的: 字体: (中文) Adv0T863180fb

删除的内容: Due to the low Human Development Index, people in GMS .

must prioritize supporting their families before protecting the biodiversity of the region. It cannot fall squarely on local peoples to solve biodiversity crises.

In poor areas, we cannot just talk about ecological goals without first understanding local cultures and economies. The rubber industry has not made preserving forest biodiversity a major priority, and has struggled to meet conservation goals while minimizing economic loss (Lan et al., 2017). Our results showed that diversity of different countries varies significantly due to the variation in agricultural practice. In Vietnam, where diversity was low, rubber farmers clear the understory to facilitate tapping and other production activities (Figure S1f). The lower diversity in Cambodia may be due to the rubber plantations in northeastern which are managed by Vietnamese rubber companies. Vietnam and Cambodia, and regions that allow similar practices, augment the conflicts between agricultural production activities and biodiversity conservation. More effort must be given to balance agricultural production with biodiversity conservation goals in these regions. Thus, more innovative management measures, such as cease of weeding and herbicide application (He and Martin, 2015), must be implemented to improve the biodiversity of rubber plantations, so as to promote the biodiversity of the region. Previous study conducted in India demonstrated that a no-weeding practice in mature rubber plantations did not affect rubber yield (Abraham and Joseph, 2016). A similar study conducted in China also showed that natural management strategies can improve biodiversity without reducing latex production (Lan et al., 2017d) There

带格式的:两端对齐,缩进:首行缩进: 1.5 字符,定 义网格后自动调整右缩进,调整中文与西文文字的间距, 调整中文与数字的间距

删除的内容: longitude,

删除的内容:,

删除的内容: altitude

删除的内容: Thus, artificial rubber plantation communities still conform to some common ecological patterns.

删除的内容:

带格式的:两端对齐,定义网格后自动调整右缩进,段 落间距段前:0磅,段后:0磅,行距:2倍行距,调 整中文与西文文字的间距,调整中文与数字的间距

796	Competing interests
797	The authors declared that they have no conflicts of interest to this study.
798	Disclaimer
799	Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims
800	in published maps and institutional affiliations.
801	
802	Acknowledgements
803	We thank the help of the Rubber Research Bureau of Thailand, Perennial Crop Research
804	Institute of Myanmar, the Rubber Research Institute of Cambodia, Vietnam Agricultural
805	University, and the Yunnan Rubber Group. We would like to thank Prof. Fangliang He at
806	University of Alberta and Dr. Ian Gilman at Yale University for his assistance with English
807	language and grammatical editing.
808	
809	Funding
810	This large-scale field investigation was supported by National Natural Science Foundation of
811	China (42071418), the Lancang-Mekong international cooperation project of the Ministry of
812	Foreign Affairs (081720203994192003) and the Earmarked Fund for China Agriculture
813	Research System (CARS-33-ZP3).
814	

815 Reference

- Abraham, J., Joseph, P. A new weed management approach to improve soil health in a tropical
 plantation crop, rubber (*Hevea brasiliensis*). Exp. Agr., 52, 36-50, 2016
- 818 Ahrends, A., Hollingsworth, P.M., Ziegler, A.D., Fox, J.M., Chen, H., Su, Y., Xu, J.X.
- 819 Current trends of rubber plantation expansion may threaten biodiversity and livelihoods.

820	Global Environ. Chang., 34, 48-58, 2015.	
821	Aratrakorn, S., Thunhikorn, S., Donald, P.F. Changes in bird communities following	
822	conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird	
823	Conserv. Int., 16, 71-82, 2006.	
824	Cai, Z. Q., Zhang, Y. H., Yang, C., Wang, S. Land-use type strongly shapes community	
825	composition, but not always diversity of soil microbes in tropical China. Catena, 165,	
826	369-380, 2018.	
827	Chandrasekaran, S., Sundarapandian, S.M., Chandrasekar, P., Swamy, P.S. Exotic plant	
828	invasions in disturbed and man-modified forest ecosystems in the Western Ghats of	
829	Tamil Nadu. Tropical Forestry Research: Challenges in the New Millennium.	
830 831	Proceedings of the International Symposium, Peechi, India, 2-4 August, 2000, 32-39, 2001.	
832	Chaudhary, A., Burivalova, Z., Koh, L.P., Hellweg, S. Impact of forest management on	
833	species richness: Global meta-analysis and economic trade-offs. Sci. Rep., 6, 23954,	
834	2016.	
835	Chaudhuri, P.S., Bhattacharjee, S., Dey, A., Chattopadhyay, S., Bhattacharya, D. Impact of age	
836	of rubber (Hevea brasiliensis) plantation on earthworm communities of West Tripura (India).	
837	J Environ Biol., 34, 59-65, 2013.	
838	Chen, B.Q., Yun, T., Ma, J., Kou, W.L., Li, H.L., Yang, C., Xiao, X.M., Zhang, X., Sun, R.,	
839	Xie, G.S., Wu, Z.X. High-Precision stand age data facilitate the estimation of rubber	
840	plantation biomass: A case study of Hainan Island, China. Remote Sens., 12, 3853,	
841	2020.	
842	Chen, H., Yi, Z.F., Schmidt-Vogt, D., Ahrends, A., Beckschäfer, P., Kleinn, C., Ranjitkar, S.,	
843	Xu, J.C. Pushing the Limits: The Pattern and Dynamics of Rubber Monoculture	
844	Expansion in Xishuangbanna, SW China. PLoS ONE, 11(2), e0150062, 2016.	
845	Curtis, J.T., McIntosh, R.P. The interactions of certain analytic and synthetic	
846	phytosociological characters. Ecology, 31, 435-455, 1950.	
847	Curtis, J.T., McIntosh, R.P. An upland forest continuum in the prairie-forest border region of	
848	Wisconsin. Ecology, 32(3), 476-496, 1951.	
849	Delzeit, R., Zabel, F., Meyer, C., Václavík, T. Addressing future trade-offs between	
850	biodiversity and cropland expansion to improve food security. Reg. Environ. Change,	
851	17, 1429-1441, 2017.	
852	Egli, L., Meyer, C., Scherber, C., Kreft, H., Tscharntke, T. Winners and losers of national and	
853	global efforts to reconcile agricultural intensification and biodiversity conservation.	
854	Global Change Biol., 24, 2212-2228, 2018.	
855	Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Carsten, A., Brühl, Donald, P.F.,	
856	Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol., 23(10),	
857	538-545, 2008.	

