

1 **Main drivers of plant diversity patterns of rubber plantations in the**
2 **Greater Mekong Sub-region**

3 Guoyu Lan^{a,c##*}, Bangqian Chen^{a,c##*}, Chuan Yang ^{a,c}, Rui Sun ^{a,c}, Zhixiang Wu ^{a,c}, Xicai
4 Zhang^{a,c}

5

6 a. Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou
7 City, Hainan Province, 571737, P. R. China;

8 c. Danzhou Investigation & Experiment Station of Tropical Crops, Ministry of Agriculture
9 and Rural Affairs, Danzhou City, Hainan Province, 571737, P. R. China

10

11 #These authors contributed equally to this work.

12 *Author for correspondence

13 Tel: +86-898-23301800

14 Fax: +86-898-23300315

15 E-mail: langyrr@163.com

16 Running headline: Drivers of plant diversity of rubber plantations

17

18 **Abstract:**

19 The Greater Mekong Sub-region (GMS) is one the global biodiversity hotspots. However, the
20 diversity has been seriously threatened due to environmental degradation and deforestation,
21 especially by expansion of rubber plantations. Yet, little is known about the impact of
22 expansion of rubber plantations on regional plant diversity as well as the drivers for plant
23 diversity of rubber plantation in this region. In this study, we analyzed plant diversity patterns
24 of rubber plantations in the GMS based on a ground survey of a large number of samples. We
25 found that diversity varied across countries due to varying agricultural intensities. Laos had
26 the highest diversity, followed China, Myanmar, Cambodia. Plant species richness of Laos
27 was about 1.5 times that of Vietnam. We uncovered latitudinal gradients in plant diversity
28 across these artificial forests of rubber plantations and these gradients caused by
29 environmental variables such as temperature. Results of RDA, multiple regression as well as
30 Random Forest demonstrated that latitude and temperature were the two most important
31 drivers for the composition and diversity of rubber plantations in GMS. Meanwhile, we also
32 found that higher dominance of some exotic species (such as *Chromolaena odorata* and
33 *Mimosa pudica*) were associated with a loss of plant diversity within rubber plantations,
34 however, not all exotic plants cause the loss of plant diversity in rubber plantations. In
35 conclusion, not only environmental factors (temperature), but also exotic species were the
36 main factors affecting plant diversity of these artificial stands. Much more effort should be
37 made to balance agricultural production with conservation goals in this region, particularly to
38 minimize the diversity loss in Vietnam and Cambodia.

39 **Keywords:** Rubber plantation, Plant diversity, Exotic species, Mekong regions, Greater

40 Mekong Sub-regions (GMS)

41 **1. Introduction**

42 Many tropical regions contain hotspots of biodiversity (Myers et al., 2000), especially for the
43 Great Mekong Sub-region (GMS), threatened by agriculture (Delzeit et al., 2017; Egli et al.,
44 2018; Shackelford et al., 2014; Kehoe et al., 2017). Much of the land has recently been
45 converted from forest to agriculture (Li et al., 2007), and rubber plantations have quickly
46 expanded throughout the region (Ziegler et al., 2009; Li et al., 2015; Ahrends et al., 2015)
47 due to a surge in the global demand for natural rubber, driven largely by the growth of tire
48 and automobile industries. For example, 23.5% of Cambodia's forest cover was destroyed
49 between 2001 and 2015 make way for crops such as rubber (Figure S1h) and palm oil
50 (Grogan et al., 2019). In southwest China, nearly 10% of the total area of nature reserves had
51 been converted to rubber monoculture by 2010 (Chen et al., 2016). At present, GMS are
52 globally important rubber-planting regions (Xiao et al., 2021).

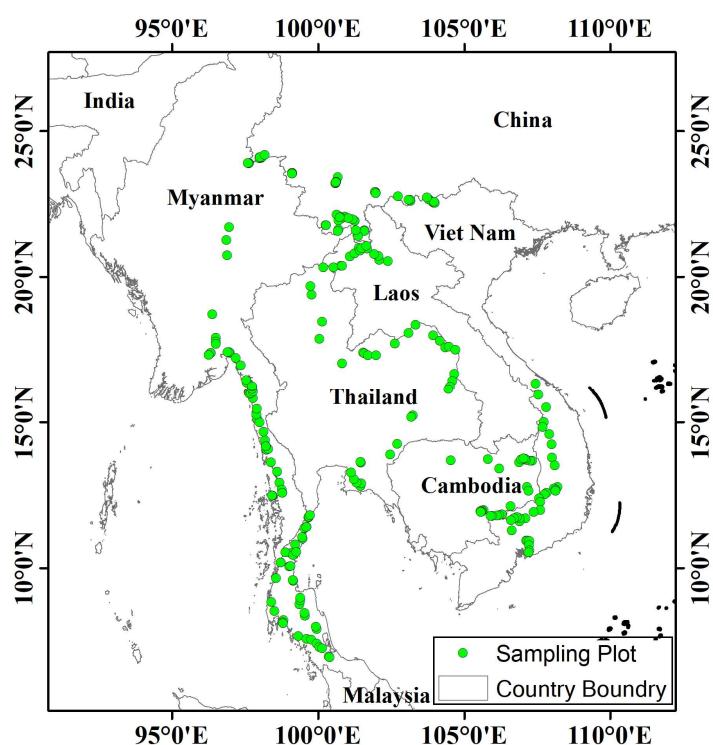
53 Agricultural land-uses can exacerbate many infectious diseases in Southeast Asia (Shah et
54 al., 2019) and reduce biodiversity (Xu, 2011; Warren-Thomas et al., 2018; Fitzherbert et al.,
55 2018; Zabel et al., 2019; Singh et al., 2019). Previous study have shown that rubber
56 cultivation not only affect plant diversity (Hu et al., 2016), but also affects the soil fauna
57 (Chaudhuri et al., 2013; Xiao et al., 2014), bird diversity (Aratrakorn et al., 2006; Li et al.,
58 2013) as well as bat diversity (Phommexay et al., 2011). There is also a large body of
59 literature on the effects of forest conversion from tropical forest to rubber plantations on soil
60 microbial composition and diversity (Tripathi et al., 2012; Schneider et al., 2015; Kerfahi et
61 al., 2016, Lan et al., 2017a; 2017b; 2017c; Cai et al., 2018; Lan et al., 2020a; 2020b; 2020c).

62 However, the impact of expansion of rubber plantations on regional plant diversity as well as
63 the drivers for plant diversity of rubber plantation in GMS are still unclear.

64 Latitudinal gradients in species diversity are well known (Mccoy and Connor, 1980),
65 which holds that there is a fairly regular increase in the numbers of species of some higher
66 taxon from the poles to the equator. It has been suggested that the latitudinal diversity
67 gradient could be caused by environmental variables such as temperature and precipitation.

68 Previous studies have also demonstrated temperature (Nottingham et al., 2018) and soil
69 nutrients (Soons et al., 2017) as well as water resource utilization efficiency (Han et al.,
70 2020), were the dominant drivers of plant diversity. However, whether latitudinal gradients in
71 species-diversity exists in rubber plantation which is greatly affected by management
72 measures, is still unknown.

