

1 **Main drivers of plant diversity patterns of rubber plantations in the**
2 **Greater Mekong Sub-region**

3 Guoyu Lan^{a,c#*}, Bangqian Chen^{a,c#*}, Chuan Yang^{a,c}, Rui Sun^{a,c}, Zhixiang Wu^{a,c}, Xicai

4 Zhang^{a,c}

5

6 a. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou

7 City, Hainan Province, 571737, P. R. China;

8 c. Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture

9 and Rural Affairs, Danzhou City, Hainan Province, 571737, P. R. China

10

11 #These authors contributed equally to this work.

12 *Author for correspondence

13 Tel: +86-898-23301800

14 Fax: +86-898-23300315

15 E-mail: langyri@163.com

16 Running headline: Drivers of plant diversity of rubber plantations

17

18 **Abstract:**

19 The Greater Mekong Sub-region (GMS) is one the global biodiversity hotspots. However, the
20 diversity has been seriously threatened due to environmental degradation and deforestation,
21 especially by expansion of rubber plantations. Yet, little is known about the impact of
22 expansion of rubber plantations on regional plant diversity as well as the drivers for plant
23 diversity of rubber plantation in this region. In this study, we analyzed plant diversity patterns
24 of rubber plantations in the GMS based on a ground survey of a large number of samples. We
25 found that diversity varied across countries due to varying agricultural intensities. Laos had
26 the highest diversity, followed China, Myanmar, Cambodia. Plant species richness of Laos
27 was about 1.5 times that of Vietnam. We uncovered latitudinal gradients in plant diversity
28 across these artificial forests of rubber plantations and these gradients caused by
29 environmental variables such as temperature. Results of RDA, multiple regression as well as
30 Random Forest demonstrated that latitude and temperature were the two most important
31 drivers for the composition and diversity of rubber plantations in GMS. Meanwhile, we also
32 found that higher dominance of some exotic species (such as *Chromolaena odorata* and
33 *Mimosa pudica*) were associated with a loss of plant diversity within rubber plantations,
34 however, not all exotic plants cause the loss of plant diversity in rubber plantations. In
35 conclusion, not only environmental factors (temperature), but also exotic species were the
36 main factors affecting plant diversity of these artificial stands. Much more effort should be
37 made to balance agricultural production with conservation goals in this region, particularly to
38 minimize the diversity loss in Vietnam and Cambodia.

39 **Keywords:** Rubber plantation, Plant diversity, Exotic species, Mekong regions, Greater

删除的内容: then

删除的内容: random

删除的内容: forests

43 Mekong Sub-regions (GMS)

44 **1. Introduction**

45 Many tropical regions contain hotspots of biodiversity (Myers et al., 2000), especially for the
46 Great Mekong Sub-region (GMS), threatened by agriculture (Delzeit et al., 2017; Egli et al.,
47 2018; Shackelford et al., 2014; Kehoe et al., 2017). Much of the land has recently been
48 converted from forest to agriculture (Li et al., 2007), and rubber plantations have quickly
49 expanded throughout the region (Ziegler et al., 2009; Li et al., 2015; Ahrends et al., 2015)
50 due to a surge in the global demand for natural rubber, driven largely by the growth of tire
51 and automobile industries. For example, 23.5% of Cambodia's forest cover was destroyed
52 between 2001 and 2015 make way for crops such as rubber (Figure S1h) and palm oil
53 (Grogan et al., 2019). In southwest China, nearly 10% of the total area of nature reserves had
54 been converted to rubber monoculture by 2010 (Chen et al., 2016). At present, GMS are
55 globally important rubber-planting regions (Xiao et al., 2021).

56 Agricultural land-uses can exacerbate many infectious diseases in Southeast Asia (Shah et
57 al., 2019) and reduce biodiversity (Xu, 2011; Warren-Thomas et al., 2018; Fitzherbert et al.,
58 2018; Zabel et al., 2019; Singh et al., 2019). Previous study have shown that rubber
59 cultivation not only affect plant diversity (Hu et al., 2016), but also affects the soil fauna
60 (Chaudhuri et al., 2013; Xiao et al., 2014), bird diversity (Aratrakorn et al., 2006; Li et al.,
61 2013) as well as bat diversity (Phommexay et al., 2011). There is also a large body of
62 literature on the effects of forest conversion from tropical forest to rubber plantations on soil
63 microbial composition and diversity (Tripathi et al., 2012; Schneider et al., 2015; Kerfahi et
64 al., 2016, Lan et al., 2017a; 2017b; 2017c; Cai et al., 2018; Lan et al., 2020a; 2020b; 2020c).

删除的内容: showed

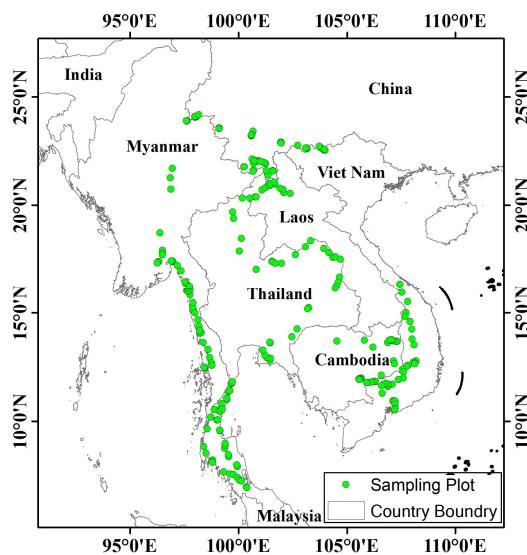
66 However, the impact of expansion of rubber plantations on regional plant diversity as well as
67 the drivers for plant diversity of rubber plantation in GMS are still unclear.

68 Latitudinal gradients in species diversity are well known (Mccoy and Connor, 1980),
69 which holds that there is a fairly regular increase in the numbers of species of some higher
70 taxon from the poles to the equator. It has been suggested that the latitudinal diversity
71 gradient could be caused by environmental variables such as temperature and precipitation.

72 Previous studies have also demonstrated temperature (Nottingham et al., 2018) and soil
73 nutrients (Soons et al., 2017) as well as water resource utilization efficiency (Han et al.,
74 2020), were the dominant drivers of plant diversity. However, whether latitudinal gradients in
75 species-diversity exists in rubber plantation which is greatly affected by management
76 measures, is still unknown.