860	Greig-Smith, P. W. Use of perches as vantage points during foraging by male and female	
861	Stonechats Saxicola torquata. Behaviour, 86(3-4), 215-236, 1983.	删除的内容:
862	Grogan, K., Pflugmacher, D., Hostert, P., Mertz, O., Fensholt, R. Unravelling the link	删除的内容:
863	between global rubber price and tropical deforestation in Cambodia. Nat Plants, 5(1),	
864	47-53, 2019.	
865	Han, Z.Q., Liu, T., Wang, T., Liu, H.F., Li, B. L. Quantification of water resource utilization	带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符, 首行缩进: -1 字符, 行距: 1.5 倍行距
866	efficiency as the main driver of plant diversity in the water-limited ecosystems. Ecol.	
867	<u>Model., 429, 108974, 2020.</u>	带格式的: 字体:(中文) 宋体,字体颜色:蓝色
868	He, P., Martin, K. 2016. Effects of rubber cultivation on biodiversity in the Mekong Region.	
869	CAB Reviews, 10, 44	
870 871	Humphreys, L.R. The Evolving Science of Grassland Improvemen. Cambridge University Press, Cambridge, UK, 1997.	删除的内容 : Hu, Y.H., Lan, G.Y., Sha, L.Q., Cao, M., Tang, Y., Li, Y.D., Xu, D.P. Strong neutral spatial effects shape
872	Kehoe, L. Romero-Muoz, A., Polaina, E., Estes, L., Kuemmerle, T. Biodiversity at risk under	tree species distributions across life stages at multiple
873	future cropland expansion and intensification. Nat. Ecol. Evol., 1, 1129-1135, 2017.	scales. PLoS ONE 7(5): e38247, 2012
874	Kerfahi, D. B. M. T., Dong, K., Go, R., Adams, J. M. Rainforest conversion to rubber	
875	plantation may not result in lower soil diversity of bacteria fungi and nematodes.	
876	Microb. Ecol., 72, 359-371, 2016.	删除的内容: -
877	Kushwaha, S.P.S., Tripathi, P.S.R.S. Population dynamics of Chromolaena odorata in	
878	successional environments following slash and burn agriculture. J Appl. Ecol., 18(2):	删除的内容:
879	529-535, 1981.	删除的内容:
880	Lan, G.Y., Hu, Y.H., Cao, M., Zhu, H. Topography related spatial distribution of dominant	
881	tree species in a tropical seasonal rain forest in China, For. Ecol. Manage., 262(8):1507-	
882	1513, 2011.	
883	Lan, G.Y., Li, Y.W., Jatoi, M.T., Tan, Z.H., Wu, Z.X., Xie, G.S. Change in soil microbial	
884	community compositions and diversity following the conversion of tropical forest to	
885	rubber plantations in Xishuangbanan, Southwest China. Trop. Conserv. Sci., 10, 1-14,	
886	2017c.	
887	Lan, G.Y., Li, Y.W., Wu, Z.X., Xie, G.S. Impact of tropical forest conversion on soil	
888	bacterial diversity in tropical region of China. Eur. J. Soil Biol., 83, 91–97, 2017a.	
889	Lan, G.Y., Li, Y.W., Wu, Z.X., Xie, G.S. Soil bacterial diversity impacted by conversion of	
890	secondary forest to rubber or eucalyptus plantations-A case study of Hainan Island,	
891	South China. For. Sci., 63(1), 87-93, 2017b.	
892	Lan, G.Y., Wu, Z.X., Chen, B.Q., Xie, G.S. Species diversity in a naturally managed rubber	
893	plantation in Hainan island, south china. Trop. Conserv. Sci., 10, 1-7, 2017d.	
894	Lan, G.Y., Wu, Z.X., Li, Y.W., Chen, B.Q. The drivers of soil bacterial communities in	
895	rubber plantation at local and geographic scales. Arch. Agron. Soil Sci., 66(3), 358-369,	
896	2020c.	