73 In addition, rubber plantations have lower biodiversity than natural forests (Chaudhary et
74 al., 2016). Generally speaking, species rich zones showed a higher proportion of alien plant
75 species in their flora (Stadler et al., 2000), thus exotic plants are ubiquitous in rubber
76 plantations which in indicating that. Though exotic species invasion significantly decreased
77 plant diversity (Xu et al., 2022) is universally known, we still do not have idea that whether
78 exotic species are the main driver for the sharp decline of plant diversity in rubber plantation.


79 Thus, we hypothesize that (1) latitudinal gradients in plant diversity would not exist in rubber
80 plantation due to strong intensity of management; (2) exotic plants will result in a sharp
81 decline in the plant diversity of rubber plantation because areas of low plant species richness
82 may be invaded more easily than areas of high plant species richness (Stohlgren et al., 1999)
83 and exotic species may result in loss of plant diversity (Xu et al., 2022). To test these

84 hypothesis, we surveyed a large number of plots on rubber plantations in the GMS to
85 investigate plant diversity and analyzed the associated drivers. Our study provides an
86 empirical case for understanding the effect of rubber plantations on plant diversity in the
87 Greater Mekong region and the restoration and protection of biodiversity in this region.

88 **2. Methods**

89 **2.1 Study area**

90 The Mekong River Basin has a total length of 4880 km and a drainage area of 795000 square
91 kilometers, with 326 million people living in the basin. The GMS encompasses a variety of
92 climate types and geographical characteristics, and is rich in water and biological resources
93 (Wu et al., 2020). Rubber plantations are one of the most widespread vegetation types in the
94 region, and are distributed throughout the south of Yunnan province, almost all states of
95 Thailand and Laos, the southern half of Vietnam and Myanmar, and the eastern half of
96 Cambodia.

Figure 1 Sampling plot localities within rubber plantations in GMS

99

100 *2.2 Sampling methods*

101 Before the field investigation, we first determined the investigation route according to the
102 distribution of rubber plantation in this regions. Then, plots were randomly selected
103 approximately equidistant from each other (every 10-20 km according to the actual situation)
104 along the investigation route (Yaseen, 2013). We did not deliberately select plots according
105 types of rubber plantation, and thus these plots were independent from each other.
106 Consequently, a total of 240 plots, each with an area of 100 m² (10 m × 10 m), were selected
107 in the GMS, with 32 plots in Vietnam, 24 in Cambodia, 15 in Laos, 73 in Thailand, 47 in
108 Myanmar, and 49 in China (Figure 1).

We started the investigation only after the guide (local people) asked the farmer's consent. Plot measurements, such as longitude, latitude, elevation, slope degree, slope aspect, rubber tree height, and canopy density were recorded in detail (Table S1). Annual and perennial plant species, shrubs, trees and lianas as well as theirs seedlings were recorded. We do not investigate bryophytes, but ferns were investigated. Species information, such as species name, height and coverage, life form (non-woody, shrub, liana or tree) (Lan et al., 2014), from each plot in the rubber plantations were also recorded. We visually assigned a cover value to each species in each quadrant of the plot, using an ordinal cover class scale with class limits 0.5%, 1%, 2%, 5%, 10%, 15%, 20%, and thereafter every 10% up to 100%. The cover values for each species in the plot were then averaged across the four quadrants (Sabatini et al., 2016). Climate data, including annual average temperature and annual average precipitation, were obtained from

120 WorldClim2 (Fick and Hijmans, 2017) (<http://worldclim.org>) based on the geographic
121 coordinates of each sample site.

122 **2.3 Data analysis**

123 Relative height (RH), relative dominance (RD , using coverage), and relative frequency (RF)
124 were calculated for each species to estimate the importance value (IV). Importance value, as
125 defined here, differs from previous studies (e.g., Curtis and McIntosh 1950, 1951; Greig-
126 Smith 1983; Linares-Palomino and Alvarez 2005) because most understory species are herbs,
127 which make precise measure of abundance difficult. We define the importance value as:

128 Importance value: $IV_j = RF_j + RH_j + RD_j$, Relative frequency: $RF_j = 100 \times F_j / \sum F_j$
129 Relative height: $RH_j = 100 \times H_j / \sum H_j$, Relative dominance: $RD_j = 100 \times D_j / \sum D_j$
130 where F_j was the number of plots containing species j ; D_j was the coverage of species j ; and
131 H_j was the height of species j . For local community, there was no frequency data, therefore
132 importance value is defined as: $IV_j = RH_j + RD_j$.

133 Species richness, the Shannon index were used to measure α diversity of each plot. It
134 should be noted that the importance values of each species were used to calculate the
135 Shannon diversity (i.e., replace “abundance” or “number of individuals” with “important
136 value”). Principal coordinates analysis (PCoA) based on Bray–Curtis distance of species IVs
137 (importance values) was performed to compare plant species composition across countries
138 using R package “amplicon”. Analysis of similarity (ANOSIM) was used to test for
139 differences in diversity indices among countries. Multiple linear regression was used to find
140 whether there were positive or negative correlations between diversity (richness) and
141 environmental variables including latitude, longitude, elevation, rainfall, temperature, slope

142 degree, tree age, tree height as well as canopy density. Machine learning algorithm, Random
143 Forest (Breiman, 2001), was used to model α diversity (richness) and rank the feature
144 importance of environmental factors with 999 iterations. In order to understand how plant
145 compositions are structured by environmental factors, a redundancy analysis (RDA) for the
146 importance value of species was carried out using the Vegan package (version 2.5-7)
147 (Oksanen et al., 2020) in R (version 4.04) environment (R Core Team, 2021). Statistical
148 significance was assessed using Monte Carlo tests with 999 permutations.

149 **3 Results**

150 ***3.1 Plant composition of rubber plantations***

151 A total of 949 plant species, representing 550 genera and 153 families, were recorded across
152 rubber plantations of the six countries (Table 1 & Table S2). Our results also showed that 445
153 (46.89%) were herbs, with a largest number of Compositae (Table 1). Plant communities of
154 rubber plantation tended to be dominated by Fabaceae, Euphorbiaceae, Poaceae, Rubiaceae,
155 and Compositae (Table S3). The five most common species observed were *Cyrtococcum patens*,
156 *Chromolaena odorata*, *Asystasia chelonoides*, *Axonopus compressus*, and *M. pudica* (Table
157 S4). 237 plots containing exotic plant species, most of them were from tropical America. A
158 total of 121 (12.75%) species were identified as exotic (belonging to 45 families and 91 genera).
159 The five most common exotic species were *C. odorata*, *M. pudica*, *Axonopus compressus*,
160 *Ageratum conyzoides*, and *Borreria latifolia*. *C. odorata* and *M. pudica* were recorded in almost
161 every plot (Figure 2).