77 In addition, rubber plantations have lower biodiversity than natural forests (Chaudhary et
78 al., 2016). Generally speaking, species rich zones showed a higher proportion of alien plant
79 species in their flora (Stadler et al., 2000), thus exotic plants are ubiquitous in rubber
80 plantations which in indicating that. Though exotic species invasion significantly decreased
81 plant diversity (Xu et al., 2022) is universally known, we still do not have idea that whether
82 exotic species are the main driver for the sharp decline of plant diversity in rubber plantation.
83 Thus, we hypothesize that (1) latitudinal gradients in plant diversity would not exit in rubber
84 plantation due to strong intensity of management; (2) exotic plants will result in a sharp
85 decline in the plant diversity of rubber plantation because areas of low plant species richness
86 may be invaded more easily than areas of high plant species richness (Stohlgren et al., 1999)
87 and exotic species may results in loss of plant diversity (Xu et al., 2022). To test these

删除的内容: study


删除的内容: ify

90 hypothesis, we surveyed a large number of plots on rubber plantations in the GMS to
91 investigate plant diversity and analyzed the associated drivers. Our study provides an
92 empirical case for understanding the effect of rubber plantations on plant diversity in the
93 Greater Mekong region and the restoration and protection of biodiversity in this region.

94 **2. Methods**

95 **2.1 Study area**

96 The Mekong River Basin has a total length of 4880 km and a drainage area of 795000 square
97 kilometers, with 326 million people living in the basin. The GMS encompasses a variety of
98 climate types and geographical characteristics, and is rich in water and biological resources
99 (Wu et al., 2020). Rubber plantations are one of the most widespread vegetation types in the
100 region, and are distributed throughout the south of Yunnan province, almost all states of
101 Thailand and Laos, the southern half of Vietnam and Myanmar, and the eastern half of
102 Cambodia.

104

Figure 1 Sampling plot localities within rubber plantations in GMS

105

106 **2.2 Sampling methods**

107 Before the field investigation, we first determined the investigation route according to the
108 distribution of rubber plantation in this regions. Then, plots were randomly selected
109 approximately equidistant from each other (every 10-20 km according to the actual situation)
110 along the investigation route (Yaseen, 2013). We did not deliberately select plots according
111 types of rubber plantation, and thus these plots were independent from each other.
112 Consequently, a total of 240 plots, each with an area of 100 m² (10 m × 10 m), were selected
113 in the GMS, with 32 plots in Vietnam, 24 in Cambodia, 15 in Laos, 73 in Thailand, 47 in
114 Myanmar, and 49 in China (Figure 1).

115 We started the investigation only after the guide (local people) asked the farmer's consent.

116 Plot measurements, such as longitude, latitude, elevation, slope degree, slope aspect, rubber
117 tree height, and canopy density were recorded in detail (Table S1). Annual and perennial plant
118 species, shrubs, trees and lianas as well as theirs seedlings were recorded. We do not investigate
119 bryophytes, but ferns were investigated. Species information, such as species name, height and
120 coverage, life form (non-woody, shrub, liana or tree) (Lan et al., 2014), from each plot in the
121 rubber plantations were also recorded. We visually assigned a cover value to each species in
122 each quadrant of the plot, using an ordinal cover class scale with class limits 0.5%, 1%, 2%,
123 5%, 10%, 15%, 20%, and thereafter every 10% up to 100%. The cover values for each species
124 in the plot were then averaged across the four quadrants (Sabatini et al., 2016). Climate data,
125 including annual average temperature and annual average precipitation, were obtained from

带格式的: 缩进: 首行缩进: 1 字符

126 WorldClim2 ([Fick and Hijmans, 2017](#)) (<http://worldclim.org>) based on the geographic
127 coordinates of each sample site.

128 **2.3 Data analysis**

129 Relative height (RH), relative dominance (RD , using coverage), and relative frequency (RF)
130 were calculated for each species to estimate the importance value (IV). Importance value, as
131 defined here, differs from previous studies (e.g., Curtis and McIntosh 1950, 1951; Greig-
132 Smith 1983; Linares-Palomino and Alvarez 2005) because most understory species are herbs,
133 which make precise measure of abundance difficult. We define the importance value as:

134 Importance value: $IV_j = RF_j + RH_j + RD_j$, Relative frequency: $RF_j = 100 \times F_j / \sum F_j$
135 Relative height: $RH_j = 100 \times H_j / \sum H_j$, Relative dominance: $RD_j = 100 \times D_j / \sum D_j$
136 where F_j was the number of plots containing species j ; D_j was the coverage of species j ; and
137 H_j was the height of species j . For local community, there was no frequency data, therefore
138 importance value is defined as: $IV_j = RH_j + RD_j$.

139 Species richness, the Shannon index were used to measure α diversity of each plot. It
140 should be noted that the importance values of each species were used to calculate the
141 Shannon diversity (i.e., replace “abundance” or “number of individuals” with “important
142 value”). Principal coordinates analysis (PCoA) based on Bray–Curtis distance of species IVs
143 (importance values) was performed to compare plant species composition across countries
144 using R package “amplicon”. Analysis of similarity (ANOSIM) was used to test for
145 differences in diversity indices among countries. Multiple linear regression was used to find
146 whether there were positive or negative correlations between diversity (richness) and
147 environmental variables including latitude, longitude, elevation, rainfall, temperature, slope

148 degree, tree age, tree height as well as canopy density. Machine learning algorithm, Random
149 Forest (Breiman, 2001), was used to model α diversity (richness) and rank the feature
150 importance of environmental factors with 999 iterations. In order to understand how plant
151 compositions are structured by environmental factors, a redundancy analysis (RDA) for the
152 importance value of species was carried out using the Vegan package (version 2.5-7).
153 (Oksanen et al., 2020) in R (version 4.04) environment (R Core Team, 2021). Statistical
154 significance was assessed using Monte Carlo tests with 999 permutations.