907	conversion into rubber plantations results in changes in soil fungal composition, but		
908	underling mechanisms of community assembly remain unchanged. Geoderma, 375,		
909	114505, 2020b,		
910	Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X.C. 2020a. Forest conversion		
911	changed the structure and functional process of tropical forest soil microbiome. Land		
912	Degrad. Dev., 32(2):613-627, 2021		
913	Lan, G.Y., Wu, Z.X., Xie, G.X. Characteristics of plant species diversity of rubber plantation		
914	in Hainan Island. <u>Biodivers.</u> Sci. <u>,</u> 22 (5): 658-666, 2014.		删除的内容: Biodiversity
915	Lewis, S.L., Wheeler, C.E., Mitchard, E.T.A., Koch, A. Regenerate natural forests to store		删除的内容: ence,
916	carbon. Nature, 568(7750), 25-28, 2019.		删除的内容: Lee, SH., Sorensen, J., Grady, K. Tobin, T
917	Li, S., Zou, F., Zhang, Q., Sheldon, F.H. Species richness and guild composition in rubber	i.	C., Shade, A. Divergent extremes but convergent
918	plantations compared to secondary forest on Hainan Island, China. Agroforestry Syst. 87,	η η -	recovery of bacterial and archaeal soil communities to an
919	1117-28, 2013.		ongoing subterranean coal mine fire. ISME J., 11, 1447
920	Li, Y.W., Xia, Y.J., Lei, Y.B., Deng, Y., Chen, H., Sha, L.Q., Cao, M., Deng, X.B.	- 11	1459, 2017
921	Estimating changes in soil organic carbon storage due to land use changes using a	1	删除的内容:
922	modified calculation method. Iforest, 8, 45-52, 2015.		删除的内容:
923	Li., H.M., Aide, T., Ma, Y.X., Liu, W.J., Cao, M. Demand for rubber is causing the loss of		
924	high diversity rain forest in SW China. Biodivers. Conserv., 16 (6),1731-1745, 2007.		删除的内容:
925	Linares-Palomino, R., Alvarez, S.I.P. Tree community patterns in seasonally dry tropical		
926	forests in the Cerros de Amotape Cordillera, Tumbes, Peru. For. Ecol. Manage., 209,		
927	261–272, 2005.		
928	Mccoy, E.D., Connor, E. F. Latitudinal gradients in the species diversity of north American		带格式的:无,缩进:左侧:0 厘米,悬挂缩进:1 符,首行缩进:-1 字符,定义网格后不调整右缩进
929	mammals. Evolution, 34, 193-203, 1980.		带格式的:字体:(中文) 宋体,字体颜色:蓝色
930	Melkonian, R., Moulin, L., Béna, G., Tisseyre, P., Chaintreuil, C., Heulin, K., Rezkallah,		删除的内容: Liu, L., Zhu, K., Krause, S. M.B., Li, S.P.,
931	N.,Klonowska, A., Gonzalez, S.,Simon, M., Chen, W.M., James, E. K.and Laguerre, G.,		Wang, X., Zhang, Z. C., Shen, M.W., Yang, Q.S., Lian, J.
932	The geographical patterns of symbiont diversity in the invasive legume mimosa		Wang, X.H., Ye, W.H., Zhang, J. Changes in assembly
933	pudicacan be explained by the competitiveness of its symbionts and by the host		processes of soil microbial communities during secondar succession in two subtropical forests, Soil Biol. Biochem
934	genotype. Environ. Microbiol., 16(7), 2099-2111, 2014.		154, 108144, 2021.
935	Morrison-Whittle, P., Goddard, M. R. Quantifying the relative roles of selective and neutral		
936	processes in defining eukaryotic microbial communities. ISME J., 9, 2003-2011, 2015		
937	Myers, N., Mittermeier, R. A., Mittermeier, C.G., Fonseca, G.A.B.D., Kent, J. Biodiversity		
938	hotspots for conservation priorities. Nature, 403(6772), 853-858, 2000.		
939	Nottingham, A., Fierer, N., Turner, B.L., Whitaker, J., Ostle, N.J., Mcnamara, N.P., Bardgett, *		带格式的:无,缩进:左侧:0 厘米,悬挂缩进:1 符,首行缩进:-1字符,定义网格后不调整右缩进,
940	R.D., Leff, J.W., Salinas, N., Silman, M. R., Kruuk, L. E. B., Meir, P. Temperature drives		行距: 1.5 倍行距
941	plant and soil microbial diversity patterns across an elevation gradient from the Andes to		
942	the Amazon. Ecology, 99(11), 2455-2466, 2018.		带格式的:字体:(默认)+西文正文(等线),(中文) +中文正文(等线),五号,字体颜色:自动设置

Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X. Tropical rainforest

906

删除的内容: ence,

带格式的:无, 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符, 首行缩进: -1 字符, 定义网格后不调整右缩进 **带格式的:**字体:(中文)宋体,字体颜色:蓝色

删除的内容: Liu, L., Zhu, K., Krause, S. M.B., Li, S.P., Wang, X., Zhang, Z. C., Shen, M.W., Yang, Q.S., Lian, J.Y., Wang, X.H., Ye, W.H., Zhang, J. Changes in assembly processes of soil microbial communities during secondary succession in two subtropical forests, Soil Biol. Biochem., 154, 108144, 2021. .

21

- Paudel, N. Seasonal variation in phenophases of Mimosa pudica (fabaceae) in grazed pasture 959 960 of Barandabhar corridor forest Chitwan, Nepal. Curr. Trends Biomed. Eng. Biosci., 11. DOI: 10.19080/CTBEB.2018.11.555825, 2018. 961
- Perrigo, A.L., Baldauf, S.L., Romeralo, M. Diversity of dictyostelid social amoebae in high 962 latitude habitats of Northern Sweden. Fungal Divers., 58(1), 185-198, 2013. 963
- Phommexay, P., Satasook, C., Bates, P., Pearch, M., Bumrungsri, S. 2011. The impact of 964 rubber plantations on the diversity and activity of understory insectivorous bats in southern 965 Thailand. Biodiversity and Conservation, 20:1441-56. 966
- 967 Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos, 65(3), 514-527, 1992. 968
- Sabatini, F.M., Burrascano, S., Azzella, M.M., Barbati, A., De Paulis, S., Di Santo, D. 969 970 Facioni, L., Giuliarelli, D., Lombardi, F., Maggi, O., Mattioli, W., Parisi, F., Persiani, A.,
- Ravera, S., Blasi, C. Herb-layer diversity and stand structural complexity are weak predictors 971
- of biodiversity in Fagus sylvatica forests. Ecol. Indic., 69, 126-137, 2016. 972
- 973 Schneider, D., Engelhaupt, M., Allen, K., Kurniawan, S., Krashevska, V., Heinemann, M., 974 Scheu, S. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra Indonesia. Front. Microbiol., 6, 296, 2015. 975
- Shackelford, G. E., Steward, P. R., German, R. N., Sait, S. M., Benton, T. G. Conservation 976 planning in agricultural landscapes: hotspots of conflict between agriculture and nature. 977 Divers. Distrib., 21, 357-367, 2014. 978
- Shah, H.A., Huxley, P., Elmes, J., Murray, K.A. Agricultural land-uses consistently 979 exacerbate infectious disease risks in Southeast Asia. Nat. Commun. 10, 4299, 2019. 980
- Singh, D., Slik, J.W.F., Jeon, Y.S., Tomlinson, K.W., Yang, X.D., Wang, 981
- J., Kerfahi, D., Porazinska, D.L., Adams, J.M. Tropical forest conversion to rubber 982 983 plantation affects soil micro & mesofaunal community & diversity. Sci. Rep.,
- 984 9(1):5893.doi: 10.1038/s41598-019-42333-4, 2019.
- 985 Soons, M.B., Hefting, M.M., Dorland, E., Lamers, L.P.M., Versteeg, C., Bobbink, R.
- 986 Nitrogen effects on plant species richness in herbaceous communities are more widespread
- and stronger than those of phosphorus. Biol. Conserv., 212, 390-397, 2017. 987
- Stadler, J, Trefflich, A, Klotz, S, Brandl. R.. Exotic plant species invade diversity hot spots: 988
- the alien flora of northwestern Kenya. Ecography. 23(2):169-176. 2000. 989
- Stehli, G.G. Taxonomic diversity gradients in pole location: the Recent model, p, 168-227. 990 1968.
- 991 992 Stohlgren, T.J., Binkley, D., Chong, G.W., Kalkhan, M. A., Schell, L. D., Bull,
- Otsuki, Y., Newman, G., Bashkin, M., Son, Y. Exotic plant species invade hot spots of 993

-1	删除的内	容:				
	首行缩进:	-1 字符 1, 不调整	符,定义 隆西文与	网格后	悬挂缩进: 不调整右缩: 间的空格,	进,行距:
{	带格式的: 首行缩进:	缩进: 之	三侧: 0	厘米,	悬挂缩进:	1 字符,
ļ	首行缩进:	-1 字符	Ĵ			