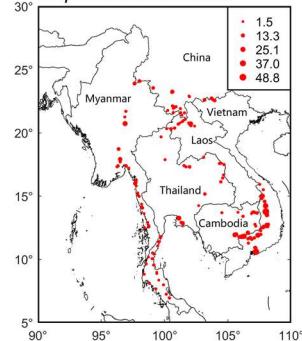
162 PCoA and ANOSIM were used to reveal the difference in plant compositions among these
163 six countries. And the results showed that significant differences ($R = 0.383$, $P = 0.001$) in

164 species composition among these countries (Figure 3a-b). Meanwhile, the first and second axes
 165 of RDA explained 5.95% and 3.11% of variation of species compositions, respectively (Figure
 166 4a). All environmental factors explained 18.65% of the total variation (Figure 4b). Countries,
 167 latitude, longitude, canopy height as well as elevation all significantly impacted plant
 168 compositions of rubber plantations in GMS, and explained 5.62%, 3.37%, 3.14%, 1.11% and
 169 1.10% of the total variations (Table 2).

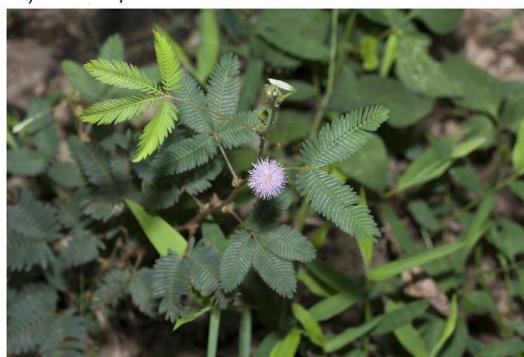
170

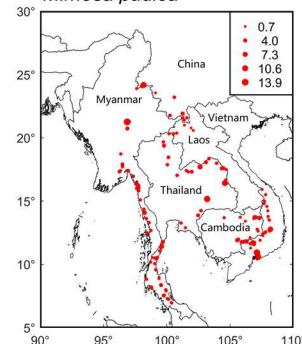
171

Table 1 Composition of plants of rubber plantations in GMS

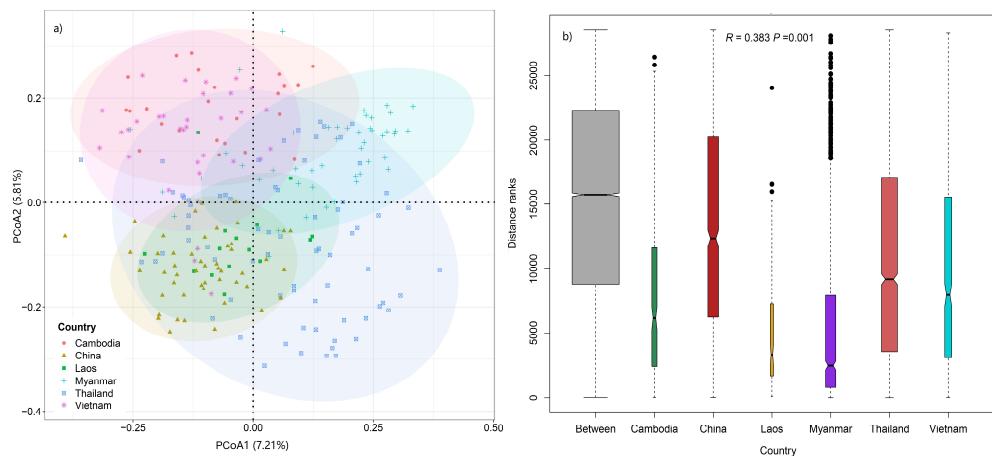

Types	No. of	Lifeform (%)	No. of families	No. of genera	No. of species
Ferns	76 (8.00)	Non-woody plant	86 (38.05)	278 (45.65)	445 (46.89)
Gymnosperms	3 (0.32)	Liana	32 (14.16)	62 (10.18)	101 (10.64)
Angiosperm	870 (91.68)	Shrub	42 (18.58)	118 (19.38)	192 (20.23)
		Tree	66 (29.20)	151 (24.79)	211 (22.23)
Total	949 (100)	Total	226 (100.00)	609	949