155 3 Results

156 3.1 Plant composition of rubber plantations

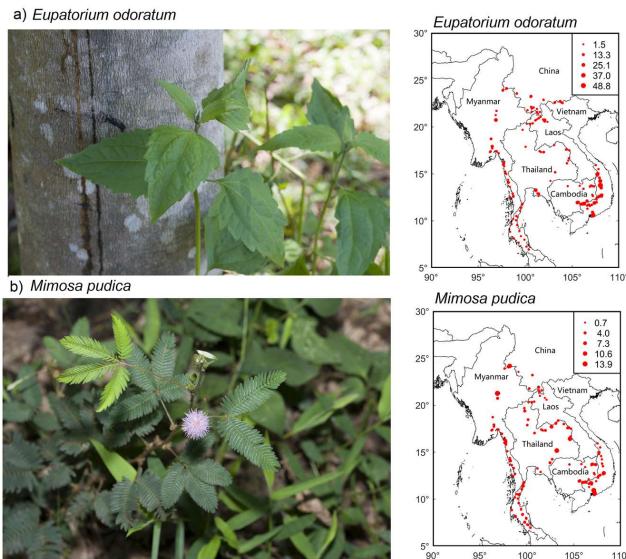
157 A total of 949 plant species, representing 550 genera and 153 families, were recorded across
158 rubber plantations of the six countries (Table 1 &Table S2). Our results also showed that 445
159 (46.89%) were herbs, with a largest number of Compositae (Table 1). Plant communities of
160 rubber plantation tended to be dominated by Fabaceae, Euphorbiaceae, Poaceae, Rubiaceae,
161 and Compositae (Table S3). The five most common species observed were *Cyrtococcum patens*,
162 *Chromolaena odorata*, *Asystasia chelonoides*, *Axonopus compressus*, and *M. pudica* (Table
163 S4). 237 plots containing exotic plant species, most of them were from tropical America. A
164 total of 121 (12.75%) species were identified as exotic (belonging to 45 families and 91 genera).
165 The five most common exotic species were *C. odorata*, *M. pudica*, *Axonopus compressus*,
166 *Ageratum conyzoides*, and *Borreria latifolia*. *C. odorata* and *M. pudica* were recorded in almost
167 every plot (Figure 2).

168 PCoA and ANOSIM were used to reveal the difference in plant compositions among these
169 six countries. And the results showed that significant differences ($R = 0.383$, $P = 0.001$) in

删除的内容: forest

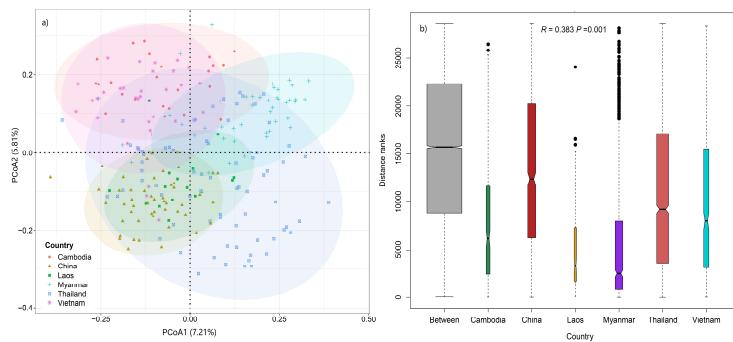
删除的内容: s

172 species composition among these countries (Figure 3a-b). Meanwhile, the first and second axes
 173 of RDA explained 5.95% and 3.11% of variation of species compositions, respectively (Figure
 174 4a). All environmental factors explained 18.65% of the total variation (Figure 4b). Countries,
 175 latitude, longitude, canopy height as well as elevation all significantly impacted plant
 176 compositions of rubber plantations in GMS, and explained 5.62%, 3.37%, 3.14%, 1.11% and
 177 1.10% of the total variations (Table 2).

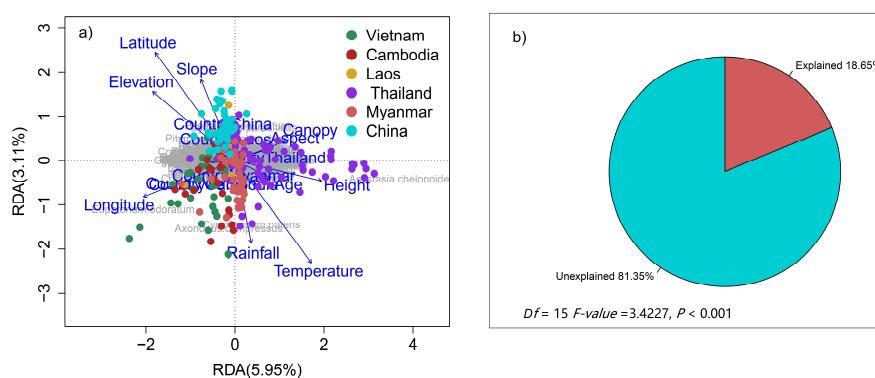

178

179

Table 1 Composition of plants of rubber plantations in GMS


Types	No. of	Lifeform (%)	No. of families	No. of genera	No. of species
Ferns	76 (8.00)	Non-woody plant	86 (38.05)	278 (45.65)	445 (46.89)
Gymnosperms	3 (0.32)	Liana	32 (14.16)	62 (10.18)	101 (10.64)
Angiosperm	870 (91.68)	Shrub	42 (18.58)	118 (19.38)	192 (20.23)
		Tree	66 (29.20)	151 (24.79)	211 (22.23)
Total	949 (100)	Total	226 (100.00)	609	949

180



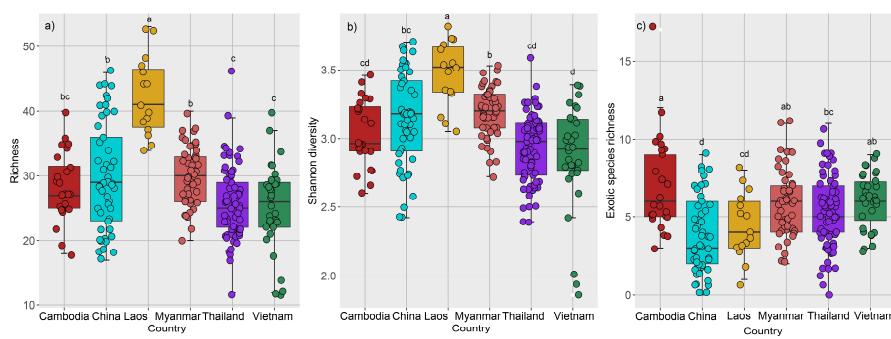
181

182 **Figure 2** Distribution maps of two common exotic species (a: *Chromolaena odorata*, b:
 183 *Mimosa pudica*) of rubber plantation in the GMS (circle size is proportional to importance
 184 value)

185
 186 **Figure 3** Significant difference in plant community compositions of rubber plantations among
 187 countries in GMS. a: Principal coordinate analysis (PCoA) based on Bray-curtis distance; b:
 188 Analysis of similarity among countries.