文和数字之间的空格

悬挂缩进: 不调整了

1 字 征

995	native plant diversity. Ecol. Monogr., 69(1): 25-46. 1999,	{	带格式的:字体:(中文) 宋体,字体颜色:蓝色
996	Sun, H.L. 2000. Encyclopedia of resource science of China [M]. Beijing: Encyclopedia of	1	删除的内容: Stegen, J., Lin, X., Konopka,
997	China Press		A., Fredrickson, J. K. Stochastic and deterministic
998	Tripathi, B. M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A. N., Adams, J.		assembly processes in subsurface microbial
999	M. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial	l	communities. ISME J., 6, 1653–1664, 2012
1000	tropics too. Microb. Ecol., 64: 474-484, 2012.		
1001	Warren-Thomas, E.M., Edwards, D.P., Bebber, D.P., Chhang, P., Diment, A. N., Evans,		
1002	T.D., Lambrick, F.H., Maxwell, J.F., Nut, M., O'Kelly, H.J., Theilade, I., Dolman, P.M.		
1003	Protecting tropical forests from the rapid expansion of rubber using carbon		
1004	payments. Nat. Commun., 9(1), 911, 2018.		
1005	Wu, J., Wang, X., Zhong, B., Yang, A., Liu, Q. Ecological environment assessment for	1	删除的内容: Whittaker, R. H. Vegetation of the Siskiyou
1006	Greater Mekong Subregion based on pressure-state-response framework by remote		Mountains, Oregon and California. Ecol. Monogr., 30(4),
1007	sensing. Ecol. Indic., 117, 106521, 2020.	l	279-338, 1960 .
1008	Xiao, C.W., Li, P., Feng, Z.M., Yang, Y.Z., You, Z.L., Yu M., Zhang, X.Z. Latest 30-m map		
1009	of mature rubber plantations in Mainland Southeast Asia and Yunnan province of China:		
1010	Spatial patterns and geographical characteristics. Prog. Phys. Geog., 030913332098374.		
1011	10.1177/0309133320983746, 2021.		
1012	Xiao, H.F., Tian, Y.H., Zhou, H.P., Ai, X.S., Yang, X.D., Schaefer, D.A. Intensive rubber		
1013	cultivation degrades soil nematode communities in Xishuangbanna, southwest China. Soil		
1014	Biol. Biochem., 76, 161-169, 2014.	[带格式的: 行距: 1.5 倍行距
1015	Xu, H.W., Liu, Q., Wang, S.Y., Yang, G.S., Xue, S. A global meta-analysis of the impacts of	- (
1016	exotic plant species invasion on plant diversity and soil properties. Sci. Total Environ.,		
1017	<u>810, 152286, 2022,</u>	1	带格式的:字体颜色:蓝色
1018	Xu, J.C. China's new forests aren't as green as they seem. Nature, 477, 371, 2011.		
1019	Yaseen, S. D. Prevalence of economically important fungal diseases at different phenological		
1020	stages of peanut (Arachis hypogaea L.), pearl millet (Pennisetum glaucum L.) and		
1021	sorghum (Sorghum bicolor L.) in sub-zone Hamelmalo. J. Agr. Econ. Dev., 2(6), 237-245,		
1022	2013.		
1023	Zabel, F., Delzeit, R., Schneider, J.M., Seppelt, R., Mauser, W., Václavík, T. Global impacts	ſ	副除始由效. 7km I.7 Dave V. 7km D. V. V.
1024	of future cropland expansion and intensification on agricultural markets and	/	删除的内容: Zhou, J.Z., Deng, Y., Zhang, P., Xue, K., Liang, Y.T., Van Nostrand, J.D., Yang, Y.F., He, Z. L., Wu,
1025	biodiversity. Nat. Commun., 10, 2844, 2019.	_/	L.Y., Stahl, D.A. Stochasticity, succession, and
1026	Zhang, J., Fu, B., Stafford-Smith, M., Wang, S., Zhao, W. Improve forest restoration	1	environmental perturbations in a fluidic ecosystem. Proc.
1027 	initiatives to meet sustainable development goal. Nat. Ecol. Evol., 5(1), 10-13, 2021.	/	Nat. Acad. Sci. USA, 111 (9):E836-E845, 2014.
1028	•		Zhou, Q. A., Wei, J. Analysis on Chinese ODA to the Greater Mekong River Sub-region. Around Southeast Asia,
I			10: 24-29, 2009.

Ziegler, A. D., Fox, J. M., Xu, J. The rubber juggernaut.

Science, 324, 1024-1025,2009. .