172

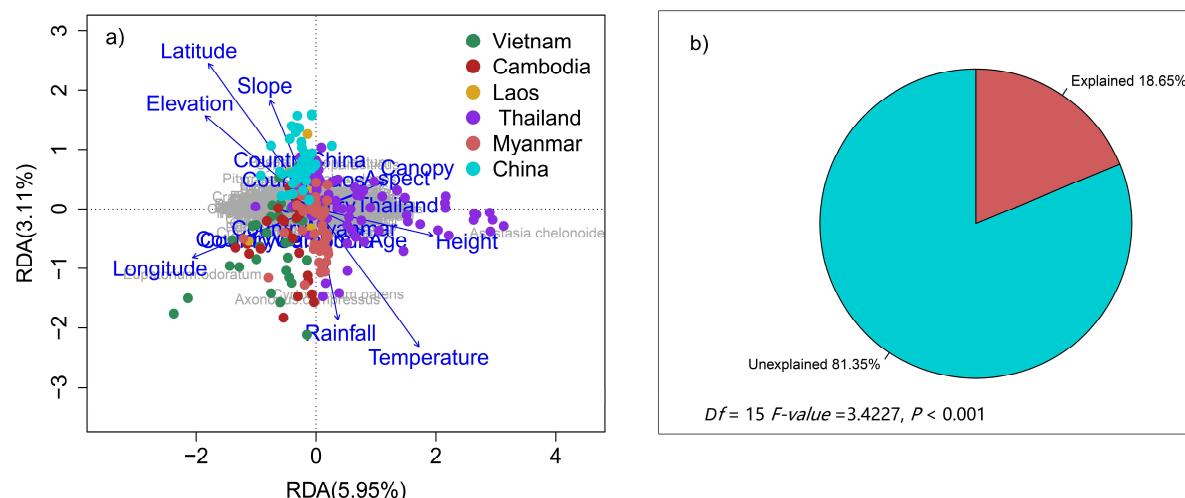

a) *Eupatorium odoratum*


Eupatorium odoratum

b) *Mimosa pudica*



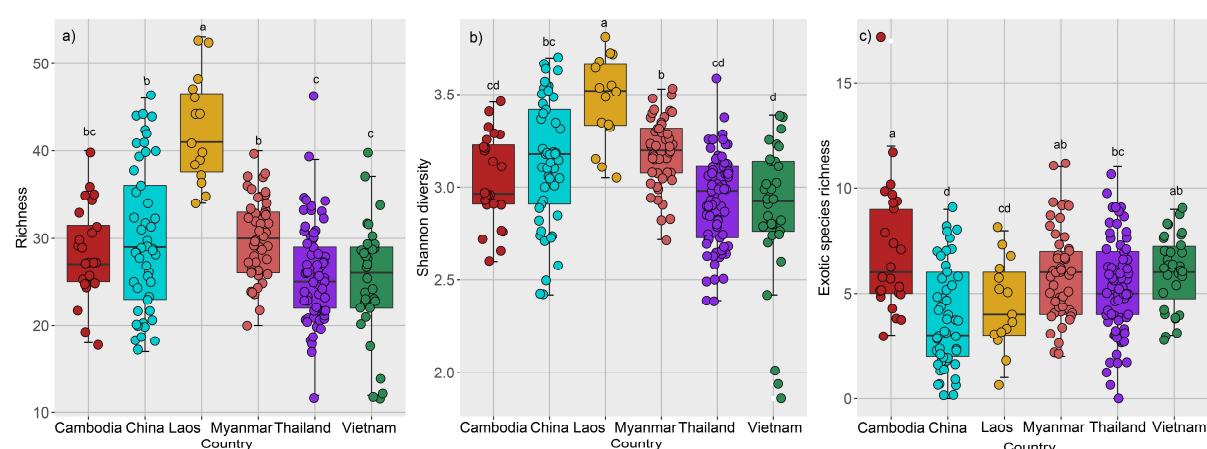
Mimosa pudica



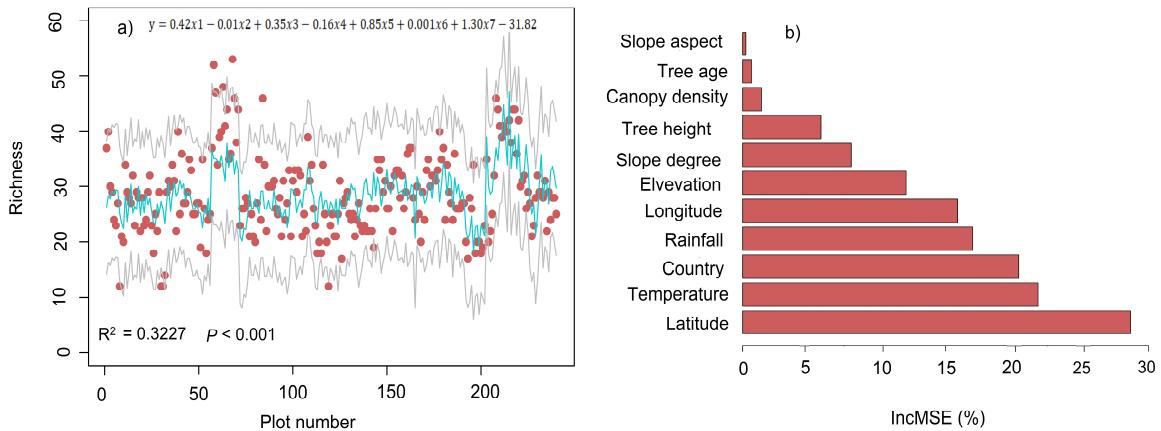
173

174 **Figure 2** Distribution maps of two common exotic species (a: *Chromolaena odorata*, b:
 175 *Mimosa pudica*) of rubber plantation in the GMS (circle size is proportional to importance
 176 value)

177
 178 **Figure 3** Significant difference in plant community compositions of rubber plantations among
 179 countries in GMS. a: Principal coordinate analysis (PCoA) based on Bray-curtis distance; b:
 180 Analysis of similarity among countries.


181
 182 **Figure 4** Redundancy analysis of plant community compositions of rubber plantation in the
 183 GMS (a: RDA ordination, b: Percentage of explained and unexplained by RDA results)

184

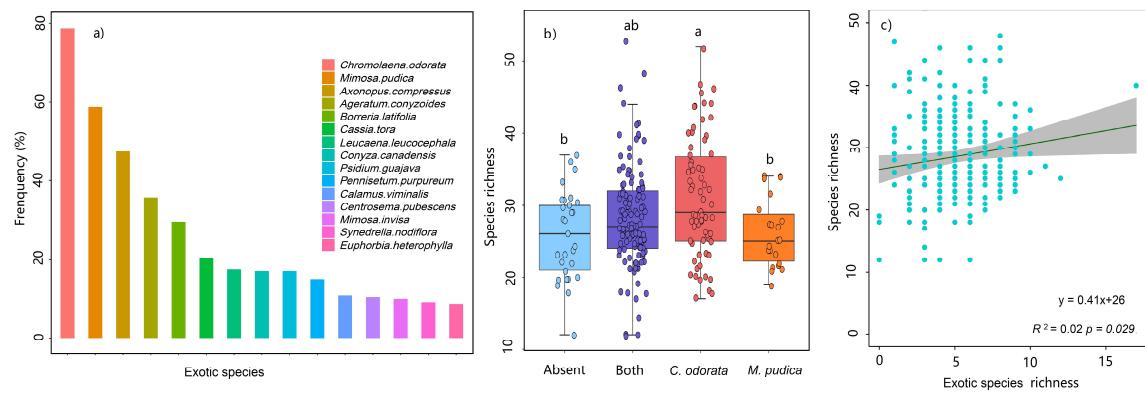

185 **Table 2** Explained percentage of environmental factors on the variation of plant community
 186 compositions of rubber plantations in GMS based on the RDA results

Contents	Df	Variance	Explained (%)	F	Pr (> F)
Country	1	33.18	5.62	3.08	0.007 **
Latitude	1	19.89	3.37	9.22	0.001 ***
Longitude	1	18.53	3.14	8.59	0.001 ***
Height	1	6.54	1.11	3.03	0.001 ***
Elevation	1	6.50	1.10	3.01	0.001 ***
Age	1	5.54	0.94	2.56	0.001 ***
Slope	1	5.01	0.85	2.32	0.002 ***
Temperature	2	4.63	0.78	2.16	0.005 **
Rainfall	2	3.19	0.54	1.49	0.032 *
Canopy	1	4.01	0.68	1.86	0.001 ***
Aspect	1	2.97	0.50	1.38	0.073
Residual	224	479.91	82.68		

187
 188 **3.2 Plant diversity of rubber plantations**
 189 Species richness of rubber plantations in Laos was the highest among the six countries,
 190 followed by China and Myanmar, while the richness of Thailand, Cambodia, and Vietnam
 191 were relatively lower (Figure 5a). The same was true for Shannon diversity (Figure 5b).
 192

193 **Figure 5** Plant species diversity of rubber plantations across countries in the GMS (a: species
 194 richness; b: Shannon diversity; c: Exotic species richness).

196


197 **Figure 6** Factors affecting plant diversity of rubber plantation in GMS. a: Predicting species
 198 richness by using multiple linear regression (The red point was the observed richness, the green
 199 elevation (The red point was the observed richness, the green
 200 height, and the grey solid line was the 95% confidence interval.
 201 y: Richness, x1: Latitude, x2: Elevation, x3: Slope, x4: Age, x5: Height, x6:
 202 Rainfall, x7: Temperature.) b: Predictions of the importance of environmental variables
 203 based on Random Forest.

203 The results of multiple linear regression ($R^2 = 0.3227, P < 0.001$) showed that
 204 temperature ($P < 0.001$), tree height ($P < 0.001$), latitude ($P < 0.01$) and slope degree ($P <$
 205 0.001) were positively correlated with the species richness (Figure 6a). Among these factors,
 206 temperature (with the highest intercept 1.3) is the most important factor affecting plant
 207 diversity. Random Forest results showed that high mean squared errors of latitude,
 208 temperature, and countries were the top three features affecting plant diversity of rubber
 209 plantation (Figure 6b).