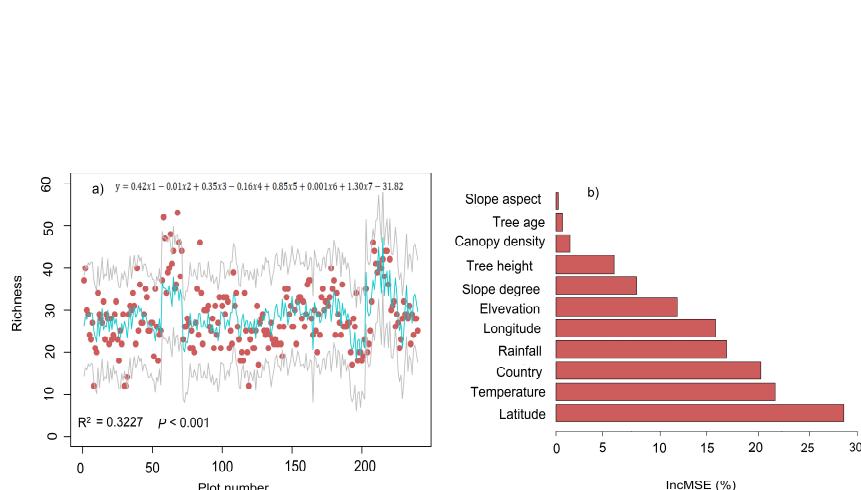
189
 190 **Figure 4** Redundancy analysis of plant community compositions of rubber plantation in the
 191 GMS (a: RDA ordination, b: Percentage of explained and unexplained by RDA results)

192


193 **Table 2** Explained percentage of environmental factors on the variation of plant community
 194 compositions of rubber plantations in GMS based on the RDA results

Contents	Df	Variance	Explained (%)	F	Pr (> F)
Country	1	33.18	5.62	3.08	0.007 **
Latitude	1	19.89	3.37	9.22	0.001 ***
Longitude	1	18.53	3.14	8.59	0.001 ***
Height	1	6.54	1.11	3.03	0.001 ***
Elevation	1	6.50	1.10	3.01	0.001 ***
Age	1	5.54	0.94	2.56	0.001 ***
Slope	1	5.01	0.85	2.32	0.002 ***
Temperature	2	4.63	0.78	2.16	0.005 **
Rainfall	2	3.19	0.54	1.49	0.032 *
Canopy	1	4.01	0.68	1.86	0.001 ***
Aspect	1	2.97	0.50	1.38	0.073
Residual	224	479.91	82.68		

195


196 **3.2 Plant diversity of rubber plantations**

197 Species richness of rubber plantations in Laos was the highest among the six countries,
 198 followed by China and Myanmar, while the richness of Thailand, Cambodia, and Vietnam
 199 were relatively lower (Figure 5a). The same was true for Shannon diversity (Figure 5b).

200
 201 **Figure 5** Plant species diversity of rubber plantations across countries in the GMS (a: species
 202 richness; b: Shannon diversity; c: Exotic species richness).

203

204

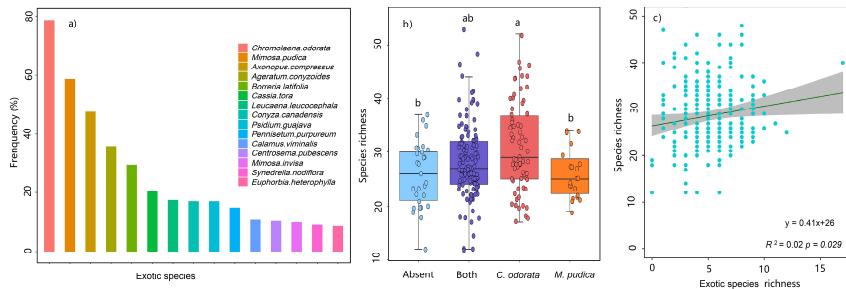
205 **Figure 6** Factors affecting plant diversity of rubber plantation in GMS. a: Predicting species
206 richness by using multiple linear regression (The red point was the observed richness, the green
207 solid line was the estimated richness, and the grey solid line was the 95% confidence interval.
208 y: Richness, x1: Latitude, x2: Elevation, x3: Slope, x4: Age, x5: Height, x6:
209 Rainfall, x7: Temperature.) b: Predictions of the importance of environmental variables
210 based on Random Forest.

211 The results of multiple linear regression ($R^2 = 0.3227$, $P < 0.001$) showed that

temperature ($P < 0.001$), tree height ($P < 0.001$), latitude ($P < 0.01$) and slope degree ($P < 0.001$) were positively correlated with the species richness (Figure 6a). Among these factors, temperature (with the highest intercept 1.3) is the most important factor affecting plant diversity. Random Forest results showed that high mean squared errors of latitude, temperature, and countries were the top three features affecting plant diversity of rubber plantation (Figure 6b).

218 3.3 Effects of exotic species on plant diversity of rubber plantations

219 The exotic species richness of rubber plantations was relatively higher in Cambodia, Vietnam,
220 and Myanmar compared to China, Laos, and Thailand (Figure 3c). In order to clarify whether
221 exotic species can reduce plant diversity, we analyzed the relationship between the dominance


删除的内容: random forest

删除的内容: s

删除的内容: forest

225 of exotic species and the species richness in the plot. In view of the fact that *C. odorata* and *M.*
 226 *pudica* are the two most common exotic species in rubber plantations (Figure 7a) the two
 227 species were selected for analysis. The importance values of exotic species *C. odorata* (Figure
 228 S2a) and *M. pudica* (Figure S2b) were negatively correlated with species richness, suggesting
 229 that exotic species with high dominance will reduced rubber plantation diversity. However,
 230 exotic species richness was positively correlated with species richness (Figure 7c). Richness of
 231 communities where *C. odorata* (*M. pudica*) was present was not lower than those where it was
 232 absent (Figure 7b). In sum, diversity of the community was reduced only when the dominance
 233 of exotic species was high.

234

235 **Figure 7** Effects of exotic species on plant diversity of rubber plantations in the GMS (a:
 236 Frequency of the most common exotic species; b: Richness comparison of different
 237 communities (sky blue bar: plots without *C. odorata* and *M. pudica*; blue bar: plots with both
 238 *C. odorata* and *M. pudica*; red bar: plots only with *C. odorata*; yellow bar: plots only with *M.*
 239 *pudica*) c: relationship between exotic species richness of given plot and species richness of
 240 given plot)

241

242 **4. Discussion**

243 **4.1 Main drivers for plant composition and diversity of rubber plantations**

244 Rubber plantations constitute one of the most important agro-ecosystems of tropical regions
245 and play an important role in their carbon budgets (Chen et al., 2020). For, plant composition,
246 latitude ranks second (Table2) in terms of its impact on plant composition which indicating
247 that latitude is an important driver of plant composition of rubber plantation. For plant
248 diversity, both multiple linear regression and Random Forest showed that temperature was
249 the most important factor for plant diversity of rubber plantations. Our results are consistent
250 with previous study which revealed that temperature is the main driver for plant diversity
251 (Nottingham et al., 2018).