1047	Figure 1 Sampling plot localities within rubber plantations in GMS
1048	Figure 2 Distribution maps of two common exotic species (a: Chromolaena odorata, b:
1049	Mimosa pudica) of rubber plantation in the GMS (circle size is proportional to importance
1050	value)
1051	Figure 3 Significant difference in plant community compositions of rubber plantations among
1052	countries in GMS. a: Principal coordinate analysis (PCoA) based on Bray-curtis distance; b:
1053	Analysis of similarity among countries.
1054	Figure 4 Redundancy analysis of plant community compositions of rubber plantation in the
1055	GMS (a: RDA ordination, b: Percentage of explained and unexplained by RDA results)
1056	Figure 5 Plant species diversity of rubber plantations across countries in the GMS (a: species
1057	richness; b: Shannon diversity; c: Exotic species richness).
1058	Figure <u>6</u> Factors affecting plant diversity of rubber plantation. a) Predicting species richness
1059	by using multiple linear regression (The red point was the observed richness, the green solid
1060	line was the estimated richness, and the grey solid line was the 95% confidence interval. y:

Figure captions

1046

1061 <u>Richness</u>, x1: Latitude, x2: Elevation, x3: Slope, x4: Age, x 5: Height, x6:
1062 <u>Rainfall</u>, x7: Temperature.) b): Predictions of the importance of environmental variables

based on random forests,
Figure 7 Effects of exotic species on plant diversity of rubber plantations in the GMS (a:)
Frequency of the most common exotic species; b: Richness comparison of different
communities (sky blue bar: plots without *C. odorata* and *M. pudica*; blue bar: plots with both *C. odorata* and *M. pudica*; red bar: plots only with *C. odorata*; yellow bar: plots only with *M.*

带格式的:字体:(中文) 宋体,字体颜色:蓝色

删除的内容:3

删除的内容: Figure 4 Beta diversity of rubber plantations in the GMS (a: PCoA ordination plot, b: Whittaker's beta diversity (circle size is proportional to beta diversity value))
删除的内容: 5

删除的内容: Linear regressions of species richness of rubber plantation with environmental variables (a: latitude; b: longitude; c: elevation; d: rainfall; e: temperature; f: slope degree; g: tree age, h: tree height; i: canopy density)

删除的内容: Figure 6 Divers of plantation community or rubber plantation in GMS (a: Predictions of the importance of environmental variables based on random forests; b: Boxplots showing the relative changes in deterministic and stochastic processes assessed by null deviation analysis. A null deviation close to zero suggests that stochastic processes are more important in structuring the community, whereas a null deviation larger than zero indicates that deterministic processes are more important).

带格式的: 行距: 2 倍行距

1087 given plot),	 删除的内容:

第 3 页: [1] 删除的内容

Administrator

Conservation and management of forests in this area are difficult due to conflicting external social and economic factors. Cambodia, Laos, and Myanmar have been recognized among the least developed countries in the world by the United Nations. Meanwhile, the urban and rural development of Vietnam and Thailand is unbalanced, and there are still a large number of population under poverty line. Recently, the GMS has been identified as a major strategic source of raw, extractable materials in Asia (Zhou and Wei, 2009).

In the GMS, logging, mining, and slash and burn agriculture contribute to deforestation and forest degradation.

第 3 页: [2] 删除的内容	Administrator	2022/3/8 10:45:00
------------------	---------------	-------------------

Though rubber expansion caused deforestation, cultivated rubber plantations have helped alleviate poverty in low-income regions, and rubber cultivation is the main economic source of farmers in remote areas in some areas of the GMS, such as Laos, Myanmar and Cambodia (Figure S1c-e).

第 3 页: [3] 删除的内容	Administrator	2022/3/8 14:45:00
------------------	---------------	-------------------

For example, compared with natural forest, rubber plantations reduces the taxa richness of earthworm (Chaudhuri et al., 2013), about 30% nematode taxa richness (Xiao et al., 2014), 50-60 % bird species (Aratrakorn et al., 2006; Li et al., 2013) and bat species (Phommexay et al., 2011).

Expansion of rubber plantations is a resurgent driver of deforestation, carbon emissions, and biodiversity loss in this region (Xu, 2011; Warren-Thomas et al., 2018). It is indisputable that the large-scale rubber cultivation in countries of the GMS has an outsized impact on the ecosystem of tropical regions.

第 3 页: [5] 删除的内容	Administrator	2022/3/5 14:33:00

Compared to primary forests, agricultural systems tend to have higher bacterial richness but lower fungal richness (Lan et al., 2017a; Cai et al., 2018; Tripathi et al., 2012; Kerfahi et al., 2016).

第 12 页:[6] 删除的内容 Administrator 2022/3/	7 15:18:00
--	------------

Figure 4 Beta diversity of rubber plantations in the GMS (a: PCoA ordination plot, b:

Whittaker's beta diversity (circle size is proportional to beta diversity value))

第 12 页: [7] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [7] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [7] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [7] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [8] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [8] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		

第 12 页: [9] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗	Multitistration	2022, 0, 1 11.00.00
J 14. J. 13, HEARING		
第 12 页: [9] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [10] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [10] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [11] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
		2222 /2 /5 / 1 22 22
第 12 页: [11] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [12] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [12] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [13] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		2022/ 3/ 7 14.30.00
J M*•• (J'KI, HENHAII		
第 12 页: [13] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [14] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		
第 12 页: [14] 带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非加粗		, 0,
第 12 页: [14] 带格式的	Administrator	2022/3/7 14:38:00