210 **3.3 Effects of exotic species on plant diversity of rubber plantations**

211 The exotic species richness of rubber plantations was relatively higher in Cambodia, Vietnam,
 212 and Myanmar compared to China, Laos, and Thailand (Figure 3c). In order to clarify whether
 213 exotic species can reduce plant diversity, we analyzed the relationship between the dominance

214 of exotic species and the species richness in the plot. In view of the fact that *C. odorata* and *M.*
 215 *pudica* are the two most common exotic species in rubber plantations (Figure 7a) the two
 216 species were selected for analysis. The importance values of exotic species *C. odorata* (Figure
 217 S2a) and *M. pudica* (Figure S2b) were negatively correlated with species richness, suggesting
 218 that exotic species with high dominance will reduced rubber plantation diversity. However,
 219 exotic species richness was positively correlated with species richness (Figure 7c). Richness of
 220 communities where *C. odorata* (*M. pudica*) was present was not lower than those where it was
 221 absent (Figure 7b). In sum, diversity of the community was reduced only when the dominance
 222 of exotic species was high.

223

224 **Figure 7** Effects of exotic species on plant diversity of rubber plantations in the GMS (a:
 225 Frequency of the most common exotic species; b: Richness comparison of different
 226 communities (sky blue bar: plots without *C. odorata* and *M. pudica*; blue bar: plots with both
 227 *C. odorata* and *M. pudica*; red bar: plots only with *C. odorata*; yellow bar: plots only with *M.*
 228 *pudica*) c: relationship between exotic species richness of given plot and species richness of
 229 given plot)

230

231 **4. Discussion**

232 **4.1 Main drivers for plant composition and diversity of rubber plantations**

233 Rubber plantations constitute one of the most important agro-ecosystems of tropical regions
234 and play an important role in their carbon budgets (Chen et al., 2020). For, plant composition,
235 latitude ranks second (Table2) in terms of its impact on plant composition which indicating
236 that latitude is an important driver of plant composition of rubber plantation. For plant
237 diversity, both multiple linear regression and Random Forest showed that temperature was
238 the most important factor for plant diversity of rubber plantations. Our results are consistent
239 with previous study which revealed that temperature is the main driver for plant diversity
240 (Nottingham et al., 2018).

241 We were surprised to find that understory plant diversity of artificial rubber plantations
242 increased with latitude, similar to that of the global diversity patterns (Rohde 1992; Perrigo et
243 al., 2013) that latitudinal gradients are known in which maximum diversity does not occur
244 near the equator (Stehli, 1968). One study suggest that the diversity of plant communities was
245 directly affected by latitude (Li et al., 2019). Our results showed that elevation was not as
246 important as other factors which is different from our previous study in which elevation
247 significantly affect plant species diversity (Li et al., 2019).

248 Plant diversity of north Laos and south China was relatively higher than other countries.
249 This observation may be due to the large variation in elevation in these areas, which
250 translates into greater environmental heterogeneity. In addition, greater slope may increase
251 environmental heterogeneity and expand niche space (Morrison-Whittle and Goddard, 2015).
252 Anyway, temperature could largely contribute to explaining the latitudinal diversity gradient
253 patterns of rubber plantations.

254 **4.2 Not all exotic plants cause the loss of plant diversity in rubber plantations**

255 Rubber plantation expansion and intensification has occurred in many regions that are key for
256 biodiversity conservation. Monoculture plantations have been promoted to restore the world's
257 forested areas, but have done little to slow the loss of biodiversity (Zhang et al., 2021). It has
258 been hypothesized that exotic species might more easily invade areas of low species diversity
259 than areas of high species diversity (Stohlgren et al., 1999). A recent study shows exotic
260 plants account for ~17% and ~35% of the total importance value indices of natural and
261 human-modified ecosystems, respectively (Chandrasekaran et al., 2000). Here, in rubber
262 plantations, exotic plants made up roughly 12% of the total recorded species and 22.80% of
263 the coverage. *C. odorata* is a noxious perennial weed in many parts of the world (Kushwaha
264 et al., 1981), and it is unsurprising that it was recorded in almost all plantation plots in our
265 study. These indicated that invasion by exotic species has either already occurred or is
266 inevitable in many systems (Stohlgren et al., 1999). *M. pudica*, the “sensitive plant”, is a
267 worldwide, pan-tropical invasive species (Melkonian et al., 2014). *M. pudica*, as many
268 tropical grasses and herbs, is tolerant of low pH (Humphreys 1997, Paudel 2018), which
269 explains its ubiquity in acidic rubber plantation soil.

270 More importantly, our study demonstrated that the diversity of the community was reduced
271 only when the importance value of exotic species is large enough, not all exotic species cause
272 the loss of plant diversity in rubber plantations, which follows the theory that many species
273 can coexist in spatially heterogeneous areas as long as nutrients and light are not limiting
274 (Huston and DeAngelis, 1994). Our results also were consistent with idea that inhibition of
275 plant diversity by exotic species invasion gradually weakened with increased precipitation

276 (Xu et al., 2022) due to higher precipitation in GMS. In addition, management of rubber
277 plantation reduces the dominance of exotic species to a great extent, thus providing space for
278 the survival of other plants.

279 ***4.3 Plant composition and diversity is largely affected by of management***

280 Forests that are intensively managed for production purposes generally have lower biodiversity
281 than natural forests (Chaudhary et al., 2016), and this is especially true for rubber plantations
282 (He and Martin, 2016). In artificial forests such as rubber plantations, there is no doubt that
283 management measures and agricultural intensity are two most important factors affecting plant
284 diversity. The application of herbicides and sprout control causes low diversity of understory
285 plants, this is especially true of rubber plantations of Vietnam (Figure S1f). Also, it is not easy
286 for farmers to clear understory plants on the steep slopes of rubber plantations at high elevation;
287 thus high slope degree indirectly results in low agricultural intensity and high diversity. RDA
288 analysis only explained 18.65% of the variation of community compositions, and multiple
289 linear regression only explained 32.27% of the variation of plant diversity. Most of the
290 unexplained variation are caused by management intensity and measures. In sum, plant
291 compositions and diversity is largely affected by the measures and intensity of management.

292 In poor areas, we cannot just talk about ecological goals without first understanding local
293 cultures and economies. Well-managed forests can alleviate poverty in rural areas, as outlined
294 by the United Nations Sustainable Development Goals (Lewis et al., 2019). Previous study
295 conducted in India demonstrated that a no-weeding practice in mature rubber plantations did
296 not affect rubber yield (Abraham and Joseph, 2016). A similar study conducted in China also
297 showed that natural management strategies can improve biodiversity without reducing latex

298 production (Lan et al., 2017d). There is strong evidence that adopting more natural
299 management strategies improves plant diversity without reducing latex production (Lan et al.,
300 2017d). More innovative management measures, such as cease of weeding and herbicide
301 application (He and Martin, 2015), must be implemented to improve the biodiversity of rubber
302 plantations, so as to promote the biodiversity of the region.