252 We were surprised to find that understory plant diversity of artificial rubber plantations
253 increased with latitude, similar to that of the global diversity patterns (Rohde 1992; Perrigo et
254 al., 2013) that latitudinal gradients are known in which maximum diversity does not occur
255 near the equator (Stehli, 1968). One study suggest that the diversity of plant communities was
256 directly affected by latitude (Li et al., 2019). Our results showed that elevation was not as
257 important as other factors which is different from our previous study in which elevation
258 significantly affect plant species diversity (Li et al., 2019).

259 Plant diversity of north Laos and south China was relatively higher than other countries.
260 This observation may be due to the large variation in elevation in these areas, which
261 translates into greater environmental heterogeneity. In addition, greater slope may increase
262 environmental heterogeneity and expand niche space (Morrison-Whittle and Goddard, 2015).
263 Anyway, temperature could largely contribute to explaining the latitudinal diversity gradient
264 patterns of rubber plantations,

删除的内容: the

删除的内容: random forest

删除的内容: s

带格式的: 缩进: 首行缩进: 1 字符

删除的内容: cognition

删除的内容: that

删除的内容: the latitudinal diversity gradient and
temperature, could largely contribute explaining composition
and diversity patterns of artificial rubber plantations.

273 **4.2 Not all exotic plants cause the loss of plant diversity in rubber plantations**

274 Rubber plantation expansion and intensification has occurred in many regions that are key for
275 biodiversity conservation. Monoculture plantations have been promoted to restore the world's
276 forested areas, but have done little to slow the loss of biodiversity (Zhang et al., 2021). It has
277 been hypothesized that exotic species might more easily invade areas of low species diversity
278 than areas of high species diversity (Stohlgren et al., 1999). A recent study shows exotic
279 plants account for ~17% and ~35% of the total importance value indices of natural and
280 human-modified ecosystems, respectively (Chandrasekaran et al., 2000). Here, in rubber
281 plantations, exotic plants made up roughly 12% of the total recorded species and 22.80% of
282 the coverage. *C. odorata* is a noxious perennial weed in many parts of the world (Kushwaha
283 et al., 1981), and it is unsurprising that it was recorded in almost all plantation plots in our
284 study. These indicated that invasion by exotic species has either already occurred or is
285 inevitable in many systems (Stohlgren et al., 1999). *M. pudica*, the “sensitive plant”, is a
286 worldwide, pan-tropical invasive species (Melkonian et al., 2014). *M. pudica*, as many
287 tropical grasses and herbs, is tolerant of low pH (Humphreys 1997, Paudel 2018), which
288 explains its ubiquity in acidic rubber plantation soil.

289 More importantly, our study demonstrated that the diversity of the community was reduced
290 only when the importance value of exotic species is large enough, not all exotic species cause
291 the loss of plant diversity in rubber plantations, which follows s the theory that many species
292 can coexist in spatially heterogeneous areas as long as nutrients and light are not limiting
293 (Huston and DeAngelis, 1994). Our results also were consistent with idea that inhibition of
294 plant diversity by exotic species invasion gradually weakened with increased precipitation

删除的内容: and

296 (Xu et al., 2022) due to higher precipitation in GMS. In addition, management of rubber
297 plantation reduces the dominance of exotic species to a great extent, thus providing space for
298 the survival of other plants.

299 ***4.3 Plant composition and diversity is largely affected by of management***

300 Forests that are intensively managed for production purposes generally have lower biodiversity
301 than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations
302 (He and Martin, 2016). In artificial forests such as rubber plantations, there is no doubt that
303 management measures and agricultural intensity are two most important factors affecting plant
304 diversity. The application of herbicides and sprout control causes low diversity of understory
305 plants, this is especially true of rubber plantations of Vietnam (Figure S1f). Also, it is not easy
306 for farmers to clear understory plants on the steep slopes of rubber plantations at high elevation;
307 thus high slope degree indirectly results in low agricultural intensity and high diversity. RDA
308 analysis only explained 18.65% of the variation of community compositions, and multiple
309 linear regression only explained 32.27% of the variation of plant diversity. Most of the
310 unexplained variation are caused by management intensity and measures. In sum, plant
311 compositions and diversity is largely affected by the measures and intensity of management.

312 In poor areas, we cannot just talk about ecological goals without first understanding local
313 cultures and economies. Well-managed forests can alleviate poverty in rural areas, as outlined
314 by the United Nations Sustainable Development Goals (Lewis et al., 2019). Previous study
315 conducted in India demonstrated that a no-weeding practice in mature rubber plantations did
316 not affect rubber yield (Abraham and Joseph, 2016). A similar study conducted in China also
317 showed that natural management strategies can improve biodiversity without reducing latex

318 production (Lan et al., 2017d). There is strong evidence that adopting more natural
319 management strategies improves plant diversity without reducing latex production (Lan et al.,
320 2017d). More innovative management measures, such as cease of weeding and herbicide
321 application (He and Martin, 2015), must be implemented to improve the biodiversity of rubber
322 plantations, so as to promote the biodiversity of the region.

323

324 **5. Conclusion**

325 We provide a large regional study on the plant diversity of rubber plantations in a global
326 biodiversity hotspot. Plant diversity followed global trends with respect to latitude and
327 temperature. Exotic species were very common in rubber plantations, especially where
328 agricultural intensity was strong. However, not all exotic species directly drive the loss of
329 biodiversity. Only higher dominance of some exotic species were associated with a loss of
330 plant diversity within rubber plantations. We must make greater efforts to balance agricultural
331 production with conservation goals in this region, particularly in Vietnams and Cambodia, to
332 minimize the loss of biodiversity.

333

334 **Code availability**

335 Not applicable

336 **Authors' contributions**

337 **Guoyu Lan:** Conceptualization, Methodology, Writing, Reviewing and Editing; **Bangqian**
338 **Chen:** Methodology, Reviewing and Editing, **Chuan Yang, Rui Sun, Bangqian Chen,**
339 **Zhixiang Wu and Xicai Zhang:** Investigation

340 **Competing interests**

341 The authors declared that they have no conflicts of interest to this study.

342 **Disclaimer**

343 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims
344 in published maps and institutional affiliations.

345

346 **Acknowledgements**

347 We thank the help of the Rubber Research Bureau of Thailand, Perennial Crop Research
348 Institute of Myanmar, the Rubber Research Institute of Cambodia, Vietnam Agricultural
349 University, and the Yunnan Rubber Group. We would like to thank Prof. Fangliang He at
350 University of Alberta and Dr. Ian Gilman at Yale University for his assistance with English
351 language and grammatical editing.