字体:小四,非加粗

第 12 页: [14]	带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非	「加粗		
第 12 页: [14]	带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非			
, (⊢, , ⊢,			
第 12 页: [14]	带格式的	Administrator	2022/3/7 14:38:00
字体:小四,非	「加粗		
第 12 页: [15]	删除的内容	Administrator	2022/3/5 16:36:00
Linear regress	sions of species richnes	ss of rubber plantation with envir	ronmental
variables (a: l	atitude; b: longitude; c	: elevation; d: rainfall; e: temper	ature; f: slope
degree a tra	e age, h: tree height; i:	canopy density)	
ucgree, g. net	e uge, in tree height, i	canopy achisity)	
ucgree, g. net			
第 12 页: [16]		Administrator	2022/3/7 14:31:00
第 12 页: [16]	带格式的		
第 12 页: [16]	带格式的 mesNewRomanPSMT, (中	Administrator	
第 12 页: [16] 字体: (默认) Tii +西文正文 (等	带格式的 mesNewRomanPSMT, (中 线)	Administrator	色: 自动设置, (国际)
第 12 页: [16] 字体: (默认) Tiu	带格式的 mesNewRomanPSMT, (中 线)	Administrator	
第 12 页: [16] 字体: (默认) Tii +西文正文 (等	带格式的 mesNewRomanPSMT, (中 线)	Administrator 文) TimesNewRomanPSMT, 字体颜f	色: 自动设置, (国际)
第 12 页: [16] 字体: (默认) Tin +西文正文 (等 第 12 页: [17] 字体: 倾斜	带格式的 mesNewRomanPSMT, (中 线) 带格式的	Administrator 文) TimesNewRomanPSMT, 字体颜f	色: 自动设置, (国际)
第 12 页: [16] 字体: (默认) Tin +西文正文 (等 第 12 页: [17]	带格式的 mesNewRomanPSMT, (中 线) 带格式的	Administrator 文) TimesNewRomanPSMT, 字体颜f	色: 自动设置, (国际)
第 12 页: [16] 字体: (默认) Tin +西文正文 (等 第 12 页: [17] 字体: 倾斜	带格式的 mesNewRomanPSMT, (中 线) 带格式的	Administrator 文) TimesNewRomanPSMT, 字体颜色 Administrator	色: 自动设置,(国际) 2022/3/7 15:42:00
 第 12 页: [16] 字体: (默认) Tin +西文正文 (等 第 12 页: [17] 字体: 倾斜 第 12 页: [17] 字体: 倾斜 	带格式的 mesNewRomanPSMT, (中 线) 带格式的 带格式的	Administrator 文) TimesNewRomanPSMT, 字体颜色 Administrator	色: 自动设置, (国际) 2022/3/7 15:42:00
 第 12 页: [16] 字体: (默认) Tin +西文正文 (等 第 12 页: [17] 字体: 倾斜 第 12 页: [17] 	带格式的 mesNewRomanPSMT, (中 线) 带格式的 带格式的	Administrator 文) TimesNewRomanPSMT, 字体颜色 Administrator	色: 自动设置, (国际) 2022/3/7 15:42:00
 第 12 页: [16] 字体: (默认) Tin +西文正文 (等 第 12 页: [17] 字体: 倾斜 第 12 页: [17] 字体: 倾斜 	带格式的 mesNewRomanPSMT, (中 线) 带格式的 带格式的	Administrator 文) TimesNewRomanPSMT, 字体颜色 Administrator Administrator	色: 自动设置, (国际) 2022/3/7 15:42:00 2022/3/7 15:42:00

第 12 页: [18] 删除的内容	Administrator	2022/3/7 15:41:00

Diversity was significantly correlated with latitude, longitude, and elevation (Figure 5a-c). Linear regressions showed that diversity indices of richness, Shannon diversity, and Simpson diversity significantly increased with latitude and elevation (p < 0.05), however deceased with longitude (p < 0.001). Slope (p < 0.001) (Figure 5f) and tree height (p < 0.001) (Figure 5h) also were also important factors influencing diversity of rubber plantations. Rubber tree ages, canopy density, rainfall, and temperature showed no effects on diversity (p > 0.05).

第 12 页: [18] 删除的内容

Diversity was significantly correlated with latitude, longitude, and elevation (Figure 5a-c). Linear regressions showed that diversity indices of richness, Shannon diversity, and Simpson diversity significantly increased with latitude and elevation (p < 0.05), however deceased with longitude (p < 0.001). Slope (p < 0.001) (Figure 5f) and tree height (p < 0.001) (Figure 5h) also were also important factors influencing diversity of rubber plantations. Rubber tree ages, canopy density, rainfall, and temperature showed no effects on diversity (p > 0.05).