303

304 **5. Conclusion**

305 We provide a large regional study on the plant diversity of rubber plantations in a global
306 biodiversity hotspot. Plant diversity followed global trends with respect to latitude and
307 temperature. Exotic species were very common in rubber plantations, especially where
308 agricultural intensity was strong. However, not all exotic species directly drive the loss of
309 biodiversity. Only higher dominance of some exotic species were associated with a loss of
310 plant diversity within rubber plantations. We must make greater efforts to balance agricultural
311 production with conservation goals in this region, particularly in Vietnams and Cambodia, to
312 minimize the loss of biodiversity.

313

314 **Code availability**

315 Not applicable

316 **Authors' contributions**

317 **Guoyu Lan**: Conceptualization, Methodology, Writing, Reviewing and Editing; **Bangqian**
318 **Chen**: Methodology, Reviewing and Editing, **Chuan Yang, Rui Sun, Bangqian Chen,**
319 **Zhixiang Wu and Xicai Zhang**: Investigation

320 **Competing interests**

321 The authors declared that they have no conflicts of interest to this study.

322 **Disclaimer**

323 Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims
324 in published maps and institutional affiliations.

325

326 **Acknowledgements**

327 We thank the help of the Rubber Research Bureau of Thailand, Perennial Crop Research
328 Institute of Myanmar, the Rubber Research Institute of Cambodia, Vietnam Agricultural
329 University, and the Yunnan Rubber Group. We would like to thank Prof. Fangliang He at
330 University of Alberta and Dr. Ian Gilman at Yale University for his assistance with English
331 language and grammatical editing.

332

333 **Funding**

334 This large-scale field investigation was supported by National Natural Science Foundation of
335 China (42071418), the Lancang-Mekong international cooperation project of the Ministry of
336 Foreign Affairs (081720203994192003) and the Earmarked Fund for China Agriculture
337 Research System (CARS-33-ZP3).

338

339 **Reference**

340 Abraham, J., Joseph, P. A new weed management approach to improve soil health in a tropical
341 plantation crop, rubber (*Hevea brasiliensis*). *Exp. Agr.*, 52, 36-50, 2016
342 Ahrends, A., Hollingsworth, P.M., Ziegler, A.D., Fox, J.M., Chen, H., Su, Y., Xu, J.X.
343 Current trends of rubber plantation expansion may threaten biodiversity and livelihoods.

344 Global Environ. Chang., 34, 48-58, 2015.

345 Aratrakorn, S., Thunhikorn, S., Donald, P.F. Changes in bird communities following
346 conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird
347 Conserv. Int., 16, 71-82, 2006.

348 Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.

349 Cai, Z. Q., Zhang, Y. H., Yang, C., Wang, S. Land-use type strongly shapes community
350 composition, but not always diversity of soil microbes in tropical China. Catena, 165,
351 369-380, 2018.

352 Chandrasekaran, S., Sundarapandian, S.M., Chandrasekar, P., Swamy, P.S. Exotic plant
353 invasions in disturbed and man-modified forest ecosystems in the Western Ghats of
354 Tamil Nadu. Tropical Forestry Research: Challenges in the New Millennium.
355 Proceedings of the International Symposium, Peechi, India, 2-4 August, 2000, 32-39,
356 2001.

357 Chaudhary, A., Burivalova, Z., Koh, L.P., Hellweg, S. Impact of forest management on
358 species richness: Global meta-analysis and economic trade-offs. Sci. Rep., 6, 23954,
359 2016.

360 Chaudhuri, P.S., Bhattacharjee, S., Dey, A., Chattopadhyay, S., Bhattacharya, D. Impact of age
361 of rubber (*Hevea brasiliensis*) plantation on earthworm communities of West Tripura (India).
362 J Environ Biol., 34, 59-65, 2013.

363 Chen, B.Q., Yun, T., Ma, J., Kou, W.L., Li, H.L., Yang, C., Xiao, X.M., Zhang, X., Sun, R.,
364 Xie, G.S., Wu, Z.X. High-Precision stand age data facilitate the estimation of rubber
365 plantation biomass: A case study of Hainan Island, China. Remote Sens., 12, 3853,
366 2020.

367 Chen, H., Yi, Z.F., Schmidt-Vogt, D., Ahrends, A., Beckschäfer, P., Kleinn, C., Ranjitkar, S.,
368 Xu, J.C. Pushing the Limits: The Pattern and Dynamics of Rubber Monoculture
369 Expansion in Xishuangbanna, SW China. PLoS ONE, 11(2), e0150062, 2016.

370 Curtis, J.T., McIntosh, R.P. The interactions of certain analytic and synthetic
371 phytosociological characters. Ecology, 31, 435-455, 1950.

372 Curtis, J.T., McIntosh, R.P. An upland forest continuum in the prairie-forest border region of
373 Wisconsin. Ecology, 32(3), 476-496, 1951.

374 Delzeit, R., Zabel, F., Meyer, C., Václavík, T. Addressing future trade-offs between
375 biodiversity and cropland expansion to improve food security. Reg. Environ. Change,
376 17, 1429-1441, 2017.

377 Egli, L., Meyer, C., Scherber, C., Kreft, H., Tscharntke, T. Winners and losers of national and
378 global efforts to reconcile agricultural intensification and biodiversity conservation.
379 Global Change Biol., 24, 2212-2228, 2018.

380 Fitzherbert, E.B., Struebig, M.J., Morel, A., Danielsen, F., Carsten, A., Brühl, Donald, P.F.,
381 Phalan, B. How will oil palm expansion affect biodiversity? Trends Ecol. Evol., 23(10),

382 538-545, 2008.

383 Greig-Smith, P. W. Use of perches as vantage points during foraging by male and female

384 Stonechats *Saxicola torquata*. *Behaviour*, 86(3-4), 215-236, 1983.

385 Grogan, K., Pflugmacher, D., Hostert, P., Mertz, O., Fensholt, R. Unravelling the link

386 between global rubber price and tropical deforestation in Cambodia. *Nat Plants*, 5(1),

387 47-53, 2019.

388 Han, Z.Q., Liu, T., Wang, T., Liu, H.F., Li, B. L. Quantification of water resource utilization

389 efficiency as the main driver of plant diversity in the water-limited ecosystems. *Ecol.*

390 *Model.*, 429, 108974, 2020.

391 He, P., Martin, K. 2016. Effects of rubber cultivation on biodiversity in the Mekong Region.

392 CAB Reviews, 10, 44

393 Humphreys, L.R. *The Evolving Science of Grassland Improvement*. Cambridge University

394 Press, Cambridge, UK, 1997.

395 Kehoe, L. Romero-Muoz, A., Polaina, E., Estes, L., Kuemmerle, T. Biodiversity at risk under

396 future cropland expansion and intensification. *Nat. Ecol. Evol.*, 1, 1129-1135, 2017.

397 Kerfahi, D. B. M. T., Dong, K., Go, R., Adams, J. M. Rainforest conversion to rubber

398 plantation may not result in lower soil diversity of bacteria fungi and nematodes.