352

353 **Funding**

354 This large-scale field investigation was supported by National Natural Science Foundation of
355 China (42071418), the Lancang-Mekong international cooperation project of the Ministry of
356 Foreign Affairs (081720203994192003) and the Earmarked Fund for China Agriculture
357 Research System (CARS-33-ZP3).

358

359 **Reference**

360 Abraham, J., Joseph, P. A new weed management approach to improve soil health in a tropical
361 plantation crop, rubber (*Hevea brasiliensis*). *Exp. Agr.*, 52, 36-50, 2016
362 Ahrends, A., Hollingsworth, P.M., Ziegler, A.D., Fox, J.M., Chen, H., Su, Y., Xu, J.X.
363 Current trends of rubber plantation expansion may threaten biodiversity and livelihoods.

364 Global Environ. Chang., 34, 48-58, 2015.

365 Aratrakorn, S., Thunhikorn, S., Donald, P.F. Changes in bird communities following
366 conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird
367 Conserv. Int., 16, 71-82, 2006.

368 [Breiman, L. \(2001\) Random Forests. Machine Learning, 45, 5-32.](#)

369 Cai, Z. Q., Zhang, Y. H., Yang, C., Wang, S. Land-use type strongly shapes community
370 composition, but not always diversity of soil microbes in tropical China. Catena, 165,
371 369-380, 2018.

372 Chandrasekaran, S., Sundarapandian, S.M., Chandrasekar, P., Swamy, P.S. Exotic plant
373 invasions in disturbed and man-modified forest ecosystems in the Western Ghats of
374 Tamil Nadu. Tropical Forestry Research: Challenges in the New Millennium.
375 Proceedings of the International Symposium, Peechi, India, 2-4 August, 2000, 32-39,
376 2001.

377 Chaudhary, A., Burivalova, Z., Koh, L.P., Hellweg, S. Impact of forest management on
378 species richness: Global meta-analysis and economic trade-offs. Sci. Rep., 6, 23954,
379 2016.

380 Chaudhuri, P.S., Bhattacharjee, S., Dey, A., Chattopadhyay, S., Bhattacharya, D. Impact of age
381 of rubber (*Hevea brasiliensis*) plantation on earthworm communities of West Tripura (India).
382 J Environ Biol., 34, 59-65, 2013.

383 Chen, B.Q., Yun, T., Ma, J., Kou, W.L., Li, H.L., Yang, C., Xiao, X.M., Zhang, X., Sun, R.,
384 Xie, G.S., Wu, Z.X. High-Precision stand age data facilitate the estimation of rubber
385 plantation biomass: A case study of Hainan Island, China. Remote Sens., 12, 3853,
386 2020.

387 Chen, H., Yi, Z.F., Schmidt-Vogt, D., Ahrends, A., Beckschäfer, P., Kleinn, C., Ranjitkar, S.,
388 Xu, J.C. Pushing the Limits: The Pattern and Dynamics of Rubber Monoculture
389 Expansion in Xishuangbanna, SW China. PLoS ONE, 11(2), e0150062, 2016.

390 Curtis, J.T., McIntosh, R.P. The interactions of certain analytic and synthetic
391 phytosociological characters. Ecology, 31, 435-455, 1950.

392 Curtis, J.T., McIntosh, R.P. An upland forest continuum in the prairie-forest border region of
393 Wisconsin. Ecology, 32(3), 476-496, 1951.

394 Delzeit, R., Zabel, F., Meyer, C., Václavík, T. Addressing future trade-offs between
395 biodiversity and cropland expansion to improve food security. Reg. Environ. Change,
396 17, 1429-1441, 2017.

397 Egli, L., Meyer, C., Scherber, C., Kreft, H., Tscharntke, T. Winners and losers of national and
398 global efforts to reconcile agricultural intensification and biodiversity conservation.
399 Global Change Biol., 24, 2212-2228, 2018.

400 Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Carsten, A., Brühl, Donald, P.F.,
401 Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol., 23(10),

402 538-545, 2008.

403 Greig-Smith, P. W. Use of perches as vantage points during foraging by male and female
404 Stonechats *Saxicola torquata*. *Behaviour*, 86(3-4), 215-236, 1983.

405 Grogan, K., Pflugmacher, D., Hostert, P., Mertz, O., Fensholt, R. Unravelling the link
406 between global rubber price and tropical deforestation in Cambodia. *Nat Plants*, 5(1),
407 47-53, 2019.

408 Han, Z.Q., Liu, T., Wang, T., Liu, H.F., Li, B. L. Quantification of water resource utilization
409 efficiency as the main driver of plant diversity in the water-limited ecosystems. *Ecol.*
410 *Model.*, 429, 108974, 2020.

411 He, P., Martin, K. 2016. Effects of rubber cultivation on biodiversity in the Mekong Region.
412 CAB Reviews, 10, 44

413 Humphreys, L.R. *The Evolving Science of Grassland Improvement*. Cambridge University
414 Press, Cambridge, UK, 1997.

415 Kehoe, L. Romero-Muoz, A., Polaina, E., Estes, L., Kuemmerle, T. Biodiversity at risk under
416 future cropland expansion and intensification. *Nat. Ecol. Evol.*, 1, 1129-1135, 2017.

417 Kerfahi, D. B. M. T., Dong, K., Go, R., Adams, J. M. Rainforest conversion to rubber
418 plantation may not result in lower soil diversity of bacteria fungi and nematodes.
419 *Microb. Ecol.*, 72, 359-371, 2016.

420 Kushwaha, S.P.S., Tripathi, P.S.R.S. Population dynamics of *Chromolaena odorata* in
421 successional environments following slash and burn agriculture. *J Appl. Ecol.*, 18(2):
422 529-535, 1981.

423 Lan, G.Y., Hu, Y.H., Cao, M., Zhu, H. Topography related spatial distribution of dominant
424 tree species in a tropical seasonal rain forest in China, *For. Ecol. Manage.*, 262(8):1507-
425 1513, 2011.

426 Lan, G.Y., Li, Y.W., Jatoi, M.T., Tan, Z.H., Wu, Z.X., Xie, G.S. Change in soil microbial
427 community compositions and diversity following the conversion of tropical forest to
428 rubber plantations in Xishuangbanna, Southwest China. *Trop. Conserv. Sci.*, 10, 1-14,
429 2017c.

430 Lan, G.Y., Li, Y.W., Wu, Z.X., Xie, G.S. Impact of tropical forest conversion on soil
431 bacterial diversity in tropical region of China. *Eur. J. Soil Biol.*, 83, 91-97, 2017a.