第 12 页: [18] 删除的内容	Administrator	2022/3/7 15:41:00
Diversity was significantly co	orrelated with latitude, longitud	de, and elevation (Figure
5a-c). Linear regressions show	wed that diversity indices of ri-	chness, Shannon diversity,
and Simpson diversity signifi	cantly increased with latitude	and elevation ($p < 0.05$),
however deceased with longi	tude ($p < 0.001$). Slope ($p < 0$.	001) (Figure 5f) and tree
height ($p < 0.001$) (Figure 5h) also were also important fact	ors influencing diversity
of rubber plantations. Rubber	tree ages, canopy density, rain	nfall, and temperature
showed no effects on diversit	y (<i>p</i> > 0.05).	

第 12 页: [18] 删除的内容 Administrator	2022/3/7 15:41:00
----------------------------------	-------------------

Diversity was significantly correlated with latitude, longitude, and elevation (Figure 5a-c). Linear regressions showed that diversity indices of richness, Shannon diversity, and Simpson diversity significantly increased with latitude and elevation (p < 0.05),

however deceased with longitude (p < 0.001). Slope (p < 0.001) (Figure 5f) and tree height (p < 0.001) (Figure 5h) also were also important factors influencing diversity of rubber plantations. Rubber tree ages, canopy density, rainfall, and temperature showed no effects on diversity (p > 0.05).

Figure 6 Divers of plantation community or rubber plantation in GMS (a: Predictions of the importance of environmental variables based on random forests; b: Boxplots showing the relative changes in deterministic and stochastic processes assessed by null deviation analysis. A null deviation close to zero suggests that stochastic processes are more important in structuring the community, whereas a null deviation larger than zero indicates that deterministic processes are more important)

Plant diversity of north Laos and south China was relatively higher than other countries. This observation may be due to the large variation in elevation (for north Laos, elevation ranges from 300 to 900 m; for south China, elevation ranges from 100-1100 m) in these areas, which translates into greater environmental heterogeneity. We also found greater plant diversity at higher elevations (Figure 5c), which may be caused by the reduced agricultural activities on those terrains. It is not easy for farmers to clear understory plants on the steep slopes of rubber plantations at high elevation; thus high slope degree indirectly results in low agricultural intensity. In addition, greater slope may increase environmental heterogeneity and expand niche space (Morrison-Whittle and Goddard, 2015). In sum, the traditional ecological hypotheses, such as the latitudinal diversity gradient and niche partitioning, could also contribute to explaining diversity patterns of artificial rubber plantations. However, comparison of the diversity between rubber plantation and nearby natural forest needs further research.

第 16 页: [21] 删除的内容	Administrator	2022/3/5 16:52:00
Many tropical regions, espe	cially the GMS, contain hotsp	oots of biodiversity that are
threatened by agriculture (De	elzeit et al., 2017, Egli et al., 20	18; Shackelford et al., 2014,
Kehoe et al., 2017). We must	balance conservation with the	economic goals of the GMS
where the livelihood of man	y people rely on rubber plantat	ions.

第 16 页:	[22] 删	除的内容
---------	--------	------

Administrator

Harvesting rubber latex may be the only way for many rural populations to generate stable income, but rubber production does not assume a comfortable living. For example, in Cambodia, many school children have to harvest rubber latex after classes to support their families (Figure S1e).

第 17 页: [23] 删除的内容	Administrator	2022/3/7 16:51:00
--------------------	---------------	-------------------

Due to the low Human Development Index, people in GMS

must prioritize supporting their families before protecting the biodiversity of the region. It cannot fall squarely on local peoples to solve biodiversity crises.

In poor areas, we cannot just talk about ecological goals without first understanding local cultures and economies. The rubber industry has not made preserving forest biodiversity a major priority, and has struggled to meet conservation goals while minimizing economic loss (Lan et al., 2017). Our results showed that diversity of different countries varies significantly due to the variation in agricultural practice. In Vietnam, where diversity was low, rubber farmers clear the understory to facilitate tapping and other production activities (Figure S1f). The lower diversity in Cambodia may be due to the rubber plantations in northeastern which are managed by Vietnamese rubber companies. Vietnam and Cambodia, and regions that allow similar practices, augment the conflicts between agricultural production activities and biodiversity conservation. More effort must be given to balance agricultural production with biodiversity conservation goals in these regions. Thus, more innovative management measures, such as cease of weeding and herbicide application (He and Martin, 2015),

must be implemented to improve the biodiversity of rubber plantations, so as to promote the biodiversity of the region. Previous study conducted in India demonstrated that a no-weeding practice in mature rubber plantations did not affect rubber yield (Abraham and Joseph, 2016). A similar study conducted in China also showed that natural management strategies can improve biodiversity without reducing latex production (Lan et al., 2017d). There is strong evidence that adopting more natural management strategies improves plant diversity without reducing latex production (Lan et al., 2017d). Thus, more innovative management measures must be implemented to improve the plant diversity of rubber plantations, so as to promote the biodiversity of the region.