399 *Microb. Ecol.*, 72, 359-371, 2016.

400 Kushwaha, S.P.S., Tripathi, P.S.R.S. Population dynamics of *Chromolaena odorata* in

401 successional environments following slash and burn agriculture. *J Appl. Ecol.*, 18(2):

402 529-535, 1981.

403 Lan, G.Y., Hu, Y.H., Cao, M., Zhu, H. Topography related spatial distribution of dominant

404 tree species in a tropical seasonal rain forest in China, *For. Ecol. Manage.*, 262(8):1507-

405 1513, 2011.

406 Lan, G.Y., Li, Y.W., Jatoi, M.T., Tan, Z.H., Wu, Z.X., Xie, G.S. Change in soil microbial

407 community compositions and diversity following the conversion of tropical forest to

408 rubber plantations in Xishuangbanan, Southwest China. *Trop. Conserv. Sci.*, 10, 1-14,

409 2017c.

410 Lan, G.Y., Li, Y.W., Wu, Z.X., Xie, G.S. Impact of tropical forest conversion on soil

411 bacterial diversity in tropical region of China. *Eur. J. Soil Biol.*, 83, 91-97, 2017a.

412 Lan, G.Y., Li, Y.W., Wu, Z.X., Xie, G.S. Soil bacterial diversity impacted by conversion of

413 secondary forest to rubber or eucalyptus plantations-A case study of Hainan Island,

414 South China. *For. Sci.*, 63(1), 87-93, 2017b.

415 Lan, G.Y., Wu, Z.X., Chen, B.Q., Xie, G.S. Species diversity in a naturally managed rubber

416 plantation in Hainan island, south china. *Trop. Conserv. Sci.*, 10, 1-7, 2017d.

417 Lan, G.Y., Wu, Z.X., Li, Y.W., Chen, B.Q. The drivers of soil bacterial communities in

418 rubber plantation at local and geographic scales. *Arch. Agron. Soil Sci.*, 66(3), 358-369,

419 2020c.

420 Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X. Tropical rainforest
421 conversion into rubber plantations results in changes in soil fungal composition, but
422 underling mechanisms of community assembly remain unchanged. *Geoderma*, 375,
423 114505, 2020b,

424 Lan, G.Y., Wu, Z.X., Sun, R., Yang, C., Chen, B.Q., Zhang, X.C. 2020a. Forest conversion
425 changed the structure and functional process of tropical forest soil microbiome. *Land*
426 *Degrad. Dev.*, 32(2):613-627, 2021

427 Lan, G.Y., Wu, Z.X., Xie, G.X. Characteristics of plant species diversity of rubber plantation
428 in Hainan Island. *Biodivers. Sci.*, 22 (5): 658-666, 2014.

429 Lewis, S.L., Wheeler, C.E., Mitchard, E.T.A., Koch, A. Regenerate natural forests to store
430 carbon. *Nature*, 568(7750), 25-28, 2019.

431 Li, S., Zou, F., Zhang, Q., Sheldon, F.H. Species richness and guild composition in rubber
432 plantations compared to secondary forest on Hainan Island, China. *Agroforestry Syst.* 87,
433 1117-28, 2013.

434 Li, Y.W., Xia, Y.J., Lei, Y.B., Deng, Y., Chen, H., Sha, L.Q., Cao, M., Deng, X.B.
435 Estimating changes in soil organic carbon storage due to land use changes using a
436 modified calculation method. *Iforest*, 8, 45-52, 2015.

437 Li., H.M., Aide, T., Ma, Y.X., Liu, W.J., Cao, M. Demand for rubber is causing the loss of
438 high diversity rain forest in SW China. *Biodivers. Conserv.*, 16 (6),1731-1745, 2007.

439 Linares-Palomino, R., Alvarez, S.I.P. Tree community patterns in seasonally dry tropical
440 forests in the Cerros de Amotape Cordillera, Tumbes, Peru. *For. Ecol. Manage.*, 209,
441 261–272, 2005.

442 Mccoy, E.D., Connor, E. F. Latitudinal gradients in the species diversity of north American
443 mammals. *Evolution*, 34, 193-203, 1980.

444 Melkonian, R., Moulin, L., Béna, G., Tisseyre, P., Chaintreuil, C., Heulin, K., Rezkallah,
445 N.,Klonowska, A., Gonzalez, S.,Simon, M., Chen, W.M., James, E. K.and Laguerre, G.,
446 The geographical patterns of symbiont diversity in the invasive legume *mimosa*
447 *pudicacan* be explained by the competitiveness of its symbionts and by the host
448 genotype. *Environ. Microbiol.*, 16(7), 2099-2111, 2014.

449 Morrison-Whittle, P., Goddard, M. R. Quantifying the relative roles of selective and neutral
450 processes in defining eukaryotic microbial communities. *ISME J.*, 9, 2003-2011, 2015

451 Myers, N., Mittermeier, R. A., Mittermeier, C.G., Fonseca, G.A.B.D., Kent, J. Biodiversity
452 hotspots for conservation priorities. *Nature*, 403(6772), 853-858, 2000.

453 Nottingham, A., Fierer, N., Turner, B.L., Whitaker, J., Ostle, N.J., Mcnamara, N.P., Bardgett,
454 R.D., Leff, J.W., Salinas, N., Silman, M. R., Kruuk, L. E. B., Meir, P. Temperature drives
455 plant and soil microbial diversity patterns across an elevation gradient from the Andes to

456 the Amazon. *Ecology*, 99(11), 2455-2466, 2018.

457 Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin,
458 P.R., O'Hara, R. B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H.
459 vegan: Community Ecology. Package. R package version 2.5-7. 2020.

460 Paudel, N. Seasonal variation in phenophases of *Mimosa pudica* (fabaceae) in grazed pasture
461 of Barandabhar corridor forest Chitwan, Nepal. *Curr. Trends Biomed. Eng. Biosci.*, 11.
462 DOI: 10.19080/CTBEB.2018.11.555825, 2018.

463 Perrigo, A.L., Baldauf, S.L., Romeralo, M. Diversity of dictyostelid social amoebae in high
464 latitude habitats of Northern Sweden. *Fungal Divers.*, 58(1), 185-198, 2013.

465 Phommexay, P., Satasook, C., Bates, P., Pearch, M., Bumrungsri, S. The impact of rubber
466 plantations on the diversity and activity of understory insectivorous bats in southern
467 Thailand. *Biodiversity and Conservation*, 20:1441-56. 2011.

468 R Core Team. R: A language and environment for statistical computing. R Foundation for
469 Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.2021.

470 Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. *Oikos*,
471 65(3), 514-527, 1992.

472 Sabatini, F.M., Burrascano, S., Azzella, M.M., Barbati, A., De Paulis, S., Di Santo, D.
473 Facioni, L., Giuliarelli, D., Lombardi, F., Maggi, O., Mattioli, W., Parisi, F., Persiani, A.,
474 Ravera, S., Blasi, C. Herb-layer diversity and stand structural complexity are weak predictors
475 of biodiversity in *Fagus sylvatica* forests. *Ecol. Indic.*, 69, 126-137, 2016.