432 Lan, G.Y., Li, Y.W., Wu, Z.X., Xie, G.S. Soil bacterial diversity impacted by conversion of
433 secondary forest to rubber or eucalyptus plantations-A case study of Hainan Island,
434 South China. *For. Sci.*, 63(1), 87-93, 2017b.

435 Lan, G.Y., Wu, Z.X., Chen, B.Q., Xie, G.S. Species diversity in a naturally managed rubber
436 plantation in Hainan island, south China. *Trop. Conserv. Sci.*, 10, 1-7, 2017d.

437 Lan, G.Y., Wu, Z.X., Li, Y.W., Chen, B.Q. The drivers of soil bacterial communities in
438 rubber plantation at local and geographic scales. *Arch. Agron. Soil Sci.*, 66(3), 358-369,

439 2020c.

440 Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X. Tropical rainforest
441 conversion into rubber plantations results in changes in soil fungal composition, but
442 underling mechanisms of community assembly remain unchanged. *Geoderma*, 375,
443 114505, 2020b,

444 Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X.C. 2020a. Forest conversion
445 changed the structure and functional process of tropical forest soil microbiome. *Land
446 Degrad. Dev.*, 32(2):613-627, 2021

447 Lan, G.Y., Wu, Z.X., Xie, G.X. Characteristics of plant species diversity of rubber plantation
448 in Hainan Island. *Biodivers. Sci.*, 22 (5): 658-666, 2014.

449 Lewis, S.L., Wheeler, C.E., Mitchard, E.T.A., Koch, A. Regenerate natural forests to store
450 carbon. *Nature*, 568(7750), 25-28, 2019.

451 Li, S., Zou, F., Zhang, Q., Sheldon, F.H. Species richness and guild composition in rubber
452 plantations compared to secondary forest on Hainan Island, China. *Agroforestry Syst.* 87,
453 1117-28, 2013.

454 Li, Y.W., Xia, Y.J., Lei, Y.B., Deng, Y., Chen, H., Sha, L.Q., Cao, M., Deng, X.B.
455 Estimating changes in soil organic carbon storage due to land use changes using a
456 modified calculation method. *Iforest*, 8, 45-52, 2015.

457 Li., H.M., Aide, T., Ma, Y.X., Liu, W.J., Cao, M. Demand for rubber is causing the loss of
458 high diversity rain forest in SW China. *Biodivers. Conserv.*, 16 (6),1731-1745, 2007.

459 Linares-Palomino, R., Alvarez, S.I.P. Tree community patterns in seasonally dry tropical
460 forests in the Cerros de Amotape Cordillera, Tumbes, Peru. *For. Ecol. Manage.*, 209,
461 261–272, 2005.

462 Mccoy, E.D., Connor, E. F. Latitudinal gradients in the species diversity of north American
463 mammals. *Evolution*, 34, 193-203, 1980.

464 Melkonian, R., Moulin, L., Béna, G., Tisseyre, P., Chaintreuil, C., Heulin, K., Rezkallah,
465 N.,Klonowska, A., Gonzalez, S.,Simon, M., Chen, W.M., James, E. K.and Laguerre, G.,
466 The geographical patterns of symbiont diversity in the invasive legume *mimosa*
467 *pudicacan* be explained by the competitiveness of its symbionts and by the host
468 genotype. *Environ. Microbiol.*, 16(7), 2099-2111, 2014.

469 Morrison-Whittle, P., Goddard, M. R. Quantifying the relative roles of selective and neutral
470 processes in defining eukaryotic microbial communities. *ISME J.*, 9, 2003-2011, 2015

471 Myers, N., Mittermeier, R. A., Mittermeier, C.G., Fonseca, G.A.B.D., Kent, J. Biodiversity
472 hotspots for conservation priorities. *Nature*, 403(6772), 853-858, 2000.

473 Nottingham, A., Fierer, N., Turner, B.L., Whitaker, J., Ostle, N.J., Mcnamara, N.P., Bardgett,
474 R.D., Leff, J.W., Salinas, N., Silman, M. R., Kruuk, L. E. B., Meir, P. Temperature drives
475 plant and soil microbial diversity patterns across an elevation gradient from the Andes to

476 the Amazon. *Ecology*, 99(11), 2455-2466, 2018.

477 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin,
P.R., O'Hara, R. B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H.
479 vegan: Community Ecology. Package. R package version 2.5-7. 2020.

480 Paudel, N. Seasonal variation in phenophases of *Mimosa pudica* (fabaceae) in grazed pasture
481 of Barandabhar corridor forest Chitwan, Nepal. *Curr. Trends Biomed. Eng. Biosci.*, 11.
482 DOI: 10.19080/CTBEB.2018.11.555825, 2018.

483 Perrigo, A.L., Baldauf, S.L., Romeralo, M. Diversity of dictyostelid social amoebae in high
484 latitude habitats of Northern Sweden. *Fungal Divers.*, 58(1), 185-198, 2013.

485 Phommexay, P., Satasook, C., Bates, P., Pearch, M., Bumrungsri, S. The impact of rubber
486 plantations on the diversity and activity of understory insectivorous bats in southern
487 Thailand. Biodiversity and Conservation, 20:1441-56. 2011.

488 R Core Team. R: A language and environment for statistical computing. R Foundation for
489 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/> 2021.

490 Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. *Oikos*,
491 65(3), 514-527, 1992.

492 Sabatini, F.M., Burrascano, S., Azzella, M.M., Barbati, A., De Paulis, S., Di Santo, D.,
493 Facioni, L., Giuliarelli, D., Lombardi, F., Maggi, O., Mattioli, W., Parisi, F., Persiani, A.,
494 Ravera, S., Blasi, C. Herb-layer diversity and stand structural complexity are weak predictors
495 of biodiversity in *Fagus sylvatica* forests. *Ecol. Indic.*, 69, 126-137, 2016.

496 Schneider, D., Engelhaupt, M., Allen, K., Kurniawan, S., Krashevskaya, V., Heinemann, M.,
497 Scheu, S. Impact of lowland rainforest transformation on diversity and composition of
498 soil prokaryotic communities in Sumatra Indonesia. *Front. Microbiol.*, 6, 296, 2015.

499 Shackelford, G. E., Steward, P. R., German, R. N., Sait, S. M., Benton, T. G. Conservation
500 planning in agricultural landscapes: hotspots of conflict between agriculture and nature.
501 *Divers. Distrib.*, 21, 357-367, 2014.

502 Shah, H.A., Huxley, P., Elmes, J., Murray, K.A. Agricultural land-uses consistently
503 exacerbate infectious disease risks in Southeast Asia. *Nat. Commun.* 10, 4299, 2019.

504 Singh, D., Slik, J.W.F., Jeon, Y.S., Tomlinson, K.W., Yang, X.D., Wang,
505 J., Kerfahi, D., Porazinska, D.L., Adams, J.M. Tropical forest conversion to rubber
506 plantation affects soil micro & meso faunal community & diversity. *Sci. Rep.*,
507 9(1):5893.doi: 10.1038/s41598-019-42333-4, 2019.

508 Soons, M.B., Hefting, M.M., Dorland, E., Lamers, L.P.M., Versteeg, C., Bobbink, R.
509 Nitrogen effects on plant species richness in herbaceous communities are more widespread
510 and stronger than those of phosphorus. *Biol. Conserv.*, 212, 390-397, 2017.

带格式的: 字体: (默认) Times New Roman, (中文) 宋体, 小四, 字体颜色: 蓝色

删除的内容: 2011.

带格式的: 左, 定义网格后不调整右缩进, 行距: 1.5倍行距, 不调整西文与中文之间的空格, 不调整中文和数字之间的空格

带格式的: 字体颜色: 蓝色

512 Stadler, J, Trefflich, A, Klotz, S, Brandl. R.. Exotic plant species invade diversity hot spots:
513 the alien flora of northwestern Kenya. *Ecography*. 23(2):169-176. 2000.

514 Stehli, G.G. Taxonomic diversity gradients in pole location: the Recent model, p, 168-227.
515 1968.

516 Stohlgren, T.J. , Binkley, D., Chong, G.W., Kalkhan, M. A., Schell, L. D., Bull, K. A.,
517 Otsuki, Y., Newman, G., Bashkin, M., Son, Y. Exotic plant species invade hot spots of
518 native plant diversity. *Ecol. Monogr.*, 69(1): 25-46. 1999.

519 Sun, H.L. 2000. *Encyclopedia of resource science of China* [M]. Beijing: *Encyclopedia of*
520 *China Press*

521 Tripathi, B. M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A. N., Adams, J.
522 M. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial
523 tropics too. *Microb. Ecol.*, 64: 474-484, 2012.

524 Warren-Thomas, E.M. , Edwards, D.P. , Bebber, D.P. , Chhang, P., Diment, A. N., Evans,
525 T.D., Lambrick, F.H., Maxwell, J.F., Nut, M., O'Kelly, H.J., Theilade, I., Dolman, P.M.
526 Protecting tropical forests from the rapid expansion of rubber using carbon
527 payments. *Nat. Commun.*, 9(1), 911, 2018.

528 Wu, J., Wang, X., Zhong, B., Yang, A., Liu, Q. Ecological environment assessment for
529 Greater Mekong Subregion based on pressure-state-response framework by remote
530 sensing. *Ecol. Indic.*, 117, 106521, 2020.

531 Xiao, C.W., Li, P., Feng, Z.M., Yang, Y.Z., You, Z.L., Yu M., Zhang, X.Z. Latest 30-m map
532 of mature rubber plantations in Mainland Southeast Asia and Yunnan province of China:
533 Spatial patterns and geographical characteristics. *Prog. Phys. Geog.*, 030913332098374.
534 10.1177/0309133320983746, 2021.

535 Xiao, H.F., Tian, Y.H., Zhou, H.P., Ai, X.S., Yang, X.D., Schaefer, D.A. Intensive rubber
536 cultivation degrades soil nematode communities in Xishuangbanna, southwest China. *Soil*
537 *Biol. Biochem.*, 76, 161-169, 2014.

538 Xu, H.W., Liu, Q., Wang, S.Y., Yang, G.S., Xue, S. A global meta-analysis of the impacts of
539 exotic plant species invasion on plant diversity and soil properties. *Sci. Total Environ.*,
540 810, 152286, 2022.

541 Xu, J.C. China's new forests aren't as green as they seem. *Nature*, 477, 371, 2011.

542 Yaseen, S. D. Prevalence of economically important fungal diseases at different phenological
543 stages of peanut (*Arachis hypogaea* L.), pearl millet (*Pennisetum glaucum* L.) and
544 sorghum (*Sorghum bicolor* L.) in sub-zone Hamelmalo. *J. Agr. Econ. Dev.*, 2(6), 237-245,
545 2013.

546 Zabel, F., Delzeit, R., Schneider, J.M., Seppelt, R., Mauser, W., Václavík, T. Global impacts

547 of future cropland expansion and intensification on agricultural markets and
548 biodiversity. *Nat. Commun.*, 10, 2844, 2019.

549 Zhang, J., Fu, B., Stafford-Smith, M., Wang, S., Zhao, W. Improve forest restoration
550 initiatives to meet sustainable development goal. *Nat. Ecol. Evol.*, 5(1), 10–13, 2021.

551

552 **Figure captions**

553 **Figure 1** Sampling plot localities within rubber plantations in GMS

554 **Figure 2** Distribution maps of two common exotic species (a: *Chromolaena odorata*, b:
555 *Mimosa pudica*) of rubber plantation in the GMS (circle size is proportional to importance
556 value)

557 **Figure 3** Significant difference in plant community compositions of rubber plantations among
558 countries in GMS. a: Principal coordinate analysis (PCoA) based on Bray-curtis distance; b:
559 Analysis of similarity among countries.

560 **Figure 4** Redundancy analysis of plant community compositions of rubber plantation in the
561 GMS (a: RDA ordination, b: Percentage of explained and unexplained by RDA results)

562 **Figure 5** Plant species diversity of rubber plantations across countries in the GMS (a: species
563 richness; b: Shannon diversity; c: Exotic species richness).

564 **Figure 6** Factors affecting plant diversity of rubber plantation. a) Predicting species richness
565 by using multiple linear regression (The red point was the observed richness, the green solid
566 line was the estimated richness, and the grey solid line was the 95% confidence interval. y:
567 Richness, x1: Latitude, x2: Elevation, x3: Slope, x4: Age, x5: Height, x6:
568 Rainfall, x7: Temperature.) b): Predictions of the importance of environmental variables
569 based on Random Forest.

删除的内容: random forest

删除的内容: s

570 **Figure 7** Effects of exotic species on plant diversity of rubber plantations in the GMS (a:
571 Frequency of the most common exotic species; b: Richness comparison of different
572 communities (sky blue bar: plots without *C. odorata* and *M. pudica*; blue bar: plots with both
573 *C. odorata* and *M. pudica*; red bar: plots only with *C. odorata*; yellow bar: plots only with *M.*

576 *pudica*) c: relationship between exotic species richness of given plot and species richness of
577 given plot)
578