476 Schneider, D., Engelhaupt, M., Allen, K., Kurniawan, S., Krashevska, V., Heinemann, M.,
477 Scheu, S. Impact of lowland rainforest transformation on diversity and composition of
478 soil prokaryotic communities in Sumatra Indonesia. *Front. Microbiol.*, 6, 296, 2015.

479 Shackelford, G. E., Steward, P. R., German, R. N., Sait, S. M., Benton, T. G. Conservation
480 planning in agricultural landscapes: hotspots of conflict between agriculture and nature.
481 *Divers. Distrib.*, 21, 357–367, 2014.

482 Shah, H.A., Huxley, P., Elmes, J., Murray, K.A. Agricultural land-uses consistently
483 exacerbate infectious disease risks in Southeast Asia. *Nat. Commun.* 10, 4299, 2019.

484 Singh, D., Slik, J.W.F., Jeon, Y.S., Tomlinson, K.W., Yang, X.D., Wang,
485 J., Kerfahi, D., Porazinska, D.L., Adams, J.M. Tropical forest conversion to rubber
486 plantation affects soil micro & mesofaunal community & diversity. *Sci. Rep.*,
487 9(1):5893.doi: 10.1038/s41598-019-42333-4, 2019.

488 Soons, M.B., Hefting, M.M., Dorland, E., Lamers, L.P.M., Versteeg, C., Bobbink, R.
489 Nitrogen effects on plant species richness in herbaceous communities are more widespread
490 and stronger than those of phosphorus. *Biol. Conserv.*, 212, 390-397, 2017.

491 Stadler, J, Trefflich, A, Klotz, S, Brandl. R.. Exotic plant species invade diversity hot spots:
492 the alien flora of northwestern Kenya. *Ecography*. 23(2):169-176. 2000.

493 Stehli, G.G. Taxonomic diversity gradients in pole location: the Recent model, p, 168-227.

494 1968.

495 Stohlgren, T.J. , Binkley, D., Chong, G.W., Kalkhan, M. A., Schell, L. D., Bull, K. A.,
496 Otsuki, Y., Newman, G., Bashkin, M., Son, Y. Exotic plant species invade hot spots of
497 native plant diversity. *Ecol. Monogr.*, 69(1): 25-46. 1999.

498 Sun, H.L. 2000. *Encyclopedia of resource science of China* [M]. Beijing: *Encyclopedia of*
499 *China Press*

500 Tripathi, B. M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A. N., Adams, J.
501 M. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial
502 tropics too. *Microb. Ecol.*, 64: 474-484, 2012.

503 Warren-Thomas, E.M. , Edwards, D.P. , Bebber, D.P. , Chhang, P., Diment, A. N., Evans,
504 T.D., Lambrick, F.H., Maxwell, J.F., Nut, M., O'Kelly, H.J., Theilade, I., Dolman, P.M.
505 Protecting tropical forests from the rapid expansion of rubber using carbon
506 payments. *Nat. Commun.*, 9(1), 911, 2018.

507 Wu, J., Wang, X., Zhong, B., Yang, A., Liu, Q. Ecological environment assessment for
508 Greater Mekong Subregion based on pressure-state-response framework by remote
509 sensing. *Ecol. Indic.*, 117, 106521, 2020.

510 Xiao, C.W., Li, P., Feng, Z.M., Yang, Y.Z., You, Z.L., Yu M., Zhang, X.Z. Latest 30-m map
511 of mature rubber plantations in Mainland Southeast Asia and Yunnan province of China:
512 Spatial patterns and geographical characteristics. *Prog. Phys. Geog.*, 030913332098374.
513 10.1177/0309133320983746, 2021.

514 Xiao, H.F., Tian, Y.H., Zhou, H.P., Ai, X.S., Yang, X.D., Schaefer, D.A. Intensive rubber
515 cultivation degrades soil nematode communities in Xishuangbanna, southwest China. *Soil*
516 *Biol. Biochem.*, 76, 161-169, 2014.

517 Xu, H.W., Liu, Q., Wang, S.Y., Yang, G.S., Xue, S. A global meta-analysis of the impacts of
518 exotic plant species invasion on plant diversity and soil properties. *Sci. Total Environ.*,
519 810, 152286, 2022.

520 Xu, J.C. China's new forests aren't as green as they seem. *Nature*, 477, 371, 2011.

521 Yaseen, S. D. Prevalence of economically important fungal diseases at different phenological
522 stages of peanut (*Arachis hypogaea* L.), pearl millet (*Pennisetum glaucum* L.) and
523 sorghum (*Sorghum bicolor* L.) in sub-zone Hamelmal. *J. Agr. Econ. Dev.*, 2(6), 237-245,
524 2013.

525 Zabel, F., Delzeit, R., Schneider, J.M., Seppelt, R., Mauser, W., Václavík, T. Global impacts

526 of future cropland expansion and intensification on agricultural markets and
527 biodiversity. *Nat. Commun.*, 10, 2844, 2019.
528 Zhang, J., Fu, B., Stafford-Smith, M., Wang, S., Zhao, W. Improve forest restoration
529 initiatives to meet sustainable development goal. *Nat. Ecol. Evol.*, 5(1), 10–13, 2021.
530

531 **Figure captions**

532 **Figure 1** Sampling plot localities within rubber plantations in GMS

533 **Figure 2** Distribution maps of two common exotic species (a: *Chromolaena odorata*, b:
534 *Mimosa pudica*) of rubber plantation in the GMS (circle size is proportional to importance
535 value)

536 **Figure 3** Significant difference in plant community compositions of rubber plantations among
537 countries in GMS. a: Principal coordinate analysis (PCoA) based on Bray-curtis distance; b:
538 Analysis of similarity among countries.

539 **Figure 4** Redundancy analysis of plant community compositions of rubber plantation in the
540 GMS (a: RDA ordination, b: Percentage of explained and unexplained by RDA results)

541 **Figure 5** Plant species diversity of rubber plantations across countries in the GMS (a: species
542 richness; b: Shannon diversity; c: Exotic species richness).

543 **Figure 6** Factors affecting plant diversity of rubber plantation. a) Predicting species richness
544 by using multiple linear regression (The red point was the observed richness, the green solid
545 line was the estimated richness, and the grey solid line was the 95% confidence interval. y:
546 Richness, x1: Latitude, x2: Elevation, x3: Slope, x4: Age, x 5: Height, x6:
547 Rainfall, x7: Temperature.) b): Predictions of the importance of environmental variables
548 based on Random Forest.

549 **Figure 7** Effects of exotic species on plant diversity of rubber plantations in the GMS (a:
550 Frequency of the most common exotic species; b: Richness comparison of different
551 communities (sky blue bar: plots without *C. odorata* and *M. pudica*; blue bar: plots with both
552 *C. odorata* and *M. pudica*; red bar: plots only with *C. odorata*; yellow bar: plots only with *M.*

553 *pudica*) c: relationship between exotic species richness of given plot and species richness of
554 given plot)
555